1
|
Baymakova MP, Konaktchieva M, Kunchev M, Popivanov G, Kundurzhiev T, Tsachev I, Mutafchiyski V. First Insight into the Seroprevalence of Hepatitis E Virus and Associated Risk Factors Among Liver Transplant Recipients from Bulgaria. Vector Borne Zoonotic Dis 2025; 25:303-313. [PMID: 39943906 DOI: 10.1089/vbz.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025] Open
Abstract
Introduction: Hepatitis E virus (HEV) infection is caused by viruses belonging to the Hepeviridae family. HEV infection can be self-limiting; however, extrahepatic manifestations may be present. The purpose of the current study was to establish the seroprevalence of HEV among Bulgarian liver transplant recipients (LTRs) and to identify associated risk factors. Materials & Methods: The present study was conducted between April 1, 2023, and October 30, 2023, at the Military Medical Academy, Sofia, Bulgaria. All serum samples were tested for anti-HEV IgG/IgM using HEV IgG/IgM enzyme-linked immunosorbent assay on Dia.Pro (Milan, Italy). Each participating LTR completed a detailed paper-based closed-ended questionnaire regarding the associated risk factors for HEV infection. Results: The study included 73 LTRs with a mean age of 47.0 ± 14.0 years. Anti-HEV IgG antibodies were detected in 25 LTRs (34.2%), including 20 males (37.7%) and 5 females (25%). All participants were HEV-IgM negative. HEV seropositivity rates were higher but not statistically significant in LTRs aged >60 years than in those aged <60 years (40% vs. 32.7%). A significant factor by logistic regression was "high level of education" (odds ratio [OR] = 2.917; p = 0.038). Conclusion: To the best of our knowledge, this is the first seroepidemiological HEV study among LTRs from Bulgaria that found a high seroprevalence (34.2%).
Collapse
Affiliation(s)
| | - Marina Konaktchieva
- Department of Gastroenterology and Hepatology, Military Medical Academy, Sofia, Bulgaria
| | - Metodi Kunchev
- Department of Virology, Military Medical Academy, Sofia, Bulgaria
| | - Georgi Popivanov
- Department of Surgery, Military Medical Academy, Sofia, Bulgaria
| | - Todor Kundurzhiev
- Department of Occupational Medicine, Faculty of Public Health, Medical University, Sofia, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | | |
Collapse
|
2
|
Wang W, Wu W, Chen M, Teng Z. Prevalence of hepatitis E virus in domestic animals in the Chinese mainland: a systematic review and meta-analysis. BMC Vet Res 2025; 21:136. [PMID: 40033323 DOI: 10.1186/s12917-025-04571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND China, especially the Chinese mainland, is a highly endemic area of hepatitis E, and its incidence rate has been increasing in recent years. Hepatitis E virus (HEV) is the causative agent of hepatitis E, with a variety of domestic animals as potential hosts. The shift in the main epidemic strain and the increasing trend of zoonotic HEV infection in the Chinese mainland need urgent attention. This systematic review aimed to provide a summary of HEV detection and its characteristics in domestic animals in the Chinese mainland. METHODS A total of 1,019 literatures published in Chinese and English before 2024.1.15 were retrieved from four databases including Pubmed, ScienceDirect, Wan Fang and CNKI. Eventually, 73 eligible studies were included in this review, involving HEV detection data of 64,813 samples collecting from 13 kinds of common domestic animals, locating in 28 provinces and municipalities. RESULTS HEV antibodies and RNA were detected among 12 and 7 kinds of domestic animals respectively, with the pooled prevalence of 37.94% (95% CI:32.28-43.77) and 7.62% (95% CI: 5.56-9.96) respectively. The prevelance of HEV for swine samples was higher than other species. In addition, the prevalence of HEV among Tibetan swine, cattle and goats were also at a relatively high level. Further subgroup analysis focusing on comprehensive data from swine was conducted. The results showed, the seroprevalence of HEV antibodies gradually decreased over the time of sampling. HEV RNA was detected in various samples, including bile, feces, liver, and serum. The detection rate for fecal samples was the highest, which was 16.60% (95% CI: 12.17-21.55). Further genotyping of HEV RNA was classified. The results warn us about the circulation of genotype 3 HEV in the eastern region of the Chinese mainland. CONCLUSION The results collected from the included studies provided valuable data on HEV prevalence across various species, and the characteristics, trends, and potential influencing factors were fully discussed. This review provides public health professionals, policymakers, and researchers with comprehensive and up-to-date research data on zoonotic HEV.
Collapse
Affiliation(s)
- Wei Wang
- Pathogen Testing Center, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, ZhongShan Road (West), Shanghai, 200336, China
| | - Wencheng Wu
- Pathogen Testing Center, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, ZhongShan Road (West), Shanghai, 200336, China
| | - Min Chen
- Pathogen Testing Center, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, ZhongShan Road (West), Shanghai, 200336, China.
| | - Zheng Teng
- Pathogen Testing Center, Shanghai Municipal Center for Disease Control and Prevention, No. 1380, ZhongShan Road (West), Shanghai, 200336, China.
| |
Collapse
|
3
|
Kotb AA, El-Mokhtar MA, Sayed IM. Effect of Hepatitis E Virus on the Male Reproductive System: A Review of Current Evidence. Viruses 2025; 17:66. [PMID: 39861855 PMCID: PMC11768735 DOI: 10.3390/v17010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatitis E Virus (HEV) is a globally widespread pathogen that causes acute hepatitis infection. Beyond hepatic pathogenesis, HEV has been proven to cause several extrahepatic manifestations, such as neurological, renal, and hematological manifestations. It was also associated with mortality in pregnant females. Several studies have investigated the impact of HEV on the male reproductive system; however, the available data are limited and conflicting. Assessment of the patients' ejaculates/semen samples revealed that HEV particles are excreted in these fluids in cases of chronic infection but not acute infection. The excreted HEV particles are infectious to in vivo animal models and in vitro cell culture. However, the effect of HEV infection on male infertility is not confirmed. One study including human samples showed male infertility associated with HEV genotype 4 infection. Studies of HEV infection in animal models such as pigs, gerbils, and mice showed that HEV infection caused distortion on the testes, damage of the blood-testis barrier, and induction of inflammatory responses leading to abnormalities in the sperm. The excretion of HEV in the semen fluids raises concerns about HEV transmission via sexual transmission. However, all available data do not confirm the transmission of HEV through sexual intercourse. This review aims to summarize and critically assess the available studies investigating the influence of different HEV genotypes on the male reproductive system, providing insights into whether HEV contributes to reproductive impairment in men.
Collapse
Affiliation(s)
- Ahmed A. Kotb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Mohamed A. El-Mokhtar
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Ibrahim M. Sayed
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
4
|
Gong G, Xin J, Lou Y, Qiong D, Dawa Z, Gesang Z, Suolang S. Cell Culture of a Swine Genotype 4 Hepatitis E Virus Strain. J Med Virol 2024; 96:e70031. [PMID: 39530175 DOI: 10.1002/jmv.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
HEV infection has become a global health concern. The study of HEV pathogenicity has been hindered by the lack of a suitable in vitro culture system. In the present research, we systematic demonstration of efficient replication of swine GT4 HEV in A549 cells, Huh-7 cells, and HepG2/C3A cell lines. The results of the immunofluorescence assay and immunofluorescence confocal assay showed that swine GT4 HEV is efficiently replicated in three cell lines at 72 h postinoculation. Meanwhile, we also detected the virus titer quantified were increased at 2-, 6,- and 11-days postinoculation. Moreover, we successfully observed HEV virus particles in the cell suspension at 6 days postinoculation. This finding holds significance for advancing in vitro HEV studies.
Collapse
Affiliation(s)
- Ga Gong
- Animal Science College, Xizang Agriculture and Animal Husbandry University, Nyingchi, China
| | - Jiaojiao Xin
- Animal Science College, Xizang Agriculture and Animal Husbandry University, Nyingchi, China
| | - Yongzhi Lou
- Animal Science College, Xizang Agriculture and Animal Husbandry University, Nyingchi, China
| | - Da Qiong
- Animal Science College, Xizang Agriculture and Animal Husbandry University, Nyingchi, China
| | | | - Zhuoma Gesang
- Animal Disease Prevention and Control Center of Xizang Autonomous Region, Lhasa, China
| | - Sizhu Suolang
- Animal Science College, Xizang Agriculture and Animal Husbandry University, Nyingchi, China
| |
Collapse
|
5
|
Al Beloushi M, Saleh H, Ahmed B, Konje JC. Congenital and Perinatal Viral Infections: Consequences for the Mother and Fetus. Viruses 2024; 16:1698. [PMID: 39599813 PMCID: PMC11599085 DOI: 10.3390/v16111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Viruses are the most common congenital infections in humans and an important cause of foetal malformations, neonatal morbidity, and mortality. The effects of these infections, which are transmitted in utero (transplacentally), during childbirth or in the puerperium depend on the timing of the infections. These vary from miscarriages (usually with infections in very early pregnancy), congenital malformations (when the infections occur during organogenesis) and morbidity (with infections occurring late in pregnancy, during childbirth or after delivery). The most common of these viruses are cytomegalovirus, hepatitis, herpes simplex type-2, parvovirus B19, rubella, varicella zoster and zika viruses. There are currently very few efficacious antiviral agents licensed for use in pregnancy. For most of these infections, therefore, prevention is mainly by vaccination (where there is a vaccine). The administration of immunoglobulins to those exposed to the virus to offer passive immunity or appropriate measures to avoid being infected would be options to minimise the infections and their consequences. In this review, we discuss some of the congenital and perinatal infections and their consequences on both the mother and fetus and their management focusing mainly on prevention.
Collapse
Affiliation(s)
- Mariam Al Beloushi
- Women’s Wellness and Research Centre Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (M.A.B.); (H.S.)
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Huda Saleh
- Women’s Wellness and Research Centre Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (M.A.B.); (H.S.)
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Badreldeen Ahmed
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
- Feto Maternal Centre, Al Markhiya Doha, Doha P.O. Box 34181, Qatar
- Department of Obstetrics and Gynaecology Weill Cornell Medicine, Doha P.O. Box 24144, Qatar
| | - Justin C. Konje
- Feto Maternal Centre, Al Markhiya Doha, Doha P.O. Box 34181, Qatar
- Department of Obstetrics and Gynaecology Weill Cornell Medicine, Doha P.O. Box 24144, Qatar
- Department of Health Sciences, University of Leicester, P.O. Box 7717, Leicester LE2 7LX, UK
| |
Collapse
|
6
|
Salemane K, Coetzee LZ, Pocock G, Genthe B, Taylor MB, Mans J. Water-Based Epidemiological Investigation of Hepatitis E Virus in South Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:338-350. [PMID: 38613652 PMCID: PMC11422423 DOI: 10.1007/s12560-024-09596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/08/2024] [Indexed: 04/15/2024]
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that exhibits great host diversity. The primary means of transmission of the virus in low- and middle-income countries is contaminated water, often due to a lack of access to proper sanitation, which leads to faecal contamination of water sources. Environmental surveillance is an important tool that can be used to monitor virus circulation and as an early warning system for outbreaks. This study was conducted to determine the prevalence and genetic diversity of HEV in wastewater, surface water (rivers and standpipe/ablution water), and effluent from a piggery in South Africa. A total of 536 water samples were screened for HEV using real-time reverse transcription-polymerase chain reaction. Overall, 21.8% (117/536) of the wastewater, river, and ablution water samples tested positive for HEV, whereas 74.4% (29/39) of the samples from the piggery tested positive. Genotyping revealed sequences belonging to HEV genotypes 3 (98%, 53/54) and 4 (2%, 1/54), with subtypes 3c, 3f, and 4b being identified.
