1
|
Skinner AG, Malik A, Siddiqui MR, Singh V, Akhtar S. Inulin Protects Caco-2 Cells Against Lipopolysaccharide-Induced Epithelial Barrier Dysfunction. Food Sci Nutr 2025; 13:e70046. [PMID: 40129999 PMCID: PMC11932052 DOI: 10.1002/fsn3.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/13/2024] [Accepted: 02/01/2025] [Indexed: 03/26/2025] Open
Abstract
Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, triggers inflammatory responses in intestinal epithelial cells. This activation leads to the production of pro-inflammatory cytokines which disrupt cellular homeostasis. LPS also impairs the integrity of the intestinal epithelial barrier by downregulating tight junction proteins, resulting in increased intestinal permeability. This compromised barrier function can allow further translocation of luminal antigens, perpetuating inflammation and contributing to gut-related disorders such as inflammatory bowel disease (IBD) and metabolic endotoxemia. This study investigated the therapeutic effects of inulin, a prebiotic dietary fiber, in attenuating LPS-induced intestinal epithelial barrier dysfunction. Caco-2 cells were treated with 100 ng/mL of LPS for 12 h, resulting in increased gene expression of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-18) and a significant downregulation of tight junction proteins claudin-1 and claudin-2, while occludin gene expression remained unaffected. Pretreatment with 2% inulin for 24 h before LPS exposure prevented the downregulation of claudin-1 and claudin-2 and significantly upregulated occludin gene expression. These molecular findings were supported by functional assays using transwell systems. LPS treatment increased paracellular permeability of the Caco-2 monolayer, indicating barrier dysfunction, while inulin pretreatment mitigated this effect. These results demonstrate that inulin can modulate tight junction protein expression and maintain gut barrier integrity under inflammatory conditions.
Collapse
Affiliation(s)
- A. Georgetta Skinner
- Department of Biochemistry, Kirksville College of Osteopathic MedicineA.T. Still UniversityKirksvilleMissouriUSA
| | - Abdul Malik
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - M. Rizwan Siddiqui
- Department of Biological SciencesMurray State UniversityMurrayKentuckyUSA
| | - Vineet Singh
- Thomas F. Frist, JR. College of MedicineBelmont UniversityNashvilleTennesseeUSA
| | - Suhail Akhtar
- Department of Biochemistry, Kirksville College of Osteopathic MedicineA.T. Still UniversityKirksvilleMissouriUSA
| |
Collapse
|
2
|
Ye Z, Kini A, Tan Q, Woltemate S, Vital M, Nikolovska K, Seidler U. Oral tributyrin treatment affects short-chain fatty acid transport, mucosal health, and microbiome in a mouse model of inflammatory diarrhea. J Nutr Biochem 2025; 138:109847. [PMID: 39870330 DOI: 10.1016/j.jnutbio.2025.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/05/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Butyrate may decrease intestinal inflammation and diarrhea. This study investigates the impact of oral application of sodium butyrate (NaB) and tributyrin (TB) on colonic butyrate concentration, SCFA transporter expression, colonic absorptive function, barrier properties, inflammation, and microbial composition in the colon of slc26a3-/- mice, a mouse model for inflammatory diarrhea. In vivo fluid absorption and bicarbonate secretory rates were evaluated in the cecum and mid-colon of slc26a3+/+ and slc26a3-/- mice before and during luminal perfusion of NaB-containing saline and were significantly stimulated in both slc26a3+/+ and slc26a3-/- colon by NaB. Age-matched slc26a3+/+ and slc26a3-/- mice were either fed chow containing 5% NaB or gavaged twice daily with TB for 21 d. Food and water intake, weight, and stool water content were assessed daily. Stool and tissues were collected for further analysis of SCFA production, barrier integrity, mucosal inflammation, and microbiome analysis by 16S rRNA gene sequencing. 5% NaB diet did not exert a significant impact on SCFA levels, mucus barrier, or inflammatory markers, but significantly increased oral water intake. TB gavage treatment increased the expression of SCFA transporters Mct1 and Smct1, mucus content and microbial diversity, and decreased the neutrophil marker Lipocalin 2, Phospholipase A2, and the antimicrobial peptide Reg3b in the slc26a3-/- cecum. However, TB treatment also resulted in an increase in inflammatory markers such as TNFα, Il-1β and CD3e in the wildtype mucosa. While there are some benefits with TB ingestion for barrier properties and microbial composition in the diseased cecum, potentially detrimental effects were noted in the healthy colon.
Collapse
Affiliation(s)
- Zhenghao Ye
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Archana Kini
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Qinghai Tan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Sabrina Woltemate
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Shu JZ, Huang YH, He XH, Liu FY, Liang QQ, Yong XT, Xie YF. Gut microbiota differences, metabolite changes, and disease intervention during metabolic - dysfunction - related fatty liver progression. World J Hepatol 2025; 17:103854. [DOI: 10.4254/wjh.v17.i3.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
In the current era, metabolic dysfunction-associated steatotic liver disease (MASLD) has gradually developed into a major type of chronic liver disease that is widespread globally. Numerous studies have shown that the gut microbiota plays a crucial and indispensable role in the progression of MASLD. Currently, the gut microbiota has become one of the important entry points for the research of this disease. Therefore, the aim of this review is to elaborate on the further associations between the gut microbiota and MASLD, including the changes and differences in the microbiota between the healthy liver and the diseased liver. Meanwhile, considering that metabolic dysfunction-associated fatty liver and metabolic dysfunction-associated steatohepatitis are abnormal pathological states in the development of the disease and that the liver exhibits different degrees of fibrosis (such as mild fibrosis and severe fibrosis) during the disease progression, we also conduct a comparison of the microbiota in these states and use them as markers of disease progression. It reveals the changes in the production and action mechanisms of short-chain fatty acids and bile acids brought about by changes in the gut microbiota, and the impact of lipopolysaccharide from Gram-negative bacteria on the disease. In addition, the regulation of the gut microbiota in disease and the production and inhibition of related disease factors by the use of probiotics (including new-generation probiotics) will be explored, which will help to monitor the disease progression of patients with different gut microbiota compositions in the future and carry out personalized targeted therapies for the gut microbiota. This will achieve important progress in preventing and combating this disease.
Collapse
Affiliation(s)
- Jian-Zhong Shu
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400015, China
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- College of Integrated Traditional Chinese and Western Medicine, Chongqing University of Traditional Chinese Medicine, Chongqing 402760, China
| | - Yu-Han Huang
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xiao-Hong He
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Feng-Ying Liu
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Qian-Qian Liang
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xue-Tong Yong
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yong-Fang Xie
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
4
|
Li J, Zhang YJ, Zhao X, Yu Y, Xu JH, Hu R, Wu YH, Huang WQ, Wang ZX, Li TT. Impact of sodium butyrate on stroke-related intestinal injury in diabetic mice: Interference with Caspase-1/GSDMD pyroptosis pathway and preservation of intestinal barrier. Eur J Pharmacol 2025; 998:177455. [PMID: 40057153 DOI: 10.1016/j.ejphar.2025.177455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Diabetic stroke-associated acute intestinal injury is characterized by high mortality, disability, and poor prognosis due to the lack of effective therapies. Our prior research demonstrated that administration of 300 mg/kg sodium butyrate (NaB) can improve neurological outcomes post-diabetic stroke. Nonetheless, whether the effect of NaB is related to intestinal regulation, along with its underlying mechanisms, remains uncertain. This study aims to investigate the effects and mechanistic pathways of NaB on diabetic stroke-associated acute intestinal injury. A middle cerebral artery occlusion/reperfusion model was established in mice with streptozotocin-induced diabetes. The results demonstrated that NaB alleviated colonic injury 24 h after reperfusion in diabetic stroke. Pyroptosis-related protein levels in colonic tissues were significantly elevated following diabetic stroke but were markedly reduced with NaB treatment. NaB also improved gut barrier integrity and reduced inflammation, promoting epithelial barrier self-repair. In the NaB combined with lipopolysaccharide group, lipopolysaccharide administration induced a significant inflammatory response in the colonic tissue. Conversely, treatment with NaB and VX-765 (an inhibitor for Caspase-1) led to a notable alleviation in intestinal inflammation. These findings suggest that NaB mitigates colonic injury and enhances barrier function following diabetic stroke, potentially through the Caspase-1/Gasdermin D pyroptosis pathway. This study may provide a novel strategy and direction for intestinal rehabilitation in diabetic stroke patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Jia Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhao
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Yu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Hong Xu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye-Hui Wu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen-Qi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhong-Xing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ting-Ting Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Li R, Mu X, Liu Z, Huang R, Peng X. Association of type 2 diabetes, hypertension, and hyperlipidemia with immune-related adverse events in patients undergoing immune checkpoint inhibitors therapy. Front Immunol 2025; 16:1472197. [PMID: 40124377 PMCID: PMC11925786 DOI: 10.3389/fimmu.2025.1472197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Aims Immune-related adverse events (irAEs) pose a significant challenge to the clinical use of immune checkpoint inhibitors (ICIs) in cancer immunotherapy. This study aims to determine whether comorbid conditions such as type 2 diabetes (T2DM), hypertension, and hyperlipidemia affect the risk of irAEs in cancer patients receiving ICIs treatments. Materials and methods We conducted a retrospective analysis of clinical data from 3,489 cancer patients treated with ICIs (anti-PD-1, anti-PD-L1, and anti-CTLA-4) at West China Hospital of Sichuan University from 2017 to 2022. Logistic regression models were used to evaluate the associations between T2DM, hypertension, and hyperlipidemia with irAEs. Subgroup analyses assessed irAEs in patients with and without these comorbidities across different cancer types. Additionally, we explored the associations between comorbidities and irAEs affecting different organs. Results The results showed that comorbid T2DM, hypertension, and hyperlipidemia significantly increased the risk of irAEs in all cancer types (T2DM: OR=1.40, 95% CI: 1.12-1.74, p=0.003; hypertension: OR=1.21, 95% CI: 1.00-1.45, p=0.049; hyperlipidemia: OR=1.62, 95% CI: 1.02-2.53, p=0.038). T2DM primarily increased the risk of irAEs in lung cancer patients (OR = 1.50, 95% CI: 1.12-2.01, FDR-adjusted p = 0.036), and all three comorbidities significantly elevated the risk of cardiac irAEs. Conclusions Our study is the first to confirm an association between T2DM, hypertension, and hyperlipidemia and the occurrence of irAEs in cancer patients receiving ICIs therapy. This finding highlights the critical need for clinicians to perform comprehensive evaluations of patients' comorbidities prior to treatment.
