1
|
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Motahare Sadat Ayat Mirdamadi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Nasrin Khaniabad
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pouria Daneii
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Zoheir Mohammadian Farsani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
2
|
He XX, Luo SS, Qin HQ, Mo XW. MicroRNA-766-3p-mediated downregulation of HNF4G inhibits proliferation in colorectal cancer cells through the PI3K/AKT pathway. Cancer Gene Ther 2022; 29:803-813. [PMID: 34158627 DOI: 10.1038/s41417-021-00362-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are a class of transcription factors that play a pivotal role in carcinogenesis, but their function in colorectal cancer (CRC) remains unclear. Here, we investigate the role NRs play in CRC pathogenesis. We found that hepatocyte nuclear factor 4 gamma (HNF4G; NR2A2), hepatocyte nuclear factor 4α (HNF4A; NR2A1), and retinoid-related orphan receptor γ (RORC; NR1F3) were significantly upregulated in CRC tissues analyzed by GEPIA bioinformatics tool. The expression of HNF4G was examined in CRC samples and cell lines by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry. Increased expression of HNF4G was strongly associated with high tumor-node-metastasis stage and poor prognosis. Moreover, overexpression of HNF4G significantly promoted the proliferation of CRC cells in vitro. Next, we found that HNF4G promoted CRC proliferation via the PI3K/AKT pathway through targeting of GNG12 and PTK2. In addition, HNF4G was verified as a direct target of microRNA-766-3p (miR-766-3p). miR-766-3p inhibited the proliferation of CRC cells by targeting HNF4G in vitro and in vivo. Collectively, our study indicates that miR-766-3p reduces the proliferation of CRC cells by targeting HNF4G expression and thus inhibits the PI3K/AKT pathway. Therefore, development of therapies which target the miR-766-3p/HNF4G axis may aid in the treatment of CRC.
Collapse
Affiliation(s)
- Xin-Xin He
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Colorectal Cancer Clinical Medical Research Center of Guangxi, Nanning, China
| | - Shan-Shan Luo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Colorectal Cancer Clinical Medical Research Center of Guangxi, Nanning, China
| | - Hai-Quan Qin
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Colorectal Cancer Clinical Medical Research Center of Guangxi, Nanning, China
| | - Xian-Wei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Colorectal Cancer Clinical Medical Research Center of Guangxi, Nanning, China.
| |
Collapse
|
3
|
Deng ZM, Chen GH, Dai FF, Liu SY, Yang DY, Bao AY, Cheng YX. The clinical value of miRNA-21 in cervical cancer: A comprehensive investigation based on microarray datasets. PLoS One 2022; 17:e0267108. [PMID: 35486636 PMCID: PMC9053781 DOI: 10.1371/journal.pone.0267108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/03/2022] [Indexed: 11/19/2022] Open
Abstract
Previous work has demonstrated that the expression of microRNA-21 (miR-21) is implicated in cervical cancer (CC). However, little is known regarding its associations with clinical parameters. We first conducted a meta-analysis using data from Gene Expression Omnibus (GEO) microarrays and The Cancer Genome Atlas (TCGA). Then, enrichment analysis and hub gene screening were performed by bioinformatic methods. Finally, the role of the screened target genes in CC was explored. According to the meta-analysis, the expression of miR-21 in cancer tissues was higher than in adjacent nontumor tissues (P < 0.05). In addition, 46 genes were predicted as potential targets of miR-21. After enrichment analyses, it was detected that these genes were enriched in various cancer pathways, including the phosphatidylinositol signaling system and mammalian target of rapamycin (mTOR) signaling pathway. In this study, bioinformatic tools and meta-analysis validated that miR-21 may function as a highly sensitive and specific marker for the diagnosis of CC, which may provide a novel approach to the diagnosis and treatment of CC.
Collapse
Affiliation(s)
- Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gan-Hong Chen
- Department of Pathology, The People’s Hospital of Honghu, Honghu, Hubei, China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shi-Yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Yong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - An-Yu Bao
- Department of Clinical laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (AYB); (YXC)
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (AYB); (YXC)
| |
Collapse
|
4
|
Zhang H, Ding R, Chen D. Value of miR-21 levels as potential biomarkers in the early diagnosis of hepatocellular carcinoma:a meta-analysis. Biomarkers 2021; 26:586-597. [PMID: 34266326 DOI: 10.1080/1354750x.2021.1955976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Many studies have reported that miR-21 levels are different between hepatocellular carcinoma (HCC) patients and healthy controls, which could be used as a potential diagnostic biomarker for HCC. However, the diagnostic value of miR-21 for HCC varied greatly in previous studies. Therefore, this meta-analysis aims to provide higher grade evidence to investigate the diagnostic value of miR-21 for HCC. METHODS The databases of PubMed, Embase, Web of Science, and Chinese databases (CNKI and VIP) were searched. The indices of miR-21 in the diagnosis of HCC were pooled using bivariate random-effect models. QUADAS-2 was used to evaluate the quality of included studies. All statistical analyses were performed by STATA (12.0) software. RESULTS Totally, 1589 subjects from 14 publications were included in this study. The pooled sensitivity, specificity, positive likelihood ratios (PLR), negative likelihood ratios (NLR), and area under the curve (AUC) were 0.83 (0.77-0.88), 0.80 (0.74-0.85), 4.12 (3.04-5.57), 0.21 (0.15-0.30), and 0.88 (0.85-0.91), respectively. Subgroup analysis showed that the AUC was higher in Non-China subgroup, qRT-PCR subgroup, and plasma subgroup than that in China subgroup, ddPCR subgroup, and serum subgroup, respectively. However, the AUC was not significantly different between the healthy control subgroup and chronic hepatitis control subgroup. Significant heterogeneity was found in this meta-analysis, while no evident publication bias was identified. CONCLUSIONS miR-21 is a valuable biomarker for the early diagnosis of HCC.