Collapse
Affiliation(s)
- Karabo Salemane
- Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria, 0031, South Africa
| | - Leanne Z Coetzee
- , Waterlab, Techno Park, 23B De Havilland Cres, Persequor, Pretoria, 0020, South Africa
| | - Gina Pocock
- , Waterlab, Techno Park, 23B De Havilland Cres, Persequor, Pretoria, 0020, South Africa
| | - Bettina Genthe
- Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Maureen B Taylor
- Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria, 0031, South Africa
| | - Janet Mans
- Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria, 0031, South Africa.
| |
Collapse
|
7
|
Kobayashi T, Takahashi M, Ohta S, Hoshino Y, Yamada K, Jirintai S, Primadharsini PP, Nagashima S, Murata K, Okamoto H. Production and Characterization of Self-Assembled Virus-like Particles Comprising Capsid Proteins from Genotypes 3 and 4 Hepatitis E Virus (HEV) and Rabbit HEV Expressed in Escherichia coli. Viruses 2024; 16:1400. [PMID: 39339876 PMCID: PMC11437457 DOI: 10.3390/v16091400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
The zoonotic transmission of hepatitis E virus (HEV) genotypes 3 (HEV-3) and 4 (HEV-4), and rabbit HEV (HEV-3ra) has been documented. Vaccination against HEV infection depends on the capsid (open reading frame 2, ORF2) protein, which is highly immunogenic and elicits effective virus-neutralizing antibodies. Escherichia coli (E. coli) is utilized as an effective system for producing HEV-like particles (VLPs). However, research on the production of ORF2 proteins from these HEV genotypes in E. coli to form VLPs has been modest. In this study, we constructed 21 recombinant plasmids expressing various N-terminally and C-terminally truncated HEV ORF2 proteins for HEV-3, HEV-3ra, and HEV-4 in E. coli. We successfully obtained nine HEV-3, two HEV-3ra, and ten HEV-4 ORF2 proteins, which were primarily localized in inclusion bodies. These proteins were solubilized in 4 M urea, filtered, and subjected to gel filtration. Results revealed that six HEV-3, one HEV-3ra, and two HEV-4 truncated proteins could assemble into VLPs. The purified VLPs displayed molecular weights ranging from 27.1 to 63.4 kDa and demonstrated high purity (74.7-95.3%), as assessed by bioanalyzer, with yields of 13.9-89.6 mg per 100 mL of TB medium. Immunoelectron microscopy confirmed the origin of these VLPs from HEV ORF2. Antigenicity testing indicated that these VLPs possess characteristic HEV antigenicity. Evaluation of immunogenicity in Balb/cAJcl mice revealed robust anti-HEV IgG responses, highlighting the potential of these VLPs as immunogens. These findings suggest that the generated HEV VLPs of different genotypes could serve as valuable tools for HEV research and vaccine development.
Collapse
Affiliation(s)
- Tominari Kobayashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Satoshi Ohta
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan;
| | - Yu Hoshino
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Kentaro Yamada
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Tochigi, Japan; (T.K.); (M.T.); (P.P.P.); (S.N.); (K.M.)
| |
Collapse
|
8
|
Gherlan GS. Rocahepevirus ratti: An underrecognised cause of acute hepatitis. World J Hepatol 2024; 16:1084-1090. [PMID: 39221102 PMCID: PMC11362906 DOI: 10.4254/wjh.v16.i8.1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Zoonoses are responsible for many of all emerging infectious diseases as well as for those already established. Rocahepevirus ratti is a rat-originated virus related to the hepatitis E virus (Paslahepevirus balayani) but highly divergent genetically from this, with a high cross-species infection potential and zoonotic transmission. It can infect humans, leading to acute hepatitis, and is primarily transmitted through the consumption of contaminated water. Rocahepevirus ratti was first discovered in Germany in 2010. The first human case was described in 2017 in Hong Kong in an immune-compromised patient. The first case of chronic infection with Rocahepevirus ratti was described in 2023. A meta-analysis based on 38 studies published between 2000 and 2023 identified 21 cases in humans described up to this date and 489 infections in different animals. Raising awareness regarding this virus is essential, as there are probably many cases that remain undiagnosed, and the virus even has the ability to produce chronic infections in selected patients.
Collapse
Affiliation(s)
- George S Gherlan
- Department of Infectious Diseases, "Carol Davila" University of Medicine and Pharmacy, Bucharest 050474, Romania.
| |
Collapse
|
9
|
Letafati A, Taghiabadi Z, Roushanzamir M, Memarpour B, Seyedi S, Farahani AV, Norouzi M, Karamian S, Zebardast A, Mehrabinia M, Ardekani OS, Fallah T, Khazry F, Daneshvar SF, Norouzi M. From discovery to treatment: tracing the path of hepatitis E virus. Virol J 2024; 21:194. [PMID: 39180020 PMCID: PMC11342613 DOI: 10.1186/s12985-024-02470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The hepatitis E virus (HEV) is a major cause of acute viral hepatitis worldwide. HEV is classified into eight genotypes, labeled HEV-1 through HEV-8. Genotypes 1 and 2 exclusively infect humans, while genotypes 3, 4, and 7 can infect both humans and animals. In contrast, genotypes 5, 6, and 8 are restricted to infecting animals. While most individuals with a strong immune system experience a self-limiting infection, those who are immunosuppressed may develop chronic hepatitis. Pregnant women are particularly vulnerable to severe illness and mortality due to HEV infection. In addition to liver-related complications, HEV can also cause extrahepatic manifestations, including neurological disorders. The immune response is vital in determining the outcome of HEV infection. Deficiencies in T cells, NK cells, and antibody responses are linked to poor prognosis. Interestingly, HEV itself contains microRNAs that regulate its replication and modify the host's antiviral response. Diagnosis of HEV infection involves the detection of HEV RNA and anti-HEV IgM/IgG antibodies. Supportive care is the mainstay of treatment for acute infection, while chronic HEV infection may be cleared with the use of ribavirin and pegylated interferon. Prevention remains the best approach against HEV, focusing on sanitation infrastructure improvements and vaccination, with one vaccine already licensed in China. This comprehensive review provides insights into the spread, genotypes, prevalence, and clinical effects of HEV. Furthermore, it emphasizes the need for further research and attention to HEV, particularly in cases of acute hepatitis, especially among solid-organ transplant recipients.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Zahra Taghiabadi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mahshid Roushanzamir
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Pharmacological and Biomolecular Science, University of Milan, Milan, Italy
| | - Bahar Memarpour
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saba Seyedi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Masoomeh Norouzi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Saeideh Karamian
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Arghavan Zebardast
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Marzieh Mehrabinia
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Tina Fallah
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Khazry
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Samin Fathi Daneshvar
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
10
|
Zahmanova G, Takova K, Lukov GL, Andonov A. Hepatitis E Virus in Domestic Ruminants and Virus Excretion in Milk-A Potential Source of Zoonotic HEV Infection. Viruses 2024; 16:684. [PMID: 38793568 PMCID: PMC11126035 DOI: 10.3390/v16050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The hepatitis E virus is a serious health concern worldwide, with 20 million cases each year. Growing numbers of autochthonous HEV infections in industrialized nations are brought on via the zoonotic transmission of HEV genotypes 3 and 4. Pigs and wild boars are the main animal reservoirs of HEV and play the primary role in HEV transmission. Consumption of raw or undercooked pork meat and close contact with infected animals are the most common causes of hepatitis E infection in industrialized countries. However, during the past few years, mounting data describing HEV distribution has led experts to believe that additional animals, particularly domestic ruminant species (cow, goat, sheep, deer, buffalo, and yak), may also play a role in the spreading of HEV. Up to now, there have not been enough studies focused on HEV infections associated with animal milk and the impact that they could have on the epidemiology of HEV. This critical analysis discusses the role of domestic ruminants in zoonotic HEV transmissions. More specifically, we focus on concerns related to milk safety, the role of mixed farming in cross-species HEV infections, and what potential consequences these may have on public health.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Georgi L. Lukov
- Faculty of Sciences, Brigham Young University–Hawaii, Laie, HI 96762, USA
| | - Anton Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
11
|
Xiang Z, He XL, Zhu CW, Yang JJ, Huang L, Jiang C, Wu J. Animal models of hepatitis E infection: Advances and challenges. Hepatobiliary Pancreat Dis Int 2024; 23:171-180. [PMID: 37852916 DOI: 10.1016/j.hbpd.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis worldwide. Although most of HEV infections are asymptomatic, some patients will develop the symptoms, especially pregnant women, the elderly, and patients with preexisting liver diseases, who often experience anorexia, nausea, vomiting, malaise, abdominal pain, and jaundice. HEV infection may become chronic in immunosuppressed individuals. In addition, HEV infection can also cause several extrahepatic manifestations. HEV exists in a wide range of hosts in nature and can be transmitted across species. Hence, animals susceptible to HEV can be used as models. The establishment of animal models is of great significance for studying HEV transmission, clinical symptoms, extrahepatic manifestations, and therapeutic strategies, which will help us understand the pathogenesis, prevention, and treatment of hepatitis E. This review summarized the animal models of HEV, including pigs, monkeys, rabbits, mice, rats, and other animals. For each animal species, we provided a concise summary of the HEV genotypes that they can be infected with, the cross-species transmission pathways, as well as their role in studying extrahepatic manifestations, prevention, and treatment of HEV infection. The advantages and disadvantages of these animal models were also emphasized. This review offers new perspectives to enhance the current understanding of the research landscape surrounding HEV animal models.
Collapse
Affiliation(s)
- Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Xiang-Lin He
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Chuan-Wu Zhu
- Department of Infectious Diseases, The Fifth People's Hospital of Suzhou, Suzhou 215007, China
| | - Jia-Jia Yang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
12
|
Shafat Z, Islam A, Parveen S. Amino acid pattern reveals multi-functionality of ORF3 protein from HEV. Bioinformation 2024; 20:121-135. [PMID: 38497081 PMCID: PMC10941781 DOI: 10.6026/973206300200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
The smallest open reading frame (ORF) encoded protein ORF3 of hepatitis E virus (HEV), recently, has been demonstrated to perform multiple functions besides accessory roles. ORF3 could act as a target for vaccine against HEV infections. The IDR (intrinsically disordered region); IDP (ID protein)/IDPR (ID protein region), plays critical role in various regulatory functions of viruses. The dark proteome of HEV-ORF3 protein including its structure and function was systematically examined by computer predictors to explicate its role in viral pathogenesis and drug resistance beyond its functions as accessory viral protein. Amino acid distribution showed ORF3 enrichment with disorder-promoting residues (Ala, Pro, Ser, Gly) while deficiency in order-promoting residues (Asn, Ile, Phe, Tyr and Trp). Initial investigation revealed ORF3 as IDP (entirely disordered protein) or IDPR (proteins consisting of IDRs with structured globular domains). Structural examination revealed preponderance of disordered regions interpreting ORF3 as moderately/highly disordered protein. Further disorder predictors categorized ORF3 as highly disordered protein/IDP. Identified sites and associated-crucial molecular functions revealed ORF3 involvement in diverse biological processes, substantiating them as targets of regulation. As ORF3 functions are yet to completely explored, thus, data on its disorderness could help in elucidating its disorder related functions.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Vasconcelos MPA, de Oliveira JM, Sánchez-Arcila JC, Faria SC, Rodrigues MM, Perce-da-Silva D, Rezende-Neto J, Pinto MA, Maia-Herzog M, Banic DM, Oliveira-Ferreira J. Seroprevalence of the Hepatitis E Virus in Indigenous and Non-Indigenous Communities from the Brazilian Amazon Basin. Microorganisms 2024; 12:365. [PMID: 38399768 PMCID: PMC10891770 DOI: 10.3390/microorganisms12020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Hepatitis E virus (HEV) infection is a common cause of acute viral hepatitis in tropical regions. In Brazil, HEV G3 is the only genotype detected to date. Reports on HEV prevalence are heterogeneous. We aimed to compare the prevalence of anti-HEV among three populations living in the Brazilian Amazon basin. Two cross-sectional studies were conducted in urban, rural, and Yanomami indigenous areas. Plasma samples from 428 indigenous and 383 non-indigenous subjects were tested for anti-HEV IgG using enzyme-linked immunosorbent assays. The overall prevalence of anti-HEV was 6.8% (95%CI: 5.25-8.72), with 2.8% (12/428) found in the Yanomami areas, 3% (3/101) in an urban area, and 14.2% (40/282) in a rural area. Multivariate logistic analysis indicated that patients aged 31-45 years or ≥46 years are more likely to present anti-HEV positivity, with a respective aOR of 2.76 (95%CI: 1.09-7.5) and 4.27 (95%CI: 1.58-12.35). Furthermore, residence in a rural area (aOR: 7.67; 95%CI: 2.50-33.67) represents a relevant risk factor for HEV infection. Additional studies detecting HEV RNA in fecal samples from both humans and potential animal reservoirs are necessary to comprehensively identify risk factors associated with HEV exposure.
