BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Coolen M, Katz S, Bally-Cuif L. miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci 2013;7:220. [PMID: 24312010 DOI: 10.3389/fncel.2013.00220] [Cited by in Crossref: 162] [Cited by in F6Publishing: 152] [Article Influence: 18.0] [Reference Citation Analysis]
Number Citing Articles
1 Dlamini Z, Mbele M, Makhafola TJ, Hull R, Marima R. HIV-Associated Cancer Biomarkers: A Requirement for Early Diagnosis. Int J Mol Sci 2021;22:8127. [PMID: 34360891 DOI: 10.3390/ijms22158127] [Reference Citation Analysis]
2 Pietrzak M, Papp A, Curtis A, Handelman SK, Kataki M, Scharre DW, Rempala G, Sadee W. Gene expression profiling of brain samples from patients with Lewy body dementia. Biochem Biophys Res Commun 2016;479:875-80. [PMID: 27666482 DOI: 10.1016/j.bbrc.2016.09.114] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
3 Davila JL, Goff LA, Ricupero CL, Camarillo C, Oni EN, Swerdel MR, Toro-Ramos AJ, Li J, Hart RP. A positive feedback mechanism that regulates expression of miR-9 during neurogenesis. PLoS One 2014;9:e94348. [PMID: 24714615 DOI: 10.1371/journal.pone.0094348] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
4 Kim CK, Asimes A, Zhang M, Son BT, Kirk JA, Pak TR. Differential Stability of miR-9-5p and miR-9-3p in the Brain Is Determined by Their Unique Cis- and Trans-Acting Elements. eNeuro 2020;7:ENEURO. [PMID: 32376600 DOI: 10.1523/ENEURO.0094-20.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
5 Yang H, Zhang L, An J, Zhang Q, Liu C, He B, Hao D. MicroRNA-Mediated Reprogramming of Somatic Cells into Neural Stem Cells or Neurons. Mol Neurobiol 2017;54:1587-600. [DOI: 10.1007/s12035-016-0115-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
6 Yoon C, Kim D, Kim S, Park GB, Hur DY, Yang JW, Park SG, Kim YS. MiR-9 regulates the post-transcriptional level of VEGF165a by targeting SRPK-1 in ARPE-19 cells. Graefes Arch Clin Exp Ophthalmol 2014;252:1369-76. [PMID: 25007957 DOI: 10.1007/s00417-014-2698-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
7 Mercurio S, Cauteruccio S, Manenti R, Candiani S, Scarì G, Licandro E, Pennati R. Exploring miR-9 Involvement in Ciona intestinalis Neural Development Using Peptide Nucleic Acids. Int J Mol Sci 2020;21:E2001. [PMID: 32183450 DOI: 10.3390/ijms21062001] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Khalid U, Newbury LJ, Simpson K, Jenkins RH, Bowen T, Bates L, Sheerin NS, Chavez R, Fraser DJ. A urinary microRNA panel that is an early predictive biomarker of delayed graft function following kidney transplantation. Sci Rep 2019;9:3584. [PMID: 30837502 DOI: 10.1038/s41598-019-38642-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
9 Wang Y, Wang X, Jiang Y, Liu R, Cao D, Pan J, Luo Y. Identification of key miRNAs and genes for mouse retinal development using a linear model. Mol Med Rep 2020;22:494-506. [PMID: 32319662 DOI: 10.3892/mmr.2020.11082] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Kizil C. Mechanisms of Pathology-Induced Neural Stem Cell Plasticity and Neural Regeneration in Adult Zebrafish Brain. Curr Pathobiol Rep 2018;6:71-7. [PMID: 29938129 DOI: 10.1007/s40139-018-0158-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
11 Luarte A, Bátiz LF, Wyneken U, Lafourcade C. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche. Stem Cells Int 2016;2016:5736059. [PMID: 27195011 DOI: 10.1155/2016/5736059] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 7.0] [Reference Citation Analysis]
12 Yao K, Yang Q, Li Y, Lan T, Yu H, Yu Y. MicroRNA-9 mediated the protective effect of ferulic acid on hypoxic-ischemic brain damage in neonatal rats. PLoS One 2020;15:e0228825. [PMID: 32470970 DOI: 10.1371/journal.pone.0228825] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Ignacio C, Mooney SM, Middleton FA. Effects of Acute Prenatal Exposure to Ethanol on microRNA Expression are Ameliorated by Social Enrichment. Front Pediatr 2014;2:103. [PMID: 25309888 DOI: 10.3389/fped.2014.00103] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]
14 Shu P, Wu C, Ruan X, Liu W, Hou L, Fu H, Wang M, Liu C, Zeng Y, Chen P, Yin B, Yuan J, Qiang B, Peng X, Zhong W. Opposing Gradients of MicroRNA Expression Temporally Pattern Layer Formation in the Developing Neocortex. Dev Cell 2019;49:764-785.e4. [PMID: 31080058 DOI: 10.1016/j.devcel.2019.04.017] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
15 Zammit V, Baron B, Ayers D. MiRNA Influences in Neuroblast Modulation: An Introspective Analysis. Genes (Basel) 2018;9:E26. [PMID: 29315268 DOI: 10.3390/genes9010026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
16 Veremeyko T, Kuznetsova IS, Dukhinova M, W Y Yung A, Kopeikina E, Barteneva NS, Ponomarev ED. Neuronal extracellular microRNAs miR-124 and miR-9 mediate cell-cell communication between neurons and microglia. J Neurosci Res 2019;97:162-84. [PMID: 30367726 DOI: 10.1002/jnr.24344] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
17 Katz S, Cussigh D, Urbán N, Blomfield I, Guillemot F, Bally-Cuif L, Coolen M. A Nuclear Role for miR-9 and Argonaute Proteins in Balancing Quiescent and Activated Neural Stem Cell States. Cell Rep 2016;17:1383-98. [PMID: 27783951 DOI: 10.1016/j.celrep.2016.09.088] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
18 Sørensen SS, Nygaard AB, Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer's disease and other types of dementia - an exploratory study. Transl Neurodegener 2016;5:6. [PMID: 26981236 DOI: 10.1186/s40035-016-0053-5] [Cited by in Crossref: 74] [Cited by in F6Publishing: 70] [Article Influence: 12.3] [Reference Citation Analysis]
19 Pöstyéni E, Kovács-Valasek A, Urbán P, Czuni L, Sétáló G Jr, Fekete C, Gabriel R. Analysis of mir-9 Expression Pattern in Rat Retina during Postnatal Development. Int J Mol Sci 2021;22:2577. [PMID: 33806574 DOI: 10.3390/ijms22052577] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Osier N, Motamedi V, Edwards K, Puccio A, Diaz-Arrastia R, Kenney K, Gill J. Exosomes in Acquired Neurological Disorders: New Insights into Pathophysiology and Treatment. Mol Neurobiol 2018;55:9280-93. [PMID: 29663285 DOI: 10.1007/s12035-018-1054-4] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 11.0] [Reference Citation Analysis]