Collapse
Affiliation(s)
- Huiying Zhang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Rui Ding
- School of Public Health, Anhui Medical University, Hefei, China
| | - Daojun Chen
- School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Bouziyane A, Lamsisi M, Benaguida H, Benhessou M, El Kerroumi M, Ennaji MM. Diagnostic Value of MicroRNA 21 in Endometrial Cancer and Benign Lesions and its Differential Expression in Relation to Clinicopathological Parameters. Microrna 2021; 10:146-152. [PMID: 34086554 DOI: 10.2174/2211536610666210604122816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/16/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endometrial cancer is one of the most common malignancies among women worldwide. Although this cancer is often diagnosed at early stages, the need for biomarkers of diagnosis remains a necessity to overcome conventional invasive procedures of diagnosis. OBJECTIVE In our study, we aim to investigate the diagnostic value of microRNA-21 in endometrial cancer and its relation to clinicopathological features. METHODS We used RT-qPCR to measure the expression of microRNA-21 in 71 tumor tissues, 53 adjacent tissues, and 54 benign lesions. RESULTS Our results show that microRNA-21 is a potential biomarker for endometrial cancer with an area under the receiver operating characteristic curve of 0.925 (95% CI = 0.863 - 0.964, P<0.0001). The sensitivity was 84.51% (95% CI = 74.0 - 92.0) and specificity was 86.79% (95% CI = 74.7 - 94.5). For discrimination between benign lesions and controls the AUC was 0,881 with a sensitivity of 100% (95% CI = 93.4 - 100.0) and specificity of 66.04 % (95% CI = 51.7 - 78.5), and for discriminating benign lesions from tumors the AUC was 0,750 with a sensitivity of 54.93% (95% CI = 42.7 - 66.8) and specificity of 90.74% (95% CI = 79.7 - 96.9). We also found that tumors with elevated microRNA-21 expression are of advanced FIGO stage, high histological grades, and have cervical invasion, myometrial invasion and distant metastasis. CONCLUSION Our findings support the important role of miR-21 as a biomarker for the diagnosis of endometrial cancer. Further studies on minimally invasive/noninvasive samples such as serum, blood, and urine are necessary to provide a better alternative to current diagnosis methods.
Collapse
Affiliation(s)
- Amal Bouziyane
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Maryame Lamsisi
- Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia - Hassan II University of Casablanca, Morocco
| | - Hicham Benaguida
- Mohammed VI Center for cancer treatment, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Mustapha Benhessou
- Mohammed VI Center for cancer treatment, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Mohamed El Kerroumi
- Mohammed VI Center for cancer treatment, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia - Hassan II University of Casablanca, Morocco
| |
Collapse
|
6
|
[CRISPR/Cas9-mediated microRNA-21 knockout increased imatinib sensitivity in chronic myeloid leukemia cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:243-249. [PMID: 33910311 PMCID: PMC8081948 DOI: 10.3760/cma.j.issn.0253-2727.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
目的 观察microRNA-21(miR-21)敲除对耐伊马替尼的人慢性髓性白血病细胞株K562/G01细胞在增殖、药物敏感性等方面的影响,初步探讨miR-21影响K562/G01细胞伊马替尼敏感性的可能机制。 方法 运用CRISPR/Cas9技术敲除K562/G01细胞的miR-21,经PCR筛选、Sanger测序鉴定和实时定量PCR检测获得miR-21敲除的单细胞克隆。扩增培养后,采用MTT法、细胞克隆形成实验检测miR-21敲除对K562/G01细胞增殖的影响。使用伊马替尼处理细胞后,用MTT法和Annexin Ⅴ-APC/7-AAD双染流式细胞检测法观察敲除miR-21后K562/G01细胞对伊马替尼的敏感性的变化。Western blot法检测miR-21敲除前后K562/G01细胞PTEN、AKT、p-AKT、PI3K、p-PI3K、P210BCR-ABL、p-P210BCR-ABL蛋白表达量的变化。 结果 成功构建了3个miR-21敲除的K562/G01单细胞克隆,CRISPR/Cas9介导的突变效率为7.12%~8.11%。miR-21敲除使K562/G01细胞的增殖受抑,野生型和1#、2#、6#单细胞克隆的克隆形成率依次为(57.67±8.25)%、(26.94±5.36)%、(7.17±2.11)%、(31.50±3.65)%,差异有统计学意义(P<0.05)。miR-21敲除使K562/G01细胞对伊马替尼的敏感性增加,野生型和1#、2#、6#单细胞克隆对伊马替尼的IC50值分别为(21.92±1.36)µmol/ml、(3.98±0.39)µmol/ml、(5.38±1.01)µmol/ml、(9.24±1.36)µmol/ml,差异有统计学意义(P<0.05)。miR-21敲除后,其靶基因PTEN的蛋白表达水平未见明显变化,但PI3K、AKT信号分子的活化受到抑制,并且P210BCR-ABL、p-P210BCR-ABL蛋白表达也下调。 结论 miR-21敲除抑制K562/G01细胞增殖,提高其对伊马替尼的敏感性,这可能是通过抑制PI3K/AKT信号通路和BCR-ABL表达实现的。
Collapse
|
7
|
Circulating miR-21, miR-29a, and miR-126 are associated with premature death risk due to cancer and cardiovascular disease: the JACC Study. Sci Rep 2021; 11:5298. [PMID: 33674633 PMCID: PMC7935984 DOI: 10.1038/s41598-021-84707-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Primary prevention of premature death is a public health concern worldwide. Circulating microRNAs (miRNAs) have been described as potential diagnostic biomarkers for diseases as cancer and cardiovascular disease (CVD). This case-cohort study aimed to investigate the potential relationship between circulating miRNAs and the risk of premature death. A total of 39,242 subjects provided baseline serum samples in 1988–1990. Of these, 345 subjects who died of intrinsic disease (< 65 years old) and for which