Collapse
Affiliation(s)
- Mariana Pinheiro Alves Vasconcelos
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz—FIOCRUZ/IOC, Rio de Janeiro 21045-900, Brazil; (M.P.A.V.); (J.C.S.-A.)
- Centro de Medicina Tropical de Rondônia—CEMETRON, Porto Velho 76812-329, Brazil
| | - Jaqueline Mendes de Oliveira
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21045-900, Brazil; (J.M.d.O.); (S.C.F.); (M.A.P.)
| | - Juan Camilo Sánchez-Arcila
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz—FIOCRUZ/IOC, Rio de Janeiro 21045-900, Brazil; (M.P.A.V.); (J.C.S.-A.)
| | - Sarah Castro Faria
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21045-900, Brazil; (J.M.d.O.); (S.C.F.); (M.A.P.)
| | | | - Daiana Perce-da-Silva
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz—FIOCRUZ/IOC, Rio de Janeiro 21045-900, Brazil; (D.P.-d.-S.); (D.M.B.)
| | | | - Marcelo Alves Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21045-900, Brazil; (J.M.d.O.); (S.C.F.); (M.A.P.)
| | - Marilza Maia-Herzog
- Laboratório de Referência Nacional em Simulídeos, Oncocercose e Mansonelose, Coleção de Simulídeos do Instituto Oswaldo Cruz—FIOCRUZ/IOC, Rio de Janeiro 21045-900, Brazil;
| | - Dalma Maria Banic
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz—FIOCRUZ/IOC, Rio de Janeiro 21045-900, Brazil; (D.P.-d.-S.); (D.M.B.)
| | - Joseli Oliveira-Ferreira
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz—FIOCRUZ/IOC, Rio de Janeiro 21045-900, Brazil; (M.P.A.V.); (J.C.S.-A.)
| |
Collapse
|
14
|
Park K, Kim J, Noh J, Kim K, Yang E, Kim SG, Cho HK, Byun KS, Kim JH, Lee YS, Shim JO, Shin M, Kim WK, Song JW. First detection and characterization of hepatitis E virus (Rocahepevirus ratti) from urban Norway rats (Rattus norvegicus) in the Republic of Korea. J Med Virol 2024; 96:e29401. [PMID: 38235603 DOI: 10.1002/jmv.29401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Hepatitis E virus (HEV), an emerging zoonotic pathogen, poses a significant public health concern worldwide. Recently, rat HEV (Rocahepevirus ratti genotype C1; HEV-C1) has been reported to cause zoonotic infections and hepatitis in humans. Human infections with HEV-C1 are considered to be underestimated worldwide due to limited knowledge of transmission routes, genome epidemiology, and the risk assessment of zoonosis associated with these viruses. A total of 186 wild Norway rats (Rattus norvegicus) were collected from the Republic of Korea (ROK) between 2011 and 2021. The prevalence of HEV-C1 RNA was 8 of 180 (4.4%) by reverse-transcription polymerase chain reaction. We first reported three nearly whole-genome sequences of HEV-C1 newly acquired from urban rats in the ROK. Phylogenetic analysis demonstrated that Korea-indigenous HEV-C1 formed an independent genetic group with those derived from R. norvegicus rats in other countries, indicating geographical and genetic diversity. Our findings provide critical insights into the molecular prevalence, genome epidemiology, and zoonotic potential of Rocahepevirus. This report raises awareness of the presence of Rocahepevirus-related hepatitis E among physicians in the ROK.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kijin Kim
- Centre for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eunyoung Yang
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwan Soo Byun
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Ji Hoon Kim
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Korea University Medical Center, Seoul, Republic of Korea
| | - Jung Ok Shim
- Department of Pediatrics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Minsoo Shin
- Department of Pediatrics, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Abid I, Blanco A, Al-Otaibi N, Guix S, Costafreda MI, Pintó RM, Bosch A. Dynamic and Seasonal Distribution of Enteric Viruses in Surface and Well Water in Riyadh (Saudi Arabia). Pathogens 2023; 12:1405. [PMID: 38133289 PMCID: PMC10747075 DOI: 10.3390/pathogens12121405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Enteric viruses are the major cause of gastroenteritis and enteric hepatitis worldwide, but in some areas like Saudi Arabia, little is known about their presence in water sources. The available information from clinical samples is not enough to figure out their actual prevalence. The aim of this study was to gather information for the first time in Saudi Arabia on the presence of the Norovirus (NoV) genogroup GI and GII, hepatitis A virus (HAV), and hepatitis E virus (HEV) in water. For this purpose, thirteen monthly samples were collected from Lake Wadi Hanifa and surrounding wells from December 2014 to November 2015. Viruses were detected and quantified using real-time RT-qPCR. Despite HEV findings being anecdotic, our results highlight interesting behaviors of the other viruses. There was a higher prevalence of noroviruses in Wadi Hanifa samples than in well water samples (46.43% vs. 12.5% of NoV GI; 66.67% vs. 8.33% of NoV GII). On the contrary, similar levels of HAV positivity were observed (40.48% in surface water vs. 43.06% in well water). Also, a strong influence of flooding events on HAV and NoV GI occurrence was observed in both surface and well water samples, with NoV GII apparently not affected.
Collapse
Affiliation(s)
- Islem Abid
- Center of Excellence in Biotechnology Research, College of Applied Medical Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Albert Blanco
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Nawal Al-Otaibi
- Department of Botany and Microbiology, Science College, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Maria I. Costafreda
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Rosa M. Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| |
Collapse
|
16
|
Salgado CRS, Silva ADNE, Arruda IF, Millar PR, Amendoeira MRR, Leon LAA, Teixeira RBC, de Lima JTB, Chalhoub FLL, Bispo de Filippis AM, Fonseca ABM, de Oliveira JM, Pinto MA, Figueiredo AS. Serological Evidence of Hepatitis E Virus Infection in Brazilian Equines. Microorganisms 2023; 11:2743. [PMID: 38004754 PMCID: PMC10673136 DOI: 10.3390/microorganisms11112743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatitis E virus (HEV) infection has been demonstrated in various animal species; those recognized as potential zoonotic reservoirs pose a considerable risk to public health. In Brazil, HEV-3 is the only genotype identified in humans and swine nationwide, in a colony-breeding cynomolgus monkey and, recently, in bovines and capybara. There is no information regarding HEV exposure in the equine population in Brazil. This study aimed to investigate anti-HEV antibodies and viral RNA in serum samples from horses slaughtered for meat export and those bred for sport/reproduction purposes. We used a commercially available ELISA kit modified to detect species-specific anti-HEV, using an anti-horse IgG-peroxidase conjugate and evaluating different cutoff formulas and assay precision. Serum samples (n = 257) were tested for anti-HEV IgG and HEV RNA by nested RT-PCR and RT-qPCR. The overall anti-HEV seroprevalence was 26.5% (68/257) without the detection of HEV RNA. Most municipalities (53.3%) and farms (58.8%) had positive horses. Animals slaughtered for human consumption had higher risk of HEV exposure (45.5%) than those bred for sports or reproduction (6.4%) (p < 0.0001). The statistical analysis revealed sex and breeding system as possible risk-associated factors. The first serological evidence of HEV circulation in Brazilian equines reinforces the need for the surveillance of HEV host expansion in a one-health approach.
Collapse
Affiliation(s)
- Caroline Roberta Soares Salgado
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (C.R.S.S.); (J.M.d.O.)
| | - Aldaleia do Nascimento e Silva
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (C.R.S.S.); (J.M.d.O.)
| | - Igor Falco Arruda
- Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (I.F.A.)
| | - Patrícia Riddell Millar
- Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (I.F.A.)
| | - Maria Regina Reis Amendoeira
- Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (I.F.A.)
| | - Luciane Almeida Amado Leon
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (C.R.S.S.); (J.M.d.O.)
| | | | - Jorge Tiburcio Barbosa de Lima
- Departamento de Clínica e Cirurgia Veterinárias, Universidade Federal de Minas Gerais—UFMG, Belo Horizonte 31270-901, MG, Brazil
| | - Flávia Löwen Levy Chalhoub
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Ana Maria Bispo de Filippis
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Ana Beatriz Monteiro Fonseca
- Departamento de Estatística, Instituto de Matemática e Estatística, Universidade Federal Fluminense—UFF, Niterói 24210-346, RJ, Brazil
| | - Jaqueline Mendes de Oliveira
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (C.R.S.S.); (J.M.d.O.)
| | - Marcelo Alves Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (C.R.S.S.); (J.M.d.O.)
| | - Andreza Soriano Figueiredo
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (C.R.S.S.); (J.M.d.O.)
| |
Collapse
|
17
|
Di Cola G, Di Cola G, Fantilli A, Mamani V, Tamiozzo P, Martínez Wassaf M, Nates SV, Ré VE, Pisano MB. High circulation of hepatitis E virus (HEV) in pigs from the central region of Argentina without evidence of virus occurrence in pork meat and derived products. Res Vet Sci 2023; 164:105000. [PMID: 37708830 DOI: 10.1016/j.rvsc.2023.105000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Hepatitis E virus (HEV) is an emerging cause of viral hepatitis and pigs are considered a reservoir for the virus. HEV genotype 3 (HEV-3) has been reported in pigs, environmental matrices, and sporadic human cases in Argentina. We aimed to investigate HEV circulation in pigs from central Argentina and to assess the virus presence in pork meat and food products. Four types of samples obtained or derived from pigs collected in Córdoba province (Argentina) between 2019 and 2022, were tested: 276 serum samples were analyzed for anti-HEV antibody detection; stool (n = 20), pork meat (n = 71), and salami (n = 76) samples were studied for RNA-HEV detection, followed by sequencing and phylogenetic analyses. The positivity rate for anti-HEV antibodies was 80.1% (221/276). Eleven fecal samples (11/20) tested positive for RNA-HEV, from animals under 120 days of age. Three samples could be sequenced, and phylogenetic analyses revealed that they belonged to HEV-3 clade abchijklm, clustering close to strains previously detected in wastewater from Córdoba. None of the muscle meat or salami samples tested positive. A high HEV circulation in pigs was found, showing that these animals may play a significant role in the viral maintenance in the region, becoming a potential risk to the exposed population. Despite not detecting RNA-HEV in pork meat and salami in our study, we cannot rule out the possibility of foodborne transmission in Córdoba province.