Collapse
Affiliation(s)
- Ruidan Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Mu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rendong Huang
- Hangzhou Linan Guorui Health Industry Investment Co.,Ltd., Hangzhou, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Ramos-Lopez O. Epigenomic mechanisms of dietary prescriptions for obesity therapy. Epigenomics 2025:1-12. [PMID: 40025880 DOI: 10.1080/17501911.2025.2473309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Dietary modification is a cornerstone and a primary goal for weight loss, whose effects may be related to epigenetic phenomena. In this literature review, a comprehensive search without time restriction was performed in PubMed/Medline, Cochrane, SciELO, and Scopus databases to identify epigenetic signatures related to obesity outcomes upon dietary advice. In this context, experimental studies and clinical trials have identified certain DNA methylation marks, miRNA expression profiles and histone modifications putatively associated with adiposity outcomes after different nutritional interventions. These include traditional dietary patterns, diets with different macronutrient compositions, and supplementation with fatty acids, amino acids and derivatives, methyl donors, vitamins and minerals, probiotics and prebiotics, and bioactive food compounds. Some of these epigenetic signatures have been mapped to genes involved in food intake control, adipogenesis, lipolysis, fatty acid oxidation, body fat deposition, and gut microbiota modulation. However, additional studies are still required to address dosage and follow-up variability, validation of epigenetic marks, genome-wide approaches, and appropriate statistical settings. Although more investigation is required, these insights may contribute to the characterization of epigenetic biomarkers of body weight regulation toward the prescription of tailored dietary strategies targeting the epigenome for a more precise obesity management and control.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| |
Collapse
|
7
|
Wang Z, Zhang W, Liu Z, Huang D, Kang H, Wang J, Jiang G, Gao A. Gut microbiota dysbiosis involved in decabromodiphenyl ether-induced bone homeostasis disorder through inflammaging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125710. [PMID: 39837379 DOI: 10.1016/j.envpol.2025.125710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
BDE-209 has a causal relationship with adverse health outcomes. However, research on its effect on bone homeostasis is relatively lacking. This study examined the relationship between BDE-209 exposure and bone health, as well as the underlying mechanisms, using both in vitro and in vivo models. In animal studies, female SD rats were administered BDE-209 for 60 days. Bone mineral density, bone microstructure, gut microbiota, and inflammaging markers were measured. Furtherly, THP-1 cell-derived macrophages were treated with a culture medium containing population-relevant dose of BDE-209 or sodium butyrate. The expression of M1 macrophage markers, osteoclast markers, and inflammatory cytokines was measured. Then macrophages were induced by osteoclast conditioned medium to evaluate the effect of BDE-209 on their differentiation into osteoclasts. Results showed reduced humeral bone density, enhanced osteoclast activity, upregulation of IL-1β, TNF-α, IL-6, and activation of PGC-1α/NAD+/cGAS-STING in the exposed group. 16s sequencing revealed that BDE-209 disrupts the abundance of the gut microbiota, notably a reduction in Lachnospiraceae. In vitro, BDE-209 can stimulate macrophages to differentiate more osteoclasts and activate the cGAS-STING pathway, while sodium butyrate can inhibit these effects. This study reveals that gut microbiota dysbiosis is involved in BDE-209-induced bone homeostasis disorder through inflammatory aging and sodium butyrate can mitigate this effect. Overall, this study provides research data for the precaution and treatment of osteoporosis associated with BDE-209 exposure.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Danyang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Guangyu Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Li C, Yao J, Yang C, Yu S, Yang Z, Wang L, Li S, He N. Gut microbiota-derived short chain fatty acids act as mediators of the gut-liver-brain axis. Metab Brain Dis 2025; 40:122. [PMID: 39921774 DOI: 10.1007/s11011-025-01554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
The gut microbiota plays a crucial role in the communication between the gut, liver, and brain through the production of short chain fatty acids (SCFAs). SCFAs serve as key mediators in the Gut-Liver-Brain Axis, influencing various physiological processes and contributing to overall health. SCFAs are produced by bacterial fermentation of dietary fiber in the gut, and they exert systemic effects by signaling through various pathways. In the Gut-Liver axis, SCFAs regulate liver metabolism through peroxisome proliferator-activated receptor-γ (PPAR-γ), AMP-activated protein kinase (AMPK) and other pathways, promotes fat oxidation, modulate inflammation through mTOR pathway, and impact metabolic health. In the Gut-Brain axis, SCFAs influence brain function, behavior, and may have implications for neurological disorders, in which G-protein coupled receptors (GPCRs) play an essential role, along with other pathways such as hypothalamic-pituitary-adrenal (HPA) pathway. Understanding the mechanisms by which SCFAs mediate communication between the gut, liver, and brain is crucial for elucidating the complex interplay of the Gut-Liver-Brain Axis. This review aims to provide insight into the role of gut microbiota-derived SCFAs as mediators of the Gut-Liver-Brain Axis and their potential therapeutic implications. Further research in this area will be instrumental in developing novel strategies to target the Gut-Liver-Brain Axis for the prevention and treatment of various health conditions.
Collapse
Affiliation(s)
- Cunyin Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
| | - Jingtong Yao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Chang Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Shengnan Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
- Affiliated Hospital of Inner Mongolia University for Nationalities, TongLiao, 028005, China
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Lijing Wang
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
9
|
Bakshi J, Mishra KP. Sodium butyrate prevents lipopolysaccharide induced inflammation and restores the expression of tight junction protein in human epithelial Caco-2 cells. Cell Immunol 2025; 408:104912. [PMID: 39729961 DOI: 10.1016/j.cellimm.2024.104912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
The gastrointestinal (GI) tract is susceptible to damage under high altitude hypoxic conditions, leading to gastrointestinal discomfort and intestinal barrier injury. Sodium butyrate, a short-chain fatty acid present as a metabolite in the gut, has emerged as a promising therapeutic agent due to its ability to act as an immunomodulatory agent and restore intestinal barrier integrity. This study aimed to explore the mechanism by which sodium butyrate exhibits anti inflammatory effect on intestinal epithelial cells. In vitro, Caco-2 epithelial cells and RAW 264.7 macrophages were used to investigate the protective role of sodium butyrate on Lipopolysaccharide (LPS) induced inflammation. Cell viability assays demonstrated that 1 mM (110.86 μg/mL) of sodium butyrate did not exhibit cytotoxicity on cells in vitro. Treatment with sodium butyrate suppressed reactive oxygen species levels and TNF-α production in LPS-stimulated macrophages, indicating its efficacy in mitigating inflammatory responses. Western blot analysis revealed that sodium butyrate attenuated the expression of iNOS in RAW 264.7 macrophage cells. Moreover, sodium butyrate also reversed the LPS induced over expression of HIF-1α, NLRP3, IL-1β as well as NF-kB in Caco-2 epithelial cells and also had a suppressive effect on IL-8 secretion after LPS stimulation. Immunocytochemistry demonstrated that sodium butyrate enhanced tight junction protein occludin expression in Caco-2 cells while also restoring the decreased permeability of the Caco-2 monolayer due to LPS. These results indicate that sodium butyrate may influence immune responses by suppressing inflammatory mediators and improving the integrity of the epithelial barrier. Understanding the intricate interactions between gut metabolites and host immune responses may help in the development of innovative therapeutic strategies to alleviate intestinal inflammation in high altitude environments.
Collapse
Affiliation(s)
- Jyotsana Bakshi
- Defence Institute of Physiology and Allied Sciences, Delhi 110054, India
| | - K P Mishra
- Defence Institute of Physiology and Allied Sciences, Delhi 110054, India.
| |
Collapse
|
10
|
Napiórkowska-Baran K, Treichel P, Dardzińska A, Majcherczak A, Pilichowicz A, Szota M, Szymczak B, Alska E, Przybyszewska J, Bartuzi Z. Immunomodulatory Effects of Selected Non-Nutritive Bioactive Compounds and Their Role in Optimal Nutrition. Curr Issues Mol Biol 2025; 47:89. [PMID: 39996810 PMCID: PMC11854453 DOI: 10.3390/cimb47020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The contemporary approach to nutrition increasingly considers the role of non-nutritive bioactive compounds in modulating the immune system and maintaining health. This article provides up-to-date insight into the immunomodulatory effects of selected bioactive compounds, including micro- and macronutrients, vitamins, as well as other health-promoting substances, such as omega-3 fatty acids, probiotics, prebiotics, postbiotics (including butyric acid and sodium butyrate), coenzyme Q10, lipoic acid, and plant-derived components such as phenolic acids, flavonoids, coumarins, alkaloids, polyacetylenes, saponins, carotenoids, and terpenoids. Micro- and macronutrients, such as zinc, selenium, magnesium, and iron, play a pivotal role in regulating the immune response and protecting against oxidative stress. Vitamins, especially vitamins C, D, E, and B, are vital for the optimal functioning of the immune system as they facilitate the production of cytokines, the differentiation of immunological cells, and the neutralization of free radicals, among other functions. Omega-3 fatty acids exhibit strong anti-inflammatory effects and enhance immune cell function. Probiotics, prebiotics, and postbiotics modulate the intestinal microbiota, thereby promoting the integrity of the intestinal barrier and communication between the microbiota and the immune system. Coenzyme Q10, renowned for its antioxidant attributes, participates in the protection of cells from oxidative stress and promotes energy processes essential for immune function. Sodium butyrate and lipoic acid exhibit anti-inflammatory effects and facilitate the regeneration of the intestinal epithelium, which is crucial for the maintenance of immune homeostasis. This article emphasizes the necessity of an integrative approach to optimal nutrition that considers not only nutritional but also non-nutritional bioactive compounds to provide adequate support for immune function. Without them, the immune system will never function properly, because it has been adapted to this in the course of evolution. The data presented in this article may serve as a foundation for further research into the potential applications of bioactive components in the prevention and treatment of diseases associated with immune dysfunction.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Anita Dardzińska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Agata Majcherczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Anastazja Pilichowicz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Maciej Szota
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (P.T.); (A.D.); (A.M.); (A.P.); (B.S.)
| | - Ewa Alska
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| | - Justyna Przybyszewska
- Department of Nutrition and Dietetics, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (M.S.); (E.A.); (Z.B.)
| |
Collapse
|
11
|
Li B, Liu M, Du W, Wang S, Xu Z, Zhang X, Zhang Y, Hua S. Cecropin AD ameliorates pneumonia and intestinal injury in mice with mycoplasma pneumoniae by mediating gut microbiota. BMC Vet Res 2025; 21:39. [PMID: 39881281 PMCID: PMC11776147 DOI: 10.1186/s12917-025-04500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Animals infected with mycoplasma pneumoniae not only develop respiratory diseases, but also cause digestive diseases through the lung-gut axis mediated by the intestinal flora, and vice versa. Antimicrobial peptides are characterized by their bactericidal, anti-inflammatory, and intestinal flora-regulating properties. However, the effect of cecropin AD (CAD) against mycoplasma pneumonia remains unclear. To investigate the anti-inflammatory effect of CAD on mycoplasma pneumonia and the associated mechanism, mice were infected with Mycoplasma capricolum subsp. Capripneumoniae(Mccp) to elicit lung inflammation, followed by oral administration of CAD via gavage. The findings showed that mice receiving twice injections of 2.08 × 108 copies of Mccp suffered significant pathological damage to their lungs and colons. Additionally, there was a notable upsurge in inflammatory factors within the affected tissues. 16 S rDNA sequencing revealed alterations in the colonic microbiota, including a decrease in the abundance of beneficial bacteria such as Corynebacterium_glutamicum and Candidatus_Saccharimonas, and an increase in the abundance of potential pathogens like Lachnospiraceae_NK4A136_group and Escherichia-Shigella. As a result, there were abnormal rises in lipopolysaccharide (LPS) levels in both colonic content and blood. Moreover, CAD treatment reversed the microbial dysbiosis and decreased the LPS levels induced by Mccp, thereby suppressing the activation of the TLR-4/NF-κB pathway and the Fas/FasL-caspase-8/-3 pathway. Consequently, this significantly mitigated the morphological and functional damage to the lungs and colons caused by Mccp. The findings offer novel insights and approaches for the clinical management of Mccp infections.
Collapse
Affiliation(s)
- Bowen Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingming Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenjing Du
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuaidong Wang
- Mianyang Habio Bioengineering Co., Ltd., Mianyang, Sichuan, China
| | - Zekang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqian Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Mianyang Habio Bioengineering Co., Ltd., Mianyang, Sichuan, China
| | - Song Hua
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Zheng Y, Hou J, Guo S, Song J. The association between the dietary index for gut microbiota and metabolic dysfunction-associated fatty liver disease: a cross-sectional study. Diabetol Metab Syndr 2025; 17:17. [PMID: 39825360 PMCID: PMC11740478 DOI: 10.1186/s13098-025-01589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND The relationship between the gut microbiome and metabolic dysfunction-associated fatty liver disease (MAFLD) has garnered increasing attention. However, the association between the dietary index for gut microbiota (DI-GM), a measure of microbiome diversity, and MAFLD has yet to be fully explored. METHODS Data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES) were analyzed, including 7243 participants. The association between DI-GM and MAFLD was investigated using weighted logistic regression, restricted cubic spline (RCS), and subgroup analyses. RESULTS A notable inverse association was identified between DI-GM and the prevalence of MAFLD, with each 1-point increase in DI-GM corresponding to a 6.1% reduction in MAFLD prevalence (OR = 0.939, 95% CI: 0.901-0.980). Individuals with a DI-GM score of 6 or higher had an adjusted OR of 0.794 (95% CI: 0.665-0.947) compared to those with a DI-GM score of 0-3. RCS analysis further revealed a linear relationship between DI-GM and MAFLD risk. Additionally, subgroup analyses suggested that race may modify the association between DI-GM and MAFLD (P for interaction < 0.05). CONCLUSIONS DI-GM is inversely associated with MAFLD prevalence, and race appears to be a significant modifier of this relationship.
