1
|
Hao X, Song H, Su X, Li J, Ye Y, Wang C, Xu X, Pang G, Liu W, Li Z, Luo T. Prophylactic effects of nutrition, dietary strategies, exercise, lifestyle and environment on nonalcoholic fatty liver disease. Ann Med 2025; 57:2464223. [PMID: 39943720 PMCID: PMC11827040 DOI: 10.1080/07853890.2025.2464223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease and its prevalence has risen sharply. However, whether nutrition, dietary strategies, exercise, lifestyle and environment have preventive value for NAFLD remains unclear. METHODS Through searching 4 databases (PubMed, Web of Science, Embase and the Cochrane Library) from inception to January 2025, we selected studies about nutrition, dietary strategies, exercise, lifestyle and environment in the prevention of NAFLD and conducted a narrative review on this topic. RESULTS Reasonable nutrient intake encompassing macronutrients and micronutrients have an independent protective relationship with NAFLD. Besides, proper dietary strategies including mediterranean diet, intermittent fasting diet, ketogenic diet, and dietary approaches to stop hypertension diet have their inhibitory effects on the developmental process of NAFLD. Moreover, right exercises including walking, jogging, bicycling, and swimming are recommended for the prevention of NAFLD because they could effectively reduce weight, which is an important risk factor for NAFLD, and improve liver function. In addition, embracing a healthy lifestyle including reducing sedentary behavior, not smoking, sleeping well and brushing teeth regularly is integral since it not only could reduce the risk of NAFLD but also significantly contribute to overall prevention and control. Finally, the environment, including the social and natural environments, plays a potential role in NAFLD prevention. CONCLUSION Nutrition, dietary strategies, exercise, lifestyle and environment play an important role in the prevention of NAFLD. Moreover, this review offers comprehensive prevention recommendations for people at high risk of NAFLD.
Collapse
Affiliation(s)
- Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Hao Song
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Xin Su
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Jian Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Youbao Ye
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Cailiu Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Xiao Xu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Guanglong Pang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Wenxiu Liu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Zihan Li
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Tian Luo
- The Institute for Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Herrero Jiménez MP, Del Pozo de la Calle S, Cuadrado Vives C, Escobar Sáez D. Nutritional supplementation in pregnant, lactating women and young children following a plant-based diet: A narrative review of the evidence. Nutrition 2025; 136:112778. [PMID: 40373355 DOI: 10.1016/j.nut.2025.112778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/03/2025] [Accepted: 03/24/2025] [Indexed: 05/17/2025]
Abstract
Plant-based diets are increasingly popular in contemporary society. While they are suitable for all life stages, there is a potential risk of nutrient deficiencies, particularly in omega-3 fatty acids, vitamins A, D, and B12, zinc, iodine, selenium, choline, and creatine. During pregnancy and lactation, the nutritional demands increase significantly, making proper supplementation essential. Breastfeeding remains the optimal feeding method for infants, provided key nutrient needs are met through supplementation. A bibliographic search in Scopus, Web of Science, and PubMed focused on plant-based diets, supplementation, and key nutrients over the past 10 years. Studies involving diseases or duplicates were excluded, and data were analyzed from European and U.S. sources to assess nutrient supplementation trends. Micronutrient deficiencies during pregnancy and lactation can negatively impact infant neurological development. Vitamin A supports vision and immunity, while vitamin D aids fetal bone mineralization. Deficiency in vitamin B12 can lead to anemia and neurological issues. Zinc, iodine, selenium, omega-3 fatty acids (EPA and DHA), choline, and creatine also play critical roles in development and may require supplementation in plant-based diets. With careful planning, plant-based diets can meet nutritional needs during pregnancy, lactation, and childhood. Supplementation with key micronutrients, including choline and creatine, is essential for neurodevelopment and energy metabolism. Dietitians play a vital role in guiding individualized dietary plans, and further research is needed on optimal supplement dosages and long-term health effects.
Collapse
Affiliation(s)
| | - Susana Del Pozo de la Calle
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| | - Carmen Cuadrado Vives
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Daniel Escobar Sáez
- Faculty of Health Sciences, International University of La Rioja (UNIR), Spain. Logroño, La Rioja, Spain; Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Member of the Pediatric Nutrition Specialization Group (GENUT-Pedia), Spanish Academy of Nutrition and Dietetics, Navarra, Spain
| |
Collapse
|
3
|
Pan L, Xie L, Yang W, Feng S, Mao W, Ye L, Cheng H, Wu X, Mao X. The role of brain-liver-gut Axis in neurological disorders. BURNS & TRAUMA 2025; 13:tkaf011. [PMID: 40321299 PMCID: PMC12048006 DOI: 10.1093/burnst/tkaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 05/08/2025]
Abstract
In recent years, with the increasing volume of related research, it has become apparent that the liver and gut play important roles in the pathogenesis of neurological disorders. Considering the interactions among the brain, liver, and gut, the brain-liver-gut axis has been proposed and gradually recognized. In this article, we summarized the complex network of interactions within the brain-liver-gut axis, encompassing the vagus nerve, barrier permeability, immunity and inflammation, the blood-brain barrier, gut microbial metabolites, the gut barrier, neurotoxic metabolites, and beta-amyloid (Aβ) metabolism. We also elaborated on the impact of the brain-liver-gut axis on various neurological disorders. Furthermore, we outline several therapies aimed at modulating the brain-liver-gut axis, including antibiotics, probiotics and prebiotics, fecal microbiota transplantation (FMT), vagus nerve stimulation (VNS), and dietary interventions. The focus is on elucidating possible mechanisms underlying neurological disorders pathogenesis and identifying effective treatments that are based on our understanding of the brain-liver-gut axis.
Collapse
Affiliation(s)
- Li Pan
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Lizheng Xie
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230022, China
| | - Wenpei Yang
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230022, China
| | - Shi Feng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Wenbao Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Xiao Wu
- Department of Emergency, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Xiang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230022, China
| |
Collapse
|
4
|
Li X, Ren Y, Gao X, Wang H, Zhang J, Xie J, Liang J, Zhao B, Zhou H, Yin J. Gut microbiota-mediated choline metabolism exacerbates cognitive impairment induced by chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 2025; 45:989-1004. [PMID: 39719076 PMCID: PMC12035329 DOI: 10.1177/0271678x241309777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/01/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) is a crucial mechanism causing vascular cognitive impairment (VCI). Choline is metabolized by gut microbiota into trimethylamine N-oxide (TMAO), a risk factor of cardiovascular diseases and cognitive impairment. However, the impact of choline-TMAO pathway on CCH-induced VCI is elusive. We performed a cross-sectional clinical study to investigate the relationship between the choline-TMAO pathway and cognitive outcome and used a bilateral common carotid artery occlusion rat model to explore the effect of a choline-rich diet on cognition and underlying mechanisms. Plasma choline and TMAO levels were negatively correlated with cognitive scores in CCH patients. A choline-rich diet exacerbated CCH-induced cognitive impairment by encouraging the proliferation of choline-metabolizing bacteria in the gut and subsequent generation of TMAO. The choline-TMAO pathway, mediated by gut microbiota, exacerbates cognitive impairment induced by CCH. Targeted dietary choline regulation based on gut microbiota modulation may ameliorate long-term cognitive impairment.
Collapse
Affiliation(s)
- Xiao Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yueran Ren
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuxuan Gao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huidi Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiafeng Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahui Xie
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingru Liang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Liu J, Ge P, Luo Y, Sun Z, Luo X, Li H, Pei B, Xun L, Zhang X, Jiang Y, Wen H, Liu J, Yang Q, Ma S, Chen H. Decoding TMAO in the Gut-Organ Axis: From Biomarkers and Cell Death Mechanisms to Therapeutic Horizons. Drug Des Devel Ther 2025; 19:3363-3393. [PMID: 40322030 PMCID: PMC12049683 DOI: 10.2147/dddt.s512207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The gut microbiota and its metabolites are bi-directionally associated with various human illnesses, which has received extensive attention. Trimethylamine N-oxide (TMAO) is a gut microbiota metabolite produced in the liver, which may serve the role of an "axis" connecting the gut and host organs. TMAO levels are significantly higher in the blood of individuals with cardiovascular, renal, neurological, and metabolic diseases. Endothelial cells are crucial for regulating microcirculation and maintaining tissue and organ barriers and are widely recognized as target cells for TMAO. TMAO not only induces endothelial dysfunction but also acts on various cell types, such as endothelial cells, epithelial cells, vascular smooth muscle cells, nerve cells, and pancreatic cells, triggering multiple cell death mechanisms, including necrosis and programmed cell death, thereby influencing host health. This paper thoroughly covers the origins, production, and metabolic pathways of TMAO, emphasizing its importance in the early detection and prognosis of human diseases in the "Gut-Organ" axis, as well as its mechanisms of influence on human diseases, particularly the cross-talk with cell death. Furthermore, we cover recent advances in treating human diseases by regulating gut microbiota structure and enzyme activity to influence TMAO metabolism and reduce TMAO levels, including the use of probiotics, prebiotics, antibiotics, anti-inflammatory drugs, antiplatelet drugs, hypoglycemic drugs, lipid-lowering drugs, and natural products.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhenxuan Sun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Huijuan Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Lu Xun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xuetao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yunfei Jiang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Qi Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
6
|
Sharma S, Tiwari N, Tanwar SS. The current findings on the gut-liver axis and the molecular basis of NAFLD/NASH associated with gut microbiome dysbiosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04069-z. [PMID: 40202676 DOI: 10.1007/s00210-025-04069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Recent research has highlighted the complex relationship between gut microbiota, metabolic pathways, and nonalcoholic fatty liver disease (NAFLD) progression. Gut dysbiosis, commonly observed in NAFLD patients, impairs intestinal permeability, leading to the translocation of bacterial products like lipopolysaccharides, short-chain fatty acids, and ethanol to the liver. These microbiome-associated mechanisms contribute to intestinal and hepatic inflammation, potentially advancing NAFLD to NASH. Dietary habits, particularly those rich in saturated fats and fructose, can modify the microbiome composition, leading to dysbiosis and fatty liver development. Metabolomic approaches have identified unique profiles in NASH patients, with specific metabolites like ethanol linked to disease progression. While bariatric surgery has shown promise in preventing NAFLD progression, the role of gut microbiome and metabolites in this improvement remains to be proven. Understanding these microbiome-related pathways may provide new diagnostic and therapeutic targets for NAFLD and NASH. A comprehensive review of current literature was conducted using multiple medical research databases, including PubMed, Scopus, Web of Science, Embase, Cochrane Library, ClinicalTrials.gov, ScienceDirect, Medline, ProQuest, and Google Scholar. The review focused on studies that examine the relationship between gut microbiota composition, metabolic pathways, and NAFLD progression. Key areas of interest included microbial dysbiosis, endotoxin production, and the influence of diet on gut microbiota. The analysis revealed that gut dysbiosis contributes to NAFLD through several mechanisms, diet significantly influences gut microbiota composition, which in turn affects liver function through the gut-liver axis. High-fat diets can lead to dysbiosis, altering microbial metabolic activities and promoting liver inflammation. Specifically, gut microbiota-mediated generation of saturated fatty acids, such as palmitic acid, can activate liver macrophages and increase TNF-α expression, contributing to NASH development. Different dietary components, including cholesterol, fiber, fat, and carbohydrates, can modulate the gut microbiome and influence NAFLD progression. This gut-liver axis plays a crucial role in maintaining immune homeostasis, with the liver responding to gut-derived bacteria by activating innate and adaptive immune responses. Microbial metabolites, such as bile acids, tryptophan catabolites, and branched-chain amino acids, regulate adipose tissue and intestinal homeostasis, contributing to NASH pathogenesis. Additionally, the microbiome of NASH patients shows an elevated capacity for alcohol production, suggesting similarities between alcoholic steatohepatitis and NASH. These findings indicate that targeting the gut microbiota may be a promising approach for NASH treatment and prevention. Recent research highlights the potential of targeting gut microbiota for managing nonalcoholic fatty liver disease (NAFLD). The gut-liver axis plays a crucial role in NAFLD pathophysiology, with dysbiosis contributing to disease progression. Various therapeutic approaches aimed at modulating gut microbiota have shown promise, including probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and dietary interventions. Probiotics have demonstrated efficacy in human randomized controlled trials, while other interventions require further investigation in clinical settings. These microbiota-targeted therapies may improve NAFLD outcomes through multiple mechanisms, such as reducing inflammation and enhancing metabolic function. Although lifestyle modifications remain the primary recommendation for NAFLD management, microbiota-focused interventions offer a promising alternative for patients struggling to achieve weight loss targets.