Collapse
Affiliation(s)
- Guadalupe Di Cola
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Gabriel Di Cola
- Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta N° 36 - Km. 601, Río Cuarto, Córdoba, Argentina; Laboratorio de Salud Animal, Juan B. Justo 269, Río Cuarto, Córdoba, Argentina
| | - Anabella Fantilli
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Vanesa Mamani
- LACE Laboratorios, Av. Vélez Sarsfield 528, Córdoba, Argentina
| | - Pablo Tamiozzo
- Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta N° 36 - Km. 601, Río Cuarto, Córdoba, Argentina
| | | | - Silvia Viviana Nates
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina
| | - Viviana E Ré
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Belén Pisano
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
18
|
Melchert J, Radbruch H, Hanitsch LG, Baylis SA, Beheim-Schwarzbach J, Bleicker T, Hofmann J, Jones TC, Drosten C, Corman VM. Whole genome sequencing reveals insights into hepatitis E virus genome diversity, and virus compartmentalization in chronic hepatitis E. J Clin Virol 2023; 168:105583. [PMID: 37716229 PMCID: PMC10643812 DOI: 10.1016/j.jcv.2023.105583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a leading cause of acute hepatitis and can cause chronic infections in immunocompromised patients. Although HEV infections can be treated with ribavirin, antiviral efficacy is hampered by resistance mutations, normally detected by virus sequencing. OBJECTIVES High-throughput sequencing (HTS) allows for cost-effective complete viral genome sequencing. This enables the discovery and delineation of new subtypes, and revised the recognition of quasispecies and putative resistance mutations. However, HTS is challenged by factors including low viral load, sample degradation, high host background, and high viral diversity. STUDY DESIGN We apply complete genome sequencing strategies for HEV, including a targeted enrichment approach. These approaches were used to investigate sequence diversity in HEV RNA-positive animal and human samples and intra-host diversity in a chronically infected patient. RESULTS Here, we describe the identification of potential novel subtypes in a blood donation (genotype 3) and in an ancient livestock sample (genotype 7). In a chronically infected patient, we successfully investigated intra-host virus diversity, including the presence of ribavirin resistance mutations. Furthermore, we found convincing evidence for HEV compartmentalization, including the central nervous system, in this patient. CONCLUSIONS Targeted enrichment of viral sequences enables the generation of complete genome sequences from a variety of difficult sample materials. Moreover, it enables the generation of greater sequence coverage allowing more advanced analyses. This is key for a better understanding of virus diversity. Investigation of existing ribavirin resistance, in the context of minorities or compartmentalization, may be critical in treatment strategies of HEV patients.
Collapse
Affiliation(s)
- Julia Melchert
- Institute of Virology, Charité--Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leif G Hanitsch
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Sally A Baylis
- Viral Safety Section, Paul-Ehrlich-Institut, Langen, Germany
| | - Jörn Beheim-Schwarzbach
- Institute of Virology, Charité--Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Tobias Bleicker
- Institute of Virology, Charité--Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Jörg Hofmann
- Labor Berlin - Charité Vivantes GmbH, Berlin 13353, Germany
| | - Terry C Jones
- Institute of Virology, Charité--Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany; Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ, UK
| | - Christian Drosten
- Institute of Virology, Charité--Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité--Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany; Labor Berlin - Charité Vivantes GmbH, Berlin 13353, Germany.
| |
Collapse
|
19
|
Pires H, Cardoso L, Lopes AP, Fontes MDC, Santos-Silva S, Matos M, Pintado C, Figueira L, Matos AC, Mesquita JR, Coelho AC. Prevalence and Risk Factors for Hepatitis E Virus in Wild Boar and Red Deer in Portugal. Microorganisms 2023; 11:2576. [PMID: 37894234 PMCID: PMC10609178 DOI: 10.3390/microorganisms11102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic foodborne virus with an annual infection prevalence of 20 million human cases, which seriously affects public health and economic development in both developed and developing countries. To better understand the epidemiology of HEV in Central Portugal, a cross-sectional study was conducted from 2016 to 2023 with sera samples from wild ungulates. The seroprevalence and risk factors for HEV seropositivity were evaluated in the present study. Specifically, antibodies against HEV were determined by a commercial enzyme-linked immune-sorbent assay (ELISA). Our results show that in the 650 sera samples collected from 298 wild red deer and 352 wild boars in Portugal, 9.1% red deer and 1.7% wild boar were positive for antibodies to HEV. Regarding age, the seropositivity in juvenile wild ungulates was 1.3%, whereas it was 7.2% in adults. Logistic regression models investigated risk factors for seropositivity. The odds of being seropositive was 3.6 times higher in adults than in juveniles, and the risk was 4.2 times higher in red deer than in wild boar. Both wild ungulate species were exposed to HEV. The higher seroprevalence in red deer suggests that this species may make a major contribution to the ecology of HEV in Central Portugal. Further research is needed to understand how wildlife affects the epidemiology of HEV infections in Portugal.
Collapse
Affiliation(s)
- Humberto Pires
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (A.C.M.)
| | - Luís Cardoso
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Ana Patrícia Lopes
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Maria da Conceição Fontes
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, 4050-313 Porto, Portugal; (S.S.-S.); (J.R.M.)
| | - Manuela Matos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Cristina Pintado
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (A.C.M.)
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Luís Figueira
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Ana Cristina Matos
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (A.C.M.)
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - João Rodrigo Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, 4050-313 Porto, Portugal; (S.S.-S.); (J.R.M.)
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
20
|
Chen Y, Zhang M, Chen T, Wang J, Zhao Q, Zhou EM, Liu B. Development and Application of a Nanobody-Based Competitive ELISA for Detecting Antibodies against Hepatitis E Virus from Humans and Domestic Animals. Microbiol Spectr 2023; 11:e0360722. [PMID: 37347160 PMCID: PMC10434039 DOI: 10.1128/spectrum.03607-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen that is widespread worldwide. At present, most enzyme-linked immunosorbent assay (ELISA) kits only detect antibodies against human HEV. In this study, a nanobody-horseradish peroxidase (HRP) fusion protein-based competitive ELISA (cELISA) with more convenience and spectral characteristics for HEV antibody detection was developed and used to detect HEV IgG in various species. First, 6 anti-swine HEV capsid protein nanobodies were screened using phage display technology from an immunized Bactrian camel. Then, HEV-Nb67-HRP fusions were expressed and used as a probe for developing a cELISA. The cutoff value of the cELISA was 17.8%, and there was no cross-reaction with other anti-swine virus antibodies, suggesting that the cELISA had good specificity. The intra-assay and interassay coefficients of variation (CVs) were 1.33 to 5.06% and 1.52 to 6.84%, respectively. The cELISA and Western blot showed a higher coincidence rate (97.14%, kappa value = 0.927) than cELISA and indirect ELISA (95.00%, kappa value = 0.876) in clinical swine serum samples. Finally, the seroprevalence of HEV IgG in humans, pigs, rabbits, cows, and goats was 30.67%, 19.26%, 8.75%, 27.59%, and 18.08%, respectively, suggesting that cELISA may have a broader scale for mammalian HEV antibody detection. These results suggest that the newly developed cELISA was rapid, low-cost, reliable, and useful for the serological evaluation of current HEV. IMPORTANCE HEV is thought to be a zoonotic infection and is widespread worldwide; it is beneficial to establish a more convenient and spectral method for HEV antibody detection. In this study, a convenient, time-saving, reproducible, highly sensitive, specific, and novel nanobody-based cELISA was developed and can be used to detect IgG antibodies against mammalian HEV. It provides a new technique for serological evaluation and ELISA-based diagnosis of HEV infection.
Collapse
Affiliation(s)
- Yiyang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Meimei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianxiang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiaxi Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
21
|
Tsachev I, Gospodinova K, Pepovich R, Takova K, Kundurzhiev T, Zahmanova G, Kaneva K, Baymakova M. First Insight into the Seroepidemiology of Hepatitis E Virus (HEV) in Dogs, Cats, Horses, Cattle, Sheep, and Goats from Bulgaria. Viruses 2023; 15:1594. [PMID: 37515279 PMCID: PMC10385379 DOI: 10.3390/v15071594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, hepatitis E virus (HEV) infection has been found to be widespread among different animal species worldwide. In Bulgaria, high HEV seropositivity was found among pigs (60.3%), wild boars (40.8%), and East Balkan swine (82.5%). The aim of the present study was to establish the seroprevalence of HEV among dogs, cats, horses, cattle, sheep, and goats in Bulgaria. In total, 720 serum samples from six animal species were randomly collected: dogs-90 samples; cats-90; horses-180; cattle-180; sheep-90; and goats-90. The serum samples were collected from seven districts of the country: Burgas, Kardzhali, Pazardzhik, Plovdiv, Sliven, Smolyan, and Stara Zagora. The animal serum samples were tested for HEV antibodies using the commercial Wantai HEV-Ab ELISA kit (Beijing, China). The overall HEV seroprevalence among different animal species from Bulgaria was as follows: dogs-21.1%; cats-17.7%; horses-8.3%; cattle-7.7%; sheep-32.2%; and goats-24.4%. We found the lowest overall HEV seropositivity in Plovdiv district (6.2%; 4/64; p = 0.203) and Smolyan district (8.8%; 4/45; p = 0.129), vs. the highest in Pazardzhik district (21.6%; 29/134; p = 0.024) and Burgas district (28.8%; 26/90; p = 0.062). To the best of our knowledge, this is the first serological evidence of HEV infection in dogs, cats, horses, cattle, sheep, and goats from Bulgaria. We found high HEV seropositivity in small ruminants (sheep and goats), moderate seropositivity in pets (dogs and cats), and a low level of seropositivity in large animals (horses and cattle). Previous Bulgarian studies and the results of this research show that HEV infection is widespread among animals in our country. In this regard, the Bulgarian health authorities must carry out increased surveillance and control of HEV infection among animals in Bulgaria.
Collapse
Affiliation(s)
- Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Krasimira Gospodinova
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Roman Pepovich
- Department of Infectious Pathology, Hygiene, Technology and Control of Foods from Animal Origin, Faculty of Veterinary Medicine, University of Forestry, 1797 Sofia, Bulgaria
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Todor Kundurzhiev
- Department of Occupational Medicine, Faculty of Public Health, Medical University, 1527 Sofia, Bulgaria
| | - Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Kristin Kaneva
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| |
Collapse
|
22
|
Zahmanova G, Takova K, Tonova V, Koynarski T, Lukov LL, Minkov I, Pishmisheva M, Kotsev S, Tsachev I, Baymakova M, Andonov AP. The Re-Emergence of Hepatitis E Virus in Europe and Vaccine Development. Viruses 2023; 15:1558. [PMID: 37515244 PMCID: PMC10383931 DOI: 10.3390/v15071558] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as pigs, wild boars, sheep, goats, rabbits, camels, rats, etc., are natural reservoirs of HEV, which places people in close contact with them at increased risk of HEV disease. Although hepatitis E is a self-limiting infection, it could also lead to severe illness, particularly among pregnant women, or chronic infection in immunocompromised people. A growing number of studies point out that HEV can be classified as a re-emerging virus in developed countries. Preventative efforts are needed to reduce the incidence of acute and chronic hepatitis E in non-endemic and endemic countries. There is a recombinant HEV vaccine, but it is approved for use and commercially available only in China and Pakistan. However, further studies are needed to demonstrate the necessity of applying a preventive vaccine and to create conditions for reducing the spread of HEV. This review emphasizes the hepatitis E virus and its importance for public health in Europe, the methods of virus transmission and treatment, and summarizes the latest studies on HEV vaccine development.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Valeria Tonova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetoslav Koynarski
- Department of Animal Genetics, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Laura L Lukov
- Faculty of Sciences, Brigham Young University-Hawaii, Laie, HI 96762, USA
| | - Ivan Minkov
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | - Maria Pishmisheva
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Stanislav Kotsev
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| | - Anton P Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
23
|
Prpić J, Baymakova M. Hepatitis E Virus (HEV) Infection among Humans and Animals: Epidemiology, Clinical Characteristics, Treatment, and Prevention. Pathogens 2023; 12:931. [PMID: 37513778 PMCID: PMC10383665 DOI: 10.3390/pathogens12070931] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The public health significance of hepatitis E is very important [...].