21 Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, Guo S, Xu J. MicroRNA-9 Mediates the Cell Apoptosis by Targeting Bcl2l11 in Ischemic Stroke. Mol Neurobiol 2016;53:6809-17. [PMID: 26660116 DOI: 10.1007/s12035-015-9605-4] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 7.1] [Reference Citation Analysis]
22 Kim CK, Linscott ML, Flury S, Zhang M, Newby ML, Pak TR. 17β-Estradiol Regulates miR-9-5p and miR-9-3p Stability and Function in the Aged Female Rat Brain. Noncoding RNA 2021;7:53. [PMID: 34564315 DOI: 10.3390/ncrna7030053] [Reference Citation Analysis]
23 Saraiva C, Esteves M, Bernardino L. MicroRNA: Basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochemical Pharmacology 2017;141:118-31. [DOI: 10.1016/j.bcp.2017.07.008] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
24 Spina EJ, Guzman E, Zhou H, Kosik KS, Smith WC. A microRNA-mRNA expression network during oral siphon regeneration in Ciona. Development 2017;144:1787-97. [PMID: 28432214 DOI: 10.1242/dev.144097] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
25 Trümbach D, Prakash N. The conserved miR-8/miR-200 microRNA family and their role in invertebrate and vertebrate neurogenesis. Cell Tissue Res 2015;359:161-77. [PMID: 24875007 DOI: 10.1007/s00441-014-1911-z] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
26 Bezerra DP, de Aguiar JP, Keasey MP, Rodrigues CG, de Oliveira JRM. MiR-9-5p Regulates Genes Linked to Cerebral Calcification in the Osteogenic Differentiation Model and Induces Generalized Alteration in the Ion Channels. J Mol Neurosci 2021;71:1897-905. [PMID: 34041689 DOI: 10.1007/s12031-021-01830-w] [Reference Citation Analysis]
27 Dai W, Li W, Hoque M, Li Z, Tian B, Makeyev EV. A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status. Nat Commun 2015;6:7576. [PMID: 26144867 DOI: 10.1038/ncomms8576] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
28 Cui L, Saeed Y, Li H, Yang J. Regenerative medicine and traumatic brain injury: from stem cell to cell-free therapeutic strategies. Regen Med 2022;17:37-53. [PMID: 34905963 DOI: 10.2217/rme-2021-0069] [Reference Citation Analysis]
29 Kaifer KA, Villalón E, O'Brien BS, Sison SL, Smith CE, Simon ME, Marquez J, O'Day S, Hopkins AE, Neff R, Rindt H, Ebert AD, Lorson CL. AAV9-mediated delivery of miR-23a reduces disease severity in Smn2B/-SMA model mice. Hum Mol Genet 2019;28:3199-210. [PMID: 31211843 DOI: 10.1093/hmg/ddz142] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
30 Gruner H, Cortés-López M, Cooper DA, Bauer M, Miura P. CircRNA accumulation in the aging mouse brain. Sci Rep 2016;6:38907. [PMID: 27958329 DOI: 10.1038/srep38907] [Cited by in Crossref: 183] [Cited by in F6Publishing: 159] [Article Influence: 30.5] [Reference Citation Analysis]
31 Li RA, Talikka M, Gubian S, Vom Berg C, Martin F, Peitsch MC, Hoeng J, Zupanic A. Systems Toxicology Approach for Assessing Developmental Neurotoxicity in Larval Zebrafish. Front Genet 2021;12:652632. [PMID: 34211495 DOI: 10.3389/fgene.2021.652632] [Reference Citation Analysis]
32 Mahnke AH, Miranda RC, Homanics GE. Epigenetic mediators and consequences of excessive alcohol consumption. Alcohol 2017;60:1-6. [PMID: 28395929 DOI: 10.1016/j.alcohol.2017.02.357] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
33 Cellerino A, Bally-Cuif L, Pizzorusso T. Editorial for "Regulatory RNAs in the nervous system". Front Cell Neurosci 2015;9:38. [PMID: 25713514 DOI: 10.3389/fncel.2015.00038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
34 Gallardo-escárate C, Valenzuela-muñoz V, Boltaña S, Nuñez-acuña G, Valenzuela-miranda D, Gonçalves A, Détrée C, Tarifeño-saldivia E, Farlora R, Roberts S, Putnam H. The Caligus rogercresseyi miRNome: Discovery and transcriptome profiling during the sea lice ontogeny. Agri Gene 2017;4:8-22. [DOI: 10.1016/j.aggene.2017.03.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
35 Riemens R, van den Hove D, Esteller M, Delgado-morales R. Directing neuronal cell fate in vitro : Achievements and challenges. Progress in Neurobiology 2018;168:42-68. [DOI: 10.1016/j.pneurobio.2018.04.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
36 Gourain V, Armant O, Lübke L, Diotel N, Rastegar S, Strähle U. Multi-Dimensional Transcriptome Analysis Reveals Modulation of Cholesterol Metabolism as Highly Integrated Response to Brain Injury. Front Neurosci 2021;15:671249. [PMID: 34054419 DOI: 10.3389/fnins.2021.671249] [Reference Citation Analysis]
37 Qiao H, Jiang S, Xiong Y, Fu H, Zhang W, Wang Y, Gong Y, Jin S, Wu Y. Integrated analysis of differentially expressed microRNAs and mRNAs to screen miRNAs and genes related to reproduction in Macrobrachium nipponense. 3 Biotech 2019;9:327. [PMID: 31406649 DOI: 10.1007/s13205-019-1847-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Yoon C, Kim J, Park G, Kim S, Kim D, Hur DY, Kim B, Kim YS. Delivery of miR-155 to retinal pigment epithelial cells mediated by Burkitt's lymphoma exosomes. Tumour Biol 2016;37:313-21. [PMID: 26211004 DOI: 10.1007/s13277-015-3769-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
39 Rajgor D. Macro roles for microRNAs in neurodegenerative diseases. Noncoding RNA Res 2018;3:154-9. [PMID: 30175288 DOI: 10.1016/j.ncrna.2018.07.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
40 Alwin Prem Anand A, Alvarez-Bolado G, Wizenmann A. MiR-9 and the Midbrain-Hindbrain Boundary: A Showcase for the Limited Functional Conservation and Regulatory Complexity of MicroRNAs. Front Cell Dev Biol 2020;8:586158. [PMID: 33330463 DOI: 10.3389/fcell.2020.586158] [Reference Citation Analysis]
41 Urbán N, Guillemot F. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci. 2014;8:396. [PMID: 25505873 DOI: 10.3389/fncel.2014.00396] [Cited by in Crossref: 242] [Cited by in F6Publishing: 229] [Article Influence: 30.3] [Reference Citation Analysis]