Collapse
Affiliation(s)
- Seema Sharma
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India
| | - Nishant Tiwari
- Acropolis Institute of Pharmaceutical Education and Research, Indore, M.P, India
| | - Sampat Singh Tanwar
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India.
| |
Collapse
|
7
|
Wang Y, Zeng T, Tang D, Cui H, Wan Y, Tang H. Integrated Multi-Omics Analyses Reveal Lipid Metabolic Signature in Osteoarthritis. J Mol Biol 2025; 437:168888. [PMID: 39643156 DOI: 10.1016/j.jmb.2024.168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease and the second leading cause of disability worldwide. Single-omics analyses are far from elucidating the complex mechanisms of lipid metabolic dysfunction in OA. This study identified a shared lipid metabolic signature of OA by integrating metabolomics, single-cell and bulk RNA-seq, as well as metagenomics. Compared to the normal counterparts, cartilagesin OA patients exhibited significant depletion of homeostatic chondrocytes (HomCs) (P = 0.03) and showed lipid metabolic disorders in linoleic acid metabolism and glycerophospholipid metabolism which was consistent with our findings obtained from plasma metabolomics. Through high-dimensional weighted gene co-expression network analysis (hdWGCNA), weidentified PLA2G2A as a hub gene associated with lipid metabolic disorders in HomCs. And an OA-associated subtype of HomCs, namely HomC1 (marked by PLA2G2A, MT-CO1, MT-CO2, and MT-CO3) was identified, which also exhibited abnormal activation of lipid metabolic pathways. This suggests the involvement of HomC1 in OA progression through the shared lipid metabolism aberrancies, which were further validated via bulk RNA-Seq analysis. Metagenomic profiling identified specific gut microbial species significantly associated with the key lipid metabolism disorders, including Bacteroides uniformis (P < 0.001, R = -0.52), Klebsiella pneumonia (P = 0.003, R = 0.42), Intestinibacter_bartlettii (P = 0.009, R = 0.38), and Streptococcus anginosus (P = 0.009, R = 0.38). By integrating the multi-omics features, a random forest diagnostic model with outstanding performance was developed (AUC = 0.97). In summary, this study deciphered the crucial role of a integrated lipid metabolic signature in OA pathogenesis, and established a regulatory axis of gut microbiota-metabolites-cell-gene, providing new insights into the gut-joint axis and precision therapy for OA.
Collapse
Affiliation(s)
- Yang Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tianyu Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Deqin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Haipeng Cui
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou 646000, China; Medical Engineering & Medical Informatics Integration and Transformational Medicine Key Laboratory of Luzhou City, Luzhou 646000, China.
| |
Collapse
|
8
|
Hawesa H, Alghumaiz M, Alghamdi R, Alrabiah N, Alfaifi B, Allam H, Gamalalddin M, Alshegri H, Shanawani M. Impact of dietary intake on brain choline levels: A 3 Tesla magnetic resonance spectroscopy study. Saudi Med J 2025; 46:254-260. [PMID: 40096978 PMCID: PMC11918667 DOI: 10.15537/smj.2025.46.3.20240698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVES To investigate the relationship between dietary choices and brain choline (Cho) levels using magnetic resonance spectroscopy (MRS). METHODS A total of 88 female students from the radiology department at King Abdullah bin Abdulaziz University Hospital, Riyadh, Saudi Arabia, participated in this study. Brain total choline (tCho) levels were estimated using MRS single volume sequence at a 3 Tesla field, with an echo time of 30 ms, repetition time of 2000 ms, voxel size of 15x15x15 mm, and water suppression bandwidth of 50 Hz. Participants' food consumption habits were assessed using a dietary questionnaire to quantify the amount of protein in their daily servings, as protein intake affects Cho levels in the brain. RESULTS Linear regression test applied using the Statistical Package for the Social Sciences, and the result showed significant impact of diet protein intake on the brain tCho level (p=0.000). CONCLUSION The study's findings indicated that dietary choices significantly affect the levels of tCho in the brain. This research can serve as a baseline for health education, highlighting the close connection between dietary decisions and brain Cho levels. Understanding this relationship is essential for promoting a healthy lifestyle among younger generations.
Collapse
Affiliation(s)
- Halima Hawesa
- From the Department of Radiological Sciences (Hawesa, Alghumaiz, Alghamdi, Alrabiah, Alfaifi, Allam, Gamalalddin), College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, and from the Department of Radiology (Alshegri, Shanawani), King Abdullah bin Abdulaziz University Hospital, Riyadh, Kingdom of Saudi Arabia.
| | - Mayar Alghumaiz
- From the Department of Radiological Sciences (Hawesa, Alghumaiz, Alghamdi, Alrabiah, Alfaifi, Allam, Gamalalddin), College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, and from the Department of Radiology (Alshegri, Shanawani), King Abdullah bin Abdulaziz University Hospital, Riyadh, Kingdom of Saudi Arabia.
| | - Renad Alghamdi
- From the Department of Radiological Sciences (Hawesa, Alghumaiz, Alghamdi, Alrabiah, Alfaifi, Allam, Gamalalddin), College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, and from the Department of Radiology (Alshegri, Shanawani), King Abdullah bin Abdulaziz University Hospital, Riyadh, Kingdom of Saudi Arabia.
| | - Nourah Alrabiah
- From the Department of Radiological Sciences (Hawesa, Alghumaiz, Alghamdi, Alrabiah, Alfaifi, Allam, Gamalalddin), College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, and from the Department of Radiology (Alshegri, Shanawani), King Abdullah bin Abdulaziz University Hospital, Riyadh, Kingdom of Saudi Arabia.
| | - Bayader Alfaifi
- From the Department of Radiological Sciences (Hawesa, Alghumaiz, Alghamdi, Alrabiah, Alfaifi, Allam, Gamalalddin), College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, and from the Department of Radiology (Alshegri, Shanawani), King Abdullah bin Abdulaziz University Hospital, Riyadh, Kingdom of Saudi Arabia.
| | - Hind Allam
- From the Department of Radiological Sciences (Hawesa, Alghumaiz, Alghamdi, Alrabiah, Alfaifi, Allam, Gamalalddin), College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, and from the Department of Radiology (Alshegri, Shanawani), King Abdullah bin Abdulaziz University Hospital, Riyadh, Kingdom of Saudi Arabia.
| | - Mahasin Gamalalddin
- From the Department of Radiological Sciences (Hawesa, Alghumaiz, Alghamdi, Alrabiah, Alfaifi, Allam, Gamalalddin), College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, and from the Department of Radiology (Alshegri, Shanawani), King Abdullah bin Abdulaziz University Hospital, Riyadh, Kingdom of Saudi Arabia.
| | - Haya Alshegri
- From the Department of Radiological Sciences (Hawesa, Alghumaiz, Alghamdi, Alrabiah, Alfaifi, Allam, Gamalalddin), College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, and from the Department of Radiology (Alshegri, Shanawani), King Abdullah bin Abdulaziz University Hospital, Riyadh, Kingdom of Saudi Arabia.
| | - Mansour Shanawani
- From the Department of Radiological Sciences (Hawesa, Alghumaiz, Alghamdi, Alrabiah, Alfaifi, Allam, Gamalalddin), College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, and from the Department of Radiology (Alshegri, Shanawani), King Abdullah bin Abdulaziz University Hospital, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
9
|
Xie H, Jiang J, Cao S, Xu X, Zhou J, Zhang R, Huang B, Lu P, Peng L, Liu M. The Role of Gut Microbiota-Derived Trimethylamine N-Oxide in the Pathogenesis and Treatment of Mild Cognitive Impairment. Int J Mol Sci 2025; 26:1373. [PMID: 39941141 PMCID: PMC11818489 DOI: 10.3390/ijms26031373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Mild cognitive impairment (MCI) represents a transitional stage between normal aging and dementia, often considered critical for dementia prevention. Despite its significance, no effective clinical treatment for MCI has yet been established. Emerging evidence has demonstrated a strong association between trimethylamine-N-oxide (TMAO), a prominent metabolite derived from the gut microbiota, and MCI, highlighting its potential as a biomarker and therapeutic target. TMAO has been implicated in increasing MCI risk through its influence on factors such as hypertension, cardiovascular disease, depression, diabetes, and stroke. Moreover, it contributes to MCI by promoting oxidative stress, disrupting the blood-brain barrier, impairing synaptic plasticity, inducing inflammation, causing mitochondrial metabolic disturbances, and facilitating abnormal protein aggregation. This review further explores therapeutic strategies targeting TMAO to mitigate MCI progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liang Peng
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
10
|
Ibrahim M, Bednarczyk M, Stadnicka K, Grochowska E. Inter- and Transgenerational Effects of In Ovo Stimulation with Bioactive Compounds on Cecal Tonsils and Cecal Mucosa Transcriptomes in a Chicken Model. Int J Mol Sci 2025; 26:1174. [PMID: 39940944 PMCID: PMC11817890 DOI: 10.3390/ijms26031174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Exploring how early-life nutritional interventions may impact future generations, this study examines the inter- and transgenerational effects of in ovo injection of bioactive compounds on gene expression in the cecal tonsils and cecal mucosa using a chicken model. Synbiotic PoultryStar® (Biomin) and choline were injected in ovo on the 12th day of egg incubation. Three experimental groups were established in the generation F1: (1) a control group (C) receiving 0.9% physiological saline (NaCl), (2) a synbiotic group (SYN) receiving 2 mg/embryo, and (3) a combined synbiotic and choline group (SYNCH) receiving 2 mg synbiotic and 0.25 mg choline per embryo. For the generations F2 and F3, the SYN and SYNCH groups were each divided into two subgroups: (A) those injected solely in F1 (SYNs and SYNCHs) and (B) those injected in each generation (SYNr and SYNCHr). At 21 weeks posthatching, cecal tonsil and cecal mucosa samples were collected from F1, F2, and F3 birds for transcriptomic analysis. Gene expression profiling revealed distinct intergenerational and transgenerational patterns in both tissues. In cecal tonsils, a significant transgenerational impact on gene expression was noted in the generation F3, following a drop in F2. In contrast, cecal mucosa showed more gene expression changes in F2, indicating intergenerational effects. While some effects carried into F3, they were less pronounced, except in the SYNs group, which experienced an increase compared to F2. The study highlights that transgenerational effects of epigenetic modifications are dynamic and unpredictable, with effects potentially re-emerging in later generations under certain conditions or fading or intensifying over time. This study provides valuable insights into how epigenetic nutritional stimulation during embryonic development may regulate processes in the cecal tonsils and cecal mucosa across multiple generations. Our findings provide evidence supporting the phenomenon of epigenetic dynamics in a chicken model.
Collapse
Affiliation(s)
- Mariam Ibrahim
- Faculty of Health Sciences, Collegium Medicum, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland; (M.I.); (K.S.)
- PBS Doctoral School, Bydgoszcz University of Science and Technology, Aleje prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Katarzyna Stadnicka
- Faculty of Health Sciences, Collegium Medicum, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland; (M.I.); (K.S.)
| | - Ewa Grochowska
- Faculty of Health Sciences, Collegium Medicum, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland; (M.I.); (K.S.)
| |
Collapse
|
11
|
Jarmakiewicz-Czaja S, Sokal-Dembowska A, Filip R. Effects of Selected Food Additives on the Gut Microbiome and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). MEDICINA (KAUNAS, LITHUANIA) 2025; 61:192. [PMID: 40005309 PMCID: PMC11857189 DOI: 10.3390/medicina61020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
The purpose of this article is to present selected food additives as disruptors of normal intestinal homeostasis with a potential impact on the development of metabolic dysfunction-associated steatotic liver disease (MASLD). A comprehensive literature search was conducted in three major electronic databases: PubMed, ScienceDirect, and Google Scholar. MASLD is a prevalent liver condition that is closely related to the global rise in obesity. Its pathogenesis is multifactorial, with genetic, environmental, and metabolic factors playing a key role. The "multiple-hit" hypothesis suggests that a Western-style diet, rich in ultra-processed foods, saturated fats, and food additives, combined with low physical activity, contributes to obesity, which promotes lipid accumulation in the liver. Recent studies underscore the role of impaired intestinal homeostasis in the development of MASLD. Food additives, including preservatives, emulsifiers, and sweeteners, affect gut health and liver function. Selected preservatives inhibit pathogenic microorganisms but disrupt the intestinal microbiota, leading to changes in intestinal permeability and liver dysfunction. Some emulsifiers and thickeners can cause inflammation and alter the gut microbiome, contributing to liver steatosis. Furthermore, the use of sweeteners such as sucralose and aspartame has been linked to changes in liver metabolism and intestinal microbial composition, which in turn promotes metabolic disorders.