Collapse
Affiliation(s)
- Yangyang Zheng
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinhui Hou
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shiqi Guo
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinghai Song
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Department of General Surgery, Beijing Hospital, NO. 1 Da Hua Road, Dong Dan, Beijing, 100730, P.R. China.
| |
Collapse
|
13
|
Song Y, Liu S, Zhang L, Zhao W, Qin Y, Liu M. The effect of gut microbiome-targeted therapies in nonalcoholic fatty liver disease: a systematic review and network meta-analysis. Front Nutr 2025; 11:1470185. [PMID: 39834471 PMCID: PMC11743284 DOI: 10.3389/fnut.2024.1470185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Background The incidence of NAFLD is increasing. Preclinical evidences indicate that modulation of the gut microbiome could be a promising target in nonalcoholic fatty liver disease. Method A systematic review and network meta-analysis was conducted to compare the effect of probiotics, synbiotics, prebiotics, fecal microbiota transplant, and antibiotics on the liver-enzyme, metabolic effects and liver-specific in patients with NAFLD. The randomized controlled trails (RCTs), limited to English language were searched from database such as Pubmed, Embase, Web of science and Cochrane Library from inception to November 2024. Review Manager 5.3 was used to to draw a Cochrane bias risk. Inconsistency test and publication-bias were assessed by Stata 14.0. Random effect model was used to assemble direct and indirect evidences. The effects of the intervention were presented as mean differences with 95% confidence interval. Results A total of 1921 patients from 37 RCTs were eventually included in our study. 23 RCTs evaluated probiotics, 10 RCTs evaluated synbiotics, 4 RCTs evaluated prebiotics, 3 RCTs evaluated FMT and one RCT evaluated antibiotics. Probiotics and synbiotics were associated with a significantly reduction in alanine aminotransferase [ALT, (MD: -5.09; 95%CI: -9.79, -0.39), (MD: -7.38, 95CI%: -11.94, -2.82)] and liver stiffness measurement by elastograph [LSM, (MD: -0.37;95%CI: -0.49, -0.25), (MD: -1.00;95%CI: -1.59, -0.41)]. In addition to, synbiotics was superior to probiotics in reducing LSM. Synbiotics was associated with a significant reduction of Controlled Attenuation Parameter [CAP, (MD: -39.34; 95%CI: -74.73, -3.95)]. Both probiotics and synbiotics were associated with a significant reduction of aspartate transaminase [AST, (MD: -7.81; 95%CI: -15.49, -0.12), (MD: -13.32; 95%CI: -23, -3.64)]. Probiotics and Allogenic FMT was associated with a significant reduction of Homeostatic Model Assessment for Insulin Resistance [HOMA-IR, (MD: -0.7, 95%CI: -1.26, -0.15), (MD: -1.8, 95%CI: -3.53, - 0.07)]. Probiotics was associated with a significant reduction of body mass index [BMI, MD: -1.84, 95%CI: -3.35, -0.33]. Conclusion The supplement of synbiotics and probiotics maybe a promising way to improve liver-enzyme, LSM, and steatosis in patients with NAFLD. More randomized controlled trials are needed to determine the efficacy of FMT and antibiotics on NAFLD. And the incidence of adverse events of MTTs should be further explored. Systematic review registration https://www.crd.york.ac.uk/prospero/, CRD42023450093.
Collapse
Affiliation(s)
- Yijia Song
- Department of Spleen, Stomach, Hepatobiliary Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical School of Henan University of Chinese Medicine, Zhengzhou, China
- The Nursing School of Henan University of Chinese Medicine, Zhengzhou, China
| | - Sutong Liu
- Department of Spleen, Stomach, Hepatobiliary Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Lihui Zhang
- Department of Spleen, Stomach, Hepatobiliary Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical School of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxia Zhao
- Department of Spleen, Stomach, Hepatobiliary Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuanmei Qin
- Department of Spleen, Stomach, Hepatobiliary Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The Nursing School of Henan University of Chinese Medicine, Zhengzhou, China
| | - Minghao Liu
- Department of Spleen, Stomach, Hepatobiliary Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
14
|
Saban Güler M, Arslan S, Ağagündüz D, Cerqua I, Pagano E, Berni Canani R, Capasso R. Butyrate: A potential mediator of obesity and microbiome via different mechanisms of actions. Food Res Int 2025; 199:115420. [PMID: 39658184 DOI: 10.1016/j.foodres.2024.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Butyrate, a short-chain fatty acid, is a crucial product of gut microbial fermentation with significant implications for various metabolic and physiological processes. Dietary sources of butyrate are limited, primarily derived from the fermentation of dietary fibers by butyrate-producing gut bacteria. Butyrate exerts its effects primarily as a histone deacetylase (HDAC) inhibitor and through signaling pathways involving G protein-coupled receptors (GPCRs). Its diverse benefits include promoting gut health, enhancing energy metabolism, and potentially alleviating complications associated with obesity. However, the exact role of butyrate in obesity is still under investigation, with a limited number of human trials necessitating further research to determine its efficacy and safety profile. Moreover, butyrate impact on the gut-brain axis and its modulation of microbiome effect on behavior highlight its broader importance in regulating host physiology. A thorough understanding of the metabolic pathways and mechanisms of butyrate is essential for developing targeted interventions for metabolic disorders. Continued research is crucial to fully realize its therapeutic potential and optimize its clinical applications in human health. In summary, this review illuminates the multifaceted role of butyrate as a potential mediator of obesity and related metabolic changes.
Collapse
Affiliation(s)
- Meryem Saban Güler
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey
| | - Sabriye Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey.
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE Biotechnologies Research Center and Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy.
| |
Collapse
|
15
|
Liu H, Wang D, Feng X, Liu L, Liu B, Zhu L, Sun J, Zuo X, Chen S, Xian J, Zhang C, Yang W. Sishen Pill & Tongxieyaofang ameliorated ulcerative colitis through the activation of HIF-1α acetylation by gut microbiota-derived propionate and butyrate. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156264. [PMID: 39612887 DOI: 10.1016/j.phymed.2024.156264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease closely related to gut microbiota dysbiosis and intestinal homeostasis imbalance. Sishen Pill&Tongxieyaofang (SSP-TXYF) has a long history of application in traditional Chinese medicine and is widely used in UC clinics. However, its mechanism of action is still unclear. PURPOSE This study aimed to explore the potential regulatory role of SSP-TXYF in protecting against UC through metabolites produced by the intestinal microbiota, and elucidate its underlying molecular mechanism. STUDY DESIGN AND METHODS 16S rRNA and UPLC-QE-Orbitrap-MS were used to assess the microbiota and short-chain fatty acids (SCFAs). A rat model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced gut microbiota dysbiosis was used to study the effects of SSP-TXYF on UC in vivo. Intestinal epithelial cells-6 (IEC-6) were treated with lipopolysaccharide (LPS). The intestinal mucosal barrier (IMB) functions were investigated by alcian blue staining and western blot analysis. The mechanism of SSP-TXYF influenced the HIF-1α acetylation pathway was examined by real-time fluorescence quantitative PCR (qPCR), Western blotting, and Co-immunoprecipitation. RESULTS Using 16S rRNA gene-based microbiota analysis, we found that SSP-TXYF ameliorated TNBS-induced gut microbiota dysbiosis. We found that SSP-TXYF significantly inhibited the decreased abundance of Firmicutes in UC rats, in addition, the abundance of Actinobacteria was also improved. The mechanism of SSP-TXYF-treated TNBS-induced UC resulted from improved IMB functions via the activation of hypoxia-inducible factor-1 (HIF-1α) acetylation. Notably, SSP-TXYF Enriched microbiota-derived metabolites propionate and butyrate, which could activate HIF-1α acetylation in IEC. Furthermore, exogenous treatment of propionate and butyrate reproduced similar protective effects as SSP-TXYF to UC through improving HIF-1α-dependent IMB functions. CONCLUSIONS Overall, our findings suggest that the gut microbiota-propionate/butyrate-HIF-1α-IMB axis plays an important role in SSP-TXYF-maintaining intestinal homeostasis, which may represent a novel approach for UC prevention via the intervention of any link in this axis.
Collapse
Affiliation(s)
- Haifan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingwei Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Xingbo Zuo
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyuan Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junying Xian
- Nanning Hospital of Traditional Chinese Medicine, Nanning, China
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Kong J, Yang J, He C, Zhou B, Fang S, Salinas M, Mohabbat AB, Bauer BA, Wang X. Regulation of endotoxemia through the gut microbiota: The role of the Mediterranean diet and its components. APMIS 2024; 132:948-955. [PMID: 39370693 DOI: 10.1111/apm.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
Endotoxemia is closely related to many diseases. As the largest endotoxin reservoir in the human body, the gut microbiota should be a key target for alleviating endotoxemia. The intestinal microbiota is believed to cause endotoxemia directly or indirectly by modifying the intestinal barrier function through dysbiosis, changing intestinal mucosal permeability and bacterial translocation. Diet is known to be the main environmental factor affecting the intestinal microbiota, and different diets and food components have a large impact on the gut microbiota. The Mediterranean diet, which received much attention in recent years, is believed to be able to regulate the gut microbiota, thereby maintaining the function of the intestinal barrier and alleviating endotoxemia. In this review, we focus on the relationship between the gut microbiota and endotoxemia, and how the Mediterranean dietary (MD) pattern can interfere with endotoxemia through the gut microbiota.
Collapse
Affiliation(s)
- Jing Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Juan Yang
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Cong He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingduo Zhou
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengquan Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Manisha Salinas
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Arya B Mohabbat
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brent A Bauer
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiaosu Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Chen K, Wang H, Yang X, Tang C, Hu G, Gao Z. Targeting gut microbiota as a therapeutic target in T2DM: A review of multi-target interactions of probiotics, prebiotics, postbiotics, and synbiotics with the intestinal barrier. Pharmacol Res 2024; 210:107483. [PMID: 39521027 DOI: 10.1016/j.phrs.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The global epidemic of type 2 diabetes mellitus (T2DM) imposes a substantial burden on public health and healthcare expenditures, thereby driving the pursuit of cost-effective preventive and therapeutic strategies. Emerging evidence suggests a potential association between dysbiosis of gut microbiota and its metabolites with T2DM, indicating that targeted interventions aimed at modulating gut microbiota may represent a promising therapeutic approach for the management of T2DM. In this review, we concentrated on the multifaceted interactions between the gut microbiota and the intestinal barrier in the context of T2DM. We systematically summarized that the imbalance of beneficial gut microbiota and its metabolites may constitute a viable therapeutic approach for the management of T2DM. Meanwhile, the mechanisms by which gut microbiota interventions, such as probiotics, prebiotics, postbiotics, and synbiotics, synergistically improve insulin resistance in T2DM are summarized. These mechanisms include the restoration of gut microbiota structure, upregulation of intestinal epithelial cell proliferation and differentiation, enhancement of tight junction protein expression, promotion of mucin secretion by goblet cells, and the immunosuppressive functions of regulatory T cells (Treg) and M2 macrophages. Collectively, these actions contribute to the amelioration of the body's metabolic inflammatory status. Our objective is to furnish evidence that supports the clinical application of probiotics, prebiotics, and postbiotics in the management of T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Tang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Guojie Hu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Zezheng Gao
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
18
|
Ye J, Meng Q, Jin K, Luo Y, Yue T. Phage cocktail alleviated type 2 diabetes by reshaping gut microbiota and decreasing proinflammatory cytokines. Appl Microbiol Biotechnol 2024; 108:9. [PMID: 38159123 DOI: 10.1007/s00253-023-12912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Type 2 diabetes (T2D), a global health concern, is closely associated with the gut microbiota. Restoration of a balanced microbiota and intestinal homeostasis benefit therapy of T2D. Some special phages may selectively alter the gut microbiota without causing dysbiosis, such as MS2 and P22. However, scarcely systematic analysis of cascading effects triggered by MS2 and P22 phages on the microbiota, as well as interactions between specific gut bacteria and systemic metabolism, seriously inhibit the development of positive interventions of phages. Based on multi-omic analysis, we analyzed the intrinsic correlations among specific microbiota, their bioactive metabolites, and key indicators of T2D. We found that gavage of the MS2-P22 phage cocktail could significantly alter the gut microbiome to attenuate dysbiosis of diabetic C57BL/6 mice caused by high-fat diets (HFDs) and streptozotocin (STZ), by affecting microbial compositions as well as their metabolic pathways and metabolites, especially increasing amounts of short-chain fatty acid-producing (SCFA-producing) bacteria (e.g., Blautia and Romboutsia) and short-chain fatty acids (SCFAs). Correspondingly, a noteworthy reduction in the number of several opportunistic pathogens occurred, e.g., Candidatus Saccharimonas, Aerococcus, Oscillibacter, Desulfovibrio, and Clostridium sensu stricto 1. Synchronously, the levels of proinflammatory cytokines and lipopolysaccharide (LPS) were reduced to recover gut barrier function in T2D mice. These findings might benefit the development of a new dietary intervention for T2D based on phage cocktails. KEY POINTS: • Intestinal barrier integrity of T2D mice is improved by a phage cocktail • Negative relationship between Muribaculaceae and Corynebacterium reshaped gut microbiota • Acetate, propionate, and butyrate decreased the level of proinflammatory factors.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qiang Meng
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Kezhu Jin
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, 710069, Shaanxi, China.
