1
|
Lehky M, Moonian T, Michel T, Junker D, Müsken M, Strömpl J, Nübling P, Neumann F, Krumbholz A, Krause G, Schneiderhan‐Marra N, van den Heuvel J, Strengert M. A novel method for recombinant mammalian-expressed S-HBsAg virus-like particle production for assembly status analysis and improved anti-HBs serology. Protein Sci 2025; 34:e5251. [PMID: 39660966 PMCID: PMC11633054 DOI: 10.1002/pro.5251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/19/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
The Hepatitis B surface antigen (HBsAg) as the only lipid-associated envelope protein of the Hepatitis B virus (HBV) acts as cellular attachment and entry mediator of HBV making it the main target of neutralizing antibodies to provide HBV immunity after infection or vaccination. Despite its central role in inducing protective immunity, there is however a surprising lack of comparative studies examining different HBsAgs and their ability to detect anti-HBs antibodies. On the contrary, various time-consuming complex HBsAg production protocols have been established, which result in structurally and functionally insufficiently characterized HBsAg. Here, we present an easy-to-perform, streamlined and robust method for recombinant S-HBsAg virus-like particle (VLP) production by transient expression in mammalian cells and purification from the cell lysate with the aim of displaying uniform antigenic epitopes on the surface to improve serological detection of anti-HBs antibodies. We not only compare assembly status and particle composition by transmission electron microscopy and mass photometry of our S-HBsAg and of commonly used HBsAg reference samples, but also assess their antigenic quality and functional suitability for anti-HBs antibody detection to identify the best performing sample for serological screenings. While we found that serum-isolated and recombinant HBsAg VLPs are assembled differently, our S-HBsAg VLPs detected anti-HBs antibodies with the highest sensitivity and specificity in multiplex serology when compared to yeast or serum HBsAg making it the most suitable antigen for analysis of HBV immunity through anti-HBs serostatus.
Collapse
Affiliation(s)
- Michael Lehky
- Department of Structure and Function of ProteinsHelmholtz Centre for Infection ResearchBraunschweigGermany
| | - Tashveen Moonian
- Department of EpidemiologyHelmholtz Centre for Infection ResearchBraunschweigGermany
| | - Tanja Michel
- Department of Multiplex ImmunoassaysNMI Natural and Medical Sciences Institute at the University of TübingenReutlingenGermany
| | - Daniel Junker
- Department of Multiplex ImmunoassaysNMI Natural and Medical Sciences Institute at the University of TübingenReutlingenGermany
| | - Mathias Müsken
- Central Facility for MicroscopyHelmholtz Centre for Infection ResearchBraunschweigGermany
| | - Julia Strömpl
- Department of EpidemiologyHelmholtz Centre for Infection ResearchBraunschweigGermany
| | - Patrick Nübling
- Department of EpidemiologyHelmholtz Centre for Infection ResearchBraunschweigGermany
| | | | - Andi Krumbholz
- Laboratory Dr. Krause and Colleagues MVZ GmbHKielGermany
- Institute for Infection MedicineKiel University and University Hospital Schleswig‐HolsteinKielGermany
| | - Gérard Krause
- Department of EpidemiologyHelmholtz Centre for Infection ResearchBraunschweigGermany
- German Centre for Infection Research (DZIF)Braunschweig‐HannoverGermany
- TWINCORE, Centre for Experimental and Clinical Infection ResearchA Joint Venture of Hannover Medical School and the Helmholtz Centre for Infection ResearchHannoverGermany
| | - Nicole Schneiderhan‐Marra
- Department of Multiplex ImmunoassaysNMI Natural and Medical Sciences Institute at the University of TübingenReutlingenGermany
| | - Joop van den Heuvel
- Department of Structure and Function of ProteinsHelmholtz Centre for Infection ResearchBraunschweigGermany
| | - Monika Strengert
- Department of EpidemiologyHelmholtz Centre for Infection ResearchBraunschweigGermany
- TWINCORE, Centre for Experimental and Clinical Infection ResearchA Joint Venture of Hannover Medical School and the Helmholtz Centre for Infection ResearchHannoverGermany
- Department of Virus‐based TechnologiesFraunhofer Institute for Interfacial Engineering and Biotechnology IGBBiberach an der RißGermany
| |
Collapse
|
2
|
Kar A, Mukherjee S, Mukherjee S, Biswas A. Ubiquitin: A double-edged sword in hepatitis B virus-induced hepatocellular carcinoma. Virology 2024; 599:110199. [PMID: 39116646 DOI: 10.1016/j.virol.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Hepatitis B virus is one of the leading causes behind the neoplastic transformation of liver tissue and associated mortality. Despite the availability of many therapies and vaccines, the pathogenic landscape of the virus remains elusive; urging the development of novel strategies based on the fundamental infectious and transformative modalities of the virus-host interactome. Ubiquitination is a widely observed post-translational modification of several proteins, which either regulates the proteins' turnover or impacts their functionalities. In recent years, ample amount of literature has accumulated regarding the ubiquitination dynamics of the HBV proteins as well as the host proteins during HBV infection and carcinogenesis; with direct and detailed characterization of the involvement of HBV in these processes. Interestingly, while many of these ubiquitination events restrict HBV life cycle and carcinogenesis, several others promote the emergence of hepatocarcinoma by putting the virus in an advantageous position. This review sums up the snowballing literature on ubiquitination-mediated regulation of the host-HBV crosstalk, with special emphasis on its influence on the establishment and progression of hepatocellular carcinoma on a molecular level. With the advent of cutting-edge ubiquitination-targeted therapeutic approaches, the findings emanating from this review may potentiate the identification of novel anti-HBV targets for the formulation of novel anticancer strategies to control the HBV-induced hepato-carcinogenic process on a global scale.