Collapse
Affiliation(s)
- Sara Jarmakiewicz-Czaja
- Faculty of Health Sciences and Psychology, University of Rzeszow, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Aneta Sokal-Dembowska
- Faculty of Health Sciences and Psychology, University of Rzeszow, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Rafał Filip
- Gastroenterology Clinic, Center for Comprehensive Treatment of Inflammatory, Bowel Disease Regional Hospital No. 2 in Rzeszow, 35-301 Rzeszow, Poland
- Department of Internal Medicine, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
12
|
Abdulrahim AO, Doddapaneni NSP, Salman N, Giridharan A, Thomas J, Sharma K, Abboud E, Rochill K, Shreelakshmi B, Gupta V, Lakkimsetti M, Mowo-Wale A, Ali N. The gut-heart axis: a review of gut microbiota, dysbiosis, and cardiovascular disease development. Ann Med Surg (Lond) 2025; 87:177-191. [PMID: 40109640 PMCID: PMC11918638 DOI: 10.1097/ms9.0000000000002789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/20/2024] [Indexed: 03/22/2025] Open
Abstract
Background Cardiovascular diseases (CVDs) are a major cause of morbidity and mortality worldwide and there are strong links existing between gut health and cardiovascular health. Gut microbial diversity determines gut health. Dysbiosis, described as altered gut microbiota, causes bacterial translocations and abnormal gut byproducts resulting in systemic inflammation. Objective To review the current literature on the relationships between gut microbiota, dysbiosis, and CVD development, and explore therapeutic methods to prevent dysbiosis and support cardiovascular health. Summary Dysbiosis increases levels of pro-inflammatory substances while reducing those of anti-inflammatory substances. This accumulative inflammatory effect negatively modulates the immune system and promotes vascular dysfunction and atherosclerosis. High Firmicutes to Bacteroidetes ratios, high trimethylamine-n-oxide to short-chain fatty acid ratios, high indole sulfate levels, low cardiac output, and polypharmacy are all associated with worse cardiovascular outcomes. Supplementation with prebiotics and probiotics potentially alleviates some CVD risk. Blood and stool samples may be used in clinical practice to quantify and qualify gut bacterial ratios and byproducts, assess patients' risk for adverse cardiovascular outcomes, and track their gut health progress. Further research is required to set population-based cutoffs for normal and abnormal gut microbiota and byproduct ratios.
Collapse
Affiliation(s)
| | | | - Nadhra Salman
- Department of Internal Medicine, Baqai Medical University, Karachi, Pakistan
| | | | | | - Kavya Sharma
- Maharishi Markandeshwar Medical College and Hospital, Himachal Pradesh, India
| | - Elias Abboud
- Faculty of Medicine, University of Saint Joseph, Beirut, Lebanon
| | | | - B Shreelakshmi
- Navodaya Medical College Hospital & Research Centre, Karnataka, India
| | | | | | | | - Noor Ali
- Dubai Medical College, Dubai, United Arab Emirates
| |
Collapse
|
13
|
Pan I, Issac PK, Rahman MM, Guru A, Arockiaraj J. Gut-Brain Axis a Key Player to Control Gut Dysbiosis in Neurological Diseases. Mol Neurobiol 2024; 61:9873-9891. [PMID: 37851313 DOI: 10.1007/s12035-023-03691-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Parkinson's disease is a chronic neuropathy characterised by the formation of Lewy bodies (misfolded alpha-synuclein) in dopaminergic neurons of the substantia nigra and other parts of the brain. Dopaminergic neurons play a vital role in generating both motor and non-motor symptoms. Finding therapeutic targets for Parkinson's disease (PD) is hindered due to an incomplete understanding of the disease's pathophysiology. Existing evidence suggests that the gut microbiota participates in the pathogenesis of PD via immunological, neuroendocrine, and direct neural mechanisms. Gut microbial dysbiosis triggers the loss of dopaminergic neurons via mitochondrial dysfunction. Gut dysbiosis triggers bacterial overgrowth in the small intestine, which increases the permeability barrier and induces systemic inflammation. It results in excessive stimulation of the innate immune system. In addition to that, activation of enteric neurons and enteric glial cells initiates the aggregation of alpha-synuclein. This alpha-synucleinopathy thus affects all levels of the brain-gut axis, including the central, autonomic, and enteric nervous systems. Though the neurobiological signaling cascade between the gut microbiome and the central nervous system is poorly understood, gut microbial metabolites may serve as a promising therapeutic strategy for PD. This article summarises all the known possible ways of bidirectional signal communication, i.e., the "gut-brain axis," where microbes from the middle gut interact with the brain and vice versa, and highlights a unique way to treat neurodegenerative diseases by maintaining homeostasis. The tenth cranial nerve (vagus nerve) plays a significant part in this signal communication. However, the leading regulatory factor for this axis is a diet that helps with microbial colonisation and brain function. Short-chain fatty acids (SCFAs), derived from microbially fermented dietary fibres, link host nutrition to maintain intestinal homeostasis. In addition to that, probiotics modulate cognitive function and the metabolic and behavioural conditions of the body. As technology advances, new techniques will emerge to study the tie-up between gut microbes and neuronal diseases.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
14
|
Cheng Y, Ren Y, Zhang W, Lu J, Xie F, Fang YD, Fan X, He W, Wang W. Regionalization of intestinal microbiota and metabolites in the small intestine of the Bactrian camel. Front Immunol 2024; 15:1464664. [PMID: 39660142 PMCID: PMC11628504 DOI: 10.3389/fimmu.2024.1464664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Peyer's patches (PPs) are crucial antigen-inductive sites of intestinal mucosal immunity. Prior research indicated that, in contrast to other ruminants, PPs in the small intestine of Bactrian camels are found in the duodenum, jejunum, and ileum and display polymorphism. Using this information, we analyzed the microbial and metabolic characteristics in various segments of the Bactrian camel's small intestine to further elucidate how the immune system varies across different regions. Methods In this study, the microbiota and metabolite of 36 intestinal mucosal samples, including duodenal (D-PPs), jejunal (J-PPs), and ileal PPs (I-PPs), were profiled for six Bactrian camels using 16S rRNA gene sequencing and liquid chromatography with tandem mass spectrometry (LC-MS/MS). To confirm meaningful associations, we conducted connection analyses on the significantly different objects identified in each group's results. ELISA was used to analyze the levels of IgA, IgG, and IgM in the same tissues. Results The microbiota and metabolite profiles of J-PPs and I-PPs were found to be similar, whereas those of D-PPs were more distinct. In J-PPs and I-PPs, the dominant bacterial genera included Clostridium, Turicibacter, and Shigella. In contrast, D-PPs had a significant increase in the abundance of Prevotella, Fibrobacter, and Succinobacter. Regarding the metabolomics, D-PPs exhibited high levels of polypeptides, acetylcholine, and histamine. On the other hand, J-PPs and I-PPs were characterized by an enrichment of free amino acids, such as L-arginine, L-glutamic acid, and L-serine. These metabolic differences mainly involve amino acid production and metabolic processes. Furthermore, the distribution of intestinal immunoglobulins highlighted the specificity of D-PPs. Our results indicated that proinflammatory microbes and metabolites were significantly enriched in D-PPs. In contrast, J-PPs and I-PPs contained substances that more effectively enhance immune responses, as evidenced by the differential distribution of IgA, IgG, and IgM. Discussion The intestinal microenvironment of Bactrian camels displays distinct regional disparities, which we propose are associated with variations in immunological function throughout different segments of the small intestine. This study highlights the specific traits of the intestinal microbiota and metabolites in Bactrian camels, offering a valuable reference for understanding the relationship between regional intestinal immunity and the general health and disease of the host.
Collapse
Affiliation(s)
- Yujiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Ren
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Gong H, Jiang J, Choi S, Huang S. Sex differences in the association between dietary choline intake and total bone mineral density among adolescents aged 12-19 in the United States. Front Nutr 2024; 11:1459117. [PMID: 39634554 PMCID: PMC11614608 DOI: 10.3389/fnut.2024.1459117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Background While prior research has established a correlation between dietary choline intake and bone density in the elderly, the relationship in adolescents remains ambiguous. This study seeks to examine the association between dietary choline intake and bone density in American adolescents. Methods Data from the National Health and Nutrition Examination Survey (NHANES) for 2005 to 2018 were used in this study, encompassing participants aged 12-19 years. The relationship between dietary choline intake and bone density was assessed using multivariate linear regression models and restricted cubic spline (RCS) models. Subgroup analyses were also performed to investigate differences across various subgroups. Results 3,800 participants with an average age of 15 years were included in this study. After adjusting for relevant confounding factors, a positive correlation was observed between dietary choline intake and total bone density in adolescents (95% CI: 0.03-0.17, p = 0.010). Gender-specific analysis indicated a significant positive correlation between dietary choline intake and total bone density in males (95% CI: 0.07-0.23, p < 0.001), while no significant correlation was found in females (95% CI: -0.19 to 0.09, p = 0.500). The stratified analysis revealed that the positive association was more pronounced in males and non-Hispanic whites (interaction p < 0.05). The restricted cubic spline model demonstrated a linear positive correlation between dietary choline intake and total bone density. Conclusion This study demonstrates that dietary choline intake levels are positively correlated with bone density in adolescents, with this association being specific to males.
Collapse
Affiliation(s)
- Hongyang Gong
- Department of Oncology Surgery, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Jiecheng Jiang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Shaoqun Huang
- Department of Oncology Surgery, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
16
|
Chungchunlam SMS, Moughan PJ. Comparative bioavailability of vitamins in human foods sourced from animals and plants. Crit Rev Food Sci Nutr 2024; 64:11590-11625. [PMID: 37522617 DOI: 10.1080/10408398.2023.2241541] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vitamins are essential components of enzyme systems involved in normal growth and function. The quantitative estimation of the proportion of dietary vitamins, that is in a form available for utilization by the human body, is limited and fragmentary. This review provides the current state of knowledge on the bioavailability of thirteen vitamins and choline, to evaluate whether there are differences in vitamin bioavailability when human foods are sourced from animals or plants. The bioavailability of naturally occurring choline, vitamin D, vitamin E, and vitamin K in food awaits further studies. Animal-sourced foods are the almost exclusive natural sources of dietary vitamin B-12 (65% bioavailable) and preformed vitamin A retinol (74% bioavailable), and contain highly bioavailable biotin (89%), folate (67%), niacin (67%), pantothenic acid (80%), riboflavin (61%), thiamin (82%), and vitamin B-6 (83%). Plant-based foods are the main natural sources of vitamin C (76% bioavailable), provitamin A carotenoid β-carotene (15.6% bioavailable), riboflavin (65% bioavailable), thiamin (81% bioavailable), and vitamin K (16.5% bioavailable). The overview of studies showed that in general, vitamins in foods originating from animals are more bioavailable than vitamins in foods sourced from plants.
Collapse
Affiliation(s)
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
17
|
Eslami M, Alibabaei F, Babaeizad A, Banihashemian SZ, Mazandarani M, Hoseini A, Ramezankhah M, Oksenych V, Yousefi B. The Importance of Gut Microbiota on Choline Metabolism in Neurodegenerative Diseases. Biomolecules 2024; 14:1345. [PMID: 39595522 PMCID: PMC11591558 DOI: 10.3390/biom14111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
The gut microbiota is a complex ecosystem that influences digestion, immune response, metabolism, and has been linked to health and well-being. Choline is essential for neurotransmitters, lipid transport, cell-membrane signaling, methyl-group metabolism and is believed to have neuroprotective properties. It is found in two forms, water-soluble and lipid-soluble, and its metabolism is different. Long-term choline deficiency is associated with many diseases, and supplements are prescribed for improved health. Choline supplements can improve cognitive function in adults but not significantly. Choline is a precursor of phospholipids and an acetylcholine neurotransmitter precursor and can be generated de novo from phosphatidylcholine via phosphatidylethanolamine-N-methyltransferase and choline oxidase. Choline supplementation has been found to have a beneficial effect on patients with neurodegenerative diseases, such as Alzheimer's disease (AD), by increasing amyloid-β, thioflavin S, and tau hyper-phosphorylation. Choline supplementation has been shown to reduce amyloid-plaque load and develop spatial memory in an APP/PS1 mice model of AD. Choline is necessary for normative and improved function of brain pathways and can reduce amyloid-β deposition and microgliosis. Clinical research suggests that early neurodegenerative diseases (NDs) can benefit from a combination of choline supplements and the drugs currently used to treat NDs in order to improve memory performance and synaptic functioning.