- Research Center of Food Safety Risk Assessment and Control, Xi'an, 710069, Shaanxi, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, 710069, Shaanxi, China.
- Research Center of Food Safety Risk Assessment and Control, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
19
|
Miao J, Cui L, Zeng H, Hou M, Wang J, Hang S. Lactiplantibacillus plantarum L47 and inulin affect colon and liver inflammation in piglets challenged by enterotoxigenic Escherichia coli through regulating gut microbiota. Front Vet Sci 2024; 11:1496893. [PMID: 39664894 PMCID: PMC11631943 DOI: 10.3389/fvets.2024.1496893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Infection by pathogenic bacteria during weaning is a common cause of diarrhea and intestinal inflammation in piglets. Supplementing the diet with synbiotics is beneficial for animal health. The strain of Lactiplantibacillus plantarum L47 (L47) isolated in our lab exhibited good probiotic properties when combined with inulin. Here, the effectiveness of combining L47 and inulin (CLN) in protecting against enterotoxigenic Escherichia coli (ETEC) induced colon and liver inflammation in weaned piglets was evaluated. Methods Twenty-eight piglets aged 21 days were randomly assigned into 4 groups: CON (control), LI47 (oral CLN culture fluid, 1010 CFU/d of L47 and 1 g/d of inulin), ECON (oral ETEC culture fluid, 1010 CFU/d), and ELI47 (oral CLN and ETEC culture fluid). After 24 days, the colon and liver samples were collected for further analysis. Results and discussion CLN alleviated colon damage caused by ETEC challenge, as evidenced by an increase of colonic crypt depth, mRNA expression of tight junction Claudin-1 and Occludin, GPX activity, the concentration of IL-10 and sIgA (p < 0.05). Moreover, there was a decrease in MDA activity, the load of E. coli, the concentration of LPS, gene expression of TLR4, and the concentration of TNF-α and IL-6 (p < 0.05) in colonic mucosa. Additionally, CLN counteracted liver damage caused by ETEC challenge by modulating pathways associated with immunity and disease occurrence (p < 0.05). Conclusion Supplementing with CLN alleviated colon inflammation induced by ETEC challenge by decreasing the E. coli/LPS/TLR4 pathway and regulating hepatic immune response and disease-related pathways, suggesting that CLN could protect intestinal and liver health in animals.
Collapse
Affiliation(s)
| | | | | | | | | | - Suqin Hang
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Shang Q. Inulin alleviates inflammatory response and gut barrier dysfunction via modulating microbiota in lipopolysaccharide-challenged broilers. Int J Biol Macromol 2024; 282:137208. [PMID: 39489258 DOI: 10.1016/j.ijbiomac.2024.137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
This study was conducted to explore the protective effects of inulin against lipopolysaccharide (LPS)-induced inflammatory response and intestinal barrier dysfunction in broilers. 108 broilers were allocated to 3 treatments: 1) non-challenged broilers (Control, CON); 2) LPS-challenged broilers (LPS); 3) LPS-challenged broilers fed the basal diet supplemented with 15 g/kg of inulin (Inulin + LPS). At 21 d of age, the LPS-challenged groups received an intraperitoneal injection of LPS, and the CON group received an equal volume of saline. After 4 h of LPS exposure, samples of blood, intestinal mucosa and cecal digesta were collected. The results showed that LPS challenge induced systemic inflammation and damaged intestinal barrier function, whereas inulin attenuated LPS-induced production of pro-inflammatory cytokines by inhibiting the activation of TLR4 and NF-κB p65, and enhanced intestinal barrier function. In addition, LPS stimulation caused cecal microbial dysbiosis as shown by increased abundance of pathogenic bacteria including Ruminococcus_torques_group, Escherichia-Shigella and Subdoligranulum, while supplementation of inulin increased abundance of beneficial bacteria Faecalibacterium and Anaeroplasma, and metabolite production including propionate and butyrate concentrations. In conclusion, dietary supplementation of inulin could partially alleviate LPS-induced inflammation and intestinal barrier injury by modulating intestinal microbiota, thereby minimizing growth retardation of broilers. Our results provide a basis for the rational utilization of inulin in alleviating immune stress in broiler production.
Collapse
Affiliation(s)
- Qinghui Shang
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
21
|
Chen C, Qu M, Li G, Wan G, Liu P, Omar SM, Mei W, Hu Z, Zhou Q, Xu L. Dietary Tributyrin Improves Growth Performance, Meat Quality, Muscle Oxidative Status, and Gut Microbiota in Taihe Silky Fowls under Cyclic Heat Stress. Animals (Basel) 2024; 14:3041. [PMID: 39457971 PMCID: PMC11504407 DOI: 10.3390/ani14203041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Heat stress adversely affects poultry production and meat quality, leading to economic losses. This study aimed to investigate the effects of adding tributyrin on growth performance, meat quality, muscle oxidative status, and gut microbiota of Taihe silky fowls under cyclic heat stress (CHS) conditions. In this study, 120-day-old Taihe silky fowls (male) were randomly divided into six dietary treatments. These treatments included a normal control treatment (NC, fed a basal diet), a heat stress control treatment (HS, fed a basal diet), and HS control treatments supplemented with 0.04%, 0.08%, 0.16%, and 0.32% tributyrin, respectively. The NC treatment group was kept at 24 ± 1 °C, while the HS treatment birds were exposed to 34 ± 1 °C for 8 h/d for 4 weeks. Results showed that CHS decreased growth performance and compromised the meat quality of broilers (p < 0.05). However, tributyrin supplementation improved ADG and FCR in broilers exposed to CHS (p < 0.05). Additionally, tributyrin supplementation resulted in increased shear force value and GSH-Px activity, as well as a decrease in drip loss, ether extract content, and MDA content of the breast muscle in broilers under CHS (p < 0.05). Furthermore, tributyrin supplementation up-regulated the mRNA expressions of Nrf2, NQO1, HO-1, SOD, and GSH-Px of the breast muscle in broilers exposed to CHS (p < 0.05). Based on these positive effects, the study delved deeper to investigate the impact of 0.16% tributyrin supplementation (HS + 0.16%T) on the cecum microbiota. The HS + 0.16%T treatment showed an increase in the relative abundance of Rikenellaceae_RC9_gut_group (p < 0.05) and a trend towards an increase in Lactobacillus (p = 0.096) compared to the HS treatment. The results indicate that supplementation successfully improved the growth performance and meat quality of Taihe silky fowls. Furthermore, tributyrin supplementation, particularly at levels of 0.16%, improved meat quality by enhancing muscle antioxidant capacity, which is believed to be associated with activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (C.C.); (M.Q.); (G.L.); (G.W.); (P.L.); (S.M.O.); (W.M.); (Z.H.); (Q.Z.)
| |
Collapse
|
22
|
Zhang K, Zeng Y, Li J, Huang Y, Zhang N, Gong Y, Xiao K, Chen J, Chen T, Qiu H, Lei S, Yan F, Lang C, Duan X, Dong X. Inulin alleviates atherosclerosis through improving lipid metabolism, inflammation, and gut microbiota in ApoE-knockout mice: the short-chain is more efficacious. Front Pharmacol 2024; 15:1445528. [PMID: 39449970 PMCID: PMC11499155 DOI: 10.3389/fphar.2024.1445528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Atherosclerosis (AS) is considered the underlying cause of many diseases, particularly cardiovascular and cerebrovascular diseases. Inulin, a type of fructan, has shown potential in improving atherosclerosis, although there are conflicting findings. It is hypothesized that the polymerization degree of inulin may largely influence its therapeutic effectiveness. Therefore, this study aimed to investigate the effects and mechanisms of short-chain and long-chain inulin in AS. Methods ApoE-/- mice fed a high fat diet (HFD) were used to establish an atherosclerosis model. These mice received daily oral administration of either short-chain or long-chain inulin for 12 weeks. Plasma lipid metabolism-related indices were measured using biochemical analysis, and plasma immunological indices were analyzed via ELISA. The aorta, aortic root regions, liver tissue, adipose tissue, and colon tissue were examined through various staining techniques, including ORO staining, hematoxylin and eosin staining, Alcian blue staining, and immunofluorescent or immunohistochemical assays. Microbiome analysis was conducted in the cecal content. Results The results indicated that both short-chain and long-chain inulin substantially reduced the formation of atherosclerotic plaques. Inulin also improved plasma lipid concentrations and hepatic lipid metabolism, and partially alleviated both localized (atherosclerotic lesions) and systemic inflammation. Short-chain inulin was more effective than long-chain inulin in reducing atherosclerotic plaques formation, enhancing lipid metabolism and reducing inflammation. Additionally, both types of inulin showed similar effectiveness in enhancing intestinal epithelial barrier integrity, gut microbiota composition and functionality. Conclusion These findings suggest that inulin has a protective role against atherosclerosis by enhancing lipid metabolism, reducing inflammation, and improving intestinal barrier and gut microbiota. As a dietary intervention, short-chain inulin is more effective than long-chain inulin, offering clinical implications for using inulin as a therapeutic agent for atherosclerosis.
Collapse
Affiliation(s)
- Kun Zhang
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Yu Zeng
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jiawei Li
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Yingchun Huang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Nan Zhang
- Department of General Surgery, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yue Gong
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Kaihu Xiao
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Jian Chen
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Tiantian Chen
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Haomin Qiu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Sisi Lei
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Fei Yan
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Chunhui Lang
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Xudong Duan
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing, China
| |
Collapse
|
23
|
Liu M, Lu Y, Xue G, Han L, Jia H, Wang Z, Zhang J, Liu P, Yang C, Zhou Y. Role of short-chain fatty acids in host physiology. Animal Model Exp Med 2024; 7:641-652. [PMID: 38940192 PMCID: PMC11528394 DOI: 10.1002/ame2.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/08/2024] [Indexed: 06/29/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are major metabolites produced by the gut microbiota through the fermentation of dietary fiber, and they have garnered significant attention due to their close association with host health. As important mediators between the gut microbiota and the host, SCFAs serve as energy substrates for intestinal epithelial cells and maintain homeostasis in host immune and energy metabolism by influencing host epigenetics, activating G protein-coupled receptors, and inhibiting pathogenic microbial infections. This review provides a comprehensive summary of SCFAs synthesis and metabolism and offering an overview of the latest research progress on their roles in protecting gut health, enhancing energy metabolism, mitigating diseases such as cancer, obesity, and diabetes, modulating the gut-brain axis and gut-lung axis, and promoting bone health.