Collapse
Affiliation(s)
- Arpita Kar
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sandipan Mukherjee
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Soumyadeep Mukherjee
- Department of in Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avik Biswas
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
3
|
Vakili ME, Mashhadi N, Ataollahi MR, Meri S, Kabelitz D, Kalantar K. Hepatitis B vaccine responders show higher frequencies of CD8 + effector memory and central memory T cells compared to non-responders. Scand J Immunol 2024; 100:e13402. [PMID: 39189677 DOI: 10.1111/sji.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024]
Abstract
Hepatitis B (HB) infection is a major global health problem. There is limited knowledge about HB vaccination-induced immune memory responses. We compared the frequency of CD8+ memory T cell subsets between responders (RSs) and non-responders (NRs) to HB vaccination. Blood samples were collected from RSs and NRs. PBMCs were cultured in the presence of Hepatitis B surface antigens (HBsAg) and PHA for 48 h to restimulate CD8+ memory T cells and T cell memory subsets were detected by flow cytometry using memory cell markers. The frequency of TEM, TCM, and TCM hi was significantly higher in responders compared to non-responders (p = 0.024, 0.022, and 0.047, respectively). Additionally, we report a positive correlation between the frequency of TEM cells in RSs with age and anti-HBsAb level (p = 0.03 and rs = 0.5; p = 0.01 and rs = 0.06). Responders display a higher level of CD8+ T cell-mediated immunity. Therefore, we suggest a possible defect in the formation of immunological CD8+ memory T cells in NRs and it may reduce antibody production compared to the RSs, although more experiments are needed.
Collapse
Affiliation(s)
- Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Mashhadi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Ataollahi
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), Helsinki University Hospital, The University of Helsinki and HUSLAB, Helsinki, Finland
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig, Holstein Campus Kiel, Kiel, Germany
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), Helsinki University Hospital, The University of Helsinki and HUSLAB, Helsinki, Finland
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Angelice GP, Roque PH, Valente G, Galvão K, Villar LM, Mello VM, Mello FCA, Lago BV. Evaluation of Interfering RNA Efficacy in Treating Hepatitis B: Is It Promising? Viruses 2024; 16:1710. [PMID: 39599825 PMCID: PMC11598949 DOI: 10.3390/v16111710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Despite an existing safe and effective vaccine for hepatitis B virus (HBV), it is still a major public health concern. Nowadays, several drugs are used to treat chronic hepatitis B; however, full healing remains controversial. The viral covalently closed circular DNA (cccDNA) formed by HBV forms a major challenge in its treatment, as does the ability of HBV to integrate itself into the host genome, which enables infection reactivation. Interfering RNA (RNAi) is a gene-silencing post-transcriptional mechanism which forms as a promising alternative to treat chronic hepatitis B. The aim of the present review is to assess the evolution of hepatitis B treatment approaches based on using RNA interference. METHODS Data published between 2016 and 2023 in scientific databases (PubMed, PMC, LILACS, and Bireme) were assessed. RESULTS In total, 76,949 articles were initially identified and quality-checked, and 226 eligible reports were analyzed in depth. The main genomic targets, delivery systems, and major HBV therapy innovations are discussed in this review. This review reinforces the therapeutic potential of RNAi and identifies the need for conducting further studies to fill the remaining gaps between bench and clinical practice.