42 Ivanov D. Notch Signaling-Induced Oscillatory Gene Expression May Drive Neurogenesis in the Developing Retina. Front Mol Neurosci 2019;12:226. [PMID: 31607861 DOI: 10.3389/fnmol.2019.00226] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
43 Lee H, Farhanullah, Lee J, Jajoo R, Kong S, Shin J, Kim J, Lee J, Lee J, Kim H. Discovery of a Small Molecule that Enhances Astrocytogenesis by Activation of STAT3, SMAD1/5/8, and ERK1/2 via Induction of Cytokines in Neural Stem Cells. ACS Chem Neurosci 2016;7:90-9. [DOI: 10.1021/acschemneuro.5b00243] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
44 Pan WL, Chopp M, Fan B, Zhang R, Wang X, Hu J, Zhang XM, Zhang ZG, Liu XS. Ablation of the microRNA-17-92 cluster in neural stem cells diminishes adult hippocampal neurogenesis and cognitive function. FASEB J 2019;33:5257-67. [PMID: 30668139 DOI: 10.1096/fj.201801019R] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
45 Martinez M, Rossetto IMU, Arantes RMS, Lizarte FSN, Tirapelli LF, Tirapelli DPC, Chuffa LGA, Martinez FE. Serum miRNAs are differentially altered by ethanol and caffeine consumption in rats. Toxicol Res (Camb) 2019;8:842-9. [PMID: 32055392 DOI: 10.1039/c9tx00069k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
46 Nishiuchi A, Hisamori S, Sakaguchi M, Fukuyama K, Hoshino N, Itatani Y, Honma S, Maekawa H, Nishigori T, Tsunoda S, Obama K, Miyoshi H, Shimono Y, Taketo MM, Sakai Y. MicroRNA-9-5p-CDX2 Axis: A Useful Prognostic Biomarker for Patients with Stage II/III Colorectal Cancer. Cancers (Basel) 2019;11:E1891. [PMID: 31783700 DOI: 10.3390/cancers11121891] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
47 Khafaei M, Rezaie E, Mohammadi A, Shahnazi Gerdehsang P, Ghavidel S, Kadkhoda S, Zorrieh Zahra A, Forouzanfar N, Arabameri H, Tavallaie M. miR-9: From function to therapeutic potential in cancer. J Cell Physiol 2019. [PMID: 30693512 DOI: 10.1002/jcp.28210] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
48 Alwin Prem Anand A, Huber C, Asnet Mary J, Gallus N, Leucht C, Klafke R, Hirt B, Wizenmann A. Expression and function of microRNA-9 in the mid-hindbrain area of embryonic chick. BMC Dev Biol 2018;18:3. [PMID: 29471810 DOI: 10.1186/s12861-017-0159-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
49 Nampoothiri SS, Rajanikant GK. miR-9 Upregulation Integrates Post-ischemic Neuronal Survival and Regeneration In Vitro. Cell Mol Neurobiol 2019;39:223-40. [PMID: 30539420 DOI: 10.1007/s10571-018-0642-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
50 Arzua T, Jiang C, Yan Y, Bai X. The importance of non-coding RNAs in environmental stress-related developmental brain disorders: A systematic review of evidence associated with exposure to alcohol, anesthetic drugs, nicotine, and viral infections. Neurosci Biobehav Rev 2021;128:633-47. [PMID: 34186153 DOI: 10.1016/j.neubiorev.2021.06.033] [Reference Citation Analysis]
51 Lin D, Liu J, Hu Z, Cottrell JE, Kass IS. Neonatal anesthesia exposure impacts brain microRNAs and their associated neurodevelopmental processes. Sci Rep 2018;8:10656. [PMID: 30006558 DOI: 10.1038/s41598-018-28874-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
52 Kittelmann S, McGregor AP. Modulation and Evolution of Animal Development through microRNA Regulation of Gene Expression. Genes (Basel) 2019;10:E321. [PMID: 31027314 DOI: 10.3390/genes10040321] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
53 Jiang Q, Wang Y, Shi X. Propofol Inhibits Neurogenesis of Rat Neural Stem Cells by Upregulating MicroRNA-141-3p. Stem Cells Dev 2017;26:189-96. [PMID: 27796156 DOI: 10.1089/scd.2016.0257] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
54 Tang X, Sun C. The roles of MicroRNAs in neural regenerative medicine. Experimental Neurology 2020;332:113394. [DOI: 10.1016/j.expneurol.2020.113394] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
55 Abernathy DG, Yoo AS. MicroRNA-dependent genetic networks during neural development. Cell Tissue Res 2015;359:179-85. [PMID: 24865244 DOI: 10.1007/s00441-014-1899-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
56 Gallicchio L, Griffiths-Jones S, Ronshaugen M. Single-cell visualization of mir-9a and Senseless co-expression during Drosophila melanogaster embryonic and larval peripheral nervous system development. G3 (Bethesda) 2021;11:jkaa010. [PMID: 33561238 DOI: 10.1093/g3journal/jkaa010] [Reference Citation Analysis]
57 Ernsberger U. Can the ‘neuron theory’ be complemented by a universal mechanism for generic neuronal differentiation. Cell Tissue Res 2015;359:343-84. [DOI: 10.1007/s00441-014-2049-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
58 Vargas-Medrano J, Yang B, Garza NT, Segura-Ulate I, Perez RG. Up-regulation of protective neuronal MicroRNAs by FTY720 and novel FTY720-derivatives. Neurosci Lett 2019;690:178-80. [PMID: 30359694 DOI: 10.1016/j.neulet.2018.10.040] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
59 Mingardi J, La Via L, Tornese P, Carini G, Trontti K, Seguini M, Tardito D, Bono F, Fiorentini C, Elia L, Hovatta I, Popoli M, Musazzi L, Barbon A. miR-9-5p is involved in the rescue of stress-dependent dendritic shortening of hippocampal pyramidal neurons induced by acute antidepressant treatment with ketamine. Neurobiol Stress 2021;15:100381. [PMID: 34458512 DOI: 10.1016/j.ynstr.2021.100381] [Reference Citation Analysis]
60 Loffreda A, Rigamonti A, Barabino SM, Lenzken SC. RNA-Binding Proteins in the Regulation of miRNA Activity: A Focus on Neuronal Functions. Biomolecules 2015;5:2363-87. [PMID: 26437437 DOI: 10.3390/biom5042363] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
61 Kumar S, Reddy PH. Are circulating microRNAs peripheral biomarkers for Alzheimer's disease? Biochim Biophys Acta 2016;1862:1617-27. [PMID: 27264337 DOI: 10.1016/j.bbadis.2016.06.001] [Cited by in Crossref: 111] [Cited by in F6Publishing: 117] [Article Influence: 18.5] [Reference Citation Analysis]