Collapse
Affiliation(s)
- Mingyue Liu
- Stem Cell Storage Center, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Yubo Lu
- School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Guoyu Xue
- Stem Cell Storage Center, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Le Han
- Prevention Health Section, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Hanbing Jia
- Department of Medical Imaging, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Zi Wang
- Department of Medical Imaging, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Jia Zhang
- Department of Obstetrical, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Peng Liu
- Department of Clinical Laboratory, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| | - Chaojuan Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering MedicineBeihang UniversityBeijingChina
| | - Yingjie Zhou
- Department of Obstetrics and Gynecology, Hebei Reproductive Health Hospital, Hebei Women and Children's Health HospitalHebei Research Institute For Reproductive HealthShijiazhuangChina
| |
Collapse
|
24
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
25
|
Havton GC, Tai ATC, Vasisht S, Davies DL, Asatryan L. Preclinical Evaluation of Sodium Butyrate's Potential to Reduce Alcohol Consumption: A Dose-Escalation Study in C57BL/6J Mice in Antibiotic-Enhanced Binge-Like Drinking Model. Pharmacology 2024; 110:36-48. [PMID: 39134007 PMCID: PMC11794028 DOI: 10.1159/000540882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION In our earlier efforts to establish gut-brain axis during alcohol use disorder (AUD), we have demonstrated that supplementation of C57BL/6J male mice with 8 mg/mL sodium butyrate, a major short-chain fatty acid, in drinking water reduced ethanol intake and neuroinflammatory response in antibiotic (ABX)-enhanced voluntary binge-like alcohol consumption model, drinking in the dark (DID). METHODS To further evaluate the preclinical potential of SB, we have set a dose-escalation study in C57BL/6J male mice to test effects of ad libitum 20 mg/mL SB and 50 mg/mL SB and their combinations with ABX in the DID procedure for 4 weeks. Effects of these SB concentrations on ethanol consumption and bodily parameters were determined for the duration of the treatments. At the end of study, blood, liver, and intestinal tissues were collected to study any potential adverse effects ad to measure blood ethanol concentrations. RESULTS Increasing SB concentrations in the drinking water caused a loss in the protective effect against ethanol consumption and produced adverse effects on body and liver weights, reduced overall liquid intake. The hypothesis that these effects were due to aversion to SB smell/taste at these high concentrations were further tested in a follow up proof-of-concept study with intragastric gavage administration of SB. The higher gavage dose (320 mg/kg) caused reduction in ethanol consumption without any adverse effects. CONCLUSION Overall, these findings added more support for the therapeutic potential of SB in management of AUD, given a proper form of administration. INTRODUCTION In our earlier efforts to establish gut-brain axis during alcohol use disorder (AUD), we have demonstrated that supplementation of C57BL/6J male mice with 8 mg/mL sodium butyrate, a major short-chain fatty acid, in drinking water reduced ethanol intake and neuroinflammatory response in antibiotic (ABX)-enhanced voluntary binge-like alcohol consumption model, drinking in the dark (DID). METHODS To further evaluate the preclinical potential of SB, we have set a dose-escalation study in C57BL/6J male mice to test effects of ad libitum 20 mg/mL SB and 50 mg/mL SB and their combinations with ABX in the DID procedure for 4 weeks. Effects of these SB concentrations on ethanol consumption and bodily parameters were determined for the duration of the treatments. At the end of study, blood, liver, and intestinal tissues were collected to study any potential adverse effects ad to measure blood ethanol concentrations. RESULTS Increasing SB concentrations in the drinking water caused a loss in the protective effect against ethanol consumption and produced adverse effects on body and liver weights, reduced overall liquid intake. The hypothesis that these effects were due to aversion to SB smell/taste at these high concentrations were further tested in a follow up proof-of-concept study with intragastric gavage administration of SB. The higher gavage dose (320 mg/kg) caused reduction in ethanol consumption without any adverse effects. CONCLUSION Overall, these findings added more support for the therapeutic potential of SB in management of AUD, given a proper form of administration.
Collapse
Affiliation(s)
- Gregory C Havton
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Alex T C Tai
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Surabhi Vasisht
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Daryl L Davies
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Liana Asatryan
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
26
|
Cheng X, Hu Y, Kuang J, Guo X, Cao H, Wu H, Hu G, Zhuang Y. Berberine alleviates high-energy and low-protein diet-induced fatty liver hemorrhagic syndrome in laying hens: insights from microbiome and metabolomics. Poult Sci 2024; 103:103968. [PMID: 38959643 PMCID: PMC11269790 DOI: 10.1016/j.psj.2024.103968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Berberine (BBR), a well-known quaternary ammonium alkaloid, is recognized for its ability to prevent and alleviate metabolic disorders because of its anti-oxidative and anti-inflammatory properties. However, the underlying mechanisms of BBR to mitigate fatty liver hemorrhagic syndrome (FLHS) through the modulation of gut microbiota and their metabolism remained unclear. The results revealed that BBR ameliorates lipid metabolism disorder in high-energy and low-protein (HELP) diet-induced FLHS laying hens, as evidenced by improved liver function and lipid deposition of the liver, reduced blood lipids, and the expression of liver lipid synthesis-related factors. Moreover, BBR alleviated HELP diet-induced barrier dysfunction, increased microbial population, and dysregulated lipid metabolism in the ileum. BBR reshaped the HELP-perturbed gut microbiota, particularly declining the abundance of Desulfovibrio_piger and elevating the abundance of Bacteroides_salanitronis_DSM_18170. Meanwhile, metabolomic profiling analysis revealed that BBR reshaped microbial metabolism and function, particularly by reducing the levels of hydrocinnamic acid, dehydroanonaine, and leucinic acid. Furthermore, fecal microbiota transplantation (FMT) experiments revealed that BBR-enriched gut microbiota alleviated hepatic lipid deposition and intestinal inflammation compared with those chicks that received a gut microbiota by HELP. Collectively, our study provided evidence that BBR effectively alleviated FLHS induced by HELP by reshaping the microbial and metabolic homeostasis within the liver-gut axis.
Collapse
Affiliation(s)
- Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, People's Republic of China
| | - Yang Hu
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Jun Kuang
- Fujian Aonong Biotechnology Technology Grouping Co. LTD, Zhangzhou 363000, People's Republic of China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, People's Republic of China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, People's Republic of China
| | - Huansheng Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Department of Veterinary Microbiology, Nanchang, Jiangxi Provincial, People's Republic of China; Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, People's Republic of China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
27
|
Nicze M, Dec A, Borówka M, Krzyżak D, Bołdys A, Bułdak Ł, Okopień B. Molecular Mechanisms behind Obesity and Their Potential Exploitation in Current and Future Therapy. Int J Mol Sci 2024; 25:8202. [PMID: 39125772 PMCID: PMC11311839 DOI: 10.3390/ijms25158202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity is a chronic disease caused primarily by the imbalance between the amount of calories supplied to the body and energy expenditure. Not only does it deteriorate the quality of life, but most importantly it increases the risk of cardiovascular diseases and the development of type 2 diabetes mellitus, leading to reduced life expectancy. In this review, we would like to present the molecular pathomechanisms underlying obesity, which constitute the target points for the action of anti-obesity medications. These include the central nervous system, brain-gut-microbiome axis, gastrointestinal motility, and energy expenditure. A significant part of this article is dedicated to incretin-based drugs such as GLP-1 receptor agonists (e.g., liraglutide and semaglutide), as well as the brand new dual GLP-1 and GIP receptor agonist tirzepatide, all of which have become "block-buster" drugs due to their effectiveness in reducing body weight and beneficial effects on the patient's metabolic profile. Finally, this review article highlights newly designed molecules with the potential for future obesity management that are the subject of ongoing clinical trials.
Collapse
Affiliation(s)
- Michał Nicze
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (A.B.); (B.O.)
| | | | | | | | | | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (A.B.); (B.O.)
| | | |
Collapse
|
28
|
Zhao F, He W, Wu T, Elmhadi M, Jiang N, Zhang A, Guan P. Supplementation of coated sodium butyrate relieved weaning stress and reshaped microbial flora in weaned lambs. Front Vet Sci 2024; 11:1423920. [PMID: 39104550 PMCID: PMC11299240 DOI: 10.3389/fvets.2024.1423920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
Weaning is an important period in the growth and development of lambs. Thus, effectively reducing the occurrence of weaning stress is critical for maintaining lamb production. Coated sodium butyrate has been shown to reduce inflammation, promote intestinal health, and maintain homeostasis. However, the application and potential mechanism of coated sodium butyrate in alleviating weaning stress in lambs are still unclear. To evaluate the effects of coated sodium butyrate on the growth performance, antioxidant capacity, and gut microbiota of weaned lambs, 10 weaned lambs of 21-day-old were randomly divided into two groups: the CON group (basal diet) and the NaB group (basal diet +3 g/kg of coated sodium butyrate). The trial lasted 21 days. The experimental results showed that compared to the CON group, coated sodium butyrate supplementation in the diet significantly increased the average daily weight gain and daily feed intake of lambs (p < 0.05). In addition, compared to the CON group, the addition of coated sodium butyrate also significantly decreased the serum MDA level of lambs (p < 0.05). Notably, the addition of coated sodium butyrate did not have a significant effect on the cecal microbiota, while increasing the diversity of colonic microbiota and promoting the abundance of Lachnospiraceae, Verrucomicrobiota, Akkermansia, Roseburia, and Sinobacteraceae, which are associated with the nutrient absorption of lambs (p < 0.05). These results indicate that dietary supplementation with coated sodium butyrate could promote the growth and antioxidant capacity of weaned lambs and alleviate weaning stress.
Collapse
Affiliation(s)
- Fangfang Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Daqing, China
| | - Wenhao He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Daqing, China
| | - Tianyou Wu
- Bright Farming Co., Ltd., Shanghai, China
| | - Mawada Elmhadi
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ning Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Daqing, China
| | - Aizhong Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Daqing, China
| | - Pengyu Guan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Daqing, China
| |
Collapse
|
29
|
Liow YJ, Kamimura I, Umezaki M, Suda W, Takayasu L. Dietary fiber induces a fat preference associated with the gut microbiota. PLoS One 2024; 19:e0305849. [PMID: 38985782 PMCID: PMC11236109 DOI: 10.1371/journal.pone.0305849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Eating behavior is essential to human health. However, whether future eating behavior is subjected to the conditioning of preceding dietary composition is unknown. This study aimed to investigate the effect of dietary fiber consumption on subsequent nutrient-specific food preferences between palatable high-fat and high-sugar diets and explore its correlation with the gut microbiota. C57BL/6NJcl male mice were subjected to a 2-week dietary intervention and fed either a control (n = 6) or inulin (n = 6) diet. Afterward, all mice were subjected to a 3-day eating behavioral test to self-select from the simultaneously presented high-fat and high-sugar diets. The test diet feed intakes were recorded, and the mice's fecal samples were analyzed to evaluate the gut microbiota composition. The inulin-conditioned mice exhibited a preference for the high-fat diet over the high-sugar diet, associated with distinct gut microbiota composition profiles between the inulin-conditioned and control mice. The gut microbiota Oscillospiraceae sp., Bacteroides acidifaciens, and Clostridiales sp. positively correlated with a preference for fat. Further studies with fecal microbiota transplantation and eating behavior-related neurotransmitter analyses are warranted to establish the causal role of gut microbiota on host food preferences. Food preferences induced by dietary intervention are a novel observation, and the gut microbiome may be associated with this preference.