Collapse
|
5
|
Musa Y, Ifeorah IM, Maiyaki AS, Almustapha RM, Maisuna YA, Saleh HT, Yakubu A. Liver cell cancer surveillance practice in Nigeria: Pitfalls and future prospects. World J Hepatol 2024; 16:1132-1141. [PMID: 39474579 PMCID: PMC11514613 DOI: 10.4254/wjh.v16.i10.1132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a disease of public health concern in Nigeria, with chronic hepatitis B and C infections contributing most to the disease burden. Despite the increasing incidence of HCC, surveillance practices for early diagnosis and possible cure are not deeply rooted in the country. This article aims to review the current status of HCC surveillance in Nigeria, stressing the encounters, breaches, and potential prospects. Several factors, such as limited tools for screening and diagnostics, insufficient infrastructure, and low cognizance among the doctors, and the general public affect the surveillance practices for HCC in Nigeria. Moreover, the lack of standardized guidelines and protocols for HCC surveillance further intensifies the suboptimal diagnosis and treatment. Nevertheless, there are opportunities for refining surveillance practices in the country. This would be achieved through boosted public health sensitization campaigns, integrating HCC screening into routine clinical services, and leveraging technological developments for early detection and monitoring. Furthermore, collaboration between government agencies, healthcare providers, and international organizations can facilitate the development of comprehensive HCC surveillance programs personalized to the Nigerian setting. Thus, HCC surveillance practice faces substantial challenges. By addressing the drawbacks and leveraging prospects, Nigeria can improve HCC surveillance, with subsequent improved outcomes for individuals at risk of developing the disease.
Collapse
Affiliation(s)
- Yusuf Musa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Federal Teaching Hospital Katsina, Katsina 820101, Nigeria
| | - Ijeoma M Ifeorah
- Department of Medical Laboratory Sciences, College of Medicine University of Nigeria Enugu Campus, Enugu 400102, Nigeria
| | - Abubakar Sadiq Maiyaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840283, Nigeria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Usmanu Danfodiyo University Teaching Hospital Sokoto, Sokoto 840101, Nigeria
| | - Rahama Mohammad Almustapha
- Infection Prevention and Control Unit, Department of Community Medicine, Federal Teaching Hospital, Katsina 820101, Katsina, Nigeria
| | - Yussuf Abdulkadir Maisuna
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bayero University Kano, Kano 700101, Nigeria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aminu Kano Teaching Hospital, Kano 700101, Nigeria
| | - Habib Tijjani Saleh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Federal Teaching Hospital Katsina, Katsina 820101, Nigeria
| | - Abdulmumini Yakubu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Usmanu Danfodiyo University, Sokoto 840283, Nigeria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Usmanu Danfodiyo University Teaching Hospital, Sokoto 840283, Nigeria
| |
Collapse
|
6
|
Musa Y, Ifeorah IM, Maiyaki AS, Almustapha RM, Maisuna YA, Saleh HT, Yakubu A. Liver cell cancer surveillance practice in Nigeria: Pitfalls and future prospects. World J Hepatol 2024; 16:1312-1321. [DOI: 10.4254/wjh.v16.i10.1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/20/2024] [Indexed: 11/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a disease of public health concern in Nigeria, with chronic hepatitis B and C infections contributing most to the disease burden. Despite the increasing incidence of HCC, surveillance practices for early diagnosis and possible cure are not deeply rooted in the country. This article aims to review the current status of HCC surveillance in Nigeria, stressing the encounters, breaches, and potential prospects. Several factors, such as limited tools for screening and diagnostics, insufficient infrastructure, and low cognizance among the doctors, and the general public affect the surveillance practices for HCC in Nigeria. Moreover, the lack of standardized guidelines and protocols for HCC surveillance further intensifies the suboptimal diagnosis and treatment. Nevertheless, there are opportunities for refining surveillance practices in the country. This would be achieved through boosted public health sensitization campaigns, integrating HCC screening into routine clinical services, and leveraging technological developments for early detection and monitoring. Furthermore, collaboration between government agencies, healthcare providers, and international organizations can facilitate the development of comprehensive HCC surveillance programs personalized to the Nigerian setting. Thus, HCC surveillance practice faces substantial challenges. By addressing the drawbacks and leveraging prospects, Nigeria can improve HCC surveillance, with subsequent improved outcomes for individuals at risk of developing the disease.