62 Carmona V, Cunha-Santos J, Onofre I, Simões AT, Vijayakumar U, Davidson BL, Pereira de Almeida L. Unravelling Endogenous MicroRNA System Dysfunction as a New Pathophysiological Mechanism in Machado-Joseph Disease. Mol Ther 2017;25:1038-55. [PMID: 28236575 DOI: 10.1016/j.ymthe.2017.01.021] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
63 Han D, Dong X, Zheng D, Nao J. MiR-124 and the Underlying Therapeutic Promise of Neurodegenerative Disorders. Front Pharmacol 2019;10:1555. [PMID: 32009959 DOI: 10.3389/fphar.2019.01555] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
64 Catapano F, Zaharieva I, Scoto M, Marrosu E, Morgan J, Muntoni F, Zhou H. Altered Levels of MicroRNA-9, -206, and -132 in Spinal Muscular Atrophy and Their Response to Antisense Oligonucleotide Therapy. Mol Ther Nucleic Acids 2016;5:e331. [PMID: 27377135 DOI: 10.1038/mtna.2016.47] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 7.5] [Reference Citation Analysis]
65 Cho KHT, Xu B, Blenkiron C, Fraser M. Emerging Roles of miRNAs in Brain Development and Perinatal Brain Injury. Front Physiol. 2019;10:227. [PMID: 30984006 DOI: 10.3389/fphys.2019.00227] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 10.7] [Reference Citation Analysis]
66 Schindler CR, Woschek M, Vollrath JT, Kontradowitz K, Lustenberger T, Störmann P, Marzi I, Henrich D. miR-142-3p Expression Is Predictive for Severe Traumatic Brain Injury (TBI) in Trauma Patients. Int J Mol Sci 2020;21:E5381. [PMID: 32751105 DOI: 10.3390/ijms21155381] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
67 Subramanian M, Hyeon SJ, Das T, Suh YS, Kim YK, Lee JS, Song EJ, Ryu H, Yu K. UBE4B, a microRNA-9 target gene, promotes autophagy-mediated Tau degradation. Nat Commun 2021;12:3291. [PMID: 34078905 DOI: 10.1038/s41467-021-23597-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
68 Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018;36:1946-70. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 8.5] [Reference Citation Analysis]
69 Spaull R, McPherson B, Gialeli A, Clayton A, Uney J, Heep A, Cordero-Llana Ó. Exosomes populate the cerebrospinal fluid of preterm infants with post-haemorrhagic hydrocephalus. Int J Dev Neurosci 2019;73:59-65. [PMID: 30639393 DOI: 10.1016/j.ijdevneu.2019.01.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
70 Nowek K, Wiemer EAC, Jongen-Lavrencic M. The versatile nature of miR-9/9* in human cancer. Oncotarget 2018;9:20838-54. [PMID: 29755694 DOI: 10.18632/oncotarget.24889] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 8.5] [Reference Citation Analysis]
71 Marco Antonio DS, Hartfelder K. Toward an Understanding of Divergent Compound Eye Development in Drones and Workers of the Honeybee ( Apis mellifera L.): A Correlative Analysis of Morphology and Gene Expression: HONEYBEE EYE DEVELOPMENT. J Exp Zool (Mol Dev Evol ) 2017;328:139-56. [DOI: 10.1002/jez.b.22696] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
72 Pascale E, Beclin C, Fiorenzano A, Andolfi G, Erni A, De Falco S, Minchiotti G, Cremer H, Fico A. Long Non-coding RNA T-UCstem1 Controls Progenitor Proliferation and Neurogenesis in the Postnatal Mouse Olfactory Bulb through Interaction with miR-9. Stem Cell Reports 2020;15:836-44. [PMID: 32976763 DOI: 10.1016/j.stemcr.2020.08.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
73 Lamadrid-Romero M, Solís KH, Cruz-Reséndiz MS, Pérez JE, Díaz NF, Flores-Herrera H, García-López G, Perichart O, Reyes-Muñoz E, Arenas-Huertero F, Eguía-Aguilar P, Molina-Hernández A. Central nervous system development-related microRNAs levels increase in the serum of gestational diabetic women during the first trimester of pregnancy. Neurosci Res 2018;130:8-22. [PMID: 28803788 DOI: 10.1016/j.neures.2017.08.003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
74 Yu T, Li X, Coates B, Zhang Q, Siegfried B, Zhou X. microRNA profiling between Bacillus thuringiensis Cry1Ab-susceptible and -resistant European corn borer, Ostrinia nubilalis (Hübner): miRNA survey in Ostrinia nubilalis. Insect Mol Biol 2018;27:279-94. [DOI: 10.1111/imb.12376] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
75 Quesnel-vallières M, Weatheritt RJ, Cordes SP, Blencowe BJ. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat Rev Genet 2019;20:51-63. [DOI: 10.1038/s41576-018-0066-2] [Cited by in Crossref: 59] [Cited by in F6Publishing: 51] [Article Influence: 14.8] [Reference Citation Analysis]
76 Wei N, Zheng K, Xue R, Ma SL, Ren HY, Huang HF, Wang WW, Xu JJ, Chen KS. Suppression of microRNA-9-5p rescues learning and memory in chronic cerebral hypoperfusion rats model. Oncotarget 2017;8:107920-31. [PMID: 29296213 DOI: 10.18632/oncotarget.22415] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
77 Sano M, Ohtaka M, Iijima M, Nakasu A, Kato Y, Nakanishi M. Sensitive and long-term monitoring of intracellular microRNAs using a non-integrating cytoplasmic RNA vector. Sci Rep 2017;7:12673. [PMID: 28978921 DOI: 10.1038/s41598-017-12847-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
78 Vuong CK, Wei W, Lee JA, Lin CH, Damianov A, de la Torre-Ubieta L, Halabi R, Otis KO, Martin KC, O'Dell TJ, Black DL. Rbfox1 Regulates Synaptic Transmission through the Inhibitory Neuron-Specific vSNARE Vamp1. Neuron 2018;98:127-141.e7. [PMID: 29621484 DOI: 10.1016/j.neuron.2018.03.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]
79 Giusti SA, Vogl AM, Brockmann MM, Vercelli CA, Rein ML, Trümbach D, Wurst W, Cazalla D, Stein V, Deussing JM, Refojo D. MicroRNA-9 controls dendritic development by targeting REST. Elife 2014;3. [PMID: 25406064 DOI: 10.7554/eLife.02755] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
80 Chen S, Wang M, Yang H, Mao L, He Q, Jin H, Ye Z, Luo X, Xia Y, Hu B. LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochemical and Biophysical Research Communications 2017;485:167-73. [DOI: 10.1016/j.bbrc.2017.02.043] [Cited by in Crossref: 93] [Cited by in F6Publishing: 92] [Article Influence: 18.6] [Reference Citation Analysis]