measurable samples were available were included in this study. We randomly selected a sub-cohort of 879 subjects. Circulatring miR-21, miR-29a, and miR-126 were determined using qRT-PCR. Conditional logistic regression models were used to analyse the data with respect to stratified miRNA levels. Multivariable logistic regression revealed that subjects with high circulating miR-21 and miR-29a individual levels had a significantly higher risk of total death, cancer death, and CVD death than those with medium miR-21 and miR-29a individual levels. Conversely, subjects with low circulating miR-126 levels had a significantly higher risk of total death than those with medium levels. This suggests that circulating miRNAs are associated with the risk of premature death from cancer and CVD, identifying them as potential biomarkers for early detection of high-risk individuals.
Collapse
|
8
|
Gallardo-Gómez M, De Chiara L, Álvarez-Chaver P, Cubiella J. Colorectal cancer screening and diagnosis: omics-based technologies for development of a non-invasive blood-based method. Expert Rev Anticancer Ther 2021; 21:723-738. [PMID: 33507120 DOI: 10.1080/14737140.2021.1882858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Colorectal cancer (CRC) is one of the most important health problems in the Western world. In order to reduce the burden of the disease, two strategies are proposed: screening and prompt detection in symptomatic patients. Although diagnosis and prevention are mainly based on colonoscopy, fecal hemoglobin detection has been widely implemented as a noninvasive strategy. Various studies aiming to discover blood-based biomarkers have recently emerged.Areas covered: The burgeoning omics field provides diverse high-throughput approaches for CRC blood-based biomarker discovery. In this review, we appraise the most robust and commonly used technologies within the fields of genomics, transcriptomics, epigenomics, proteomics, and metabolomics, together with their targeted validation approaches. We summarize the transference process from the discovery phase until clinical translation. Finally, we review the best candidate biomarkers and their potential clinical applicability.Expert opinion: Some available biomarkers are promising, especially in the field of epigenomics: DNA methylation and microRNA. Transference requires the joint collaboration of basic researchers, intellectual property experts, technology transfer officers and clinicians. Blood-based biomarkers will be selected not only based on their diagnostic accuracy and cost but also on their reliability, applicability to clinical analysis laboratories and their acceptance by the population.
Collapse
Affiliation(s)
- María Gallardo-Gómez
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Loretta De Chiara
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Paula Álvarez-Chaver
- Proteomics Unit, Service of Structural Determination, Proteomics and Genomics, Center for Scientific and Technological Research Support (CACTI), University of Vigo, Vigo, Spain
| | - Joaquin Cubiella
- Department of Gastroenterology, Hospital Universitario De Ourense, Ourense, Spain.,Instituto De Investigación Sanitaria Galicia Sur, Ourense, Spain.,Centro De Investigación Biomédica En Red Enfermedades Hepáticas Y Digestivas, Ourense, Spain
| |
Collapse
|
9
|
Ourô S, Mourato C, Ferreira MP, Albergaria D, Cardador A, Castro RE, Maio R, Rodrigues CMP. Evaluation of Tissue and Circulating miR-21 as Potential Biomarker of Response to Chemoradiotherapy in Rectal Cancer. Pharmaceuticals (Basel) 2020; 13:E246. [PMID: 32937907 PMCID: PMC7559906 DOI: 10.3390/ph13090246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/17/2022] Open
Abstract
Response to chemoradiotherapy (CRT) in patients with locally advanced rectal cancer (RC) is quite variable and it is urgent to find predictive biomarkers of response. We investigated miR-21 as tissue and plasma biomarker of response to CRT in a prospective cohort of RC patients; The expression of miR-21 was analyzed in pre- and post-CRT rectal tissue and plasma in 37 patients with RC. Two groups were defined: Pathological responders (TRG 0, 1 and 2) and non-responders (TRG 3). The association between miR-21, clinical and oncological outcomes was assessed; miR-21 was upregulated in tumor tissue and we found increased odds of overexpression in pre-CRT tumor tissue (OR: 1.63; 95% CI: 0.40-6.63, p = 0.498) and pre-CRT plasma (OR: 1.79; 95% CI: 0.45-7.19, p = 0.414) of non-responders. The overall recurrence risk increased with miR-21 overexpression in pre-CRT tumor tissue (HR: 2.175, p = 0.37); Significantly higher miR-21 expression is observed in tumor tissue comparing with non-neoplastic. Increased odds of non-response is reported in patients expressing higher miR-21, although without statistical significance. This is one of the first studies on circulating miR-21 as a potential biomarker of response to CRT in RC patients.