Collapse
Affiliation(s)
- Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35134, Iran;
| | - Farnaz Alibabaei
- Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan 35134, Iran;
| | - Ali Babaeizad
- School of Medicine, Semnan University of Medical Sciences, Semnan 35134, Iran; (A.B.); (S.Z.B.)
| | | | - Mahdi Mazandarani
- Endocrinology and Metabolism Research Center, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 11369, Iran;
| | - Aref Hoseini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari 49414, Iran;
| | - Mohammad Ramezankhah
- Student Research Committee, Faculty of Medicine, Babol University of Medical Sciences, Babol 47134, Iran;
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Bahman Yousefi
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35134, Iran
| |
Collapse
|
18
|
Sánchez V, Baumann A, Kromm F, Yergaliyev T, Brandt A, Scholda J, Kopp F, Camarinha-Silva A, Bergheim I. Oral supplementation of choline attenuates the development of alcohol-related liver disease (ALD). Mol Med 2024; 30:181. [PMID: 39425011 PMCID: PMC11488139 DOI: 10.1186/s10020-024-00950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Chronic alcohol intake is associated with alterations of choline metabolism in various tissues. Here, we assessed if an oral choline supplementation attenuated the development of alcohol-related liver disease (ALD) in mice. METHODS Female C57BL/6 J mice (n = 8/group) were either pair-fed a liquid control diet, or a Lieber DeCarli liquid diet (5% ethanol) ± 2.7 g choline/kg diet for 29 days. Liver damage, markers of intestinal permeability and intestinal microbiota composition were determined. Moreover, the effects of choline on ethanol-induced intestinal permeability were assessed in an ex vivo model. RESULTS ALD development as determined by liver histology and assessing markers of inflammation (e.g., nitric oxide, interleukin 6 and 4-hydroxynonenal protein adducts) was attenuated by the supplementation of choline. Intestinal permeability in small intestine being significantly higher in ethanol-fed mice was at the level of controls in ethanol-fed mice receiving choline. In contrast, no effects of the choline supplementation were found on intestinal microbiota composition. Choline also significantly attenuated the ethanol-induced intestinal barrier dysfunction in small intestinal tissue ex vivo, an effect almost entirely abolished by the choline oxidase inhibitor dimbunol. CONCLUSION Our results suggest that an oral choline supplementation attenuates the development of ALD in mice and is related to a protection from intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Franziska Kromm
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Timur Yergaliyev
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria
| | - Julia Scholda
- Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Vienna, Austria
| | - Florian Kopp
- Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Vienna, Austria
| | - Amélia Camarinha-Silva
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), A-1090, Vienna, Austria.
| |
Collapse
|
19
|
Yang B, Tang G, Wang M, Ni Y, Tong J, Hu C, Zhou M, Jiao K, Li Z. Trimethylamine N-oxide induces non-alcoholic fatty liver disease by activating the PERK. Toxicol Lett 2024; 400:93-103. [PMID: 39153559 DOI: 10.1016/j.toxlet.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a liver disease causing different progressive pathological changes. Trimethylamine N-oxide (TMAO), a product of gut microbiota metabolism, is a specific agonist of the protein kinase R-like endoplasmic reticulum kinase (PERK) pathway, one of the endoplasmic reticulum stress (ERS) pathways. TMAO has been associated with the occurrence and development of NAFLD based on the results of previous studies, but whether the simple consumption of TMAO can directly induce NAFLD and its underlying mechanism remain unclear. To investigate this question, we constructed an animal model in which adult male zebrafish were fed a controlled diet containing 1 % or 3 % TMAO for 20 weeks. Eventually, we observed that TMAO caused lipid accumulation, inflammatory infiltration, liver injury and liver fibrosis in zebrafish livers; meanwhile, the PERK signaling pathway was activated in the zebrafish livers. This finding was further confirmed in HepG2 cells and hepatic stellate cells models. In conclusion, this study found that TMAO directly induced different pathological states of NAFLD in zebrafish liver, and the activation of PERK pathway is an important mechanism, which may provide crucial strategies for the diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Bingmo Yang
- Suqian Center for Disease Control and Prevention, Suqian, Jiangsu 223800, China
| | - Guomin Tang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mengting Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Ni
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiali Tong
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ming Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Kailin Jiao
- Department of Nutrition, The Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China.
| | - Zhong Li
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
20
|
Yu T, Luo L, Xue J, Tang W, Wu X, Yang F. Gut microbiota-NLRP3 inflammasome crosstalk in metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102458. [PMID: 39233138 DOI: 10.1016/j.clinre.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with metabolic dysfunction, ranging from hepatic steatosis with or without mild inflammation to nonalcoholic steatohepatitis, which can rapidly progress to liver fibrosis and even liver cancer. In 2023, after several rounds of Delphi surveys, a new consensus recommended renaming NAFLD as metabolic dysfunction-associated steatotic liver disease (MASLD). Ninety-nine percent of NAFLD patients meet the new MASLD criteria related to metabolic cardiovascular risk factors under the "multiple parallel hits" of lipotoxicity, insulin resistance (IR), a proinflammatory diet, and an intestinal microbiota disorder, and previous research on NAFLD remains valid. The NLRP3 inflammasome, a well-known member of the pattern recognition receptor (PRR) family, can be activated by danger signals transmitted by pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), as well as cytokines involved in immune and inflammatory responses. The activation of the NLRP3 inflammasome pathway by MASLD triggers the production of the inflammatory cytokines IL-1β and IL-18. In MASLD, while changes in the composition and metabolites of the intestinal microbiota occur, the disrupted intestinal microbiota can also generate the inflammatory cytokines IL-1β and IL-18 by damaging the intestinal barrier, negatively regulating the liver on the gut-liver axis, and further aggravating MASLD. Therefore, modulating the gut-microbiota-liver axis through the NLRP3 inflammasome may emerge as a novel therapeutic approach for MASLD patients. In this article, we review the evidence regarding the functions of the NLRP3 inflammasome and the intestinal microbiota in MASLD, as well as their interactions in this disease.
Collapse
Affiliation(s)
- Tingting Yu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan 430000, PR China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China
| | - Juan Xue
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, PR China
| | - Wenqian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China
| | - Xiaojie Wu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan 430000, PR China
| | - Fan Yang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China.
| |
Collapse
|
21
|
Zhang Z, Cao B, Wu Q. Causality of Genetically Determined Metabolites on Chronic Kidney Disease: A Two-Sample Mendelian Randomization Study In Silico. Metab Syndr Relat Disord 2024; 22:525-550. [PMID: 38742978 DOI: 10.1089/met.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Introduction: Chronic kidney disease (CKD) is associated with metabolic disorders. However, the evidence for the causality of circulating metabolites to promote or prevent CKD is still lacking. Methods: The two-sample Mendelian randomization (MR) analysis was conducted to evaluate the latent causal relationship between the genetically proxied 486 blood metabolites and CKD. Genome-wide association study (GWAS) data for exposures were derived from 7824 European GWAS on metabolite levels, which have been extensively utilized in the medical field to elucidate the mechanisms underlying disease onset and progression. The random inverse variance weighted (IVW) is the primary analysis for causality analysis while MR-Egger and weighted median as complementary analyses. For the further identification of metabolites, reverse MR and linkage disequilibrium score regression were performed for further evaluation. The drug target for N-acetylornithine was subsequently supplemented into the analysis, with MR and colocalization analysis being utilized. Key metabolic pathways were identified via MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/) online website. Results: N-acetylornithine was identified as a reliable metabolite that increases the susceptibility to estimated glomerular filtration rate (eGFR) decrease (β = 0.047; 95% confidence interval: -0.068 to -0.026; PIVW = 1.5E-5). The "glyoxylate and dicarboxylate metabolism" pathway showed significant relevance to CKD development (P = 6E-4), whereas the "glycine, serine, and threonine metabolism" pathway was also recognized as associated with CKD by general practitioners (P = 7E-4). Colocalization analysis revealed a robust genetic link between N-acetylornithine and both CKD and eGFR, with 85.1% and 99.4% colocalization rates, respectively. IVW-MR analysis substantiated these findings with a significant positive association for CKD (odds ratio = 1.43, P = 4.7E-5) and a negative correlation with eGFR (b = -0.04, P = 1.13E-31). Conclusions: MR was utilized to explore the potential causal links between 61 genetic serum metabolites and CKD. N-acetylornithine and NAT8 were further explored as a potential therapeutic target for CKD treatment.
Collapse
Affiliation(s)
- Zekai Zhang
- Second College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Beibei Cao
- Academy of Paediatrics, Nanjing Medical University, Nanjing, China
| | - Qiutong Wu
- Second College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Yu J, Zheng C, Guo Q, Yin Y, Duan Y, Li F. LPS-related muscle loss is associated with the alteration of Bacteroidetes abundance, systemic inflammation, and mitochondrial morphology in a weaned piglet model. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1970-1988. [PMID: 38913237 DOI: 10.1007/s11427-023-2552-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/19/2024] [Indexed: 06/25/2024]
Abstract
We previously demonstrated that lipopolysaccharide (LPS) injection-induced immune stress could impair muscle growth in weaned piglets, but the precise mechanisms behind this remain elusive. Here, we found that chronic immune stress induced by LPS resulted in a significant reduction of 36.86% in the total muscle mass of piglets at 5 d post-treatment compared with the control group. At 1 d, prior to muscle mass loss, multiple alterations were noted in response to LPS treatment. These included a reduction in the abundance of Bacteroidetes, an increase in serum concentrations of pro-inflammatory cytokines, compromised mitochondrial morphology, and an upregulation in the expression of dynamin-related protein 1 (Drp1), a critical protein involved in mitochondrial fission. We highlight a strong negative correlation between Bacteroidetes abundance and the levels of serum pro-inflammatory cytokines, corroborated by in vivo intervention strategies in the musculature of both pig and mouse models. Mechanistically, the effects of Bacteroidetes on inflammation and muscle mass loss may involve the signaling pathway of the tauro-β-muricholic acid-fibroblast growth factor 15. Furthermore, the induction of overexpression of inflammatory cytokines, achieved without LPS treatment through oral administration of recombinant human IL-6 (rhIL-6), led to increased levels of circulating cytokines, subsequently causing a decrease in muscle mass. Notably, pre-treatment with Mdivi-1, an inhibitor of Drp-1, markedly attenuated the LPS-induced elevation in reactive oxygen species levels and rescued the associated decline in muscle mass. Collectively, these data indicate that LPS-induced muscle mass loss was linked to the reduction of Bacteroidetes abundance, increased inflammation, and the disruption of mitochondrial morphology. These insights offer promising avenues for the identification of potential therapeutic targets aimed at mitigating muscle mass loss.
Collapse
Affiliation(s)
- Jiayi Yu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fengna Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Huang F, Guan F, Jia X, Zhang J, Su C, Du W, Ouyang Y, Li L, Bai J, Zhang X, Wei Y, Zhang B, He Y, Wang H. Dietary Choline Intake Is Beneficial for Cognitive Function and Delays Cognitive Decline: A 22-Year Large-Scale Prospective Cohort Study from China Health and Nutrition Survey. Nutrients 2024; 16:2845. [PMID: 39275163 PMCID: PMC11397368 DOI: 10.3390/nu16172845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Pre-clinical studies have discovered the neuroprotective function and the benefit for cognitive function of choline. However, it remains unclear whether these benefits observed in animal studies also work in humans. The aims of this study are to examine the effects of dietary choline intake on cognitive function and cognitive decline during ageing in middle-aged and elderly Chinese. We included 1887 subjects aged 55~79 years with 6696 observations from the China Health and Nutrition Survey cohort study. The subjects were followed up for 6 to 21 years, with an average of 12.2 years. A dietary survey was conducted over 3 consecutive days with a 24 h recall, using household weight-recording methods. Based on the China Food Composition, data from USDA, and published literature, the dietary choline intake was calculated as the sum of free choline, phosphocholine, phosphatidylcholine, sphingomyelin, and glycerophosphocholine. Cognitive function was assessed using a subset of the Telephone Interview for Cognitive Status-modified (TICS-m) items. In order to eliminate the different weight of scores in each domain, the scores were converted by dividing by the maximum score in each domain, which ranged from 0 to 3 points. Higher cognitive scores represented better cognition. We used two-level mixed effect models to estimate the effects of dietary choline intake on cognitive score and cognitive decline rate in males and females, respectively. The average dietary choline intake was 161.1 mg/d for the baseline. After adjusting for confounders, the dietary choline intake was significantly associated with higher cognitive score in both males and females. The cognitive score in the highest quartile group of dietary choline was 0.085 for males and 0.077 for females-higher than those in the lowest quartile group (p < 0.01 for males, p < 0.05 for females). For every 10-year increase in age, the cognitive score decreased by 0.266 for males and 0.283 for females. The cognitive score decline rate of the third quartile group of dietary choline was 0.125/10 years lower than that of the lowest quartile group in females (p < 0.05). Dietary choline intake not only improves cognitive function, but also postpones cognitive decline during the aging process. The findings of this study highlight the neuroprotective benefit of choline in the middle-aged and elderly Chinese population, especially among females.