81 Mahnke AH, Salem NA, Tseng AM, Chung DD, Miranda RC. Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. Prog Mol Biol Transl Sci 2018;157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
82 Oliveira NCM, Lins ÉM, Massirer KB, Bengtson MH. Translational Control during Mammalian Neocortex Development and Postembryonic Neuronal Function. Semin Cell Dev Biol 2021;114:36-46. [PMID: 33020045 DOI: 10.1016/j.semcdb.2020.09.006] [Reference Citation Analysis]
83 Battaglia C, Venturin M, Sojic A, Jesuthasan N, Orro A, Spinelli R, Musicco M, De Bellis G, Adorni F. Candidate Genes and MiRNAs Linked to the Inverse Relationship Between Cancer and Alzheimer's Disease: Insights From Data Mining and Enrichment Analysis. Front Genet 2019;10:846. [PMID: 31608105 DOI: 10.3389/fgene.2019.00846] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
84 Warnecke A, Harre J, Shew M, Mellott AJ, Majewski I, Durisin M, Staecker H. Successful Treatment of Noise-Induced Hearing Loss by Mesenchymal Stromal Cells: An RNAseq Analysis of Protective/Repair Pathways. Front Cell Neurosci 2021;15:656930. [PMID: 34887728 DOI: 10.3389/fncel.2021.656930] [Reference Citation Analysis]
85 Madelaine R, Notwell JH, Skariah G, Halluin C, Chen CC, Bejerano G, Mourrain P. A screen for deeply conserved non-coding GWAS SNPs uncovers a MIR-9-2 functional mutation associated to retinal vasculature defects in human. Nucleic Acids Res 2018;46:3517-31. [PMID: 29518216 DOI: 10.1093/nar/gky166] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
86 Tambalo M, Mitter R, Wilkinson DG. A single cell transcriptome atlas of the developing zebrafish hindbrain. Development 2020;147:dev184143. [PMID: 32094115 DOI: 10.1242/dev.184143] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
87 Hayman DJ, Modebadze T, Charlton S, Cheung K, Soul J, Lin H, Hao Y, Miles CG, Tsompani D, Jackson RM, Briggs MD, Piróg KA, Clark IM, Barter MJ, Clowry GJ, LeBeau FEN, Young DA. Increased hippocampal excitability in miR-324-null mice. Sci Rep 2021;11:10452. [PMID: 34001919 DOI: 10.1038/s41598-021-89874-1] [Reference Citation Analysis]
88 Park Y, Page N, Salamon I, Li D, Rasin MR. Making sense of mRNA landscapes: Translation control in neurodevelopment. Wiley Interdiscip Rev RNA 2021;:e1674. [PMID: 34137510 DOI: 10.1002/wrna.1674] [Reference Citation Analysis]
89 Luo X, Tu T, Zhong Y, Xu S, Chen X, Chen L, Yang F. ceRNA Network Analysis Shows That lncRNA CRNDE Promotes Progression of Glioblastoma Through Sponge mir-9-5p. Front Genet 2021;12:617350. [PMID: 33767729 DOI: 10.3389/fgene.2021.617350] [Reference Citation Analysis]
90 Hu F, Zhang X, Liu H, Xu P, Doulathunnisa, Teng G, Xiao Z. Neuronally differentiated adipose-derived stem cells and aligned PHBV nanofiber nerve scaffolds promote sciatic nerve regeneration. Biochem Biophys Res Commun 2017;489:171-8. [PMID: 28549587 DOI: 10.1016/j.bbrc.2017.05.119] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
91 Bahrami A, Jafari A, Ferns GA. The dual role of microRNA-9 in gastrointestinal cancers: oncomiR or tumor suppressor? Biomed Pharmacother 2021;145:112394. [PMID: 34781141 DOI: 10.1016/j.biopha.2021.112394] [Reference Citation Analysis]
92 Bao MH, Szeto V, Yang BB, Zhu SZ, Sun HS, Feng ZP. Long non-coding RNAs in ischemic stroke. Cell Death Dis 2018;9:281. [PMID: 29449542 DOI: 10.1038/s41419-018-0282-x] [Cited by in Crossref: 106] [Cited by in F6Publishing: 108] [Article Influence: 26.5] [Reference Citation Analysis]
93 Jang J, Lee S, Oh HJ, Choi Y, Choi JH, Hwang DW, Lee DS. Fluorescence imaging of in vivo miR-124a-induced neurogenesis of neuronal progenitor cells using neuron-specific reporters. EJNMMI Res 2016;6:38. [PMID: 27115744 DOI: 10.1186/s13550-016-0190-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
94 Kleiber ML, Diehl EJ, Laufer BI, Mantha K, Chokroborty-Hoque A, Alberry B, Singh SM. Long-term genomic and epigenomic dysregulation as a consequence of prenatal alcohol exposure: a model for fetal alcohol spectrum disorders. Front Genet 2014;5:161. [PMID: 24917881 DOI: 10.3389/fgene.2014.00161] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 4.4] [Reference Citation Analysis]
95 Cha DJ, Mengel D, Mustapic M, Liu W, Selkoe DJ, Kapogiannis D, Galasko D, Rissman RA, Bennett DA, Walsh DM. miR-212 and miR-132 Are Downregulated in Neurally Derived Plasma Exosomes of Alzheimer's Patients. Front Neurosci 2019;13:1208. [PMID: 31849573 DOI: 10.3389/fnins.2019.01208] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
96 Lu X, Ma ST, Zhou B, Lı T. MiR-9 promotes the phenotypic switch of vascular smooth muscle cells by targeting KLF5. Turk J Med Sci 2019;49:928-38. [PMID: 31122000 DOI: 10.3906/sag-1710-173] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
97 Yuan P, Ding L, Chen H, Wang Y, Li C, Zhao S, Yang X, Ma Y, Zhu J, Qi X, Zhang Y, Xia X, Zheng JC. Neural Stem Cell-Derived Exosomes Regulate Neural Stem Cell Differentiation Through miR-9-Hes1 Axis. Front Cell Dev Biol 2021;9:601600. [PMID: 34055767 DOI: 10.3389/fcell.2021.601600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
98 Xi X, Zou Q, Wei Y, Chen Y, Wang X, Lv D, Li P, Wen A, Zhu L, Tang G, Ma J, Li M, Li X, Jiang Y. Dynamic Changes of DNA Methylation and Transcriptome Expression in Porcine Ovaries during Aging. Biomed Res Int 2019;2019:8732023. [PMID: 31781648 DOI: 10.1155/2019/8732023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
99 Wu C, Zhang X, Chen P, Ruan X, Liu W, Li Y, Sun C, Hou L, Yin B, Qiang B, Shu P, Peng X. MicroRNA-129 modulates neuronal migration by targeting Fmr1 in the developing mouse cortex. Cell Death Dis 2019;10:287. [PMID: 30911036 DOI: 10.1038/s41419-019-1517-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
100 Kizil C, Bhattarai P. Is Alzheimer's Also a Stem Cell Disease? - The Zebrafish Perspective. Front Cell Dev Biol 2018;6:159. [PMID: 30533414 DOI: 10.3389/fcell.2018.00159] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