Collapse
Affiliation(s)
- Susana Ourô
- Surgical Department, Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (M.P.F.); (D.A.); (R.M.)
- NOVA Medical School, Faculdade de Ciências Médicas, 1169-056 Lisboa, Portugal
| | - Cláudia Mourato
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.M.); (A.C.); (R.E.C.)
| | - Marisa P. Ferreira
- Surgical Department, Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (M.P.F.); (D.A.); (R.M.)
| | - Diogo Albergaria
- Surgical Department, Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (M.P.F.); (D.A.); (R.M.)
| | - André Cardador
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.M.); (A.C.); (R.E.C.)
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.M.); (A.C.); (R.E.C.)
| | - Rui Maio
- Surgical Department, Hospital Beatriz Ângelo, 2674-514 Loures, Portugal; (M.P.F.); (D.A.); (R.M.)
- NOVA Medical School, Faculdade de Ciências Médicas, 1169-056 Lisboa, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (C.M.); (A.C.); (R.E.C.)
| |
Collapse
|
10
|
Chu YL, Li H, Ng PLA, Kong ST, Zhang H, Lin Y, Tai WCS, Yu ACS, Yim AKY, Tsang HF, Cho WCS, Wong SCC. The potential of circulating exosomal RNA biomarkers in cancer. Expert Rev Mol Diagn 2020; 20:665-678. [PMID: 32188269 DOI: 10.1080/14737159.2020.1745064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/17/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION There are great potentials of using exosomal RNAs (exoRNA) as biomarkers in cancers. The isolation of exoRNA requires the use of ultracentrifugation to isolate cell-free RNA followed by detection using real-time PCR, microarray, next-generation sequencing, or Nanostring nCounter system. The use of exoRNA enrichment panels has largely increased the detection sensitivity and specificity when compared to traditional diagnostic tests. Moreover, using exoRNA as biomarkers can assist the early detection of chemo and radioresistance cancer, and in turn opens up the possibility of personalized treatment to patients. Finally, exoRNA can be detected at an early stage of cancer recurrence to improve the survival rate. AREAS COVERED In this review, the authors summarized the detection methods of exoRNA as well as its potential as a biomarker in cancer diagnosis and chemo and radioresistance. EXPERT OPINION The application of exoRNAs in clinical diagnosis is still in its infancy. Further researches on extracellular vesicles isolation, detection protocols, exoRNA classes and subclasses, and the regulatory biological pathways have to be performed before exoRNA can be applied translationally.
Collapse
Affiliation(s)
- Yin Lam Chu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Harriet Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Pik Lan Amanda Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Siu Ting Kong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College , Guangzhou, Guangdong, China
| | - Yusheng Lin
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, Faculty of Applied Sciences and Textiles, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region , Kowloon, China
| | | | | | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | | | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| |
Collapse
|
11
|
Shi ZY, Yang XX, Malichewe C, Li YS, Guo XL. Exosomal microRNAs-mediated intercellular communication and exosome-based cancer treatment. Int J Biol Macromol 2020; 158:530-541. [PMID: 32360962 DOI: 10.1016/j.ijbiomac.2020.04.228] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Exosomes are extracellular vesicles with a diameter of about 30 to 100 nm, which play a crucial role in intercellular communication. Compared with normal cells, the release rate of tumor-derived exosomes (TDEs) significantly increased, and exosomal contents, especially microRNAs (miRNAs), greatly changed. TDEs contribute to the proliferation, metastasis and resistance of tumor cells, regulate immune response and tumor autophagy, and mediate tumor-stroma communication. In addition, exosomes may be involved in tumor complications. In view of the role of exosomes in intercellular communication, exosomes have been developed as tumor biomarkers, therapeutic targets, and drug delivery systems for tumor diagnosis, prognosis and treatment. Despite the many advantages of exosomes, there are many challenges in exosomal development and application, such as incomprehensive understanding of biological functions, safety and specificity for therapeutic use. This article reviews the biogenesis of TDEs and focuses on the role of exosomal miRNAs in intercellular communication and exosome-based treatment for cancer.
Collapse
Affiliation(s)
- Zhao-Yu Shi
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiao-Xia Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - ChristinaYallen Malichewe
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Ying-Shuang Li
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China..