Collapse
Affiliation(s)
- Feifei Huang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Fangxu Guan
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Xiaofang Jia
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Jiguo Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Chang Su
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Wenwen Du
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Yifei Ouyang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Li Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Jing Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Xiaofan Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Yanli Wei
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Bing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Yuna He
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| | - Huijun Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- NHC Key Laboratory of Public Nutrition and Health, Beijing 100050, China
| |
Collapse
|
24
|
Sun S, Zhang G, Lv S, Sun J. Potential mechanisms of traditional Chinese medicine in the treatment of liver cirrhosis: a focus on gut microbiota. Front Microbiol 2024; 15:1407991. [PMID: 39234554 PMCID: PMC11371771 DOI: 10.3389/fmicb.2024.1407991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cirrhosis, a pathological stage that develops from various chronic liver diseases, is characterized by liver fibrosis, pseudolobular formation, and chronic inflammation. When it progresses to the decompensated phase, the mortality rate of cirrhosis can reach 80%. The role of gut microbiota in the progression of liver diseases has received significant attention. Numerous studies have shown that regulating gut microbiota has significant therapeutic effects on preventing and reversing liver cirrhosis. This article reviewed the mechanisms by which gut microbiota influence liver cirrhosis, explaining the effective therapeutic effects of traditional Chinese medicine. Through multi-directional regulation involving signaling pathways, gut microbiota diversity, and restoration of intestinal barrier function, traditional Chinese medicine has been promising in ameliorating liver cirrhosis, providing treatment options and pharmacological guidance for the occurrence and development of liver cirrhosis.
Collapse
Affiliation(s)
- Siyuan Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Zhang B, Magnaye KM, Stryker E, Moltzau-Anderson J, Porsche CE, Hertz S, McCauley KE, Smith BJ, Zydek M, Pollard KS, Ma A, El-Nachef N, Lynch SV. Sustained mucosal colonization and fecal metabolic dysfunction by Bacteroides associates with fecal microbial transplant failure in ulcerative colitis patients. Sci Rep 2024; 14:18558. [PMID: 39122767 PMCID: PMC11316000 DOI: 10.1038/s41598-024-62463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/16/2024] [Indexed: 08/12/2024] Open
Abstract
Fecal microbial transplantation (FMT) offers promise for treating ulcerative colitis (UC), though the mechanisms underlying treatment failure are unknown. This study harnessed longitudinally collected colonic biopsies (n = 38) and fecal samples (n = 179) from 19 adults with mild-to-moderate UC undergoing serial FMT in which antimicrobial pre-treatment and delivery mode (capsules versus enema) were assessed for clinical response (≥ 3 points decrease from the pre-treatment Mayo score). Colonic biopsies underwent dual RNA-Seq; fecal samples underwent parallel 16S rRNA and shotgun metagenomic sequencing as well as untargeted metabolomic analyses. Pre-FMT, the colonic mucosa of non-responsive (NR) patients harbored an increased burden of bacteria, including Bacteroides, that expressed more antimicrobial resistance genes compared to responsive (R) patients. NR patients also exhibited muted mucosal expression of innate immune antimicrobial response genes. Post-FMT, NR and R fecal microbiomes and metabolomes exhibited significant divergence. NR metabolomes had elevated concentrations of immunostimulatory compounds including sphingomyelins, lysophospholipids and taurine. NR fecal microbiomes were enriched for Bacteroides fragilis and Bacteroides salyersiae strains that encoded genes capable of taurine production. These findings suggest that both effective mucosal microbial clearance and reintroduction of bacteria that reshape luminal metabolism associate with FMT success and that persistent mucosal and fecal colonization by antimicrobial-resistant Bacteroides species may contribute to FMT failure.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kevin M Magnaye
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- The Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Emily Stryker
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jacqueline Moltzau-Anderson
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- The Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cara E Porsche
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sandra Hertz
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Kathryn E McCauley
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Byron J Smith
- The Gladstone Institutes, Data Science and Biotechnology, San Francisco, CA, 94158, USA
| | - Martin Zydek
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Katherine S Pollard
- The Gladstone Institutes, Data Science and Biotechnology, San Francisco, CA, 94158, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA University of California, San Francisco, CA, 94158, USA
| | - Averil Ma
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Najwa El-Nachef
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Division of Gastroenterology, Henry Ford Health System, Detroit, MI, 48208, USA
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.
- The Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
26
|
Cao X, Zhao M, Wang X, Lin J, Yang M, Zhong L, Liang L, Yue Y, Du J, Li J, Zhou T, Yu J, Liang Y, Shi R, Luo R, Shen X, Chen Y, Wang Y, Shu Z. Multi-metabolomics and intestine microbiome analysis: YZC extract ameliorates septic-ALI by modulating intestine microbiota to reduce TMAO/NLRP3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155345. [PMID: 38810555 DOI: 10.1016/j.phymed.2024.155345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Sepsis causes inflammation in response to infection, often leading to acute lung injury (ALI). Yazhicao (Commelina communis L., YZC) is widely distributed in the global tropics and has good anti-respiratory inflammatory activity; however, the protection of YZC against septic-ALI has not been established. PURPOSE The role of YZC in septic-ALI will be investigated in this study. METHODS AND RESULTS In this study, YZC was shown to inhibit excessive inflammation and alleviate septic-ALI. Network pharmacology predicts that Quercetin, Acacetin and Diosmetin have the potential to serve as the pharmacological substance basis of YZC in alleviating septic-ALI. The metabolomics results indicated that YZC could improve the metabolic disorders caused by septic-ALI, which were mostly concerned with energy metabolism and amino acid metabolism, with Trimethylamine (TMA)/Trimethylamine N-oxide (TMAO) being potential small molecule metabolic markers for the clinical diagnosis and treatment of septic-ALI. YZC inhibits the initiation and progression of septic-ALI by controlling the TMA/TMAO metabolites. Our results also suggest that YZC protects the intestinal barrier from damage. Furthermore, our research indicated that YZC reduces TMAO synthesis by inhibiting TMA production through remodeling the intestine microbiota. We investigated the mechanism of YZC-mediated protection against septic-ALI and showed that YZC reduced the expression of proteins associated with NLRP3 inflammatory vesicles in the lung by inhibiting the expression of NF-κB. CONCLUSION These results show that YZC inhibits the NF-κB/NLRP3 signaling pathway by regulating metabolic and intestinal flora disorders in septic-ALI mice to reduce TMAO synthesis. This study presents a theoretical groundwork for the advancement of novel medications and clinical use of YZC to enhance septic-ALI and furnishes a theoretical rationale for regulating intestinal microbiota as a therapeutic instrument to treat sepsis and septic-ALI.
Collapse
Affiliation(s)
- Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiazi Lin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiming Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianhua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiamin Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yefang Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruixiang Shi
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongfeng Luo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuejuan Shen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Pharmacy, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou 514000, China.
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Fei SF, Hou C, Jia F. Effects of salidroside on atherosclerosis: potential contribution of gut microbiota. Front Pharmacol 2024; 15:1400981. [PMID: 39092226 PMCID: PMC11292615 DOI: 10.3389/fphar.2024.1400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Much research describes gut microbiota in atherosclerotic cardiovascular diseases (ASCVD) for that the composition of the intestinal microbiome or its metabolites can directly participate in the development of endothelial dysfunction, atherosclerosis and its adverse complications. Salidroside, a natural phenylpropane glycoside, exhibits promising biological activity against the progression of ASCVD. Recent studies suggested that the gut microbiota played a crucial role in mediating the diverse beneficial effects of salidroside on health. Here, we describe the protective effects of salidroside against the progression of atherosclerosis. Salidroside regulates the abundance of gut microbiotas and gut microbe-dependent metabolites. Moreover, salidroside improves intestinal barrier function and maintains intestinal epithelial barrier function integrity. In addition, salidroside attenuates the inflammatory responses exacerbated by gut microbiota disturbance. This review delves into how salidroside functions to ameliorate atherosclerosis by focusing on its interaction with gut microbiota, uncovering the potential roles of gut microbiota in the diverse biological impacts of salidroside.
Collapse
Affiliation(s)
| | | | - Fang Jia
- Department of Cardiovascular Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
28
|
Martin-Grau M, Monleón D. The Role of Microbiota-Related Co-Metabolites in MASLD Progression: A Narrative Review. Curr Issues Mol Biol 2024; 46:6377-6389. [PMID: 39057023 PMCID: PMC11276081 DOI: 10.3390/cimb46070381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a growing health concern due to its increasing prevalence worldwide. Metabolic homeostasis encompasses the stable internal conditions vital for efficient metabolism. This equilibrium extends to the intestinal microbiota, whose metabolic activities profoundly influence overall metabolic balance and organ health. The metabolites derived from the gut microbiota metabolism can be defined as microbiota-related co-metabolites. They serve as mediators between the gut microbiota and the host, influencing various physiological processes. The recent redefinition of the term MASLD has highlighted the metabolic dysfunction that characterize the disease. Metabolic dysfunction encompasses a spectrum of abnormalities, including impaired glucose regulation, dyslipidemia, mitochondrial dysfunction, inflammation, and accumulation of toxic byproducts. In addition, MASLD progression has been linked to dysregulation in the gut microbiota and associated co-metabolites. Short-chain fatty acids (SCFAs), hippurate, indole derivatives, branched-chain amino acids (BCAAs), and bile acids (BAs) are among the key co-metabolites implicated in MASLD progression. In this review, we will unravel the relationship between the microbiota-related metabolites which have been associated with MASLD and that could play an important role for developing effective therapeutic interventions for MASLD and related metabolic disorders.
Collapse
Affiliation(s)
- Maria Martin-Grau
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Daniel Monleón
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| |
Collapse
|
29
|
Lambert A, Budinich M, Mahé M, Chaffron S, Eveillard D. Community metabolic modeling of host-microbiota interactions through multi-objective optimization. iScience 2024; 27:110092. [PMID: 38952683 PMCID: PMC11215293 DOI: 10.1016/j.isci.2024.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/12/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
The human gut microbiota comprises various microorganisms engaged in intricate interactions among themselves and with the host, affecting its health. While advancements in omics technologies have led to the inference of clear associations between microbiome composition and health conditions, we usually lack a causal and mechanistic understanding of these associations. For modeling mechanisms driving the interactions, we simulated the organism's metabolism using in silico genome-scale metabolic models (GEMs). We used multi-objective optimization to predict and explain metabolic interactions among gut microbes and an intestinal epithelial cell. We developed a score integrating model simulation results to predict the type (competition, neutralism, mutualism) and quantify the interaction between several organisms. This framework uncovered a potential cross-feeding for choline, explaining the predicted mutualism between Lactobacillus rhamnosus GG and the epithelial cell. Finally, we analyzed a five-organism ecosystem, revealing that a minimal microbiota can favor the epithelial cell's maintenance.