Collapse
Affiliation(s)
- Yi Jia Liow
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Itsuka Kamimura
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Masahiro Umezaki
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Lena Takayasu
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
30
|
Du Y, He C, An Y, Huang Y, Zhang H, Fu W, Wang M, Shan Z, Xie J, Yang Y, Zhao B. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int J Mol Sci 2024; 25:7379. [PMID: 39000498 PMCID: PMC11242198 DOI: 10.3390/ijms25137379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Short chain fatty acids (SCFAs), mainly including acetate, propionate and butyrate, are produced by intestinal bacteria during the fermentation of partially digested and indigestible polysaccharides. SCFAs play an important role in regulating intestinal energy metabolism and maintaining the homeostasis of the intestinal environment and also play an important regulatory role in organs and tissues outside the gut. In recent years, many studies have shown that SCFAs can regulate inflammation and affect host health, and two main signaling mechanisms have also been identified: the activation of G-protein coupled receptors (GPCRs) and inhibition of histone deacetylase (HDAC). In addition, a growing body of evidence highlights the importance of every SCFA in influencing health maintenance and disease development. In this review, we summarized the recent advances concerning the biological properties of SCFAs and their signaling pathways in inflammation and body health. Hopefully, it can provide a systematic theoretical basis for the nutritional prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Yuhang Du
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhao He
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongcheng An
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huilin Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Menglu Wang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ziyi Shan
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamei Xie
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yang Yang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
31
|
Miyagawa Y, Fujiwara-Tani R, Ikemoto A, Sasaki R, Ogata R, Nishiguchi Y, Goto K, Kawahara I, Sasaki T, Kuniyasu H. Significance of CD10 for Mucosal Immunomodulation by β-Casomorphin-7 in Exacerbation of Ulcerative Colitis. Curr Issues Mol Biol 2024; 46:6472-6488. [PMID: 39057028 PMCID: PMC11276523 DOI: 10.3390/cimb46070386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
β-Casomorphin-7 (BCM), a breakdown product of milk β-casein, exhibits opioid activity. Opioids are known to affect the immune system, but the effects of BCM on ulcerative colitis (UC) are not clear. We examined the effects of BCM on mucosal immunity using a mouse dextran sulfate sodium-induced colitis model and an in vitro CD8+ T cell activation model. Human UC patients were examined to reveal the relationship between CD10 and mucosal immunity. Combined treatment of the colitis model with thiorphan (TOP) inhibited BCM degradation by suppressing CD10 in the intestinal mucosa, activating mouse mucosal CD8, and suppressing CD4 and Treg. In the CD8+ T cell in vitro activation assay using mouse splenocytes, BCM inhibited the oxidative phosphorylation (OXPHOS) of CD8+ T cells and induced the glycolytic pathway, promoting their activation. Conversely, in a culture system, BCM suppressed OXPHOS and decreased defensin α production in IEC6 mouse intestinal epithelial cells. In the mouse model, BCM reduced defensin α and butyrate levels in the colonic mucosa. During the active phase of human ulcerative colitis, the downward regulation of ileal CD10 expression by CpG methylation of the gene promoter was observed, resulting in increased CD8 activation and decreased defensin α and butyrate levels. BCM is a potential aggravating factor for UC and should be considered in the design of dietary therapy. In addition, decreased CD10 expression may serve as an indicator of UC activity and recurrence, but further clinical studies are needed.
Collapse
Affiliation(s)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (Y.M.); (A.I.); (R.S.); (R.O.); (Y.N.); (K.G.); (I.K.); (T.S.)
| | | | | | | | | | | | | | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (Y.M.); (A.I.); (R.S.); (R.O.); (Y.N.); (K.G.); (I.K.); (T.S.)
| |
Collapse
|
32
|
Salsinha AS, Cima A, Araújo-Rodrigues H, Viana S, Reis F, Coscueta ER, Rodríguez-Alcalá LM, Relvas JB, Pintado M. The use of an in vitro fecal fermentation model to uncover the beneficial role of omega-3 and punicic acid in gut microbiota alterations induced by a Western diet. Food Funct 2024; 15:6095-6117. [PMID: 38757812 DOI: 10.1039/d4fo00727a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The influence of gut microbiota in the onset and development of several metabolic diseases has gained attention over the last few years. Diet plays an essential role in gut microbiota modulation. Western diet (WD), characterized by high-sugar and high-fat consumption, alters gut microbiome composition, diversity index, microbial relative levels, and functional pathways. Despite the promising health effects demonstrated by polyunsaturated fatty acids, their impact on gut microbiota is still overlooked. The effect of Fish oil (omega-3 source) and Pomegranate oil (punicic acid source), and a mixture of both oils in gut microbiota modulation were determined by subjecting the oil samples to in vitro fecal fermentations. Cecal samples from rats from two different dietary groups: a control diet (CD) and a high-fat high-sugar diet (WD), were used as fecal inoculum. 16S amplicon metagenomics sequencing showed that Fish oil + Pomegranate oil from the WD group increased α-diversity. This sample can also increase the relative abundance of the Firmicutes and Bacteroidetes phylum as well as Akkermansia and Blautia, which were affected by the WD consumption. All samples were able to increase butyrate and acetate concentration in the WD group. Moreover, tyrosine concentrations, a precursor for dopamine and norepinephrine, increase in the Fish oil + Pomegranate oil WD sample. GABA, an important neurotransmitter, was also increased in WD samples. These results suggest a potential positive impact of these oils' mixture on gut-brain axis modulation. It was demonstrated, for the first time, the great potential of using a mixture of both Fish and Pomegranate oil to restore the gut microbiota changes associated with WD consumption.
Collapse
Affiliation(s)
- Ana Sofia Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - André Cima
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Helena Araújo-Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Sofia Viana
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
- Instituto Politécnico de Coimbra, Escola Superior de Tecnologia da Saúde de Coimbra, Rua 5 de Outubro - S. Martinho Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Ezequiel R Coscueta
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Luis Miguel Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Departmento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
33
|
Chakraborty P, Gamage HKAH, Laird AS. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem Int 2024; 176:105745. [PMID: 38641025 DOI: 10.1016/j.neuint.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prapti Chakraborty
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW, 2109, Australia
| | - Angela S Laird
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
34
|
Nelson BN, Friedman JE. Developmental Programming of the Fetal Immune System by Maternal Western-Style Diet: Mechanisms and Implications for Disease Pathways in the Offspring. Int J Mol Sci 2024; 25:5951. [PMID: 38892139 PMCID: PMC11172957 DOI: 10.3390/ijms25115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Maternal obesity and over/undernutrition can have a long-lasting impact on offspring health during critical periods in the first 1000 days of life. Children born to mothers with obesity have reduced immune responses to stimuli which increase susceptibility to infections. Recently, maternal western-style diets (WSDs), high in fat and simple sugars, have been associated with skewing neonatal immune cell development, and recent evidence suggests that dysregulation of innate immunity in early life has long-term consequences on metabolic diseases and behavioral disorders in later life. Several factors contribute to abnormal innate immune tolerance or trained immunity, including changes in gut microbiota, metabolites, and epigenetic modifications. Critical knowledge gaps remain regarding the mechanisms whereby these factors impact fetal and postnatal immune cell development, especially in precursor stem cells in bone marrow and fetal liver. Components of the maternal microbiota that are transferred from mothers consuming a WSD to their offspring are understudied and identifying cause and effect on neonatal innate and adaptive immune development needs to be refined. Tools including single-cell RNA-sequencing, epigenetic analysis, and spatial location of specific immune cells in liver and bone marrow are critical for understanding immune system programming. Considering the vital role immune function plays in offspring health, it will be important to understand how maternal diets can control developmental programming of innate and adaptive immunity.
Collapse
Affiliation(s)
- Benjamin N. Nelson
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
35
|
Then CK, Paillas S, Moomin A, Misheva MD, Moir RA, Hay SM, Bremner D, Roberts Nee Nellany KS, Smith EE, Heidari Z, Sescu D, Wang X, Suárez-Bonnet A, Hay N, Murdoch SL, Saito R, Collie-Duguid ESR, Richardson S, Priestnall SL, Wilson JM, Gurumurthy M, Royle JS, Samuel LM, Ramsay G, Vallis KA, Foster KR, McCullagh JSO, Kiltie AE. Dietary fibre supplementation enhances radiotherapy tumour control and alleviates intestinal radiation toxicity. MICROBIOME 2024; 12:89. [PMID: 38745230 PMCID: PMC11092108 DOI: 10.1186/s40168-024-01804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Non-toxic approaches to enhance radiotherapy outcomes are beneficial, particularly in ageing populations. Based on preclinical findings showing that high-fibre diets sensitised bladder tumours to irradiation by modifying the gut microbiota, along with clinical evidence of prebiotics enhancing anti-cancer immunity, we hypothesised that dietary fibre and its gut microbiota modification can radiosensitise tumours via secretion of metabolites and/or immunomodulation. We investigated the efficacy of high-fibre diets combined with irradiation in immunoproficient C57BL/6 mice bearing bladder cancer flank allografts. RESULT Psyllium plus inulin significantly decreased tumour size and delayed tumour growth following irradiation compared to 0.2% cellulose and raised intratumoural CD8+ cells. Post-irradiation, tumour control positively correlated with Lachnospiraceae family abundance. Psyllium plus resistant starch radiosensitised the tumours, positively correlating with Bacteroides genus abundance and increased caecal isoferulic acid levels, associated with a favourable response in terms of tumour control. Psyllium plus inulin mitigated the acute radiation injury caused by 14 Gy. Psyllium plus inulin increased caecal acetate, butyrate and propionate levels, and psyllium alone and psyllium plus resistant starch increased acetate levels. Human gut microbiota profiles at the phylum level were generally more like mouse 0.2% cellulose profiles than high fibre profiles. CONCLUSION These supplements may be useful in combination with radiotherapy in patients with pelvic malignancy. Video Abstract.
Collapse
Affiliation(s)
- Chee Kin Then
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Radiation Oncology, Shunag Ho Hospital, Taipei Medical University, New Taipai City, Taiwan
| | - Salome Paillas
- Department of Oncology, University of Oxford, Oxford, UK
| | - Aliu Moomin
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
| | - Mariya D Misheva
- Chemistry Research Laboratory, Department of Chemistry, Mansfield Road, University of Oxford, Oxford, UK
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rachel A Moir
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Susan M Hay
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
| | - David Bremner
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | - Ellen E Smith
- Centre for Genome Enabled Biology and Medicine, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Zeynab Heidari
- Centre for Genome Enabled Biology and Medicine, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Daniel Sescu
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Xuedan Wang
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Nadine Hay
- NHS Grampian Biorepository, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Sarah L Murdoch
- NHS Grampian Biorepository, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Ryoichi Saito
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, USA
- The Department of Urology, Kyoto University, Kyoto, Japan
| | - Elaina S R Collie-Duguid
- Centre for Genome Enabled Biology and Medicine, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Joan M Wilson
- NHS Grampian Biorepository, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - Justine S Royle
- Department of Urology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Leslie M Samuel
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - George Ramsay
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | | | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, Mansfield Road, University of Oxford, Oxford, UK
| | - Anne E Kiltie
- Department of Oncology, University of Oxford, Oxford, UK.
- The Rowett Institute, University of Aberdeen, Aberdeen, UK.
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK.
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
36
|
Liu Y, Yu J, Yang Y, Han B, Wang Q, Du S. Investigating the causal relationship of gut microbiota with GERD and BE: a bidirectional mendelian randomization. BMC Genomics 2024; 25:471. [PMID: 38745153 PMCID: PMC11092028 DOI: 10.1186/s12864-024-10377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Gut microbiota(GM) have been proven associated with lots of gastrointestinal diseases, but its causal relationship with Gastroesophageal reflux disease(GERD) and Barrett's esophagus(BE) hasn't been explored. We aimed to uncover the causal relation between GM and GERD/BE and potential mediators by utilizing Mendelian Randomization(MR) analysis. METHODS Summary statistics of GM(comprising 301 bacteria taxa and 205 metabolism pathways) were extracted from MiBioGen Consortium(N = 18,340) and Dutch Microbiome Project(N = 7,738), GERD and BE from a multitrait meta-analysis(NGERD=602,604, NBE=56,429). Bidirectional two-sample MR analysis and linkage disequilibrium score regression(LDSC) were used to explore the genetic correlation between GM and GERD/BE. Mediation MR analysis was performed for the risk factors of GERD/BE, including Body mass index(BMI), weight, type 2 diabetes, major depressive disorder(MDD), smoking initiation, alcohol consumption, and dietary intake(including carbohydrate, sugar, fat, protein intake), to detect the potential mediators between GM and GERD/BE. RESULTS 11 bacterial taxa and 13 metabolism pathways were found associated with GERD, and 18 taxa and 5 pathways exhibited causal relationship with BE. Mediation MR analysis suggested weight and BMI played a crucial role in these relationships. LDSC identified 1 taxon and 4 metabolism pathways related to GERD, and 1 taxon related to BE. Specie Faecalibacterium prausnitzii had a suggestive impact on both GERD(OR = 1.087, 95%CI = 1.01-1.17) and BE(OR = 1.388, 95%CI = 1.03-1.86) and LDSC had determined their correlation. Reverse MR indicated that BE impacted 10 taxa and 4 pathways. CONCLUSIONS This study established a causal link between gut microbiota and GERD/BE, and identified the probable mediators. It offers new insights into the role of gut microbiota in the development and progression of GERD and BE in the host.