| |
Collapse
|
12
|
Peng Q, Zhang X, Min M, Zou L, Shen P, Zhu Y. The clinical role of microRNA-21 as a promising biomarker in the diagnosis and prognosis of colorectal cancer: a systematic review and meta-analysis. Oncotarget 2018; 8:44893-44909. [PMID: 28415652 PMCID: PMC5546529 DOI: 10.18632/oncotarget.16488] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
This systematic analysis aimed to investigate the value of microRNA-21 (miR-21) in colorectal cancer for multiple purposes, including diagnosis and prognosis, as well as its predictive power in combination biomarkers. Fifty-seven eligible studies were included in our meta-analysis, including 25 studies for diagnostic meta-analysis and 32 for prognostic meta-analysis. For the diagnostic meta-analysis of miR-21 alone, the overall pooled results for sensitivity, specificity, and area under the curve (AUC) were 0.64 (95% CI: 0.53-0.74), 0.85 (0.79-0.90), and 0.85 (0.81-0.87), respectively. Circulating samples presented corresponding values of 0.72 (0.63-0.79), 0.84 (0.78-0.89), and 0.86 (0.83-0.89), respectively. For the diagnostic meta-analysis of miR-21-related combination biomarkers, the above three parameters were 0.79 (0.69-0.86), 0.79 (0.68-0.87), and 0.86 (0.83-0.89), respectively. Notably, subgroup analysis suggested that miRNA combination markers in circulation exhibited high predictive power, with sensitivity of 0.85 (0.70-0.93), specificity of 0.86 (0.77-0.92), and AUC of 0.92 (0.89-0.94). For the prognostic meta-analysis, patients with higher expression of miR-21 had significant shorter disease-free survival [DFS; pooled hazard ratio (HR): 1.60; 95% CI: 1.20-2.15] and overall survival (OS; 1.54; 1.27-1.86). The combined HR in tissues for DFS and OS were 1.76 (1.31-2.36) and 1.58 (1.30-1.93), respectively. Our comprehensive systematic review revealed that circulating miR-21 may be suitable as a diagnostic biomarker, while tissue miR-21 could be a prognostic marker for colorectal cancer. In addition, miRNA combination biomarkers may provide a new approach for clinical application.
Collapse
Affiliation(s)
- Qiliang Peng
- Department of Radiotherapy & Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Xueli Zhang
- Center for Systems Biology, Soochow University, Suzhou, China.,School of Medicine, Örebro University, Örebro, Sweden
| | - Ming Min
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Li Zou
- Department of Radiotherapy & Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Peipei Shen
- Department of Radiotherapy & Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Yaqun Zhu
- Department of Radiotherapy & Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| |
Collapse
|
13
|
Wikberg ML, Myte R, Palmqvist R, van Guelpen B, Ljuslinder I. Plasma miRNA can detect colorectal cancer, but how early? Cancer Med 2018; 7:1697-1705. [PMID: 29573205 PMCID: PMC5943420 DOI: 10.1002/cam4.1398] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of deaths worldwide but has a good prognosis if detected early. The need for efficient, preferable non‐ or minimally invasive, inexpensive screening tools is therefore critical. We analyzed 12 miRNAs in pre‐ and postdiagnostic plasma samples to evaluate their potential as CRC screening markers. We used a unique study design with two overlapping cohorts, allowing analysis of pre‐ and postdiagnostic samples from 58 patients with CRC and matched healthy controls. Plasma concentrations of miR‐15b, ‐16, ‐18a, ‐19a, 21, ‐22, ‐25, ‐26a, ‐29c, ‐142‐5p, ‐150, and ‐192 were measured by semi‐quantitative real‐time PCR. Concentrations of miR‐18a, ‐21, ‐22, and ‐25 in plasma from patients with CRC were significantly altered compared to healthy controls. Combined as a multimarker panel, they detected CRC with an AUC of 0.93. Furthermore, levels of these three miRNAs also showed different levels in the prediagnostic case samples close to diagnosis. Only miR‐21‐levels were elevated several years before diagnosis. Plasma levels of miR‐18a, ‐21, ‐22, and ‐25 show promise as screening biomarkers for CRC. However, based on our unique analysis of prediagnostic and postdiagnostic samples from the same patients, we conclude that circulating miRNAs elevated at diagnosis may not automatically be suitable for CRC screening, if the increase occurs too close to clinical diagnosis.
Collapse
Affiliation(s)
- Maria L Wikberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Robin Myte
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Gao Y, Dai M, Liu H, He W, Lin S, Yuan T, Chen H, Dai S. Diagnostic value of circulating miR-21: An update meta-analysis in various cancers and validation in endometrial cancer. Oncotarget 2018; 7:68894-68908. [PMID: 27655698 PMCID: PMC5356598 DOI: 10.18632/oncotarget.12028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/02/2016] [Indexed: 01/06/2023] Open
Abstract
MiR-21 has been identified as one of the most common proto-oncogenes. It is hypothesized that up-regulated miR-21 could be served as a potential biomarker for human cancer diagnosis. However, inconsistencies or discrepancies about diagnostic accuracy of circulating miR-21 still remain. In this sense, miR-21′s diagnostic value needs to be fully validated. In this study, we performed an update meta-analysis to estimate the diagnostic value of circulating miR-21 in various human cancers. Additionally, we conducted a validation test on 50 endometrial cancer patients, 50 benign lesion patients and 50 healthy controls. A systematical literature search for relevant articles was performed in Pubmed, Embase and Cochrane Library. A total of 48 studies from 39 articles, involving 3,568 cancer patients and 2,248 controls, were included in this meta-analysis. The overall sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) were 0.76 (0.71-0.80), 0.82 (0.79-0.85), 4.3 (3.6-5.1), 0.29 (0.24-0.35), 15 (11-20) and 0.86 (0.83-0.89), respectively. In the validation test, the expression levels of serum miR-21 were significantly higher in benign lesion patients (p = 0.003) and endometrial cancer patients (p = 0.000) compared with that of healthy controls. Endometrial cancer patients showed higher miR-21 expression levels (p = 0.000) compared with benign lesion patients. In conclusion, the meta-analysis shows that circulating miR-21 has excellent performance on the diagnosis for various cancers and the validation test demonstrates that serum miR-21 could be served as a novel biomarker for endometrial carcinoma.