101 Bezerra DP, Keasey M, Oliveira JRM. MiR-9-5p Down-Regulates PiT2, but not PiT1 in Human Embryonic Kidney 293 Cells. J Mol Neurosci 2017;62:28-33. [PMID: 28303467 DOI: 10.1007/s12031-017-0906-0] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
102 Das Gupta S, Ciszek R, Heiskanen M, Lapinlampi N, Kukkonen J, Leinonen V, Puhakka N, Pitkänen A. Plasma miR-9-3p and miR-136-3p as Potential Novel Diagnostic Biomarkers for Experimental and Human Mild Traumatic Brain Injury. Int J Mol Sci 2021;22:1563. [PMID: 33557217 DOI: 10.3390/ijms22041563] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
103 Zhang H, Chang Y, Zhang L, Kim S, Otaegi G, Zhang Z, Nie Y, Mubarak T, Li C, Qin C, Xu Z, Sun T. Upregulation of MicroRNA miR-9 Is Associated with Microcephaly and Zika Virus Infection in Mice. Mol Neurobiol 2019;56:4072-85. [DOI: 10.1007/s12035-018-1358-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
104 Roese-Koerner B, Stappert L, Brüstle O. Notch/Hes signaling and miR-9 engage in complex feedback interactions controlling neural progenitor cell proliferation and differentiation. Neurogenesis (Austin) 2017;4:e1313647. [PMID: 28573150 DOI: 10.1080/23262133.2017.1313647] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
105 Ma M, Wu W, Li Q, Li J, Sheng Z, Shi J, Zhang M, Yang H, Wang Z, Sun R, Fei J. N-myc is a key switch regulating the proliferation cycle of postnatal cerebellar granule cell progenitors. Sci Rep 2015;5:12740. [PMID: 26238256 DOI: 10.1038/srep12740] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
106 Reséndiz-Castillo LJ, Minjarez-Vega B, Reza-Zaldívar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, Canales-Aguirre AA. The effects of altered neurogenic microRNA levels and their involvement in the aggressiveness of periventricular glioblastoma. Neurologia (Engl Ed) 2020:S0213-4853(19)30137-9. [PMID: 31959491 DOI: 10.1016/j.nrl.2019.07.005] [Reference Citation Analysis]
107 Wu J, Li H, He J, Tian X, Luo S, Li J, Li W, Zhong J, Zhang H, Huang Z, Sun X, Jiang T. Downregulation of microRNA-9-5p promotes synaptic remodeling in the chronic phase after traumatic brain injury. Cell Death Dis 2021;12:9. [PMID: 33414448 DOI: 10.1038/s41419-020-03329-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
108 Telonis AG, Magee R, Loher P, Chervoneva I, Londin E, Rigoutsos I. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res 2017;45:2973-85. [PMID: 28206648 DOI: 10.1093/nar/gkx082] [Cited by in Crossref: 101] [Cited by in F6Publishing: 87] [Article Influence: 20.2] [Reference Citation Analysis]
109 Gamage TKJB, Fraser M. The Role of Extracellular Vesicles in the Developing Brain: Current Perspective and Promising Source of Biomarkers and Therapy for Perinatal Brain Injury. Front Neurosci 2021;15:744840. [PMID: 34630028 DOI: 10.3389/fnins.2021.744840] [Reference Citation Analysis]
110 Ponnusamy V, Yip PK. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy. Neuropharmacology 2019;149:55-65. [PMID: 30716413 DOI: 10.1016/j.neuropharm.2018.11.041] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
111 Miguel V, Busnadiego O, Fierro-Fernández M, Lamas S. Protective role for miR-9-5p in the fibrogenic transformation of human dermal fibroblasts. Fibrogenesis Tissue Repair 2016;9:7. [PMID: 27274768 DOI: 10.1186/s13069-016-0044-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
112 Ando H, Hirose M, Kurosawa G, Impey S, Mikoshiba K. Time-lapse imaging of microRNA activity reveals the kinetics of microRNA activation in single living cells. Sci Rep 2017;7:12642. [PMID: 28974737 DOI: 10.1038/s41598-017-12879-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
113 Ma Q, Zhang L. Epigenetic programming of hypoxic-ischemic encephalopathy in response to fetal hypoxia. Prog Neurobiol 2015;124:28-48. [PMID: 25450949 DOI: 10.1016/j.pneurobio.2014.11.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
114 Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020;21:E9630. [PMID: 33348804 DOI: 10.3390/ijms21249630] [Reference Citation Analysis]
115 Davis GM, Haas MA, Pocock R. MicroRNAs: Not "Fine-Tuners" but Key Regulators of Neuronal Development and Function. Front Neurol 2015;6:245. [PMID: 26635721 DOI: 10.3389/fneur.2015.00245] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 6.1] [Reference Citation Analysis]
116 Madelaine R, Sloan SA, Huber N, Notwell JH, Leung LC, Skariah G, Halluin C, Paşca SP, Bejerano G, Krasnow MA, Barres BA, Mourrain P. MicroRNA-9 Couples Brain Neurogenesis and Angiogenesis. Cell Rep 2017;20:1533-42. [PMID: 28813666 DOI: 10.1016/j.celrep.2017.07.051] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 14.3] [Reference Citation Analysis]
117 Men Y, Yelick J, Jin S, Tian Y, Chiang MSR, Higashimori H, Brown E, Jarvis R, Yang Y. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat Commun 2019;10:4136. [PMID: 31515491 DOI: 10.1038/s41467-019-11534-w] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 19.7] [Reference Citation Analysis]
118 Wang J, Huang Q, Ding J, Wang X. Elevated serum levels of brain-derived neurotrophic factor and miR-124 in acute ischemic stroke patients and the molecular mechanism. 3 Biotech 2019;9:386. [PMID: 31656724 DOI: 10.1007/s13205-019-1914-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
119 Ramos É, Cardoso AL, Brown J, Marques DF, Fantinatti BE, Cabral-de-Mello DC, Oliveira RA, O'Neill RJ, Martins C. The repetitive DNA element BncDNA, enriched in the B chromosome of the cichlid fish Astatotilapia latifasciata, transcribes a potentially noncoding RNA. Chromosoma 2017;126:313-23. [PMID: 27169573 DOI: 10.1007/s00412-016-0601-x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
120 Guibinga GH. MicroRNAs: tools of mechanistic insights and biological therapeutics discovery for the rare neurogenetic syndrome Lesch-Nyhan disease (LND). Adv Genet 2015;90:103-31. [PMID: 26296934 DOI: 10.1016/bs.adgen.2015.06.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