Collapse
Affiliation(s)
- Jelena Prpić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| |
Collapse
|
24
|
Pirani S, Pierini I, Manuali E, Bazzucchi M, De Mia GM, Giammarioli M. Paslahepevirus balayani (Hepatitis E Virus) in Italian Nonungulate Wildlife: Molecular Detection and Characterization of an Isolate from a Crested Porcupine (Hystrix cristata). J Wildl Dis 2023; 59:460-464. [PMID: 37167074 DOI: 10.7589/jwd-d-22-00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/20/2023] [Indexed: 05/13/2023]
Abstract
Paslahepevirus balayani (hepatitis E virus [HEV]) is the causative agent of hepatitis E, a worldwide zoonosis involving a wide range of hosts among domestic and wild animals. This species is characterized by a great genomic heterogeneity and includes eight genotypes, HEV-1 to HEV-8. The HEV-3 genotype is one of the most common types circulating in Italy in humans and Suidae. Although domestic and wild Sus scrofa and deer (Cervidae) are recognized as the main reservoirs of HEV, several other wild species are potential carriers. A total of 228 liver samples were collected from nonungulate wild animals, found dead, in the framework of the regional passive surveillance program in Umbria and Marche regions (central Italy) during 2018-20. These were tested using real-time reverse-transcriptase PCR (RT-PCR) for detection of RNA of HEV-1 to HEV-4 and confirmed by nested RT-PCR assay. One of the 11 samples collected from crested porcupines (Hystrix cristata) tested positive for the presence of HEV RNA; all other samples were negative. Sequence analysis based on the full-length genome revealed that this isolate, 49434/UM/2018 (accession no. OL658617), belongs to the HEV-3e subtype. These findings suggest a potential role of crested porcupines as a carrier of HEV infection.
Collapse
Affiliation(s)
- Silvia Pirani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", via Gaetano Salvemini 1, 06126 Perugia, Italy
| | - Ilaria Pierini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", via Gaetano Salvemini 1, 06126 Perugia, Italy
| | - Elisabetta Manuali
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", via Gaetano Salvemini 1, 06126 Perugia, Italy
| | - Moira Bazzucchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Antonio Bianchi 7/9, 24124 Brescia, Italy
| | - Gian Mario De Mia
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", via Gaetano Salvemini 1, 06126 Perugia, Italy
| | - Monica Giammarioli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", via Gaetano Salvemini 1, 06126 Perugia, Italy
| |
Collapse
|
25
|
Dos Santos DRL, Durães-Carvalho R, Gardinali NR, Machado LC, de Paula VS, da Luz Wallau G, de Oliveira JM, Pena LJ, Pinto MA, Gil LHVG, de Oliveira-Filho EF. Uncovering neglected subtypes and zoonotic transmission of Hepatitis E virus (HEV) in Brazil. Virol J 2023; 20:83. [PMID: 37131237 PMCID: PMC10152778 DOI: 10.1186/s12985-023-02047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023] Open
Abstract
Hepatitis E virus (HEV) circulation in humans and swine has been extensively studied in South America over the last two decades. Nevertheless, only 2.1% of reported HEV strains are available as complete genome sequences. Therefore, many clinical, epidemiological, and evolutionary aspects of circulating HEV in the continent still need to be clarified. Here, we conducted a retrospective evolutionary analysis of one human case and six swine HEV strains previously reported in northeastern, southern, and southeastern Brazil. We obtained two complete and four nearly complete genomic sequences. Evolutionary analysis comparing the whole genomic and capsid gene sequences revealed high genetic variability. This included the circulation of at least one unrecognized unique South American subtype. Our results corroborate that sequencing the whole capsid gene could be used as an alternative for HEV subtype assignment in the absence of complete genomic sequences. Moreover, our results substantiate the evidence for zoonotic transmission by comparing a larger genomic fragment recovered from the sample of the autochthonous human hepatitis E case. Further studies should continuously investigate HEV genetic diversity and zoonotic transmission of HEV in South America.
Collapse
Affiliation(s)
- Debora Regina Lopes Dos Santos
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM- FIOCRUZ), Recife, Pernambuco, Brazil
- Veterinary Institute, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Ricardo Durães-Carvalho
- São Paulo School of Medicine, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Post-Graduate Program in Structural and Functional Biology, UNIFESP, São Paulo, Brazil
| | - Noemi Rovaris Gardinali
- Laboratório de Desenvolvimento Tecnológico em Virologia (LADTV) , Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Laboratório de Tecnologia Virológica (LATEV) , Instituto de Tecnologia em Imunobiológicos (Biomanguinhos), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Lais Ceschini Machado
- Department of Entomology and Bioinformatic Core, Oswaldo Cruz Foundation-Fiocruz, Recife, PE, Brazil
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (IOC- FIOCRUZ), Rio de Janeiro, Brazil
| | - Gabriel da Luz Wallau
- Department of Entomology and Bioinformatic Core, Oswaldo Cruz Foundation-Fiocruz, Recife, PE, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Jaqueline Mendes de Oliveira
- Laboratório de Desenvolvimento Tecnológico em Virologia (LADTV) , Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Lindomar José Pena
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM- FIOCRUZ), Recife, Pernambuco, Brazil
| | - Marcelo Alves Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia (LADTV) , Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Edmilson Ferreira de Oliveira-Filho
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM- FIOCRUZ), Recife, Pernambuco, Brazil.
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
26
|
Santos-Silva S, Hemnani M, Lopez-Lopez P, Gonçalves HMR, Rivero-Juarez A, Van der Poel WHM, Nascimento MSJ, Mesquita JR. A Systematic Review of Hepatitis E Virus Detection in Camels. Vet Sci 2023; 10:vetsci10050323. [PMID: 37235406 DOI: 10.3390/vetsci10050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Hepatitis E virus (HEV) represents a major cause of acute hepatitis and is considered an emerging public health problem around the world. In the Middle East's and Africa's arid regions, where camels frequently interact with human populations and camel-derived food products are a component of the food chain, camel-borne zoonotic HEV infection is a potential threat. To date, no review paper has been published on HEV in camels. As such, the purpose of the current work is to provide a scientific review of the identification of HEV genotypes seven and eight in camels worldwide to have a better understanding of the current status of this topic and to identify gaps in the current knowledge. Searches were carried out in the electronic databases PubMed, Mendeley, Web of Science, and Scopus, including studies published until 31 December 2022 (n = 435). Once the databases were checked for duplicate papers (n = 307), the exclusion criteria were applied to remove any research that was not relevant (n = 118). As a result, only 10 papers were found to be eligible for the study. Additionally, in eight of the ten studies, the rates of HEV infection were found to be between 0.6% and 2.2% in both stool and serum samples. Furthermore, four studies detected HEV genotype seven in dromedary camels, and two studies have shown HEV genotype eight in Bactrian camels. Interestingly, these genotypes were recently reported in camels from the Middle East and China, where one human infection with HEV genotype seven has been associated with the consumption of contaminated camel meat and milk. In conclusion, more research will be needed to determine the prevalence of HEV infection in camels around the world as well as the risk of foodborne transmission of contaminated camel products. As camels are utility animals in several countries, HEV in these animals may pose a potential risk to public health.
Collapse
Affiliation(s)
- Sérgio Santos-Silva
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Mahima Hemnani
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Pedro Lopez-Lopez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC) Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Helena M R Gonçalves
- Biosensor Ntech-Nanotechnology Services, Lda, Avenida da Liberdade, 249, 1° Andar, 1250-143 Lisboa, Portugal
- REQUIMTE, Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal
| | - António Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, 14004 Córdoba, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC) Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Wim H M Van der Poel
- Quantitative Veterinary Epidemiology Group, Wageningen University, 6708 PB Wageningen, The Netherlands
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands
| | | | - João R Mesquita
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
27
|
Gabrielli F, Alberti F, Russo C, Cursaro C, Seferi H, Margotti M, Andreone P. Treatment Options for Hepatitis A and E: A Non-Systematic Review. Viruses 2023; 15:1080. [PMID: 37243166 PMCID: PMC10221699 DOI: 10.3390/v15051080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Hepatitis A and hepatitis E are relatively common causes of liver disease. Both viruses are mainly transmitted through the faecal-oral route and, consequently, most outbreaks occur in countries with poor sanitation. An important role of the immune response as the driver of liver injury is also shared by the two pathogens. For both the hepatitis A (HAV) and hepatitis E (HEV) viruses, the clinical manifestations of infection mainly consist of an acute disease with mild liver injury, which results in clinical and laboratory alterations that are self-limiting in most cases. However, severe acute disease or chronic, long-lasting manifestations may occur in vulnerable patients, such as pregnant women, immunocompromised individuals or those with pre-existing liver disease. Specifically, HAV infection rarely results in fulminant hepatitis, prolonged cholestasis, relapsing hepatitis and possibly autoimmune hepatitis triggered by the viral infection. Less common manifestations of HEV include extrahepatic disease, acute liver failure and chronic HEV infection with persistent viraemia. In this paper, we conduct a non-systematic review of the available literature to provide a comprehensive understanding of the state of the art. Treatment mainly consists of supportive measures, while the available evidence for aetiological treatment and additional agents in severe disease is limited in quantity and quality. However, several therapeutic approaches have been attempted: for HAV infection, corticosteroid therapy has shown outcome improvement, and molecules, such as AZD 1480, zinc chloride and heme oxygenase-1, have demonstrated a reduction in viral replication in vitro. As for HEV infection, therapeutic options mainly rely on the use of ribavirin, and some studies utilising pegylated interferon-alpha have shown conflicting results. While a vaccine for HAV is already available and has led to a significant reduction in the prevalence of the disease, several vaccines for HEV are currently being developed, with some already available in China, showing promising results.
Collapse
Affiliation(s)
- Filippo Gabrielli
- Postgraduate School of Internal Medicine, University of Modena and Reggio Emilia, 41126 Modena, Italy
- Department of Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Francesco Alberti
- Postgraduate School of Internal Medicine, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Cristina Russo
- Postgraduate School of Internal Medicine, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Carmela Cursaro
- Internal and Metabolic Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, AOU di Modena, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Hajrie Seferi
- Internal and Metabolic Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, AOU di Modena, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Marzia Margotti
- Internal and Metabolic Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, AOU di Modena, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Pietro Andreone
- Internal and Metabolic Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, AOU di Modena, University of Modena and Reggio Emilia, 41126 Modena, Italy
- Division of Internal Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy
- Postgraduate School of Allergology and Clinical Immunology, University of Modena and Reggio Emilia, 41126 Modena, Italy
| |
Collapse
|
28
|
Mättö J, Putkuri N, Rimhanen-Finne R, Laurila P, Clancy J, Ihalainen J, Ekblom-Kullberg S. Hepatitis E Virus in Finland: Epidemiology and Risk in Blood Donors and in the General Population. Pathogens 2023; 12:pathogens12030484. [PMID: 36986406 PMCID: PMC10054892 DOI: 10.3390/pathogens12030484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Autochthonous hepatitis E (HEV) cases have been increasingly recognized and reported in Europe, caused predominantly by the zoonotic HEV genotype 3. The clinical picture is highly variable, from asymptomatic to acute severe or prolonged hepatitis in immunocompromised patients. The main route of transmission to humans in Europe is the ingestion of undercooked pork meat. Transfusion-transmitted HEV infections have also been reported. The aim of the study was to determine the HEV epidemiology and risk in the Finnish blood donor population. A total of 23,137 samples from Finnish blood donors were screened for HEV RNA from individual samples and 1012 samples for HEV antibodies. Additionally, laboratory-confirmed hepatitis E cases in 2016-2022 were extracted from national surveillance data. The HEV RNA prevalence data was used to estimate the risk of transfusion transmission of HEV in the Finnish blood transfusion setting. Four HEV RNA-positive were found, resulting in 1:5784 (0.02%) RNA prevalence. All HEV RNA-positive samples were IgM-negative, and genotyped samples represented genotype HEV 3c. HEV IgG seroprevalence was 7.4%. From the HEV RNA rate found in this study and data on blood component usage in Finland in 2020, the risk estimate for a severe transfusion-transmitted HEV infection is 1:1,377,000 components or one in every 6-7 years. In conclusion, the results indicate that the risk of transfusion-transmitted HEV (HEV TTI) in Finland is low. However, continuous follow-up of the HEV epidemiology in relation to the transfusion risk landscape in Finland is necessary, as well as promoting awareness in the medical community of the small risk for HEV TTI, especially for immunocompromised patients.