Collapse
Affiliation(s)
- Yusuf Musa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Federal Teaching Hospital Katsina, Katsina 820101, Nigeria
| | - Ijeoma M Ifeorah
- Department of Medical Laboratory Sciences, College of Medicine University of Nigeria Enugu Campus, Enugu 400102, Nigeria
| | - Abubakar Sadiq Maiyaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840283, Nigeria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Usmanu Danfodiyo University Teaching Hospital Sokoto, Sokoto 840101, Nigeria
| | - Rahama Mohammad Almustapha
- Infection Prevention and Control Unit, Department of Community Medicine, Federal Teaching Hospital, Katsina 820101, Katsina, Nigeria
| | - Yussuf Abdulkadir Maisuna
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bayero University Kano, Kano 700101, Nigeria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Aminu Kano Teaching Hospital, Kano 700101, Nigeria
| | - Habib Tijjani Saleh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Federal Teaching Hospital Katsina, Katsina 820101, Nigeria
| | - Abdulmumini Yakubu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Usmanu Danfodiyo University, Sokoto 840283, Nigeria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Usmanu Danfodiyo University Teaching Hospital, Sokoto 840283, Nigeria
| |
Collapse
|
7
|
Basic M, Thiyagarajah K, Glitscher M, Schollmeier A, Wu Q, Görgülü E, Lembeck P, Sonnenberg J, Dietz J, Finkelmeier F, Praktiknjo M, Trebicka J, Zeuzem S, Sarrazin C, Hildt E, Peiffer KH. Impaired HBsAg release and antiproliferative/antioxidant cell regulation by HBeAg-negative patient isolates reflects an evolutionary process. Liver Int 2024; 44:2773-2792. [PMID: 39078064 DOI: 10.1111/liv.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The hepatitis B e antigen (HBeAg)-negative infection Phase 3 is characterized by no or minimal signs of hepatic inflammation and the absence of hepatic fibrosis. However, underlying molecular mechanisms leading to this benign phenotype are poorly understood. METHODS Genotype A, B and D HBeAg-negative patient isolates with precore mutation G1896A from Phase 3 were analysed in comparison with respective HBeAg-positive rescue mutant and HBeAg-positive wild-type reference genomes regarding differences in viral replication, morphogenesis, infectivity and impact on NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE)-dependent gene expression and cellular kinome. RESULTS In comparison with reference genomes, the patient isolates are characterized by a lower intra- and extracellular hepatitis B surface antigen (HBsAg)-amount, and HBsAg-retention in the endoplasmic reticulum. Rescue of HBeAg expression increased HBsAg-amount but not its release. Expression of the isolated genomes is associated with a higher Nrf2/ARE-dependent gene expression as compared to reference genomes independent of HBeAg expression. Kinome analyses revealed a decreased activity of receptors involved in regulation of proliferative pathways for all patient isolates compared to the reference genomes. No specific conserved mutations could be found between all genomes from Phase 3. CONCLUSIONS HBeAg-negative genomes from Phase 3 exhibit distinct molecular characteristics leading to lower HBsAg synthesis and release, enhanced oxidative stress protection and decreased activity of key kinases, triggering an antiproliferative stage, which might contribute to the lower probability of hepatocellular carcinoma. The observed differences cannot be associated with loss of HBeAg or specific mutations common to all analysed isolates, indicating the phenotype of Phase 3 derived genomes to be the result of a multifactorial process likely reflecting a conserved natural selection process.