Collapse
Affiliation(s)
- Yun Gao
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Meiyu Dai
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Haihua Liu
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Wangjiao He
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Shengzhang Lin
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Tianzhu Yuan
- Department of Thoracic Surgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Hong Chen
- Department of Haematology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Shengming Dai
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| |
Collapse
|
15
|
Moody L, He H, Pan YX, Chen H. Methods and novel technology for microRNA quantification in colorectal cancer screening. Clin Epigenetics 2017; 9:119. [PMID: 29090038 PMCID: PMC5655825 DOI: 10.1186/s13148-017-0420-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/17/2017] [Indexed: 02/08/2023] Open
Abstract
The screening and diagnosis of colorectal cancer (CRC) currently relies heavily on invasive endoscopic techniques as well as imaging and antigen detection tools. More accessible and reliable biomarkers are necessary for early detection in order to expedite treatment and improve patient outcomes. Recent studies have indicated that levels of specific microRNA (miRNA) are altered in CRC; however, measuring miRNA in biological samples has proven difficult, given the complicated and lengthy PCR-based procedures used by most laboratories. In this manuscript, we examine the potential of miRNA as CRC biomarkers, summarize the methods that have commonly been employed to quantify miRNA, and focus on novel strategies that can improve or replace existing technology for feasible implementation in a clinical setting. These include isothermal amplification techniques that can potentially eliminate the need for specialized thermocycling equipment. Additionally, we propose the use of near-infrared (NIR) probes which can minimize autofluorescence and photobleaching and streamline quantification without tedious sample processing. We suggest that novel miRNA quantification tools will be necessary to encourage new discoveries and facilitate their translation to clinical practice.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Hongshan He
- Department of Chemistry, Eastern Illinois University, Charleston, IL 62910 USA
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 472 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| |
Collapse
|
16
|
Liang RF, Li M, Yang Y, Wang X, Mao Q, Liu YH. Circulating miR-128 as a potential diagnostic biomarker for glioma. Clin Neurol Neurosurg 2017; 160:88-91. [DOI: 10.1016/j.clineuro.2017.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
|
17
|
Moridikia A, Mirzaei H, Sahebkar A, Salimian J. MicroRNAs: Potential candidates for diagnosis and treatment of colorectal cancer. J Cell Physiol 2017; 233:901-913. [PMID: 28092102 DOI: 10.1002/jcp.25801] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is known as the third common cancer worldwide and an important public health problem in different populations. Several genetics and environmental risk factors are involved in the development and progression of CRC including chromosomal abnormalities, epigenetic alterations, and unhealthy lifestyle. Identification of risk factors and biomarkers could lead to a better understanding of molecular pathways involved in CRC pathogenesis. MicroRNAs (miRNAs) are important regulatory molecules which could affect a variety of cellular and molecular targets in CRC. A large number of studies have indicated deregulations of some known tissue-specific miRNAs, for example, miR-21, miR-9, miR-155, miR-17, miR-19, let-7, and miR-24 as well as circulating miRNAs, for example, miR-181b, miR-21, miR-183, let-7g, miR-17, and miR-126, in patients with CRC. In the current review, we focus on the findings of preclinical and clinical studies performed on tissue-specific and circulating miRNAs as diagnostic biomarkers and therapeutic targets for the detection of patients at various stages of CRC.
Collapse
Affiliation(s)
- Abdullah Moridikia
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Loosen SH, Schueller F, Trautwein C, Roy S, Roderburg C. Role of circulating microRNAs in liver diseases. World J Hepatol 2017; 9:586-594. [PMID: 28515844 PMCID: PMC5411953 DOI: 10.4254/wjh.v9.i12.586] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small RNAs regulate gene expression by inhibiting the turnover of their target mRNAs. In the last years, it became apparent that miRNAs are released into the circulation and circulating miRNAs emerged as a new class of biomarkers for various diseases. In this review we summarize available data on the role of circulating miRNAs in the context of acute and chronic liver diseases including hepatocellular and cholangiocellular carcinoma. Data from animal models are compared to human data and current challenges in the field of miRNAs research are discussed.
Collapse
|
19
|
NR2F2 inhibits Smad7 expression and promotes TGF-β-dependent epithelial-mesenchymal transition of CRC via transactivation of miR-21. Biochem Biophys Res Commun 2017; 485:181-188. [PMID: 28192117 DOI: 10.1016/j.bbrc.2017.02.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/20/2022]
Abstract
Metastasis is one of the most decisive factors influencing CRC patient prognosis and current studies suggest that a molecular mechanism known as EMT broadly regulates cancer metastasis. NR2F2 is a key molecule in the development of CRC, but the roles and underlying mechanisms of NR2F2 in TGF-β induced EMT in CRC remain largely unknown. In the current study, we were interested to examine the role of NR2F2 in the TGF-β-induced EMT in CRC. Here, we found NR2F2 was upregulated in CRC cells and promotes TGF-β-induced EMT in CRC. Using comparative miRNA profiling TGF-β pre-treated CRC cells in which NR2F2 had been knocked down with that of control cells, we identified miR-21 as a commonly downregulated miRNA in HT29 cells treated with TGF-β and NR2F2 siRNA, and its downregulation inhibiting migration and invasion of CRC cells. Moreover, we found NR2F2 could transcriptional activated miR-21 expression by binding to miR-21 promoter in HT29 by ChIP and luciferase assay. In the last, our data demonstrated that Smad7 was the direct target of miR-21 in CRC cells. Thus, NR2F2 could promote TGF-β-induced EMT and inhibit Smad7 expression via transactivation of miR-21, and NR2F2 may be a new common therapeutic target for CRC.