Collapse
Affiliation(s)
- Jaana Mättö
- Finnish Red Cross Blood Service, 01730 Vantaa, Finland
| | - Niina Putkuri
- Finnish Red Cross Blood Service, 01730 Vantaa, Finland
| | | | - Päivi Laurila
- Finnish Institute for Health and Welfare, 00100 Helsinki, Finland
| | - Jonna Clancy
- Finnish Red Cross Blood Service Biobank, 01730 Vantaa, Finland
| | | | | |
Collapse
|
29
|
Bai H, Ami Y, Suzaki Y, Doan YH, Muramatsu M, Li TC. Open Reading Frame 4 Is Not Essential in the Replication and Infection of Genotype 1 Hepatitis E Virus. Viruses 2023; 15:v15030784. [PMID: 36992492 PMCID: PMC10052008 DOI: 10.3390/v15030784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Genotype 1 hepatitis E virus (HEV-1), unlike other genotypes of HEV, has a unique small open reading frame known as ORF4 whose function is not yet known. ORF4 is located in an out-framed manner in the middle of ORF1, which encodes putative 90 to 158 amino acids depending on the strains. To explore the role of ORF4 in HEV-1 replication and infection, we cloned the complete genome of wild-type HEV-1 downstream of a T7 RNA polymerase promoter, and the following ORF4 mutant constructs were prepared: the first construct had TTG instead of the initiation codon ATG (A2836T), introducing an M→L mutation in ORF4 and a D→V mutation in ORF1. The second construct had ACG instead of the ATG codon (T2837C), introducing an M→T mutation in ORF4. The third construct had ACG instead of the second in-frame ATG codon (T2885C), introducing an M→T mutation in ORF4. The fourth construct contained two mutations (T2837C and T2885C) accompanying two M→T mutations in ORF4. For the latter three constructs, the accompanied mutations introduced in ORF1 were all synonymous changes. The capped entire genomic RNAs were generated by in vitro transcription and used to transfect PLC/PRF/5 cells. Three mRNAs containing synonymous mutations in ORF1, i.e., T2837CRNA, T2885CRNA, and T2837C/T2885CRNA, replicated normally in PLC/PRF/5 cells and generated infectious viruses that successfully infected Mongolian gerbils as the wild-type HEV-1 did. In contrast, the mutant RNA, i.e., A2836TRNA, accompanying an amino acid change (D937V) in ORF1 generated infectious viruses upon transfection, but they replicated slower than the wild-type HEV-1 and failed to infect Mongolian gerbils. No putative viral protein(s) derived from ORF4 were detected in the wild-type HEV-1- as well as the mutant virus-infected PLC/PRF/5 cells by Western blot analysis using a high-titer anti-HEV-1 IgG antibody. These results demonstrated that the ORF4-defective HEV-1s had the ability to replicate in the cultured cells, and that these defective viruses had the ability to infect Mongolian gerbils unless the overlapping ORF1 was accompanied by non-synonymous mutation(s), confirming that ORF4 is not essential in the replication and infection of HEV-1.
Collapse
Affiliation(s)
- Huimin Bai
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou 014060, China
| | - Yasushi Ami
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Yuriko Suzaki
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| |
Collapse
|
30
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Intrinsic disorder in the open reading frame 2 of hepatitis E virus: a protein with multiple functions beyond viral capsid. J Genet Eng Biotechnol 2023; 21:33. [PMID: 36929465 PMCID: PMC10018590 DOI: 10.1186/s43141-023-00477-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/31/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) is the cause of a liver disease hepatitis E. The translation product of HEV ORF2 has recently been demonstrated as a protein involved in multiple functions besides performing its major role of a viral capsid. As intrinsically disordered regions (IDRs) are linked to various essential roles in the virus's life cycle, we analyzed the disorder pattern distribution of the retrieved ORF2 protein sequences by employing different online predictors. Our findings might provide some clues on the disorder-based functions of ORF2 protein that possibly help us in understanding its behavior other than as a HEV capsid protein. RESULTS The modeled three dimensional (3D) structures of ORF2 showed the predominance of random coils or unstructured regions in addition to major secondary structure components (alpha helix and beta strand). After initial scrutinization, the predictors VLXT and VSL2 predicted ORF2 as a highly disordered protein while the predictors VL3 and DISOPRED3 predicted ORF2 as a moderately disordered protein, thus categorizing HEV-ORF2 into IDP (intrinsically disordered protein) or IDPR (intrinsically disordered protein region) respectively. Thus, our initial predicted disorderness in ORF2 protein 3D structures was in excellent agreement with their predicted disorder distribution patterns (evaluated through different predictors). The abundance of MoRFs (disorder-based protein binding sites) in ORF2 was observed that signified their interaction with binding partners which might further assist in viral infection. As IDPs/IDPRs are targets of regulation, we carried out the phosphorylation analysis to reveal the presence of post-translationally modified sites. Prevalence of several disordered-based phosphorylation sites further signified the involvement of ORF2 in diverse and significant biological processes. Furthermore, ORF2 structure-associated functions revealed its involvement in several crucial functions and biological processes like binding and catalytic activities. CONCLUSIONS The results predicted ORF2 as a protein with multiple functions besides its role as a capsid protein. Moreover, the occurrence of IDPR/IDP in ORF2 protein suggests that its disordered region might serve as novel drug targets via functioning as potential interacting domains. Our data collectively might provide significant implication in HEV vaccine search as disorderness in viral proteins is related to mechanisms involved in immune evasion.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
31
|
de Oliveira JM, dos Santos DRL, Pinto MA. Hepatitis E Virus Research in Brazil: Looking Back and Forwards. Viruses 2023; 15:548. [PMID: 36851763 PMCID: PMC9965705 DOI: 10.3390/v15020548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatitis E virus (HEV) has emerged as a public health concern in Brazil. From the first identification and characterization of porcine and human HEV-3 strains in the 2000s, new HEV subtypes have been identified from animal, human, and environmental isolates. As new potential animal reservoirs have emerged, there is a need to compile evidence on the zoonotic dissemination of the virus in animal hosts and the environment. The increasing amount of seroprevalence data on sampled and randomly selected populations must be systematically retrieved, interpreted, and considered under the One Health concept. This review focused on HEV seroprevalence data in distinct animal reservoirs and human populations reported in the last two decades. Furthermore, the expertise with experimental infection models using non-human primates may provide new insights into HEV pathogenesis, prevention, and environmental surveillance.
Collapse
Affiliation(s)
- Jaqueline Mendes de Oliveira
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | | | - Marcelo Alves Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
32
|
Hepatitis E Virus (HEV) in Makkah, Saudi Arabia: A Population-Based Seroprevalence Study. Viruses 2023; 15:v15020484. [PMID: 36851698 PMCID: PMC9964995 DOI: 10.3390/v15020484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The Hepatitis E virus (HEV) is a common cause of viral hepatitis worldwide. Little is known about the seroprevalence of HEV in the general population of Saudi Arabia. METHODS A community-based cross-sectional HEV seroprevalence study was conducted in Makkah, Saudi Arabia. Anti-HEV IgG antibodies were detected in sera using an in-house ELISA. The frequency of HEV sageerology and its correlation with demographic, and environmental factors were evaluated. RESULTS Enrollment consisted of 1329 individuals, ages ranged from 8 to 88 years, the mean age was 30.17 years, the median age was 28yrs, and the male: female ratio was 1.15. The overall seroprevalence was 23.8% (316/1329). Males had significantly higher seroprevalence than females (66.1 vs. 33.9%; p < 0.001). Seroprevalence had significant correlations with age, occupation, and lack of regular water supply and housing conditions. CONCLUSIONS This is the first HEV community-based seroprevalence study from Saudi Arabia. Results show that the HEV is endemic in Makkah and affects all age groups and occupations. HEV affects more males than females and those living in crowded accommodations without a regular supply of water. Further studies are required across all regions of Saudi Arabia to determine the country's seroprevalence of active or past infection using tests for HEV IgG, HEV IgM antibodies and/or HEV RNA and underlying determinants of transmission.
Collapse
|
33
|
Fernández Villalobos NV, Kessel B, Torres Páez JC, Strömpl J, Kerrinnes T, de la Hoz Restrepo FP, Strengert M, Krause G. Seroprevalence of Hepatitis E virus in children and adolescents living in urban Bogotá: An explorative cross-sectional study. Front Public Health 2023; 11:981172. [PMID: 36844812 PMCID: PMC9943700 DOI: 10.3389/fpubh.2023.981172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/06/2023] [Indexed: 02/09/2023] Open
Abstract
The majority of Hepatitis E Virus (HEV)-related studies are carried out in adults whereas information about HEV seroprevalence, clinical disease manifestation, molecular epidemiology, and transmission patterns in children is limited. To estimate HEV seroprevalence among scholar children living in an urban setting and to analyze risk factors for an infection, we invited children aged 5-18 years from Bogotá (Colombia) for a cross-sectional survey. We collected self-reported data on demographics, social, clinical, and exposure variables in a structured interview. Venous blood samples were analyzed with two commercially available ELISAs for HEV-specific IgG antibodies. Among the 263 participants, we found three HEV IgG-reactive samples (1.1%) using both assays. We additionally characterized the samples for HEV IgM using a commercially available IgM ELISA and for HEV RNA. Here, we found one IgM-reactive sample, which was also reactive for IgG. In contrast, none of the IgM- and IgG-reactive sera samples showed detectable RNA levels indicating HEV exposure had not been recently. All participants reported access to drinking water and sanitary systems in their households and frequent hand washing routines (76-88%). Eighty percent of children reported no direct contact with pigs, but occasional pork consumption was common (90%). In contrast to the majority of studies performed in Colombian adults, we found a low unadjusted HEV seroprevalence of 1.1% (95% CI: 0.3-3.6%) for both HEV IgG ELISAs in our study population. While the majority of participants reported pork consumption, we speculate in the absence of viral RNA for genotyping in the affected individuals, that existing access to drinking water and sanitary systems within our study group contribute to the low HEV seroprevalence.
Collapse
Affiliation(s)
| | - Barbora Kessel
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Johanna Carolina Torres Páez
- Department of Epidemiology, PhD Programme, Helmholtz Centre for Infection Research (HZI), Braunschweig-Hannover, Hannover, Germany
| | - Julia Strömpl
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Tobias Kerrinnes
- Department of RNA-Biology of Bacterial Infections, Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | | | - Monika Strengert
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany,Twincore, Centre for Experimental and Clinical Infection Research, A Joint Venture of the Hannover Medical School and Helmholtz Centre for Infection Research, Hannover, Germany,*Correspondence: Monika Strengert ✉
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany,Twincore, Centre for Experimental and Clinical Infection Research, A Joint Venture of the Hannover Medical School and Helmholtz Centre for Infection Research, Hannover, Germany,German Center for Infection Research (DZIF), partner site: Braunschweig-Hannover, Braunschweig, Germany
| |
Collapse
|
34
|
Detection of Hepatitis E Virus Genotype 3 in Feces of Capybaras (Hydrochoeris hydrochaeris) in Brazil. Viruses 2023; 15:v15020335. [PMID: 36851548 PMCID: PMC9959927 DOI: 10.3390/v15020335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen associated with relevant public health issues. The aim of this study was to investigate HEV presence in free-living capybaras inhabiting urban parks in São Paulo state, Brazil. Molecular characterization of HEV positive samples was undertaken to elucidate the genetic diversity of the virus in these animals. A total of 337 fecal samples were screened for HEV using RT-qPCR and further confirmed by conventional nested RT-PCR. HEV genotype and subtype were determined using Sanger and next-generation sequencing. HEV was detected in one specimen (0.3%) and assigned as HEV-3f. The IAL-HEV_921 HEV-3f strain showed a close relationship to European swine, wild boar and human strains (90.7-93.2% nt), suggesting an interspecies transmission. Molecular epidemiology of HEV is poorly investigated in Brazil; subtype 3f has been reported in swine. This is the first report of HEV detected in capybara stool samples worldwide.