Collapse
Affiliation(s)
- Michael Basic
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Keerthihan Thiyagarajah
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Mirco Glitscher
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Anja Schollmeier
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Qingyan Wu
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Esra Görgülü
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
| | - Pia Lembeck
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| | - Jannik Sonnenberg
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| | - Julia Dietz
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Fabian Finkelmeier
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Michael Praktiknjo
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| | - Jonel Trebicka
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| | - Stefan Zeuzem
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Sarrazin
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Gastroenterology, St. Josefs Hospital, Wiesbaden, Germany
| | - Eberhard Hildt
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Kai-Henrik Peiffer
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Virology (2/01), Paul Ehrlich Institute, Langen, Germany
- Department of Internal Medicine B, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
8
|
Cheng CL, Lin YY, Hsu CL, Li CL, Yuan CT, Lai YY, Fang WQ, Chen PJ, Yeh SH, Tien HF. Unraveling the role of hepatitis B virus DNA integration in B-cell lymphomagenesis. Br J Cancer 2024; 131:996-1004. [PMID: 39026081 PMCID: PMC11405389 DOI: 10.1038/s41416-024-02763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Studies have shown that hepatitis B virus (HBV)-associated B-cell non-Hodgkin lymphoma (NHL) constitutes a unique subgroup with distinct clinical features. It still leaves open the question of whether the integration of HBV DNA into the B-cell genome is a causal mechanism in the development of lymphoma. METHODS Using the hybridisation capture-based next generation sequencing and RNA sequencing, we characterised the HBV integration pattern in 45 HBV-associated B-cell NHL tumour tissues. RESULTS A total of 354 HBV integration sites were identified in 13 (28.9%) samples, indicating the relatively low integration frequency in B-cell NHLs. High plasma HBV DNA loads were not associated with the existence of HBV integration. The insertion sites distributed randomly across all the lymphoma genome without any preferential hotspot neither at the chromosomal level nor at the genetic level. Intriguingly, most HBV integrations were nonclonal in B-cell NHLs, implying that they did not confer a survival advantage. Analysis of the paired diagnosis-relapse samples showed the unstable status of HBV integrations during disease progression. Furthermore, transcriptomic analysis revealed the limited biological impact of HBV integration. CONCLUSION Our study provides an unbiased HBV integration map in B-cell NHLs, revealing the insignificant role of HBV DNA integration in B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Chieh-Lung Cheng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - You-Yu Lin
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan, ROC
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Chiao-Ling Li
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Chang-Tsu Yuan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan, ROC
| | - Ya-Yun Lai
- Microbial Genomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Quan Fang
- Division of New Drug, Center for Drug Evaluation, Taipei, Taiwan, ROC
| | - Pei-Jer Chen
- Microbial Genomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC.
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC.
- Department of Laboratory Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC.
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
- Department of Internal Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan, ROC.
| |
Collapse
|
9
|
Li D, Hamadalnil Y, Tu T. Hepatitis B Viral Protein HBx: Roles in Viral Replication and Hepatocarcinogenesis. Viruses 2024; 16:1361. [PMID: 39339838 PMCID: PMC11437454 DOI: 10.3390/v16091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide, with approximately 296 million individuals chronically infected. The HBV-encoded X protein (HBx) is a regulatory protein of 17 kDa, reportedly responsible for a broad range of functions, including viral replication and oncogenic processes. In this review, we summarize the state of knowledge on the mechanisms underlying HBx functions in viral replication, the antiviral effect of therapeutics directed against HBx, and the role of HBx in liver cancer development (including a hypothetical model of hepatocarcinogenesis). We conclude by highlighting major unanswered questions in the field and the implications of their answers.
Collapse
Affiliation(s)
- Dong Li
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
| | | | - Thomas Tu
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
10
|
Hayashi Y, Tajiri K, Ozawa T, Angata K, Sato T, Togayachi A, Nagashima I, Shimizu H, Murayama A, Muraishi N, Narimatsu H, Yasuda I. Impact of preS1 Evaluation in the Management of Chronic Hepatitis B Virus Infection. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1334. [PMID: 39202615 PMCID: PMC11356368 DOI: 10.3390/medicina60081334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: The measurement of hepatitis B surface antigen (HBsAg) is essential for managing chronic hepatitis B virus infection (CHB). HBsAg consists of three different surface envelope proteins: large, middle, and small HB surface proteins. However, in clinical practice, it is not common to evaluate each of these HB surface proteins separately. Materials and Methods: In this study, we investigated preS1 expression using seven monoclonal antibodies (mAbs) in 68 CHB patients, as well as examining their antigenicity. Results: Although the seven mAbs had been derived from genotype (Gt) C, they could recognize preS1 with Gts A to D. The epitopes were concentrated within the aa33-47 region of preS1, and their antigenicity was significantly reduced by an aa45F substitution. We found that preS1 expression remained consistent regardless of HBsAg levels and different Gts in CHB patients, in contrast to what was observed in SHBs. Conclusions: These results suggest that the antigenic epitope is preserved among different Gts and that the expression pattern of preS1 is altered during CHB, highlighting its vital role in the HBV infection cycle. Our present results suggest preS1 is a promising therapeutic target in CHB.