121 Wahb AMSE, El Kassas M, Khamis AK, Elhelbawy M, Elhelbawy N, Habieb MSE. Circulating microRNA 9-3p and serum endocan as potential biomarkers for hepatitis C virus-related hepatocellular carcinoma. World J Hepatol 2021; 13(11): 1753-1765 [PMID: 34904043 DOI: 10.4254/wjh.v13.i11.1753] [Reference Citation Analysis]
122 Radhakrishnan B, Alwin Prem Anand A. Role of miRNA-9 in Brain Development. J Exp Neurosci 2016;10:101-20. [PMID: 27721656 DOI: 10.4137/JEN.S32843] [Cited by in Crossref: 49] [Cited by in F6Publishing: 29] [Article Influence: 8.2] [Reference Citation Analysis]
123 Zarrilli G, Galuppini F, Angerilli V, Munari G, Sabbadin M, Lazzarin V, Nicolè L, Biancotti R, Fassan M. miRNAs Involved in Esophageal Carcinogenesis and miRNA-Related Therapeutic Perspectives in Esophageal Carcinoma. Int J Mol Sci 2021;22:3640. [PMID: 33807389 DOI: 10.3390/ijms22073640] [Reference Citation Analysis]
124 Smith CM, Catchpoole D, Hutvagner G. Non-Coding RNAs in Pediatric Solid Tumors. Front Genet. 2019;10:798. [PMID: 31616462 DOI: 10.3389/fgene.2019.00798] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
125 Cordeiro B, Jeon P, Boukhaled GM, Corrado M, Lapohos O, Roy DG, Williams K, Jones RG, Gruenheid S, Sagan SM, Krawczyk CM. MicroRNA-9 Fine-Tunes Dendritic Cell Function by Suppressing Negative Regulators in a Cell-Type-Specific Manner. Cell Rep 2020;31:107585. [PMID: 32375032 DOI: 10.1016/j.celrep.2020.107585] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
126 Pellegrini E, Coumailleau P, Kah O, Diotel N. Aromatase and Estrogens. Estrogen Effects on Traumatic Brain Injury. Elsevier; 2015. pp. 51-71. [DOI: 10.1016/b978-0-12-801479-0.00005-x] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
127 Wang X, Cai J, Zhao L, Zhang D, Xu G, Hu J, Zhang T, Jin M. NUMB suppression by miR-9-5P enhances CD44+ prostate cancer stem cell growth and metastasis. Sci Rep 2021;11:11210. [PMID: 34045601 DOI: 10.1038/s41598-021-90700-x] [Reference Citation Analysis]
128 Venkat P, Zacharek A, Landschoot-Ward J, Wang F, Culmone L, Chen Z, Chopp M, Chen J. Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Exp Neurol 2020;334:113456. [PMID: 32889008 DOI: 10.1016/j.expneurol.2020.113456] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
129 Chteinberg E, Sauer CM, Rennspiess D, Beumers L, Schiffelers L, Eben J, Haugg A, Winnepenninckx V, Kurz AK, Speel EJ, Zenke M, Zur Hausen A. Neuroendocrine Key Regulator Gene Expression in Merkel Cell Carcinoma. Neoplasia 2018;20:1227-35. [PMID: 30414538 DOI: 10.1016/j.neo.2018.10.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
130 Nepal C, Coolen M, Hadzhiev Y, Cussigh D, Mydel P, Steen VM, Carninci P, Andersen JB, Bally-Cuif L, Müller F, Lenhard B. Transcriptional, post-transcriptional and chromatin-associated regulation of pri-miRNAs, pre-miRNAs and moRNAs. Nucleic Acids Res 2016;44:3070-81. [PMID: 26673698 DOI: 10.1093/nar/gkv1354] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
131 Ma Q, Zhang L, Pearce WJ. MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 2019;317:C3-C19. [PMID: 30840494 DOI: 10.1152/ajpcell.00022.2019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
132 Mengel-From J, Feddersen S, Halekoh U, Heegaard NHH, McGue M, Christensen K, Tan Q, Christiansen L. Circulating microRNAs disclose biology of normal cognitive function in healthy elderly people - a discovery twin study. Eur J Hum Genet 2018;26:1378-87. [PMID: 29720677 DOI: 10.1038/s41431-018-0157-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
133 Fiorenzano A, Pascale E, Gagliardi M, Terreri S, Papa M, Andolfi G, Galasso M, Tagliazucchi GM, Taccioli C, Patriarca EJ, Cimmino A, Matarazzo MR, Minchiotti G, Fico A. An Ultraconserved Element Containing lncRNA Preserves Transcriptional Dynamics and Maintains ESC Self-Renewal. Stem Cell Reports 2018;10:1102-14. [PMID: 29456181 DOI: 10.1016/j.stemcr.2018.01.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
134 Gorabi AM, Kiaie N, Barreto GE, Read MI, Tafti HA, Sahebkar A. The Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in Treatment of Neurodegenerative Diseases. Mol Neurobiol. 2019;56:8157-8167. [PMID: 31197655 DOI: 10.1007/s12035-019-01663-0] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 11.0] [Reference Citation Analysis]
135 Lambert MP, Terrone S, Giraud G, Benoit-Pilven C, Cluet D, Combaret V, Mortreux F, Auboeuf D, Bourgeois CF. The RNA helicase DDX17 controls the transcriptional activity of REST and the expression of proneural microRNAs in neuronal differentiation. Nucleic Acids Res 2018;46:7686-700. [PMID: 29931089 DOI: 10.1093/nar/gky545] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
136 Li SH, Gao P, Wang LT, Yan YH, Xia Y, Song J, Li HY, Yang JX. Osthole Stimulated Neural Stem Cells Differentiation into Neurons in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9 and Rescued the Functional Impairment of Hippocampal Neurons in APP/PS1 Transgenic Mice. Front Neurosci 2017;11:340. [PMID: 28659755 DOI: 10.3389/fnins.2017.00340] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
137 Haghani A, Johnson RG, Woodward NC, Feinberg JI, Lewis K, Ladd-Acosta C, Safi N, Jaffe AE, Sioutas C, Allayee H, Campbell DB, Volk HE, Finch CE, Morgan TE. Adult mouse hippocampal transcriptome changes associated with long-term behavioral and metabolic effects of gestational air pollution toxicity. Transl Psychiatry 2020;10:218. [PMID: 32636363 DOI: 10.1038/s41398-020-00907-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
138 Cai Y, Wang W, Guo H, Li H, Xiao Y, Zhang Y. miR-9-5p, miR-124-3p, and miR-132-3p regulate BCL2L11 in tuberous sclerosis complex angiomyolipoma. Lab Invest 2018;98:856-70. [PMID: 29540858 DOI: 10.1038/s41374-018-0051-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