Collapse
Affiliation(s)
- Anna Lambert
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 44000 Nantes, France
| | - Marko Budinich
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 44000 Nantes, France
| | - Maxime Mahé
- Nantes Université, Inserm, TENS UMR1235, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Samuel Chaffron
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 44000 Nantes, France
| | - Damien Eveillard
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 44000 Nantes, France
| |
Collapse
|
30
|
Xie S, Fang L, Deng N, Shen J, Tan Z, Peng X. Targeting the Gut-Kidney Axis in Diarrhea with Kidney-Yang Deficiency Syndrome: The Role of Sishen Pills in Regulating TMAO-Mediated Inflammatory Response. Med Sci Monit 2024; 30:e944185. [PMID: 38898640 PMCID: PMC11305074 DOI: 10.12659/msm.944185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Sishen Pills (SSPs) are commonly used to treat diarrhea with kidney-yang deficiency syndrome. Trimethylamine-N-oxide (TMAO) is produced through the metabolism of gut microbiota and can participate in diarrhea in kidney-yang deficiency syndrome by mediating the "gut-kidney axis" to transmit inflammatory factors. This study combined network pharmacology with animal experiments to explore whether SSPs can treat diarrhea with kidney-yang deficiency syndrome by affecting the interaction between TMAO and gut microbiota. MATERIAL AND METHODS A mouse model of diarrhea with kidney-yang deficiency syndrome was constructed by using adenine and Folium sennae decoction, and SSP decoction was used for treatment. This study utilized network pharmacology to predict the potential mechanisms of SSPs in treating diarrhea with kidney-yang deficiency syndrome. 16S rRNA high-throughput sequencing was used to analyze gut mucosal microbial characteristics. ELISA was used to measure TMAO, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), interleukin-1ß (IL-1ß), and transforming growth factor-ß1 (TGF-ß1) levels. We performed Masson and immunohistochemical (Occludin, ZO-1) staining of kidney and small intestinal tissues. The fluorescein diacetate (FDA) hydrolysis spectrophotometric method was used to assess the microbial activity in contents of the small intestine. RESULTS Network pharmacology analysis revealed that SSPs can modulate 108 target points involved in the development of diarrhea, including IL-1ß and TNF. The experimental results demonstrated that SSP decoction significantly improved the general behavioral profiles of the mice, and also reduced TMAO, NLRP3, IL-1ß, and TGF-ß1 levels (P<0.05). Correlation analysis revealed significant positive correlations between TMAO concentrations and NLRP3, IL-1ß and TGF-ß1 levels (P<0.05). Pathological analysis revealed improvements in renal fibrosis and increased expression of the Occludin and ZO-1 proteins in intestinal tissue. In the SSP group, there was a significant increase in microbial activity (P<0.001). According to the sequencing results, the characteristic bacteria of the SSP and NR groups included Succinatimonas hippei, uncultured Solirubrobacter sp., and Clostridium tyrobutyricum. Furthermore, TMAO, NLRP3, IL-1ß, and TGF-ß1 were significantly positively correlated (P<0.05) with Succinatimonas hippei and Clostridium tyrobutyricum. By modulating Firmicutes, Succinatimonas hippei, and Clostridium tyrobutyricum, SSP decoction lowers TMAO levels to alleviate diarrhea with kidney-yang deficiency syndrome. CONCLUSIONS TMAO likely plays a significant role in the "gut-kidney axis" of diarrhea with kidney-yang deficiency syndrome. By adjusting gut microbiota to reduce the inflammatory response that is transmitted through the "gut-kidney axis" as a result of elevated TMAO levels, SSP decoction can alleviate diarrhea with kidney-yang deficiency syndrome.
Collapse
Affiliation(s)
- Shiqin Xie
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Leyao Fang
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Na Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Junxi Shen
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Xinxin Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| |
Collapse
|
31
|
Dymek A, Oleksy Ł, Stolarczyk A, Bartosiewicz A. Choline-An Underappreciated Component of a Mother-to-Be's Diet. Nutrients 2024; 16:1767. [PMID: 38892700 PMCID: PMC11174651 DOI: 10.3390/nu16111767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
The nutritional status of the mother-to-be has a key impact on the proper development of the fetus. Although all nutrients are important for the developing baby, recent research indicates the importance of adequate choline intake during the periconceptional period, pregnancy, and lactation. Choline plays a key role in the biosynthesis of cell membranes, supporting liver function, neurotransmission, brain development, and DNA and histone methylation. Choline participates in the formation of a child's nervous system, supports its cognitive development, and reduces the risk of neural tube defects. The human body is incapable of producing sufficient choline to meet its needs; therefore, it must be obtained from the diet. Current data indicate that most women in their reproductive years do not achieve the recommended daily intake of choline. The presented narrative review indicates the importance of educating mothers-to-be and thereby increasing their awareness of the effects of choline on maternal and child health, which can lead to a more aware and healthy pregnancy and proper child development.
Collapse
Affiliation(s)
- Agnieszka Dymek
- Students Scientific Club of Dietetics, Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Łukasz Oleksy
- Department of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Artur Stolarczyk
- Department of Orthopedics and Rehabilitation, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Bartosiewicz
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| |
Collapse
|
32
|
Vallianou NG, Kounatidis D, Psallida S, Panagopoulos F, Stratigou T, Geladari E, Karampela I, Tsilingiris D, Dalamaga M. The Interplay Between Dietary Choline and Cardiometabolic Disorders: A Review of Current Evidence. Curr Nutr Rep 2024; 13:152-165. [PMID: 38427291 PMCID: PMC11133147 DOI: 10.1007/s13668-024-00521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW Choline is an essential nutrient for human health and cellular homeostasis as it is necessary for the synthesis of lipid cell membranes, lipoproteins, and the synthesis of the neurotransmitter acetylcholine. The aim of this review is to analyze the beneficial effects of choline and its significance in cellular metabolism and various inflammatory pathways, such as the inflammasome. We will discuss the significance of dietary choline in cardiometabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and chronic kidney disease (CKD) as well as in cognitive function and associated neuropsychiatric disorders. RECENT FINDINGS Choline deficiency has been related to the development of NAFLD and cognitive disability in the offspring as well as in adulthood. In sharp contrast, excess dietary intake of choline mediated via the increased production of trimethylamine by the gut microbiota and increased trimethylamine-N-oxide (TMAO) levels has been related to atherosclerosis in most studies. In this context, CVD and CKD through the accumulation of TMAO, p-Cresyl-sulfate (pCS), and indoxyl-sulfate (IS) in serum may be the result of the interplay between excess dietary choline, the increased production of TMAO by the gut microbiota, and the resulting activation of inflammatory responses and fibrosis. A balanced diet, with no excess nor any deficiency in dietary choline, is of outmost importance regarding the prevention of cardiometabolic disorders as well as cognitive function. Large-scale studies with the use of next-generation probiotics, especially Akkermansia muciniphila and Faecalibacterium prausnitzii, should further examine their therapeutic potential in this context.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| | - Dimitris Kounatidis
- Department of Internal Medicine, Hippokration General Hospital, 114 Vassilissis Sofias str, Athens, Greece
| | - Sotiria Psallida
- Department of Microbiology, KAT General Hospital of Attica, 2 Nikis str, Athens, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini str, Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupoli, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| |
Collapse
|
33
|
Yaqub A, Vojinovic D, Vernooij MW, Slagboom PE, Ghanbari M, Beekman M, van der Grond J, Hankemeier T, van Duijn CM, Ikram MA, Ahmad S. Plasma trimethylamine N-oxide (TMAO): associations with cognition, neuroimaging, and dementia. Alzheimers Res Ther 2024; 16:113. [PMID: 38769578 PMCID: PMC11103865 DOI: 10.1186/s13195-024-01480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The gut-derived metabolite Trimethylamine N-oxide (TMAO) and its precursors - betaine, carnitine, choline, and deoxycarnitine - have been associated with an increased risk of cardiovascular disease, but their relation to cognition, neuroimaging markers, and dementia remains uncertain. METHODS In the population-based Rotterdam Study, we used multivariable regression models to study the associations between plasma TMAO, its precursors, and cognition in 3,143 participants. Subsequently, we examined their link to structural brain MRI markers in 2,047 participants, with a partial validation in the Leiden Longevity Study (n = 318). Among 2,517 participants, we assessed the risk of incident dementia using multivariable Cox proportional hazard models. Following this, we stratified the longitudinal associations by medication use and sex, after which we conducted a sensitivity analysis for individuals with impaired renal function. RESULTS Overall, plasma TMAO was not associated with cognition, neuroimaging markers or incident dementia. Instead, higher plasma choline was significantly associated with poor cognition (adjusted mean difference: -0.170 [95% confidence interval (CI) -0.297;-0.043]), brain atrophy and more markers of cerebral small vessel disease, such as white matter hyperintensity volume (0.237 [95% CI: 0.076;0.397]). By contrast, higher carnitine concurred with lower white matter hyperintensity volume (-0.177 [95% CI: -0.343;-0.010]). Only among individuals with impaired renal function, TMAO appeared to increase risk of dementia (hazard ratio (HR): 1.73 [95% CI: 1.16;2.60]). No notable differences were observed in stratified analyses. CONCLUSIONS Plasma choline, as opposed to TMAO, was found to be associated with cognitive decline, brain atrophy, and markers of cerebral small vessel disease. These findings illustrate the complexity of relationships between TMAO and its precursors, and emphasize the need for concurrent study to elucidate gut-brain mechanisms.
Collapse
Affiliation(s)
- Amber Yaqub
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
| | - Marian Beekman
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands.
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, University Medical Center, PO Box 2040, Rotterdam, CA, 3000, the Netherlands
| |
Collapse
|
34
|
Jieru P, Zhang S, Cai L, Long W, Wang Y, Zhang L, Dong Y, Zhang W, Liao J, Yang C. Dietary choline intake and health outcomes in U.S. adults: exploring the impact on cardiovascular disease, cancer prevalence, and all-cause mortality. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:59. [PMID: 38711145 DOI: 10.1186/s41043-024-00528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/16/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Choline, an indispensable nutrient, plays a pivotal role in various physiological processes. The available evidence regarding the nexus between dietary choline intake and health outcomes, encompassing cardiovascular disease (CVD), cancer, and all-cause mortality, is limited and inconclusive. This study aimed to comprehensively explore the relationship between dietary choline intake and the aforementioned health outcomes in adults aged > 20 years in the U.S. METHODS This study utilized data from the National Health and Nutrition Examination Survey between 2011 and 2018. Dietary choline intake was evaluated using two 24-h dietary recall interviews. CVD and cancer status were determined through a combination of standardized medical status questionnaires and self-reported physician diagnoses. Mortality data were gathered from publicly available longitudinal Medicare and mortality records. The study utilized survey-weighted logistic and Cox regression analyses to explore the associations between choline consumption and health outcomes. Restricted cubic spline (RCS) analysis was used for dose‒response estimation and for testing for nonlinear associations. RESULTS In our study of 14,289 participants (mean age 48.08 years, 47.71% male), compared with those in the lowest quintile (Q1), the adjusted odds ratios (ORs) of CVD risk in the fourth (Q4) and fifth (Q5) quintiles of choline intake were 0.70 (95% CI 0.52, 0.95) and 0.65 (95% CI 0.47, 0.90), respectively (p for trend = 0.017). Each 100 mg increase in choline intake was associated with a 9% reduced risk of CVD. RCS analysis revealed a linear correlation between choline intake and CVD risk. Moderate choline intake (Q3) was associated with a reduced risk of mortality, with an HR of 0.75 (95% CI 0.60-0.94) compared with Q1. RCS analysis demonstrated a significant nonlinear association between choline intake and all-cause mortality (P for nonlinearity = 0.025). The overall cancer prevalence association was nonsignificant, except for colon cancer, where each 100 mg increase in choline intake indicated a 23% reduced risk. CONCLUSION Elevated choline intake demonstrates an inverse association with CVD and colon cancer, while moderate consumption exhibits a correlated reduction in mortality. Additional comprehensive investigations are warranted to elucidate the broader health implications of choline.
Collapse
Affiliation(s)
- Peng Jieru
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Shanshan Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lin Cai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Non-communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wencheng Long
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yueshan Wang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lu Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yao Dong
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenqi Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Juan Liao
- Department of Gastroenterology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Non-communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
35
|
Xu Y, Wang Y, Zhao Q, Chen B, Wang N, Zhang T, Jiang Y, Wu Y, He N, Zhao G, Liu X. Dairy products intake and prevalence, incidence, and recovery of non-alcoholic fatty liver disease in Chinese population. Hepatol Int 2024; 18:529-539. [PMID: 38409495 DOI: 10.1007/s12072-024-10638-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a growing public health concern. Modifiable factors such as diet and lifestyle are of research interest in preventing or reversing the disease. The relationship between dairy products and NAFLD remains unclear. METHODS In this cohort study, 36,122 participants aged 20-74 were enrolled by multi-stage, stratified, randomized cluster sampling from 2016 to 2017. A total of 25,085 participants finished at least one follow-up visit from 2019 to 2023. Dairy intake was collected by food frequency questionnaire at baseline. NAFLD was defined as fatty liver diagnosed by ultrasonography with excessive alcohol drink excluded. Logistic regression and Cox proportional hazard models were used to analyze the association between dairy intake and NAFLD. RESULTS A total of 34,040 participants were included in the baseline analysis. The prevalence of NAFLD was inversely associated with dairy intake (OR>7vs 0 servings/week = 0.91, 95% CI 0.84-0.98; ORper serving/day increase = 0.95, 95% CI 0.92-0.99). 20,460 participants entered the follow-up analysis. Among 12,204 without NAFLD at baseline, 4,470 developed NAFLD after a median time of 4.3 years. The incidence of NAFLD was inversely associated with dairy intake (HR>7 vs 0 servings/week = 0.89, 95% CI 0.81-0.98; HRper serving/day increase = 0.94, 95% CI 0.89-0.99). Among 8256 with NAFLD at baseline, 3,885 recovered after 4.2-year follow-up. Total dairy intake did not show significant associations with recovery of NAFLD, and the HRs (95% CI) were 0.96 (0.87-1.06) for > 7 servings/week and 0.98 (0.93-1.03) for per serving/day increase. CONCLUSION Dairy product intake of more than one serving per day was associated with a lower prevalence and incidence of NAFLD in Chinese population. However, total dairy intake did not show significant association in NAFLD reversal.