Collapse
Affiliation(s)
- Yuka Hayashi
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| | - Kazuto Tajiri
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Center for Advanced Antibody Drug Development, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kiyohiko Angata
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Takashi Sato
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Akira Togayachi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Izuru Nagashima
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Hiroki Shimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Aiko Murayama
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| | - Nozomu Muraishi
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| | - Hisashi Narimatsu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8560, Japan; (K.A.); (T.S.); (A.T.); (I.N.); (H.S.)
| | - Ichiro Yasuda
- Third Department of Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.H.)
| |
Collapse
|
11
|
Zou Y, Chen S, Cui Y, Zou Y. M133S mutation possibly involve in the ER stress and mitophagy pathway in maintenance hemodialysis patients with occult hepatitis B infection. Sci Rep 2024; 14:13981. [PMID: 38886481 PMCID: PMC11183135 DOI: 10.1038/s41598-024-64943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Occult hepatitis B virus infection (OBI) is characterized by the presence of HBV DNA in the absence of detectable HBsAg. OBI is an important risk factor for cirrhosis and hepatocellular carcinoma, but its pathogenesis has not been fully elucidated. Mutations in the HBV preS/S genes can lead to impaired secretion of either HBsAg or S-protein resulting in the accumulation of defective viruses or S protein in cells. In our previous work, the M133S mutation was present in the HBV S gene of maintenance hemodialysis (MHD) patients with OBI. In this study, we investigated the potential role of amino acid substitutions in S proteins in S protein production and secretion through the construction of mutant S gene plasmids, structural prediction, transcriptome sequencing analysis, and in vitro functional studies. Protein structure prediction showed that the S protein M133S mutant exhibited hydrophilic modifications, with greater aggregation and accumulation of the entire structure within the membrane phospholipid bilayer. Differential gene enrichment analysis of transcriptome sequencing data showed that differentially expressed genes were mainly concentrated in protein processing in the endoplasmic reticulum (ER). The expression of heat shock family proteins and ER chaperone molecules was significantly increased in the wild-type and mutant groups, whereas the expression of mitochondria-associated proteins was decreased. Immunofluorescence staining and protein blotting showed that the endoplasmic reticulum-associated protein PDI, the autophagy marker LC3, and the lysosome-associated protein LAMP2 co-localized with the S proteins in the wild-type and mutant strains, and their expression was increased. The mitochondria-associated TOMM20 protein was also co-expressed with the S protein, but expression was significantly reduced in the mutant. The M133S mutation in the S gene is expressed as a defective and misfolded protein that accumulates in the endoplasmic reticulum causing secretion-impaired endoplasmic reticulum stress, which in turn triggers mitochondrial autophagy and recruits lysosomes to fuse with the autophagosome, leading to mitochondrial clearance. This study preliminarily demonstrated that the mutation of M133S in the S gene can cause OBI and is associated with disease progression, providing a theoretical basis for the diagnosis and treatment of OBI.
Collapse
Affiliation(s)
- Yurong Zou
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, Sichuan, China
| | - Sipei Chen
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, Sichuan, China
| | - Yiyuan Cui
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yang Zou
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
12
|
Zhang T, Yang J, Gao H, Wu Y, Zhao X, Zhao H, Xie X, Yang L, Li Y, Wu Q. Progress of Infection and Replication Systems of Hepatitis B Virus. ACS Pharmacol Transl Sci 2024; 7:1711-1721. [PMID: 38898948 PMCID: PMC11184603 DOI: 10.1021/acsptsci.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Despite the long-standing availability of effective prophylaxis, chronic hepatitis B virus (HBV) infection remains a formidable public health threat. Antiviral treatments can limit viral propagation, but prolonged therapy is necessary to control HBV replication. Robust in vitro models of HBV infection are indispensable prerequisites for elucidating viral pathogenesis, delineating virus-host interplay and developing novel therapeutic, preventative countermeasures. Buoyed by advances in molecular techniques and tissue culture systems, investigators have engineered numerous in vitro models of the HBV life cycle. However, all current platforms harbor limitations in the recapitulation of natural infection. In this article, we comprehensively review the HBV life cycle, provide an overview of existing in vitro HBV infection and replication systems, and succinctly present the benefits and caveats in each model with the primary objective of constructing refined experimental models that closely mimic native viral infection and offering robust support for the ambitious "elimination of hepatitis by 2030" initiative.