Collapse
|
20
|
Recent progress toward the use of circulating microRNAs as clinical biomarkers. Arch Toxicol 2016; 90:2959-2978. [PMID: 27585665 DOI: 10.1007/s00204-016-1828-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) have been shown to be critical mediators of many cellular and developmental processes and have been implicated in different human diseases. Since the observation of extracellular miRNAs present in various biofluids, much attention and excitement have been garnered toward understanding the functional roles of these circulating extracellular miRNAs and establishing their potential use as noninvasive diagnostic biomarkers. Here, we will review the current state of miRNA biomarkers for many human diseases, including their emerging use in toxicological applications, and discuss the current challenges in the field, with an emphasis on technical issues that often hinder discovery-based miRNA biomarker studies.
Collapse
|
21
|
Abstract
MicroRNAs (miRNAs) are a class of endogenous, evolutionarily conserved small non-coding RNAs, which play a vital role in tumour formation, development, metastasis and recurrence by inducing DNA methylation, changing tumor microenvironment and regulating signal pathways such as Wnt/β-catenin, phosphoinositide3-kinase (PI3K), K-RAS, epithelial mesenchymal transitions (EMT) and so on. Recent studies have found that the expression of many miRNAs is dyregulated in colorectal cancer, and they participate in and control the formation and development of colorectal cancer. Thus, understanding the roles and mechanisms of action of miRNAs in colorectal cancer can provide a new avenue for its early diagnosis, clinical staging, treatment and prognosis evaluation.
Collapse
|
22
|
Specific miRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol Diagn Ther 2016; 20:509-518. [DOI: 10.1007/s40291-016-0221-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
He X, Wei Y, Wang Y, Liu L, Wang W, Li N. MiR-381 functions as a tumor suppressor in colorectal cancer by targeting Twist1. Onco Targets Ther 2016; 9:1231-9. [PMID: 27094913 PMCID: PMC4789845 DOI: 10.2147/ott.s99228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
MiR-381 has been reported to be dysregulated in several human cancers. However, the function and mechanism of miR-381 in colorectal cancer (CRC) remains unclear. In the present study, the miR-381 expression was assessed in a cohort of 113 CRC specimens using real-time quantitative polymerase chain reaction (RTq-PCR), which demonstrated that miR-381 was significantly downregulated in CRC and correlated with distant metastasis and tumor, node, and metastasis (TNM) stage. Functional study revealed that restoration of miR-381 significantly inhibited the invasion, migration, and epithelial–mesenchymal transition (EMT) of CRC cells. Luciferase reporter assay validated that Twist1, an important EMT inducer, was a direct target of miR-381, and rescued Twist1 attenuated the function of miR-381 in CRC cells. Correlation analysis also revealed an inverse correlation between miR-381 and Twist1 expression levels in CRC specimens. Taken together, our results highlight the significance of miR-381/Twist1 interaction in the development and progression of CRC, and suggest that restoration of miR-381 may be a potential therapeutic strategy for the patients with CRC.
Collapse
Affiliation(s)
- Xinxin He
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| | - Yangnian Wei
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| | - Yong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| | - Ling Liu
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| | - Wen Wang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| | - Nianfeng Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Hunan, People's Republic of China
| |
Collapse
|
24
|
Afonso MB, Rodrigues PM, Simão AL, Castro RE. Circulating microRNAs as Potential Biomarkers in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma. J Clin Med 2016; 5:jcm5030030. [PMID: 26950158 PMCID: PMC4810101 DOI: 10.3390/jcm5030030] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/26/2016] [Accepted: 02/23/2016] [Indexed: 12/12/2022] Open
Abstract
Obesity and metabolic syndrome are growing epidemics worldwide and greatly responsible for many liver diseases, including nonalcoholic fatty liver disease (NAFLD). NAFLD often progresses to cirrhosis, end-stage liver failure and hepatocellular carcinoma (HCC), the most common primary liver cancer and one of the leading causes for cancer-related deaths globally. Currently available tools for the diagnosis of NAFLD staging and progression towards HCC are largely invasive and of limited accuracy. In light of the need for more specific and sensitive noninvasive molecular markers, several studies have assessed the potential of circulating microRNAs (miRNAs) as biomarkers of liver injury and hepatocarcinogenesis. Indeed, extracellular miRNAs are very stable in the blood, can be easily quantitated and are differentially expressed in response to different pathophysiological conditions. Although standardization procedures and larger, independent studies are still necessary, miRNAs constitute promising, clinically-useful biomarkers for the NAFLD-HCC spectrum.