Collapse
Affiliation(s)
- Yurou Xu
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Youyi Wang
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Qi Zhao
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Bo Chen
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Na Wang
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Tiejun Zhang
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yonggen Jiang
- Songjiang District Center for Disease Control and Prevention, Shanghai, 201600, China
| | - Yiling Wu
- Songjiang District Center for Disease Control and Prevention, Shanghai, 201600, China
| | - Na He
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Genming Zhao
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xing Liu
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
36
|
Majumder S, Kiritkumar Makwana R, Shetty V, Mukherjee S, Narayan P. Cardiovascular diseases and the heart-gut cross talk. Indian Heart J 2024; 76:94-100. [PMID: 38070671 PMCID: PMC11143509 DOI: 10.1016/j.ihj.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 12/02/2023] [Indexed: 06/01/2024] Open
Abstract
The purpose of this narrative review is to provide a comprehensive overview of current research on heart-gut cross talk and its implications for cardiovascular disease. To uncover relevant preclinical and clinical research examining heart-gut cross talk, a thorough literature search was undertaken utilising electronic databases. The chosen publications were critically examined, and major findings were synthesised to offer a thorough perspective on the subject. We want to synthesise the most recent study findings, explain the underlying mechanisms, and provide potential treatment techniques. By exploring bidirectional connection between the heart and the gut, we shed light on novel future options for the prevention and treatment of cardiovascular diseases. The heart-gut cross talk is an exciting field of study with implications for cardiovascular disease. Understanding the complex connection between the heart and the gastrointestinal tract may lead to the development of novel therapeutic targets and therapies for the prevention and management of cardiovascular diseases. Future research should concentrate on identifying the specific processes driving this crosstalk as well as assessing the efficacy of therapies targeting the gut microbiota and the gut-brain axis in improving cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Varun Shetty
- Department of Cardiac Surgery, Narayana Health, India
| | | | | |
Collapse
|
37
|
Charitos IA, Aliani M, Tondo P, Venneri M, Castellana G, Scioscia G, Castellaneta F, Lacedonia D, Carone M. Biomolecular Actions by Intestinal Endotoxemia in Metabolic Syndrome. Int J Mol Sci 2024; 25:2841. [PMID: 38474087 DOI: 10.3390/ijms25052841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolic syndrome (MetS) is a combination of metabolic disorders that concurrently act as factors promoting systemic pathologies such as atherosclerosis or diabetes mellitus. It is now believed to encompass six main interacting conditions: visceral fat, imbalance of lipids (dyslipidemia), hypertension, insulin resistance (with or without impairing both glucose tolerance and fasting blood sugar), and inflammation. In the last 10 years, there has been a progressive interest through scientific research investigations conducted in the field of metabolomics, confirming a trend to evaluate the role of the metabolome, particularly the intestinal one. The intestinal microbiota (IM) is crucial due to the diversity of microorganisms and their abundance. Consequently, IM dysbiosis and its derivate toxic metabolites have been correlated with MetS. By intervening in these two factors (dysbiosis and consequently the metabolome), we can potentially prevent or slow down the clinical effects of the MetS process. This, in turn, may mitigate dysregulations of intestinal microbiota axes, such as the lung axis, thereby potentially alleviating the negative impact on respiratory pathology, such as the chronic obstructive pulmonary disease. However, the biomolecular mechanisms through which the IM influences the host's metabolism via a dysbiosis metabolome in both normal and pathological conditions are still unclear. In this study, we seek to provide a description of the knowledge to date of the IM and its metabolome and the factors that influence it. Furthermore, we analyze the interactions between the functions of the IM and the pathophysiology of major metabolic diseases via local and systemic metabolome's relate endotoxemia.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Maria Aliani
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Maria Venneri
- Istituti Clinici Scientifici Maugeri IRCCS, Genomics and Proteomics Laboratory, "Istitute" of Bari, 70124 Bari, Italy
| | - Giorgio Castellana
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Francesca Castellaneta
- School of Clinical Biochemistry and Pathology, University of Bari (Aldo Moro), 70124 Bari, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Mauro Carone
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| |
Collapse
|
38
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
39
|
Zhou X, Chen R, Cai Y, Chen Q. Fecal Microbiota Transplantation: A Prospective Treatment for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:647-659. [PMID: 38347911 PMCID: PMC10860394 DOI: 10.2147/dmso.s447784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose of Review The aim of this review is to summarize the role of gastrointestinal microbiome (GM) in the development of type 2 diabetes mellitus (T2DM). Besides, we discuss the feasibility of applying FMT in the treatment of T2DM and propose a series of processes to refine the use of FMT in the treatment of T2DM. Recent Findings T2DM is a metabolic disease which is connected with the GM. According to many researches, GM can produce a variety of metabolites such as bile acid, short chain fatty acids, lipopolysaccharides and trimethylamine oxide which play an important role in metabolism. FMT is a method to regulate GM and has been observed to be effective in the treatment of metabolic diseases such as T2DM in some mouse models and people. However, there is still a lack of direct evidence for the use of FMT in the treatment of T2DM, and the process of FMT is not standardized. Summary Dysregulation of GM is closely related to the development of T2DM. Promoting the conversion of GM in T2DM patients to normal population through FMT can reduce insulin resistance and lower their blood glucose level, which is an optional treatment for T2DM patients in the future. At present, the feasibility and limitations of applying FMT to the treatment of T2DM need to be further studied.
Collapse
Affiliation(s)
- Xiaolan Zhou
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yichen Cai
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
40
|
Su C, Wang J, Luo H, Chen J, Lin F, Mo J, Xiong F, Zha L. Gut Microbiota Plays Essential Roles in Soyasaponin's Preventive Bioactivities against Steatohepatitis in the Methionine and Choline Deficient (MCD) Diet-Induced Non-Alcoholic Steatohepatitis (NASH) Mice. Mol Nutr Food Res 2024; 68:e2300561. [PMID: 38234006 DOI: 10.1002/mnfr.202300561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/24/2023] [Indexed: 01/19/2024]
Abstract
SCOPE Gut microbiota (GM) is involved in nonalcoholic steatohepatitis (NASH) development. Phytochemicals soyasaponins can prevent NASH possibly by modulating GM. This study aims to investigate the preventive bioactivities of soyasaponin monomers (SS-A1 and SS-Bb) against NASH and explores the mechanisms by targeting GM. METHODS AND RESULTS Male C57BL/6 mice are fed with methionine and choline deficient (MCD) diet containing SS-A1 , SS-Bb, or not for 16 weeks. Antibiotics-treated pseudo germ-free (PGF) mice are fed with MCD diet containing SS-A1 , SS-Bb, or not for 8 weeks. GM is determined by 16S rRNA amplicon sequencing. Bile acids (BAs) are measured by UPLC-MS/MS. In NASH mice, SS-A1 and SS-Bb alleviate steatohepatitis and fibrosis, reduce ALT, AST, and LPS in serum, decrease TNF-α, IL-6, α-SMA, triglycerides, and cholesterol in liver. SS-A1 and SS-Bb decrease Firmicutes, Erysipelotrichaceae, unidentified-Clostridiales, Eggerthellaceae, Atopobiaceae, Aerococcus, Jeotgalicoccus, Gemella, Rikenella, increase Proteobacteria, Verrucomicrobia, Akkermansiaceae, Romboutsia, and Roseburia. SS-A1 and SS-Bb alter BAs composition in liver, serum, and feces, activate farnesoid X receptor (FXR) in liver and ileum, increase occludin and ZO-1 in intestine. However, GM clearance abrogates the preventive bioactivities of SS-A1 and SS-Bb against NASH. CONCLUSION GM plays essential roles in soyasaponin's preventive bioactivities against steatohepatitis in MCD diet-induced NASH mice.
Collapse
Affiliation(s)
- Chuhong Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Fengjuan Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jiaqi Mo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Fei Xiong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
- Department of Clinical Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA), Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
41
|
Huang PH, Chen DQ, Chen YW, Shih MK, Lee BH, Tain YL, Hsieh CW, Hou CY. Evaluation of the Feasibility of In Vitro Metabolic Interruption of Trimethylamine with Resveratrol Butyrate Esters and Its Purified Monomers. Molecules 2024; 29:429. [PMID: 38257342 PMCID: PMC10820948 DOI: 10.3390/molecules29020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol (RSV), obtained from dietary sources, has been shown to reduce trimethylamine oxide (TMAO) levels in humans, and much research indicates that TMAO is recognized as a risk factor for cardiovascular disease. Therefore, this study investigated the effects of RSV and RSV-butyrate esters (RBE) on the proliferation of co-cultured bacteria and HepG2 cell lines, respectively, and also investigated the changes in trimethylamine (TMA) and TMOA content in the medium and flavin-containing monooxygenase-3 (FMO3) gene expression. This study revealed that 50 µg/mL of RBE could increase the population percentage of Bifidobacterium longum at a rate of 53%, while the rate was 48% for Clostridium asparagiforme. In contrast, co-cultivation of the two bacterial strains effectively reduced TMA levels from 561 ppm to 449 ppm. In addition, regarding TMA-induced HepG2 cell lines, treatment with 50 μM each of RBE, 3,4'-di-O-butanoylresveratrol (ED2), and 3-O-butanoylresveratrol (ED4) significantly reduced FMO3 gene expression from 2.13 to 0.40-1.40, which would also contribute to the reduction of TMAO content. This study demonstrated the potential of RBE, ED2, and ED4 for regulating TMA metabolism in microbial co-cultures and cell line cultures, which also suggests that the resveratrol derivative might be a daily dietary supplement that will be beneficial for health promotion in the future.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No. 4, Meicheng Road, Higher Education Park, Huai’an 223003, China;
| | - De-Quan Chen
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung 81157, Taiwan;
| | - Yu-Wei Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan;
| | - Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung 81157, Taiwan;
| |
Collapse
|
42
|
Oh J, Kim J, Lee S, Park G, Baritugo KAG, Han KJ, Lee S, Sung GH. 1H NMR Serum Metabolomic Change of Trimethylamine N-oxide (TMAO) Is Associated with Alcoholic Liver Disease Progression. Metabolites 2024; 14:39. [PMID: 38248842 PMCID: PMC10818766 DOI: 10.3390/metabo14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Without early detection and treatment, chronic and excessive alcohol consumption can lead to the development of alcoholic liver disease (ALD). With this in mind, we exploit the recent concept of the liver-gut axis and analyze the serum profile of ALD patients for identification of microbiome-derived metabolites that can be used as diagnostic biomarkers for onset of ALD. 1H-NMR was used to analyze serum metabolites of 38 ALD patients that were grouped according to their Child-Turcotte-Pugh scores (CTP): class A (CTP-A; 19), class B(CTP-B; 10), and class C (CTP-C; 9). A partial least squares-discriminant analysis (PLS-DA) and a variable importance of projection (VIP) score were used to identify significant metabolites. A receiver operating characteristic (ROC) curve and correlation heatmap were used to evaluate the predictability of identified metabolites as ALD biomarkers. Among 42 identified metabolites, 6 were significantly correlated to exacerbation of ALD. As ALD progressed in CTP-C, the levels of trimethylamine N-oxide (TMAO), malate, tyrosine, and 2-hydroxyisovalerate increased, while isobutyrate and isocitrate decreased. Out of six metabolites, elevated levels of TMAO and its precursors (carnitine, betaine, choline) were associated with severity of ALD. This indicates that TMAO can be used as an effective biomarker for the diagnosis of ALD progression.
Collapse
Affiliation(s)
- Junsang Oh
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (J.O.); (J.K.); (K.-A.G.B.)
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Gang-won-do, Republic of Korea
| | - Jayoung Kim
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (J.O.); (J.K.); (K.-A.G.B.)
- Department of Laboratory Medicine, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Sanghak Lee
- Department of Biomedical Science, Graduate School, Catholic Kwandong University, Gangneung-si 25601, Gang-won-do, Republic of Korea; (S.L.); (G.P.)
| | - Gyubin Park
- Department of Biomedical Science, Graduate School, Catholic Kwandong University, Gangneung-si 25601, Gang-won-do, Republic of Korea; (S.L.); (G.P.)
| | - Kei-Anne Garcia Baritugo
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (J.O.); (J.K.); (K.-A.G.B.)