Collapse
Affiliation(s)
- Tiantian Zhang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Yang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - He Gao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Wu
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinyu Zhao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Zhao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinqiang Xie
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingshuang Yang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
13
|
Han J, Jang KL. All-trans retinoic acid downregulates HBx levels via E6-associated protein-mediated proteasomal degradation to suppress hepatitis B virus replication. PLoS One 2024; 19:e0305350. [PMID: 38861553 PMCID: PMC11166335 DOI: 10.1371/journal.pone.0305350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
All-trans retinoic acid (ATRA), recognized as the principal and most biologically potent metabolite of vitamin A, has been identified for its inhibitory effects on hepatitis B virus (HBV) replication. Nevertheless, the underlying mechanism remains elusive. The present study reveals that ATRA induces E6-associated protein (E6AP)-mediated proteasomal degradation of HBx to suppress HBV replication in human hepatoma cells in a p53-dependent pathway. For this effect, ATRA induced promoter hypomethylation of E6AP in the presence of HBx, which resulted in the upregulation of E6AP levels in HepG2 but not in Hep3B cells, emphasizing the p53-dependent nature of this effect. As a consequence, ATRA augmented the interaction between E6AP and HBx, resulting in substantial ubiquitination of HBx and consequent reduction in HBx protein levels in both the HBx overexpression system and the in vitro HBV replication model. Additionally, the knockdown of E6AP under ATRA treatment reduced the interaction between HBx and E6AP and decreased the ubiquitin-dependent proteasomal degradation of HBx, which prompted a recovery of HBV replication in the presence of ATRA, as confirmed by increased levels of intracellular HBV proteins and secreted HBV levels. This study not only contributes to the understanding of the complex interactions between ATRA, p53, E6AP, and HBx but also provides an academic basis for the clinical employment of ATRA in the treatment of HBV infection.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
14
|
Asandem DA, Segbefia SP, Kusi KA, Bonney JHK. Hepatitis B Virus Infection: A Mini Review. Viruses 2024; 16:724. [PMID: 38793606 PMCID: PMC11125943 DOI: 10.3390/v16050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatitis B and C viruses (HBV and HCV) are the leading causes of end-stage liver disease worldwide. Although there is a potent vaccine against HBV, many new infections are recorded annually, especially in poorly resourced places which have lax vaccination policies. Again, as HBV has no cure and chronic infection is lifelong, vaccines cannot help those already infected. Studies to thoroughly understand the HBV biology and pathogenesis are limited, leaving much yet to be understood about the genomic features and their role in establishing and maintaining infection. The current knowledge of the impact on disease progression and response to treatment, especially in hyperendemic regions, is inadequate. This calls for in-depth studies on viral biology, mainly for the purposes of coming up with better management strategies for infected people and more effective preventative measures for others. This information could also point us in the direction of a cure. Here, we discuss the progress made in understanding the genomic basis of viral activities leading to the complex interplay of the virus and the host, which determines the outcome of HBV infection as well as the impact of coinfections.
Collapse
Affiliation(s)
- Diana Asema Asandem
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra P.O. Box LG 52, Ghana;
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (S.P.S.); (K.A.K.)
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (S.P.S.); (K.A.K.)
| | - Joseph Humphrey Kofi Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| |
Collapse
|
15
|
Hamadalnil Y, Altayb HN. In silico molecular study of hepatitis B virus X protein as a therapeutic target. J Biomol Struct Dyn 2024; 42:4002-4015. [PMID: 37254310 DOI: 10.1080/07391102.2023.2217920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
The Hepatitis B virus is a leading cause of liver cirrhosis and hepatocellular carcinoma. HBx viral protein is considered a contributor to pathogenesis and hepatocarcinogenesis. This study aimed to screen the effect of some antiviral compounds to target HBx protein for inhibition of its function. Here, molecular docking, molcular dynsmic simulation, MM/GBSA and T-SNE methods were applied to study the complex stability and to cluster the conformations that generated in the simulation. Among the 179 compounds screened in this study, three antiviral agents (SC75741, Punicalagin, and Ledipasvir) exhibited the lowest docking energy and best interaction. Among these compounds, SC75741 was identified as a potent inhibitor of HBx that showed the best and most stable interaction during molecular dynamic simulation, and blocking a region near to HBx helix resides (aa 88-100) that is associated with cell invasion. The analysis of relative binding free energy through MM/GBSA for molecular dynamic simulation results revealed binding energy -9.9 kcal/mol for SC75741, -11 kcal/mol for Punicalagin, and -10.1 kcal/mol for Ledipasvir. These results elucidate the possible use of these compounds in the research for targeting HBx.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yassir Hamadalnil
- Faculty of Medicine, Nile University, Khartoum, Sudan
- Ibra Hospital, Ministry of Health, Ibra, Sultanate of Oman
| | - Hisham N Altayb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Sheng X, Yang Y, Zhu M, Zhou L, Zhu F, Zhu Y, Dong S, Kong H, Wang H, Jiang J, Wan M, Feng M, Deng Q, Xu Y, You Q, Hu R. Non-proteolytic ubiquitination of HBx controls HBV replication. Virol Sin 2024; 39:338-342. [PMID: 38307415 PMCID: PMC11074638 DOI: 10.1016/j.virs.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
•The expression level of TRIM21 in patients is negatively correlated with the replication and integration of HBV. •TRIM21 was found to trigger non-proteolytic ubiquitination of X protein of HBV. •This study proposes that the PRYSPRY and RING domains in TRIM21 dimer can form a docking conformation for HBx binding. •TRIM21-mediated HBx ubiquitination disrupts the DDB1 recruitment to HBx and stabilize Smc6.