Collapse
|
35
|
Dual Infection of Hepatitis A Virus and Hepatitis E Virus- What Is Known? Viruses 2023; 15:v15020298. [PMID: 36851512 PMCID: PMC9965669 DOI: 10.3390/v15020298] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Viral hepatitis is an infection of human hepatocytes resulting in liver damage. Dual infection of two hepatotropic viruses affects disease outcomes. The hepatitis A virus (HAV) and hepatitis E virus (HEV) are two enterically transmitted viruses; they are single-stranded RNA viruses and have common modes of transmission. They are transmitted mainly by the fecal-oral route and ingestion of contaminated food, though the HAV has no animal reservoirs. The HAV and HEV cause acute self-limiting disease; however, the HEV, but not HAV, can progress to chronic and extrahepatic infections. The HAV/HEV dual infection was reported among acute hepatitis patients present in developing countries. The impact of the HAV/HEV on the prognosis for acute hepatitis is not completely understood. Studies showed that the HAV/HEV dual infection increased abnormalities in the liver leading to fulminant hepatic failure (FHF) with a higher mortality rate compared to infection with a single virus. On the other hand, other reports showed that the clinical symptoms of the HAV/HEV dual infection were comparable to symptoms associated with the HAV or HEV monoinfection. This review highlights the modes of transmission, the prevalence of the HAV/HEV dual infection in various countries and among several study subjects, the possible outcomes of this dual infection, potential model systems for studying this dual infection, and methods of prevention of this dual infection and its associated complications.
Collapse
|
36
|
Wang L, Wang Y, Zhuang H. Puzzles for Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:247-256. [PMID: 37223871 DOI: 10.1007/978-981-99-1304-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) is an important but understudied virus that has been the major cause of acute viral hepatitis worldwide. In recent decades, our understanding of this neglected virus has changed greatly: novel forms of viral proteins and their functions have been discovered; HEV can transmit via blood transfusion and organ transplantation; HEV can infect many animal species and the number is still increasing; HEV can induce chronic hepatitis and extra-hepatic manifestations. However, we are short of effective treatment measures to counter the virus. In this chapter we tend to briefly introduce the puzzles and major knowledge gaps existed in the field of HEV research.
Collapse
Affiliation(s)
- Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
37
|
Si F, Widén F, Dong S, Li Z. Hepatitis E as a Zoonosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:49-58. [PMID: 37223858 DOI: 10.1007/978-981-99-1304-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E viruses in the family of Hepeviridae have been classified into 2 genus, 5 species, and 13 genotypes, involving different animal hosts of different habitats. Among all these genotypes, four (genotypes 3, 4, 7, and C1) of them are confirmed zoonotic causing sporadic human diseases, two (genotypes 5 and 8) were likely zoonotic showing experimental animal infections, and the other seven were not zoonotic or unconfirmed. These zoonotic HEV carrying hosts include pig, boar, deer, rabbit, camel, and rat. Taxonomically, all the zoonotic HEVs belong to the genus Orthohepevirus, which include genotypes 3, 4, 5, 7, 8 HEV in the species A and genotype C1 HEV in the species C. In the chapter, information of zoonotic HEV such as swine HEV (genotype 3 and 4), wild boar HEV (genotypes 3-6), rabbit HEV (genotype 3), camel HEV (genotype 7 and 8), and rat HEV (HEV-C1) was provided in detail. At the same time, their prevalence characteristics, transmission route, phylogenetic relationship, and detection technology were discussed. Other animal hosts of HEVs were introduced briefly in the chapter. All these information help peer researchers have basic understanding of zoonotic HEV and adopt reasonable strategy of surveillance and prevention.
Collapse
Affiliation(s)
- Fusheng Si
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Frederik Widén
- The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Shijuan Dong
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Zhen Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
38
|
He Q, Zhang Y, Gong W, Zeng H, Wang L. Genetic Evolution of Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:59-72. [PMID: 37223859 DOI: 10.1007/978-981-99-1304-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Comparative analysis of the genomic sequences of multiple hepatitis E virus (HEV) isolates has revealed extensive genomic diversity among them. Recently, a variety of genetically distinct HEV variants have also been isolated and identified from large numbers of animal species, including birds, rabbits, rats, ferrets, bats, cutthroat trout, and camels, among others. Furthermore, it has been reported that recombination in HEV genomes takes place in animals and in human patients. Also, chronic HEV infection in immunocompromised individuals has revealed the presence of viral strains carrying insertions from human genes. This paper reviews current knowledge on the genomic variability and evolution of HEV.
Collapse
Affiliation(s)
- Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yulin Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wanyun Gong
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hang Zeng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
39
|
Wang Y, Zhao C, Qi Y, Geng Y. Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:1-13. [PMID: 37223855 DOI: 10.1007/978-981-99-1304-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Since the sequence of hepatitis E virus (HEV) was determined from a patient with enterically transmitted non-A, non-B hepatitis in 1989, similar sequences have been isolated from many different animals, including pigs, wild boars, deer, rabbits, bats, rats, chicken, and trout. All of these sequences have the same genomic organization, which contains open reading frames (ORFs) 1, 2, and 3, although their genomic sequences are variable. Some have proposed that they be classified as new family, Hepeviridae, which would be further divided into different genera and species according to their sequence variability. The size of these virus particles generally ranged from 27 to 34 nm. However, HEV virions produced in cell culture differ in structure from the viruses found in feces. Those from cell culture have a lipid envelope and either lack or have a little ORF3, whereas the viruses isolated from feces lack a lipid envelope but have ORF3 on their surfaces. Surprisingly, most of the secreted ORF2 proteins from both these sources are not associated with HEV RNA.
Collapse
Affiliation(s)
- Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Ying Qi
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yansheng Geng
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| |
Collapse
|
40
|
Wu JY, Meng XX, Wei YR, Bolati H, Lau EHY, Yang XY. Prevalence of Hepatitis E Virus (HEV) in Feral and Farmed Wild Boars in Xinjiang, Northwest China. Viruses 2022; 15:78. [PMID: 36680118 PMCID: PMC9867238 DOI: 10.3390/v15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Hepatitis E virus (HEV) causes infections in humans and a wide range of animal hosts. Wild boar is an important natural reservoir of HEV genotypes 3−6 (HEV-3−HEV-6), but comparative analysis of HEV infections in both feral and farmed wild boars remains limited. In this study, samples from 599 wild boars were collected during 2017−2020, including 121 feral wild boars (collected 121 fecal, 121 serum, and 89 liver samples) and 478 farmed wild boars (collected 478 fecal and 478 serum samples). The presence of anti-HEV IgG antibodies were detected by the HEV-IgG enzyme-linked immunosorbent assay (ELISA) kit. HEV RNA was detected by reverse transcription polymerase chain reaction (RT-PCR), targeting the partial ORF1 genes from fecal and liver samples, and the obtained genes were further genotyped by phylogenetic analysis. The results showed that 76.2% (95% CI 72.1−79.9) of farmed wild boars tested anti-HEV IgG seropositive, higher than that in feral wild boars (42.1%, 95% CI 33.2−51.5, p < 0.001). HEV seropositivity increased with age. Wild boar HEV infection presented a significant geographical difference (p < 0.001), but not between sex (p = 0.656) and age (p = 0.347). HEV RNA in fecal samples was detected in 13 (2.2%, 95% CI 1.2−3.7) out of 599 wild boars: 0.8% (95% CI 0.0−4.5, 1/121) of feral wild boars and 2.5% (95% CI 1.3−4.3, 12/478) of farmed wild boars. Phylogenetic analysis showed that all these viruses belonged to genotype HEV-4, and further grouped into sub-genotypes HEV-4a, HEV-4d, and HEV-4h, of which HEV-4a was first discovered in the wild boar populations in China. Our results suggested that farms could be a setting for amplification of HEV. The risk of HEV zoonotic transmission via rearing and consumption of farmed wild boars should be further assessed.
Collapse
Affiliation(s)
- Jian-Yong Wu
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
- School of Public Health, Xinjiang Medical University, Urumqi 830016, China
| | - Xiao-Xiao Meng
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | - Yu-Rong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | - Hongduzi Bolati
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | - Eric H. Y. Lau
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Xue-Yun Yang
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi 830013, China
| |
Collapse
|
41
|
Sayed IM, Abdelwahab SF. Is Hepatitis E Virus a Neglected or Emerging Pathogen in Egypt? Pathogens 2022; 11:1337. [PMID: 36422589 PMCID: PMC9697431 DOI: 10.3390/pathogens11111337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 09/02/2023] Open
Abstract
Though Egypt ranks among the top countries for viral hepatitis and death-related liver disease, Hepatitis E virus (HEV) is a neglected pathogen. Living in villages and rural communities with low sanitation, use of underground well water and contact with animals are the main risk factors for HEV infection. Domestic animals, especially ruminants and their edible products, are one source of infection. Contamination of water by either human or animal stools is the main route of infection. In addition, HEV either alone or in coinfection with other hepatotropic viruses has been recorded in Egyptian blood donors. HEV seropositivity among Egyptian villagers was 60-80%, especially in the first decade of life. Though HEV seropositivity is the highest among Egyptians, HEV infection is not routinely diagnosed in Egyptian hospitals. The initial manifestations of HEV among Egyptians is a subclinical infection, although progression to fulminant hepatic failure has been recorded. With the improvement in serological and molecular approaches and increasing research on HEV, it is becoming clear that HEV represents a threat for Egyptians and preventive measures should be considered to reduce the infection rate and possible complications.
Collapse
Affiliation(s)
- Ibrahim M. Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
42
|
Karamendin K, Seidalina A, Sabyrzhan T, Nuralibekov S, Kasymbekov Y, Suleimenova S, Khan E, Alikhanov O, Narsha U, Erkekulova K, Kydyrmanov A. Serological Screening for Middle East Respiratory Syndrome Coronavirus and Hepatitis E Virus in Camels in Kazakhstan. Pathogens 2022; 11:1224. [PMID: 36364975 PMCID: PMC9692571 DOI: 10.3390/pathogens11111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2024] Open
Abstract
After the recent Middle East Respiratory Syndrome coronavirus (MERS-CoV) pandemic in 2013, more attention has been paid to the camel as an important source of zoonotic viral infections. Almost simultaneously, in 2013, new genotypes 7 and 8 of the hepatitis E virus (HEV) were discovered in dromedary and Bactrian camels, respectively. HEV 7 was further shown to be associated with chronic viral hepatitis in a transplant recipient. In this study, serological screening for antibodies to MERS-CoV and hepatitis E virus was carried out on large camel farms in the south and west of Kazakhstan. 6.42% of the tested camels were found to be positive for antibodies to the hepatitis E virus, which indicates its circulation in local camel population. For the first time, antibodies to the hepatitis E virus were found in Bactrians, which have been little studied to date. Antibodies to MERS-CoV were not found in the camel sera.