Collapse
Affiliation(s)
- Yuan Liu
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Jiali Yu
- Department of Gastroenterology, Chinese Academy of Medical Sciences & Peking Union Medical College, China-Japan Friendship Hospital(Institute of Clinical Medical Sciences), Beijing, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Yuxiao Yang
- Department of Gastroenterology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Bingyu Han
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Qiao Wang
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
37
|
Muchhala KH, Kallurkar PS, Kang M, Koseli E, Poklis JL, Xu Q, Dewey WL, Fettweis JM, Jimenez NR, Akbarali HI. The role of morphine- and fentanyl-induced impairment of intestinal epithelial antibacterial activity in dysbiosis and its impact on the microbiota-gut-brain axis. FASEB J 2024; 38:e23603. [PMID: 38648368 PMCID: PMC11047137 DOI: 10.1096/fj.202301590rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Recent evidence suggests that chronic exposure to opioid analgesics such as morphine disrupts the intestinal epithelial layer and causes intestinal dysbiosis. Depleting gut bacteria can preclude the development of tolerance to opioid-induced antinociception, suggesting an important role of the gut-brain axis in mediating opioid effects. The mechanism underlying opioid-induced dysbiosis, however, remains unclear. Host-produced antimicrobial peptides (AMPs) are critical for the integrity of the intestinal epithelial barrier as they prevent the pathogenesis of the enteric microbiota. Here, we report that chronic morphine or fentanyl exposure reduces the antimicrobial activity in the ileum, resulting in changes in the composition of bacteria. Fecal samples from morphine-treated mice had increased levels of Akkermansia muciniphila with a shift in the abundance ratio of Firmicutes and Bacteroidetes. Fecal microbial transplant (FMT) from morphine-naïve mice or oral supplementation with butyrate restored (a) the antimicrobial activity, (b) the expression of the antimicrobial peptide, Reg3γ, (c) prevented the increase in intestinal permeability and (d) prevented the development of antinociceptive tolerance in morphine-dependent mice. Improved epithelial barrier function with FMT or butyrate prevented the enrichment of the mucin-degrading A. muciniphila in morphine-dependent mice. These data implicate impairment of the antimicrobial activity of the intestinal epithelium as a mechanism by which opioids disrupt the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Karan H. Muchhala
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Prajkta S. Kallurkar
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Minho Kang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Eda Koseli
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Qingguo Xu
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - William L. Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer M. Fettweis
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Nicole R. Jimenez
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
38
|
Miao G, Guo J, Zhang W, Lai P, Xu Y, Chen J, Zhang L, Zhou Z, Han Y, Chen G, Chen J, Tao Y, Zheng L, Zhang L, Huang W, Wang Y, Xian X. Remodeling Intestinal Microbiota Alleviates Severe Combined Hyperlipidemia-Induced Nonalcoholic Steatohepatitis and Atherosclerosis in LDLR -/- Hamsters. RESEARCH (WASHINGTON, D.C.) 2024; 7:0363. [PMID: 38694198 PMCID: PMC11062505 DOI: 10.34133/research.0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024]
Abstract
Combined hyperlipidemia (CHL) manifests as elevated cholesterol and triglycerides, associated with fatty liver and cardiovascular diseases. Emerging evidence underscores the crucial role of the intestinal microbiota in metabolic disorders. However, the potential therapeutic viability of remodeling the intestinal microbiota in CHL remains uncertain. In this study, CHL was induced in low-density lipoprotein receptor-deficient (LDLR-/-) hamsters through an 8-week high-fat and high-cholesterol (HFHC) diet or a 4-month high-cholesterol (HC) diet. Placebo or antibiotics were administered through separate or cohousing approaches. Analysis through 16S rDNA sequencing revealed that intermittent antibiotic treatment and the cohousing approach effectively modulated the gut microbiota community without impacting its overall abundance in LDLR-/- hamsters exhibiting severe CHL. Antibiotic treatment mitigated HFHC diet-induced obesity, hyperglycemia, and hyperlipidemia, enhancing thermogenesis and alleviating nonalcoholic steatohepatitis (NASH), concurrently reducing atherosclerotic lesions in LDLR-/- hamsters. Metabolomic analysis revealed a favorable liver lipid metabolism profile. Increased levels of microbiota-derived metabolites, notably butyrate and glycylglycine, also ameliorated NASH and atherosclerosis in HFHC diet-fed LDLR-/- hamsters. Notably, antibiotics, butyrate, and glycylglycine treatment exhibited protective effects in LDLR-/- hamsters on an HC diet, aligning with outcomes observed in the HFHC diet scenario. Our findings highlight the efficacy of remodeling gut microbiota through antibiotic treatment and cohousing in improving obesity, NASH, and atherosclerosis associated with refractory CHL. Increased levels of beneficial microbiota-derived metabolites suggest a potential avenue for microbiome-mediated therapies in addressing CHL-associated diseases.
Collapse
Affiliation(s)
- Guolin Miao
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jiabao Guo
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Wenxi Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yitong Xu
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jingxuan Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Lianxin Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Zihao Zhou
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yufei Han
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Gonglie Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jinxuan Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yijun Tao
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Lemin Zheng
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Ling Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research,
Peking University Third Hospital, Beijing, China
| |
Collapse
|
39
|
Wang Y, Feng S, Shi H, Lu Y, Zhang J, Zhang W, Xu Y, Liang Q, Sun L. Analysis of alterations in serum vitamins and correlations with gut microbiome, microbial metabolomics in patients with sepsis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124101. [PMID: 38547698 DOI: 10.1016/j.jchromb.2024.124101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Vitamins are essential micronutrients that play key roles in many biological pathways associated with sepsis. The gut microbiome plays a pivotal role in the progression of sepsis and may contribute to the onset of multi-organ dysfunction syndrome (MODS). The aim of this study was to investigate the changes in serum vitamins, and their correlation with intestinal flora and metabolomic profiles in patients with sepsis. METHODS The serum levels of vitamins were determined by Ultra Performance Liquid Chromatography (UPLC). 16S rRNA gene sequencing and Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) targeted metabolomics were used for microbiome and metabolome analysis. RESULTS In the training cohort: After univariate, multivariate (OPLS-DA) and Spearman analyses, it was concluded that vitamin levels of 25 (OH) VD3 and (VD2 + VD3), as well as vitamins A and B9, differed significantly among healthy controls (HC), non-septic critical patients (NS), and sepsis patients (SS) (P < 0.05). The validation cohort confirmed the differential vitamin findings from the training cohort. Moreover, analyses of gut flora and metabolites in septic patients and healthy individuals revealed differential flora, metabolites, and metabolic pathways that were linked to alterations in serum vitamin levels. We found for the first time that vitamin B9 was negatively correlated with g_Sellimonas. CONCLUSION Sepsis patients exhibited significantly lower levels of 25 (OH) VD3 and (VD2 + VD3), vitamins A and B9, which hold potential as predictive markers for sepsis prognosis. The changes in these vitamins may be associated with inflammatory factors, oxidative stress, and changes in gut flora.
Collapse
Affiliation(s)
- Yingchen Wang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Susu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Hongwei Shi
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Yuxin Lu
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Jingtao Zhang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Wanglin Zhang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Yuzhi Xu
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Qi Liang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China
| | - Liqun Sun
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, People's Republic of China.
| |
Collapse
|
40
|
Kaźmierczak-Siedlecka K, Maciejewska-Markiewicz D, Sykulski M, Gruszczyńska A, Herman-Iżycka J, Wyleżoł M, Katarzyna Petriczko K, Palma J, Jakubczyk K, Janda-Milczarek K, Skonieczna-Żydecka K, Stachowska E. Gut Microbiome-How Does Two-Month Consumption of Fiber-Enriched Rolls Change Microbiome in Patients Suffering from MASLD? Nutrients 2024; 16:1173. [PMID: 38674864 PMCID: PMC11053994 DOI: 10.3390/nu16081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The occurrence of metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global problem which commonly affects patients with co-existing diseases/conditions, such as type 2 diabetes and dyslipidemia. The effective treatment of MASLD is still limited; however, diet plays a significant role in its management. There are multiple beneficial properties of dietary fiber, including its ability to modify the gut microbiome. Therefore, the aim of this study was to determine the effect of the consumption of fiber-enriched rolls on the gut microbiome and microbial metabolites in patients suffering from MASLD. METHODS The participants were recruited according to the inclusion criteria and were required to consume fiber-enriched rolls containing either 6 g or 12 g of fiber. There were three assessment timepoints, when the anthropometric and laboratory parameters were measured, and 16s on nanopore sequencing of the fecal microbiome was conducted. RESULTS Firmicutes and Bacteroidetes were the most abundant phyla in the patients living with MASLD. It was demonstrated that the amount of short-chain fatty acids (SCFAs) changed after the consumption of fiber-enriched rolls; however, this was strongly associated with both the timepoint and the type of SCFAs-acetate and butyrate. Additionally, the high-fiber diet was related to the increase in phyla diversity (p = 0.006571). CONCLUSIONS Overall, the introduction of an appropriate amount of fiber to the diet seems to be promising for patients suffering from MASLD due to its ability to create an improvement in gut microbiome-related aspects.
Collapse
Affiliation(s)
- Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (D.M.-M.); (K.J.); (K.J.-M.)
| | - Maciej Sykulski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Agata Gruszczyńska
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | | | - Mariusz Wyleżoł
- Department of General, Vascular and Oncological Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Karolina Katarzyna Petriczko
- Translational Medicine Group, Pomeranian Medical University, 70-204 Szczecin, Poland;
- Department of Gastroenterology and Internal Medicine, SPWSZ Hospital, 71-455 Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland;
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (D.M.-M.); (K.J.); (K.J.-M.)
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (D.M.-M.); (K.J.); (K.J.-M.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland;
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (D.M.-M.); (K.J.); (K.J.-M.)
| |
Collapse
|
41
|
Lai CH, Huo CY, Xu J, Han QB, Li LF. Critical review on the research of chemical structure, bioactivities, and mechanism of actions of Dendrobium officinale polysaccharide. Int J Biol Macromol 2024; 263:130315. [PMID: 38382782 DOI: 10.1016/j.ijbiomac.2024.130315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/15/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Dendrobium officinale (Tie-Pi-Shi-Hu) is a precious traditional Chinese medicine (TCM). The principal active components are polysaccharides (DOP), which have a high potency in therapeutic applications. However, limitations in structure analysis and underlying mechanism investigation impede its further research. This review systemically and critically summarises current understanding in both areas, and points out the influence of starch impurities and the role of gut microbiota in DOP research. As challenges faced in studying natural polysaccharide investigations are common, this review contributes to a broader understanding of polysaccharides beyond DOP.
Collapse
Affiliation(s)
- Cheuk-Hei Lai
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chu-Ying Huo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
42
|
Hao Z, Ding X, Wang J. Effects of gut bacteria and their metabolites on gut health of animals. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:223-252. [PMID: 38763528 DOI: 10.1016/bs.aambs.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The intestine tract is a vital site for the body to acquire nutrients, serving as the largest immune organ. Intestinal health is crucial for maintaining a normal physiological state. Abundant microorganisms reside in the intestine, colonized in a symbiotic manner. These microorganisms can generate various metabolites that influence host physiological activities. Microbial metabolites serve as signaling molecules or metabolic substrates in the intestine, and some intestinal microorganisms act as probiotics and promote intestinal health. Researches on host, probiotics, microbial metabolites and their interactions are ongoing. This study reviews the effects of gut bacteria and their metabolites on intestinal health to provide useful references for animal husbandry.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Xuedong Ding
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Jing Wang
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
43
|
Yan J, Li J, Wang Y, Song J, Ni A, Fang L, Xi M, Qian Q, Wang Z, Wang H. Deciphering the molecular mediators of triclosan-induced lipid accumulation: Intervention via short-chain fatty acids and miR-101a. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123153. [PMID: 38103713 DOI: 10.1016/j.envpol.2023.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
As a potential environmental obesogen, triclosan (TCS) carries inherent risks of inducing obesity and metabolic disorders. However, the underlying molecular mechanisms behind the lipid metabolism disorder induced by TCS have remained elusive. Through a fusion of transcriptomics and microRNA target prediction, we hypothesize that miR-101a as a responsive miRNA to TCS exposure in zebrafish, playing a central role in disturbing lipid homeostasis. As an evidence, TCS exposure triggers a reduction in miR-10a expression that accompanied by elevation of genes linked to regulation of lipid homeostasis. Through precision-controlled interventions involving miRNA expression modulation, we discovered that inhibition of miR-101a enhanced expression of its target genes implicated in lipid homeostasis, subsequently triggering excessive fat accumulation. Meanwhile, the overexpression of miR-101a acts as a protective mechanism, counteracting the lipid metabolism disorder induced by TCS in the larvae. Notably, the combination of short-chain fatty acids (SCFAs) emerged as a potential remedy to alleviate TCS-induced lipid accumulation partially by counteracting the decline in miR-101a expression induced by TCS. These revelations provide insight into a prospective molecular framework underlying TCS-triggered lipid metabolism disorders, thereby paving the way for pre-emptive strategies in combating the ramifications of TCS pollution.