Collapse
Affiliation(s)
- Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Pedro M Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - André L Simão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| |
Collapse
|
25
|
Cekaite L, Eide PW, Lind GE, Skotheim RI, Lothe RA. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget 2016; 7:6476-505. [PMID: 26623728 PMCID: PMC4872728 DOI: 10.18632/oncotarget.6390] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Gene expression is in part regulated by microRNAs (miRNAs). This review summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role as growth regulators, the mechanisms that regulate the miRNAs themselves and the potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily fluids from CRC patients have been investigated for biomarker potential of miRNAs (>160 papers presented in a comprehensive tables), none single miRNA nor miRNA expression signatures are in clinical use for this disease. More than 500 miRNA-target pairs have been identified in CRC and we discuss how these regulatory nodes interconnect and affect signaling pathways in CRC progression.
Collapse
Affiliation(s)
- Lina Cekaite
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter W. Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Guro E. Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Ragusa M, Barbagallo C, Statello L, Condorelli AG, Battaglia R, Tamburello L, Barbagallo D, Di Pietro C, Purrello M. Non-coding landscapes of colorectal cancer. World J Gastroenterol 2015; 21:11709-11739. [PMID: 26556998 PMCID: PMC4631972 DOI: 10.3748/wjg.v21.i41.11709] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/28/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
For two decades Vogelstein’s model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy.
Collapse
|
27
|
Caramés C, Cristóbal I, Moreno V, del Puerto L, Moreno I, Rodriguez M, Marín JP, Correa AV, Hernández R, Zenzola V, Hernández T, León A, Martín JI, Sánchez-Fayos P, García-Olmo D, Rojo F, Goel A, Fernandez-Aceñero MJ, García-Foncillas J. MicroRNA-21 predicts response to preoperative chemoradiotherapy in locally advanced rectal cancer. Int J Colorectal Dis 2015; 30:899-906. [PMID: 25953218 DOI: 10.1007/s00384-015-2231-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 02/04/2023]
Abstract
PURPOSE The treatment of choice for locally advanced rectal cancer is preoperative chemoradiotherapy. Despite half of patients do not respond and suffer unnecessary toxicities and surgery delays, there are no biomarkers to guide preoperative CRT outcome. MicroRNA-21 has been related to acquisition of 5-fluorouracil resistance; however, its potential predictive value of response to preoperative chemoradiotherapy in locally advanced rectal cancer remains unknown. METHODS Nighty-two patients diagnosed with locally advanced rectal cancer who were preoperatively treated with chemoradiotherapy were selected for this study. Moreover, microRNA-21 expression was quantified in formalin-fixed paraffin-embedded biopsies from this cohort, and the results obtained were correlated with clinical and molecular characteristics, pathological response, and outcome. RESULTS MicroRNA-21 was found overexpressed in 77.6% cases, and significantly correlated with tumor grade after preoperative chemoradiotherapy (P = 0.013) and with pathological response (P = 0.013). The odds ratio of having miR-21 overexpression and not getting a respond to chemoradiotherapy resulted in 9.75 CI 2.24 to 42. Sensitivity, specificity, negative predictive values, and positive predictive value were 86.6, 60, 42.8, and 92%, respectively. Multivariate analysis confirmed the clinical significance of miR-21 determining preoperative chemoradiotherapy response. CONCLUSIONS MicroRNA-21 expression efficiently predicts preoperative chemoradiotherapy pathological response in locally advanced rectal cancer.
Collapse
Affiliation(s)
- Cristina Caramés
- Medical Oncology Department, University Hospital "Fundación Jimenez Diaz", Avda. Reyes Católicos-2, 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liao Q, Han P, Huang Y, Wu Z, Chen Q, Li S, Ye J, Wu X. Potential Role of Circulating microRNA-21 for Hepatocellular Carcinoma Diagnosis: A Meta-Analysis. PLoS One 2015; 10:e0130677. [PMID: 26114756 PMCID: PMC4483261 DOI: 10.1371/journal.pone.0130677] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 05/16/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Circulating microRNA-21 (miR-21) is known to be aberrantly expressed in hepatocellular carcinoma (HCC) patients, and this implies that microRNA-21 is a promising and novel indicator of HCC. However, a systematic evaluation of the performance of microRNA-21 as a diagnostic marker for HCC has yet to be conducted. Therefore, the test performance of circulating miR-21 for HCC was assessed in this study. METHODS Three common international databases and a Chinese electronic database were used to search for literature on the diagnostic accuracy of microRNA-21 for HCC. The pooled results included the sensitivity and specificity of microRNA-21 for HCC detection and were analyzed with a random effect model. The area under summary receiver operating characteristic curve (AUC) was used to estimate overall test performance. RESULTS A total of 339 HCC patients and 338 controls without HCC from four published studies were eligible for the meta-analysis and included in our study. The test performance of circulating miR-21 in HCC detection was assessed with the summary estimates of sensitivity and specificity, which were 81.2% (95% CI: 70.8% to 88.4%) and 84.8% (95% CI: 75.1% to 91.2%), respectively. The value of AUC was 0.90 (95% CI: 0.87 to 0.92). Significant inter-study heterogeneity was detected by our analysis, and sub-group analyses suggested that the type of control group was probably a source of heterogeneity. CONCLUSIONS Our current findings suggested that circulating miR-21 can serve as a potential co-biomarker for early-stage HCC diagnosis. Thorough large-scale studies are needed to confirm the generalizability of our findings.
Collapse
Affiliation(s)
- Qibin Liao
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiyu Han
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yue Huang
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhitong Wu
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanshan Li
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jufeng Ye
- Experimental Teaching Center of Preventive Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JFY); (XBW)
| | - Xianbo Wu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JFY); (XBW)
| |
Collapse
|