139 Bofill-De Ros X, Kasprzak WK, Bhandari Y, Fan L, Cavanaugh Q, Jiang M, Dai L, Yang A, Shao TJ, Shapiro BA, Wang YX, Gu S. Structural Differences between Pri-miRNA Paralogs Promote Alternative Drosha Cleavage and Expand Target Repertoires. Cell Rep 2019;26:447-459.e4. [PMID: 30625327 DOI: 10.1016/j.celrep.2018.12.054] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
140 de la Fuente Jiménez JL, Sharma A, Paul S. Characterization of miRNAs from sardine (Sardina pilchardus Walbaum, 1792) and their tissue-specific expression analysis in brain and liver. 3 Biotech 2020;10:318. [PMID: 32617252 DOI: 10.1007/s13205-020-02298-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
141 Jurisch-Yaksi N, Yaksi E, Kizil C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020;68:2451-70. [PMID: 32476207 DOI: 10.1002/glia.23849] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
142 Hauberg ME, Roussos P, Grove J, Børglum AD, Mattheisen M; Schizophrenia Working Group of the Psychiatric Genomics Consortium. Analyzing the Role of MicroRNAs in Schizophrenia in the Context of Common Genetic Risk Variants. JAMA Psychiatry 2016;73:369-77. [PMID: 26963595 DOI: 10.1001/jamapsychiatry.2015.3018] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 8.2] [Reference Citation Analysis]
143 Kong SY, Park MH, Lee M, Kim JO, Lee HR, Han BW, Svendsen CN, Sung SH, Kim HJ. Kuwanon V inhibits proliferation, promotes cell survival and increases neurogenesis of neural stem cells. PLoS One. 2015;10:e0118188. [PMID: 25706719 DOI: 10.1371/journal.pone.0118188] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
144 Hinojosa-Godinez A, Jave-Suarez LF, Flores-Soto M, Gálvez-Contreras AY, Luquín S, Oregon-Romero E, González-Pérez O, González-Castañeda RE. Melatonin modifies SOX2+ cell proliferation in dentate gyrus and modulates SIRT1 and MECP2 in long-term sleep deprivation. Neural Regen Res 2019;14:1787-95. [PMID: 31169197 DOI: 10.4103/1673-5374.257537] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
145 Guinde J, Benoit A, Frankel D, Robert S, Ostacolo K, Lévy N, Astoul P, Roll P, Kaspi E. miR-9 Does Not Regulate Lamin A Expression in Metastatic Cells from Lung Adenocarcinoma. Int J Mol Sci 2020;21:E1599. [PMID: 32111074 DOI: 10.3390/ijms21051599] [Reference Citation Analysis]
146 Rahmani A, Naderi M, Barati G, Arefian E, Jedari B, Nadri S. The potency of hsa-miR-9-1 overexpression in photoreceptor differentiation of conjunctiva mesenchymal stem cells on a 3D nanofibrous scaffold. Biochem Biophys Res Commun. 2020;529:526-532. [PMID: 32736669 DOI: 10.1016/j.bbrc.2020.06.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
147 Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E, Peterson KJ. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. Annu Rev Genet. 2015;49:213-242. [PMID: 26473382 DOI: 10.1146/annurev-genet-120213-092023] [Cited by in Crossref: 302] [Cited by in F6Publishing: 264] [Article Influence: 43.1] [Reference Citation Analysis]
148 Shu P, Fu H, Zhao X, Wu C, Ruan X, Zeng Y, Liu W, Wang M, Hou L, Chen P, Yin B, Yuan J, Qiang B, Peng X. MicroRNA-214 modulates neural progenitor cell differentiation by targeting Quaking during cerebral cortex development. Sci Rep 2017;7:8014. [PMID: 28808337 DOI: 10.1038/s41598-017-08450-8] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
149 Ji Q, Ji Y, Peng J, Zhou X, Chen X, Zhao H, Xu T, Chen L, Xu Y. Increased Brain-Specific MiR-9 and MiR-124 in the Serum Exosomes of Acute Ischemic Stroke Patients. PLoS One 2016;11:e0163645. [PMID: 27661079 DOI: 10.1371/journal.pone.0163645] [Cited by in Crossref: 93] [Cited by in F6Publishing: 102] [Article Influence: 15.5] [Reference Citation Analysis]
150 Stappert L, Roese-Koerner B, Brüstle O. The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification. Cell Tissue Res 2015;359:47-64. [PMID: 25172833 DOI: 10.1007/s00441-014-1981-y] [Cited by in Crossref: 68] [Cited by in F6Publishing: 63] [Article Influence: 8.5] [Reference Citation Analysis]
151 Denk J, Boelmans K, Siegismund C, Lassner D, Arlt S, Jahn H. MicroRNA Profiling of CSF Reveals Potential Biomarkers to Detect Alzheimer`s Disease. PLoS One 2015;10:e0126423. [PMID: 25992776 DOI: 10.1371/journal.pone.0126423] [Cited by in Crossref: 120] [Cited by in F6Publishing: 126] [Article Influence: 17.1] [Reference Citation Analysis]
152 Hutchins ED, Eckalbar WL, Wolter JM, Mangone M, Kusumi K. Differential expression of conserved and novel microRNAs during tail regeneration in the lizard Anolis carolinensis. BMC Genomics 2016;17:339. [PMID: 27150582 DOI: 10.1186/s12864-016-2640-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
153 Xiao P, Zhang X, Li Y, Ma Z, Si S, Gao X. miR-9 inhibition of neuronal apoptosis and expression levels of apoptosis genes Bcl-2 and Bax in depression model rats through Notch pathway. Exp Ther Med 2020;19:551-6. [PMID: 31853322 DOI: 10.3892/etm.2019.8228] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
154 Kaur P, Kotru S, Singh S, Munshi A. Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol 2022. [PMID: 35023058 DOI: 10.1007/s12035-021-02662-w] [Reference Citation Analysis]
155 Brečević L, Rinčić M, Krsnik Ž, Sedmak G, Hamid AB, Kosyakova N, Galić I, Liehr T, Borovečki F. Association of new deletion/duplication region at chromosome 1p21 with intellectual disability, severe speech deficit and autism spectrum disorder-like behavior: an all-in approach to solving the DPYD enigma. Transl Neurosci 2015;6:59-86. [PMID: 28123791 DOI: 10.1515/tnsci-2015-0007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
156 Paez-Colasante X, Figueroa-Romero C, Sakowski SA, Goutman SA, Feldman EL. Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nat Rev Neurol. 2015;11:266-279. [PMID: 25896087 DOI: 10.1038/nrneurol.2015.57] [Cited by in Crossref: 126] [Cited by in F6Publishing: 119] [Article Influence: 18.0] [Reference Citation Analysis]
157 Li S, Liu Y, Liu Z, Wang R. Neural fate decisions mediated by combinatorial regulation of Hes1 and miR-9. J Biol Phys 2016;42:53-68. [PMID: 26156376 DOI: 10.1007/s10867-015-9391-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]