Collapse
Affiliation(s)
- Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Song
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
44
|
Sosnowski K, Przybyłkowski A. Ethanol-induced changes to the gut microbiome compromise the intestinal homeostasis: a review. Gut Microbes 2024; 16:2393272. [PMID: 39224006 PMCID: PMC11376419 DOI: 10.1080/19490976.2024.2393272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The intestine is the largest organ in terms of surface area in the human body. It is responsible not only for absorbing nutrients but also for protection against the external world. The gut microbiota is essential in maintaining a properly functioning intestinal barrier, primarily through producing its metabolites: short-chain fatty acids, bile acids, and tryptophan derivatives. Ethanol overconsumption poses a significant threat to intestinal health. Not only does it damage the intestinal epithelium, but, maybe foremostly, it changes the gut microbiome. Those ethanol-driven changes shift its metabolome, depriving the host of the protective effect the physiological gut microbiota has. This literature review discusses the impact of ethanol consumption on the gut, the gut microbiota, and its metabolome, providing a comprehensive overview of the mechanisms through which ethanol disrupts intestinal homeostasis and discussing potential avenues for new therapeutic intervention.
Collapse
Affiliation(s)
- Konrad Sosnowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
45
|
Alberge J, Mussard E, Al-Ayoubi C, Lencina C, Marrauld C, Cauquil L, Achard CS, Mateos I, Alassane-Kpembi I, Oswald IP, Soler L, Combes S, Beaumont M. Butyrate reduces epithelial barrier dysfunction induced by the foodborne mycotoxin deoxynivalenol in cell monolayers derived from pig jejunum organoids. Gut Microbes 2024; 16:2430424. [PMID: 39572558 PMCID: PMC11587856 DOI: 10.1080/19490976.2024.2430424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/30/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
The foodborne mycotoxin deoxynivalenol (DON) produced by Fusarium species threats animal and human health through disruption of the intestinal barrier. Targeting the gut microbiota and its products appears as a promising strategy to mitigate DON intestinal toxicity. In this study, we investigated whether the bacterial metabolite butyrate could alleviate epithelial barrier disruption induced by DON. We used a model of cell monolayers derived from porcine jejunum organoids allowing to reproduce the cellular complexity of the intestinal epithelium. Our results show that DON dose-dependently disrupted the epithelial barrier integrity, reduced epithelial differentiation, and altered innate immune defenses. Butyrate attenuated the DON-induced increase in paracellular permeability. Butyrate also prevented epithelial barrier dysfunction triggered by anisomycin, a ribosome inhibitor like DON. Moreover, butyrate partially counteracted the effects of DON on tight junctions (TJP1, OCLN), innate epithelial defenses (PTGS2, CD14, TLR4, TLR5), and absorptive cell functions (CA2, VIL1, NHE3, CFTR). In contrast, butyrate did not prevent the toxic effects of DON on mitochondrial metabolism, proliferation and goblet cell functions. Taken together, our results demonstrate that the bacterial metabolite butyrate is able to reduce DON-induced epithelial barrier disruption.
Collapse
Affiliation(s)
- Julie Alberge
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Eloïse Mussard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- Lallemand Animal Nutrition, Blagnac Cedex, France
| | - Carine Al-Ayoubi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Corinne Lencina
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Ivan Mateos
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- Lallemand Animal Nutrition, Blagnac Cedex, France
- Departamento de Producción Animal, Universidad de León, León, Spain
| | - Imourana Alassane-Kpembi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Isabelle P. Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Laura Soler
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| |
Collapse
|
46
|
He Z, Dong H. The roles of short-chain fatty acids derived from colonic bacteria fermentation of non-digestible carbohydrates and exogenous forms in ameliorating intestinal mucosal immunity of young ruminants. Front Immunol 2023; 14:1291846. [PMID: 38149240 PMCID: PMC10750390 DOI: 10.3389/fimmu.2023.1291846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
Short-chain fatty acids (SCFA) are a class of organic fatty acids that consist of 1 to 6 carbons in length. They are primary end-products which arise from non-digestible carbohydrates (NDC) fermentation of colonic bacteria. They are the fundamental energy sources for post-weaning ruminants. SCFA represent the major carbon flux of diet through the gut microbiota to the host. They also play a vital role in regulating cell expansion and gene expression of the gastrointestinal tract (GIT). Recently, remarkable progresses have been made in understanding the immunomodulatory effects of SCFA and their interactions with the host. The processes involved in this study encompassed inflammasome activation, proliferation of lymphocytes, and maturation of intestinal mucosal immunity maturation. It is important to note that the establishment and maturation of intestinal mucosal immune system are intricately connected to the barrier function of intestinal epithelial cells (IEC) and the homeostasis of gut microbiota. Thus, insights into the role of SCFA in enteric mucosal immunoreaction of calves will enhance our understanding of their various regulatory functions. This review aims to analyze recent evidence on the role of SCFA as essential signaling molecules between gut microbiota and animal health. Additionally, we provide a summary of current literature on SCFA in intestinal mucosal immune responses of dairy calves.
Collapse
Affiliation(s)
| | - Hong Dong
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
47
|
Divyashri G, Karthik P, Murthy TPK, Priyadarshini D, Reddy KR, Raghu AV, Vaidyanathan VK. Non-digestible oligosaccharides-based prebiotics to ameliorate obesity: Overview of experimental evidence and future perspectives. Food Sci Biotechnol 2023; 32:1993-2011. [PMID: 37860742 PMCID: PMC10581984 DOI: 10.1007/s10068-023-01381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 10/21/2023] Open
Abstract
The diverse populations reportedly suffer from obesity on a global scale, and inconclusive evidence has indicated that both environmental and genetic factors are associated with obesity development. Therefore, a need exists to examine potential therapeutic or prophylactic molecules for obesity treatment. Prebiotics with non-digestible oligosaccharides (NDOs) have the potential to treat obesity. A limited number of prebiotic NDOs have demonstrated their ability as a convincing therapeutic solution to encounter obesity through various mechanisms, viz., stimulating beneficial microorganisms, reducing the population of pathogenic microorganisms, and also improving lipid metabolism and glucose homeostasis. NDOs include pectic-oligosaccharides, fructo-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, manno-oligosaccharides and other oligosaccharides which significantly influence the overall human health by different mechanisms. This review provides the treatment of obesity benefits by incorporating these prebiotic NDOs, according to established scientific research, which shows their good effects extend beyond the colon.
Collapse
Affiliation(s)
- G. Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Pothiyappan Karthik
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, 641 021 India
| | - T. P. Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Dey Priyadarshini
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006 Australia
| | - Anjanapura V. Raghu
- Faculty of Allied Health Sciences, BLDE (Deemed-to-Be University), Vijayapura, 586103 Karnataka India
| | - Vinoth Kumar Vaidyanathan
- Department of Biotechnology, School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology (SRM IST), 603 203 Kattankulathur, India
| |
Collapse
|
48
|
Silva RSD, Mendonça IP, Paiva IHRD, Souza JRBD, Peixoto CA. Fructooligosaccharides and galactooligosaccharides improve hepatic steatosis via gut microbiota-brain axis modulation. Int J Food Sci Nutr 2023; 74:760-780. [PMID: 37771001 DOI: 10.1080/09637486.2023.2262779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Studies have shown that gut dysbiosis is associated with the steatotic liver disease associated with metabolic dysfunction (MALSD) and its severity. This study evaluated the effects of two commercially available prebiotics fructooligosaccharides (FOS) and galactooligosaccharides(GOS) on hepatic adipogenesis, inflammation, and gut microbiota in high-fat diet-induced MALSD. The results indicated that FOS and GOS effectively reduced insulin resistance, hyperglycaemia, triglyceridemia, cholesterolaemia, and IL-1β serum levels. Moreover, FOS and GOS modulated the lipogenic (SREBP-1c, ACC, and FAS) and lipolytic (ATGL) signalling pathways, and reduced inflammatory markers such as p-NFκB-65, IL-6, iNOS, COX-2, TNF-α, IL-1β, and nitrotyrosine. FOS and GOS also enhanced the abundance of acetate producers' bacteria Bacteroides acidifaciens and Bacteroides dorei. FOS and GOS also induced positive POMC/GPR43 neurons at the arcuate nucleus, indicating hypothalamic signalling modulation. Our results suggest that FOS and GOS attenuated MALSD by reducing the hepatic lipogenic pathways and intestinal permeability through the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
49
|
Yu C, Dong Q, Chen M, Zhao R, Zha L, Zhao Y, Zhang M, Zhang B, Ma A. The Effect of Mushroom Dietary Fiber on the Gut Microbiota and Related Health Benefits: A Review. J Fungi (Basel) 2023; 9:1028. [PMID: 37888284 PMCID: PMC10608147 DOI: 10.3390/jof9101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Mushroom dietary fiber is a type of bioactive macromolecule derived from the mycelia, fruiting bodies, or sclerotia of edible or medicinal fungi. The use of mushroom dietary fiber as a prebiotic has recently gained significant attention for providing health benefits to the host by promoting the growth of beneficial microorganisms; therefore, mushroom dietary fiber has promising prospects for application in the functional food industry and in drug development. This review summarizes methods for the preparation and modification of mushroom dietary fiber, its degradation and metabolism in the intestine, its impact on the gut microbiota community, and the generation of short-chain fatty acids (SCFAs); this review also systematically summarizes the beneficial effects of mushroom dietary fiber on host health. Overall, this review aims to provide theoretical guidance and a fresh perspective for the prebiotic application of mushroom dietary fiber in the development of new functional foods and drugs.
Collapse
Affiliation(s)
- Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Ruihua Zhao
- School of Life Sciences, Yan’an University, Yan’an 716000, China;
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mengke Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Baosheng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
50
|
Zhang D, Zhou X, Zhou W, Cui SW, Nie S. Intestinal organoids: A thriving and powerful tool for investigating dietary nutrients-intestinal homeostasis axis. Food Res Int 2023; 172:113109. [PMID: 37689878 DOI: 10.1016/j.foodres.2023.113109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Dietary nutrients regulate intestinal homeostasis through a variety of complex mechanisms, to affect the host health. Nowadays, various models have been used to investigate the dietary nutrients-intestinal homeostasis axis. Different from the limited flux in animal experiments, limited intestinal cell types and distorted simulation of intestinal environment of 2D cells, intestinal organoid (IO) is a 3D culture system of mini-gut with various intestinal epithelial cells (IECs) and producibility of intestinal biology. Therefore, IOs is a powerful tool to evaluate dietary nutrients-intestinal homeostasis interaction. This review summarized the application of IOs in the investigation of mechanisms for macronutrients (carbohydrates, proteins and fats) and micronutrients (vitamins and minerals) affecting intestinal homeostasis directly or indirectly (polysaccharides-intestinal bacteria, proteins-amino acids). In addition, new perspectives of IOs in combination with advanced biological techniques and their applications in precise nutrition were proposed.
Collapse
Affiliation(s)
- Duoduo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| | - Wengan Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; Agriculture and Agri-Food Canada, Guelph Research and Development Centre, 93 Stone Road West, Guelph, Ontario NIG 5C9, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|