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Gang-won-do, Republic of Korea
| | - Ki Jun Han
- Department of Internal Medicine, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Sangheun Lee
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (J.O.); (J.K.); (K.-A.G.B.)
- Department of Internal Medicine, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Gi-Ho Sung
- Biomedical Institute of Mycological Resource, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea; (J.O.); (J.K.); (K.-A.G.B.)
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Gang-won-do, Republic of Korea
| |
Collapse
|
43
|
Duncanson K, Williams G, Hoedt EC, Collins CE, Keely S, Talley NJ. Diet-microbiota associations in gastrointestinal research: a systematic review. Gut Microbes 2024; 16:2350785. [PMID: 38725230 PMCID: PMC11093048 DOI: 10.1080/19490976.2024.2350785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Interactions between diet and gastrointestinal microbiota influence health status and outcomes. Evaluating these relationships requires accurate quantification of dietary variables relevant to microbial metabolism, however current dietary assessment methods focus on dietary components relevant to human digestion only. The aim of this study was to synthesize research on foods and nutrients that influence human gut microbiota and thereby identify knowledge gaps to inform dietary assessment advancements toward better understanding of diet-microbiota interactions. Thirty-eight systematic reviews and 106 primary studies reported on human diet-microbiota associations. Dietary factors altering colonic microbiota included dietary patterns, macronutrients, micronutrients, bioactive compounds, and food additives. Reported diet-microbiota associations were dominated by routinely analyzed nutrients, which are absorbed from the small intestine but analyzed for correlation to stool microbiota. Dietary derived microbiota-relevant nutrients are more challenging to quantify and underrepresented in included studies. This evidence synthesis highlights advancements needed, including opportunities for expansion of food composition databases to include microbiota-relevant data, particularly for human intervention studies. These advances in dietary assessment methodology will facilitate translation of microbiota-specific nutrition therapy to practice.
Collapse
Affiliation(s)
- Kerith Duncanson
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Georgina Williams
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Emily C. Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Clare E. Collins
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
44
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
45
|
Jayachandran M, Qu S. Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies. Rev Endocr Metab Disord 2023; 24:1189-1204. [PMID: 37840104 DOI: 10.1007/s11154-023-09843-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is by far the most prevalent form of liver disease worldwide. It's also the leading cause of liver-related hospitalizations and deaths. Furthermore, there is a link between obesity and NAFLD risk. A projected 25% of the world's population grieves from NAFLD, making it the most common chronic liver disorder. Several factors, such as obesity, oxidative stress, and insulin resistance, typically accompany NAFLD. Weight loss, lipid-lowering agents, thiazolidinediones, and metformin help prominently control NAFLD. Interestingly, pre-clinical studies demonstrate gut microbiota's potential causal role in NAFLD. Increased intestinal permeability and unhindered transport of microbial metabolites into the liver are the major disruptions due to gut microbiome dysbiosis, contributing to the development of NAFLD by dysregulating the gut-liver axis. Hence, altering the pathogenic bacterial population using probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) could benefit patients with NAFLD. Therefore, it is crucial to acknowledge the importance of microbiota-mediated therapeutic approaches for NAFLD and comprehend the underlying mechanisms that establish a connection between NAFLD and gut microbiota. This review provides a comprehensive overview of the affiliation between dysbiosis of gut microbiota and the progress of NAFLD, as well as the potential benefits of prebiotic, probiotic, synbiotic supplementation, and FMT in obese individuals with NAFLD.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai center of Thyroid diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
46
|
Khan MQ, Hassan S, Lizaola-Mayo BC, Bhat M, Watt KD. Navigating the "specific etiology" steatohepatitis category: Evaluation and management of nonalcoholic/nonmetabolic dysfunction-associated steatohepatitis. Hepatology 2023:01515467-990000000-00637. [PMID: 37939197 DOI: 10.1097/hep.0000000000000674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Mohammad Qasim Khan
- Department of Internal Medicine, Division of Gastroenterology, University of Western Ontario, London, Ontario, Canada
| | - Sara Hassan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Blanca C Lizaola-Mayo
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, Arizona, USA
| | - Mamatha Bhat
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Toronto, Toronto, Ontario, Canada
| | - Kymberly D Watt
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
47
|
Ruan H, Huang Y, Yue B, Zhang Y, Lv J, Miao K, Zhang D, Luo J, Yang M. Insights into the intestinal toxicity of foodborne mycotoxins through gut microbiota: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4758-4785. [PMID: 37755064 DOI: 10.1111/1541-4337.13242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Mycotoxins, which are fungal metabolites, pose a significant global food safety concern by extensively contaminating food and feed, thereby seriously threatening public health and economic development. Many foodborne mycotoxins exhibit potent intestinal toxicity. However, the mechanisms underlying mycotoxin-induced intestinal toxicity are diverse and complex, and effective prevention or treatment methods for this condition have not yet been established in clinical and animal husbandry practices. In recent years, there has been increasing attention to the role of gut microbiota in the occurrence and development of intestinal diseases. Hence, this review aims to provide a comprehensive summary of the intestinal toxicity mechanisms of six common foodborne mycotoxins. It also explores novel toxicity mechanisms through the "key gut microbiota-key metabolites-key targets" axis, utilizing multiomics and precision toxicology studies with a specific focus on gut microbiota. Additionally, we examine the potential beneficial effects of probiotic supplementation on mycotoxin-induced toxicity based on initial gut microbiota-mediated mycotoxicity. This review offers a systematic description of how mycotoxins impact gut microbiota, metabolites, and genes or proteins, providing valuable insights for subsequent toxicity studies of mycotoxins. Furthermore, it lays a theoretical foundation for preventing and treating intestinal toxicity caused by mycotoxins and advancing food safety practices.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Binyang Yue
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxin Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Miao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Li J, Huang J, Lv Y, Ji H. Association between dietary intakes of B vitamins and nonalcoholic fatty liver disease in postmenopausal women: a cross-sectional study. Front Nutr 2023; 10:1272321. [PMID: 37927496 PMCID: PMC10621796 DOI: 10.3389/fnut.2023.1272321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is increasingly common globally, particularly among postmenopausal women. Diet plays a fundamental role in the treatment of NAFLD. However, clinical research on the dietary intakes of B vitamins, specifically in postmenopausal women, is scant. Hence, it is imperative to study the impact of B vitamin dietary intake in postmenopausal women. Methods This study utilized National Health and Nutrition Examination Survey (NHANES) data for 668 postmenopausal women. Logistic regression analysis was conducted to investigate the association of the intakes of B vitamins with hepatic steatosis and liver fibrosis prevalence. The analysis accounted for various covariates and employed restricted cubic spline analysis to examine potential nonlinear relationships. Additionally, interactions among age, diabetes, and B-vitamin intakes, as well as the interaction between folate and vitamin B12 intake, were explored. Results Higher intakes of folate [0.30 (0.10-0.88)], choline [0.26 (0.07-0.95)], vitamin B1, and vitamin B2 were associated with a reduced risk of hepatic steatosis in postmenopausal women. The associations of niacin (P-nonlinear = 0.0003), vitamin B1 (P-nonlinear = 0.036), and vitamin B2 (P-nonlinear<0.0001) intakes with hepatic steatosis showed a nonlinear pattern. However, no significant associations were observed between the intakes of niacin, vitamin B6 and vitamin B12 and hepatic steatosis. Furthermore, there were no significant associations between B-vitamin intakes and liver fibrosis. No interaction effects were observed. Conclusion Dietary intakes of folate, choline, vitamin B1, and vitamin B2 may be associated with liver steatosis in postmenopausal women, these results suggest that optimizing the intake of these specific B vitamins may have a protective effect against liver steatosis in postmenopausal women, offering valuable insights into potential dietary strategies to promote their well-being.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Hepatobiliary and Pancreatic Medicine, Infectious Disease. and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jingda Huang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanqing Lv
- Department of Hepatobiliary and Pancreatic Medicine, Infectious Disease. and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huifan Ji
- Department of Hepatobiliary and Pancreatic Medicine, Infectious Disease. and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
49
|
Staskova L, Marx W, Dawson SL, O'Hely M, Mansell T, Saffery R, Burgner D, Collier F, Novakovic B, Vuillermin P, Field CJ, Dewey D, Ponsonby AL. The distribution of dietary choline intake and serum choline levels in Australian women during pregnancy and associated early life factors. Eur J Nutr 2023; 62:2855-2872. [PMID: 37378694 PMCID: PMC10468947 DOI: 10.1007/s00394-023-03186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Maternal dietary choline has a central role in foetal brain development and may be associated with later cognitive function. However, many countries are reporting lower than recommended intake of choline during pregnancy. METHODS Dietary choline was estimated using food frequency questionnaires in pregnant women participating in population-derived birth cohort, the Barwon Infant Study (BIS). Dietary choline is reported as the sum of all choline-containing moieties. Serum total choline-containing compounds (choline-c), phosphatidylcholine and sphingomyelin were measured using nuclear magnetic resonance metabolomics in the third trimester. The main form of analysis was multivariable linear regression. RESULTS The mean daily dietary choline during pregnancy was 372 (standard deviation (SD) 104) mg/day. A total of 236 women (23%) had adequate choline intake (440 mg/day) based on the Australian and New Zealand guidelines, and 27 women (2.6%) took supplemental choline ([Formula: see text] 50 mg/dose) daily during pregnancy. The mean serum choline-c in pregnant women was 3.27 (SD 0.44) mmol/l. Ingested choline and serum choline-c were not correlated (R2) = - 0.005, p = 0.880. Maternal age, maternal weight gain in pregnancy, and a pregnancy with more than one infant were associated with higher serum choline-c, whereas gestational diabetes and environmental tobacco smoke during preconception and pregnancy were associated with lower serum choline-c. Nutrients or dietary patterns were not associated with variation in serum choline-c. CONCLUSION In this cohort, approximately one-quarter of women met daily choline recommendations during pregnancy. Future studies are needed to understand the potential impact of low dietary choline intake during pregnancy on infant cognition and metabolic intermediaries.
Collapse
Affiliation(s)
- Lada Staskova
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Wolfgang Marx
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, 3220, Australia
| | - Samantha L Dawson
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, 3220, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia
| | - Martin O'Hely
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, 3220, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Fiona Collier
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, 3220, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, 3220, Australia
- Barwon Health, Geelong, VIC, 3220, Australia
| | - Catherine J Field
- Department of Agriculture, Food and Nutritional Science, University of Alberta, 4-126C Li Ka Shing Centre for Research, Edmonton, AB, T6G 2H5, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, Calgary, AB, T3B 6A8, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Anne-Louise Ponsonby
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia.
| |
Collapse
|
50
|
Yang Q, Han H, Sun Z, Liu L, Zheng X, Meng Z, Tao N, Liu J. Association of choline and betaine with the risk of cardiovascular disease and all-cause mortality: Meta-analysis. Eur J Clin Invest 2023; 53:e14041. [PMID: 37318151 DOI: 10.1111/eci.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/23/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND This study aimed to systematically evaluate the role of circulating levels of choline and betaine in the risk of cardiovascular disease (CVD) and all-cause mortality by comprehensively reviewing observational studies. METHODS This study was conducted according to PRISMA 2020 statement. Six electronic databases, including PubMed, Embase and China National Knowledge Infrastructure (CNKI), were searched for cohort studies and derivative research design types (nested case-control and case-cohort studies) from the date of inception to March 2022. We pooled relative risk (RR) and 95% confidence interval (CI) of the highest versus lowest category and per SD of circulating choline and betaine concentrations in relation to the risk of CVD and all-cause mortality. RESULTS In the meta-analysis, 17 studies with a total of 33,009 participants were included. Random-effects model results showed that highest versus lowest quantile of circulating choline concentrations were associated with the risk of CVD (RR = 1.29, 95% CI: 1.04-1.61) and all-cause mortality (RR = 1.62, 95% CI: 1.12-2.36). We also observed the risk of CVD were increased 13% (5%-22%) with per SD increment. Furthermore, highest versus lowest quantile of circulating betaine concentrations were not associated with the risk of CVD (RR = 1.07, 95% CI: 0.92-1.24) and all-cause mortality (RR = 1.39, 95% CI: 0.96-2.01). However, the risk of CVD was increased 14% (5%-23%) with per SD increment. CONCLUSIONS Higher levels of circulating choline were associated with a higher risk of CVD and all-cause mortality.
Collapse
Affiliation(s)
- Qinglin Yang
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Hua Han
- Department of Clinical Nutrition, The First People's Hospital of Zunyi, Zunyi, China
| | - Zhongming Sun
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Lu Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xingting Zheng
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zeyu Meng
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Na Tao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| |
Collapse
|