Collapse
Affiliation(s)
- Kobey Karamendin
- Laboratory of Viral Ecology, Department of Virology, Scientific Production Center of Microbiology and Virology, 105 Bogenbay batyr Str., Almaty A25K1G0, Kazakhstan
| | - Aigerim Seidalina
- Laboratory of Viral Ecology, Department of Virology, Scientific Production Center of Microbiology and Virology, 105 Bogenbay batyr Str., Almaty A25K1G0, Kazakhstan
| | - Temirlan Sabyrzhan
- Laboratory of Viral Ecology, Department of Virology, Scientific Production Center of Microbiology and Virology, 105 Bogenbay batyr Str., Almaty A25K1G0, Kazakhstan
| | - Sardor Nuralibekov
- Laboratory of Viral Ecology, Department of Virology, Scientific Production Center of Microbiology and Virology, 105 Bogenbay batyr Str., Almaty A25K1G0, Kazakhstan
| | - Yermukhammet Kasymbekov
- Laboratory of Viral Ecology, Department of Virology, Scientific Production Center of Microbiology and Virology, 105 Bogenbay batyr Str., Almaty A25K1G0, Kazakhstan
| | - Symbat Suleimenova
- Laboratory of Viral Ecology, Department of Virology, Scientific Production Center of Microbiology and Virology, 105 Bogenbay batyr Str., Almaty A25K1G0, Kazakhstan
| | - Elizaveta Khan
- Laboratory of Viral Ecology, Department of Virology, Scientific Production Center of Microbiology and Virology, 105 Bogenbay batyr Str., Almaty A25K1G0, Kazakhstan
| | - Oralbek Alikhanov
- Department of Veterinary Medicine, Agrarian Faculty, M. Auezov South Kazakhstan State University, 9th Corpus, 198 M.Kh. Dulati Str., Shymkent 160013, Kazakhstan
| | - Uldana Narsha
- Department of Veterinary Medicine, Agrarian Faculty, M. Auezov South Kazakhstan State University, 9th Corpus, 198 M.Kh. Dulati Str., Shymkent 160013, Kazakhstan
| | - Kalya Erkekulova
- Department of Veterinary Medicine, Agrarian Faculty, M. Auezov South Kazakhstan State University, 9th Corpus, 198 M.Kh. Dulati Str., Shymkent 160013, Kazakhstan
| | - Aidyn Kydyrmanov
- Laboratory of Viral Ecology, Department of Virology, Scientific Production Center of Microbiology and Virology, 105 Bogenbay batyr Str., Almaty A25K1G0, Kazakhstan
| |
Collapse
|
43
|
Sayed IM, Karam-Allah Ramadan H, Hafez MHR, Elkhawaga AA, El-Mokhtar MA. Hepatitis E virus (HEV) open reading frame 2: Role in pathogenesis and diagnosis in HEV infections. Rev Med Virol 2022; 32:e2401. [PMID: 36209386 DOI: 10.1002/rmv.2401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
Abstract
Hepatitis E virus (HEV) infection occurs worldwide. The HEV genome includes three to four open reading frames (ORF1-4). ORF1 proteins are essential for viral replication, while the ORF3 protein is an ion channel involved in the exit of HEV from the infected cells. ORF2 proteins form the viral capsid required for HEV invasion and assembly. They also suppress interferon production and inhibit antibody-mediated neutralisation of HEV, allowing the virus to hijack the host immune response. ORF2 is the only detectable viral protein in the human liver during HEV infection and it is secreted in the plasma, stool, and urine of HEV-infected patients, making it a reliable diagnostic marker. The plasma HEV ORF2 antigen level can predict the outcome of HEV infections. Hence, monitoring HEV ORF2 antigen levels may be useful in assessing the efficacy of anti-HEV therapy. The ORF2 antigen is immunogenic and includes epitopes that can induce neutralising antibodies; therefore, it is a potential HEV vaccine candidate. In this review, we highlighted the different forms of HEV ORF2 protein and their roles in HEV pathogenesis, diagnosis, monitoring the therapeutic efficacy, and vaccine development.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Haidi Karam-Allah Ramadan
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud H R Hafez
- International Scholar, African Leadership Academy, Johannesburg, South Africa
| | - Amal A Elkhawaga
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Microbiology and Immunology Department, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| |
Collapse
|
44
|
Kinast V, Klöhn M, Nocke MK, Todt D, Steinmann E. Hepatitis E virus species barriers: seeking viral and host determinants. Curr Opin Virol 2022; 56:101274. [PMID: 36283248 DOI: 10.1016/j.coviro.2022.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022]
Abstract
The intimate relationship between virus and host cell can result in highly adapted viruses that are restricted to a single host. However, some viruses have the ability to infect multiple host species. Remarkably, hepatitis E viruses (HEV) comprise genotypes that are either 'single-host' or 'multi-host' genotypes, a trait that raises fundamental questions: Why do different genotypes differ in their host range, despite a high degree of genomic similarity? What are the underlying molecular determinants that shape species barriers? Here, we review the current knowledge of viral and host determinants that may affect the evolutionary trajectories of HEV. We also provide a perspective on techniques and methods that address open questions of HEV host range and adaptation.
Collapse
Affiliation(s)
- Volker Kinast
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Maximilian K Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany.
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
45
|
Shata MTM, Hetta HF, Sharma Y, Sherman KE. Viral hepatitis in pregnancy. J Viral Hepat 2022; 29:844-861. [PMID: 35748741 PMCID: PMC9541692 DOI: 10.1111/jvh.13725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/17/2021] [Accepted: 06/13/2022] [Indexed: 12/09/2022]
Abstract
Viral hepatitis is caused by a heterogenous group of viral agents representing a wide range of phylogenetic groups. Many viruses can involve the liver and cause liver injury but only a subset are delineated as 'hepatitis viruses' based upon their primary site of replication and tropism for hepatocytes which make up the bulk of the liver cell population. Since their discovery, beginning with the agent that caused serum hepatitis in the 1960s, the alphabetic designations have been utilized. To date, we have five hepatitis viruses, A through E, though it is postulated that others may exist. This chapter will focus on those viruses. Note that hepatitis D is included as a subset of hepatitis B, as it cannot exist without concurrent hepatitis B infection. Pregnancy has the potential to affect all aspects of these viral agents due to the unique immunologic and physiologic changes that occur during and after the gestational period. In this review, we will discuss the most common viral hepatitis and their effects during pregnancy.
Collapse
Affiliation(s)
- Mohamed Tarek M. Shata
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Helal F. Hetta
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA,Department of Medical Microbiology and Immunology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Yeshika Sharma
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Kenneth E. Sherman
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
46
|
Current Knowledge of Hepatitis E Virus (HEV) Epidemiology in Ruminants. Pathogens 2022; 11:pathogens11101124. [PMID: 36297181 PMCID: PMC9609093 DOI: 10.3390/pathogens11101124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) infection represents an emerging public health concern worldwide. In industrialized countries, increasing numbers of autochthonous cases of human HEV infection are caused by zoonotic transmission of genotypes 3 and 4, mainly through the consumption of contaminated raw or undercooked meat of infected pigs and wild boars, which are considered the main reservoirs of HEV. However, in the last few years, accumulating evidence seems to indicate that several other animals, including different ruminant species, may harbor HEV. Understanding the impact of HEV infection in ruminants and identifying the risk factors affecting transmission among animals and to humans is critical in order to determine their role in the epidemiological cycle of HEV. In this review, we provide a summary of current knowledge on HEV ecology in ruminants. A growing body of evidence has revealed that these animal species may be potential important hosts of HEV, raising concerns about the possible implications for public health.
Collapse
|
47
|
Updates on hepatitis E virus. Chin Med J (Engl) 2022; 135:1231-1233. [PMID: 35787530 PMCID: PMC9337248 DOI: 10.1097/cm9.0000000000001998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Mongolia Gerbils Are Broadly Susceptible to Hepatitis E Virus. Viruses 2022; 14:v14061125. [PMID: 35746596 PMCID: PMC9229706 DOI: 10.3390/v14061125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/12/2022] Open
Abstract
Although cell culture systems for hepatitis E virus (HEV) have been established by using cell lines such as PLC/PRF/5 and A549, small-animal models for this virus are limited. Since Mongolia gerbils are susceptible to genotype 1, 3 and 4 HEV (HEV-1, HEV-3 and HEV4), we intraperitoneally inoculated Mongolia gerbils with HEV-5, HEV-7, HEV-8, rabbit HEV or rat HEV in addition to the above three genotypes to investigate the infectivity and to assess whether Mongolia gerbil is an appropriate animal model for HEV infection. The results indicated that (i) HEV-5 and rat HEV were effectively replicated in the Mongolia gerbils in the same manner as HEV-4: large amounts of the viral RNA were detected in the feces and livers, and high titers of the serum anti-HEV IgG antibodies were induced in all animals. The feces were shown to contain HEV that is infectious to naïve gerbils. Furthermore, HEV-4, HEV-5 and rat HEV were successfully transmitted to the gerbils by oral inoculation. (ii) Although the viral RNA and serum anti-HEV IgG antibodies were detected in all animals inoculated with HEV-1 and HEV-8, both titers were low. The viral RNA was detected in the feces collected from two of three HEV-3-inoculated, and one of three HEV-7-inoculated gerbils, but the titers were low. The serum antibody titers were also low. The viruses excreted into the feces of HEV-1-, HEV-3-, HEV-7- and HEV-8-inoculated gerbils failed to infect naïve Mongolia gerbils. (iii) No infection sign was observed in the rabbit HEV-inoculated gerbils. These results demonstrated that Mongolia gerbils are broadly susceptible to HEV, and their degree of sensitivity was dependent on the genotype. Mongolia gerbils were observed to be susceptible to not only HEVs belonging to HEV-A but also to rat HEV belonging to HEV-C1, and thus Mongolia gerbil could be useful as a small-animal model for cross-protection experiments between HEV-A and HEV-C1. Mongolia gerbils may also be useful for the evaluation of the efficacy of vaccines against HEV.
Collapse
|
49
|
Bahoussi AN, Guo YY, Wang PH, Dahdouh A, Wu C, Xing L. Genomic characteristics and recombination patterns of swine hepatitis E virus in China. Transbound Emerg Dis 2022; 69:e3273-e3281. [PMID: 35511197 DOI: 10.1111/tbed.14585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
Zoonotic hepatitis E, mainly caused by swine hepatitis E virus (sHEV), is endemic in China, causing great economic disruption and public health threats. Although recombination is critical for the evolution of viruses, there is a limited assessment of its occurrence among sHEVs. Herein, we analyzed all available sHEV full-length genomes isolated in China during the past two decades (40 isolates) compared to 72 other sHEV strains isolated in different countries and determined that sHEV genotype 4 (sHEV4) dominates China. Eight potential natural recombination events were identified, four of which occurred in China and were mainly between sHEV4 strains, indicating the distinct character of China sHEV. One intergenotype recombination event was found in China, alarming the emergence of a new sHEV lineage that could become a critical threat to human health. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi Province, 030006, China
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi Province, 030006, China
| | - Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi Province, 030006, China
| | - Amina Dahdouh
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi Province, 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi Province, 030006, China.,Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.,Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi Province, 030006, China.,Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.,Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China
| |
Collapse
|
50
|
El-Kafrawy SA, Hassan AM, El-Daly MM, Al-Hajri M, Farag E, Elnour FA, Khan A, Tolah AM, Alandijany TA, Othman NA, Memish ZA, Corman VM, Drosten C, Zumla A, Azhar EI. Genetic diversity of hepatitis E virus (HEV) in imported and domestic camels in Saudi Arabia. Sci Rep 2022; 12:7005. [PMID: 35487943 PMCID: PMC9054814 DOI: 10.1038/s41598-022-11208-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
Camels gained attention since the discovery of MERS-CoV as intermediary hosts for potentially epidemic zoonotic viruses. DcHEV is a novel zoonotic pathogen associated with camel contact. This study aimed to genetically characterize DcHEV in domestic and imported camels in Saudi Arabia. DcHEV was detected by RT-PCR in serum samples, PCR-positive samples were subjected to sequencing and phylogenetic analyses. DcHEV was detected in 1.77% of samples with higher positivity in domestic DCs. All positive imported dromedaries were from Sudan with age declining prevalence. Domestic DcHEV sequences clustered with sequences from Kenya, Somalia, and UAE while imported sequences clustered with one DcHEV isolate from UAE and both sequences clustered away from isolates reported from Pakistan. Full-genome sequences showed 24 amino acid difference with reference sequences. Our results confirm the detection of DcHEV in domestic and imported DCs. Further investigations are needed in human and camel populations to identify DcHEV potential zoonosis threat.
Collapse
Affiliation(s)
- Sherif A El-Kafrawy
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mai M El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | | | - Anas Khan
- The Global Centre for Mass Gatherings Medicine, Public Health Directorate, Ministry of Health, Riyadh, Saudi Arabia
| | - Ahmed M Tolah
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Thamir A Alandijany
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura A Othman
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ziad A Memish
- King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia.,Al-Faisal University, Riyadh, Saudi Arabia.,Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Victor M Corman
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany.,Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany.,Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London, UK.,NIHR Biomedical Research Centre, University College London Hospitals, London, UK
| | - Esam I Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|