Collapse
Affiliation(s)
- Xiangpeng Sheng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Yi Yang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Min Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Linlin Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fang Zhu
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Yuanfei Zhu
- Key Laboratory of Medical Molecular Virology (MOE & MOH), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Siying Dong
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Honghua Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ji Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Mingyue Wan
- Department of Hospital Infection Management, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingyang Feng
- Department of Hospital Infection Management, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE & MOH), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yumin Xu
- Department of Hospital Infection Management, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qing You
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
17
|
Jia Y, Zhao J, Wang C, Meng J, Zhao L, Yang H, Zhao X. HBV DNA polymerase upregulates the transcription of PD-L1 and suppresses T cell activity in hepatocellular carcinoma. J Transl Med 2024; 22:272. [PMID: 38475878 PMCID: PMC10936085 DOI: 10.1186/s12967-024-05069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND In HBV-associated HCC, T cells often exhibit a state of functional exhaustion, which prevents the immune response from rejecting the tumor and allows HCC to progress. Moreover, polymerase-specific T cells exhibit more severe T-cell exhaustion compared to core-specific T cells. However, whether HBV DNA polymerase drives HBV-specific CD8+ T cell exhaustion in HBV-related HCC remains unclear. METHODS We constructed a Huh7 cell line stably expressing HA-HBV-DNA-Pol and applied co-culture systems to clarify its effect on immune cell function. We also examined how HBV-DNA-Pol modulated PD-L1 expression in HCC cells. In addition, HBV-DNA-Pol transgenic mice were used to elucidate the underlying mechanism of HBV-DNA-Pol/PD-L1 axis-induced T cell exhaustion. RESULTS Biochemical analysis showed that Huh7 cells overexpressing HBV-DNA-Pol inhibited the proliferation, activation, and cytokine secretion of Jurkat cells and that this effect was dependent on their direct contact. A similar inhibitory effect was observed in an HCC mouse model. PD-L1 was brought to our attention during screening. Our results showed that the overexpression of HBV-DNA-Pol upregulated PD-L1 mRNA and protein expression. PD-L1 antibody blockade reversed the inhibitory effect of Huh7 cells overexpressing HBV-DNA-Pol on Jurkat cells. Mechanistically, HBV-DNA-Pol interacts with PARP1, thereby inhibiting the nuclear translocation of PARP1 and further upregulating PD-L1 expression. CONCLUSIONS Our findings suggest that HBV-DNA-Pol can act as a regulator of PD-L1 in HCC, thereby directing anti-cancer immune evasion, which further provides a new idea for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Yan Jia
- Department of Laboratory Medicine, Tianjin Hospital, Tianjin, 300211, China
| | - Jianing Zhao
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Chunqing Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250014, China
| | - Jing Meng
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Liqing Zhao
- Department of Pediatrics, Zaozhuang Municipal Hospital, Zaozhuang, 277100, China
| | - Hongwei Yang
- Department of Laboratory Medicine, Tianjin Hospital, Tianjin, 300211, China
| | - Xiaoqing Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
18
|
Zhang X, Li Y, Huan C, Hou Y, Liu R, Shi H, Zhang P, Zheng B, Wang Y, Wang H, Zhang W. LncRNA NKILA inhibits HBV replication by repressing NF-κB signalling activation. Virol Sin 2024; 39:44-55. [PMID: 37832719 PMCID: PMC10877346 DOI: 10.1016/j.virs.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Hepatitis B virus (HBV) infection results in liver cirrhosis and hepatocellular carcinoma (HCC). HBx/nuclear factor (NF)-κB pathway plays a role in HBV replication. However, whether NF-κB-interacting long noncoding RNA (NKILA), a suppressor of NF-κB activation, regulates HBV replication remains largely unknown. In this study, gain-and-loss experiments showed that NKILA inhibited HBV replication by inhibiting NF-κB activity. In turn, HBV infection down-regulated NKILA expression. In addition, expression levels of NKILA were lower in the peripheral blood-derived monocytes (PBMCs) of HBV-positive patients than in healthy individuals, which were correlated with HBV viral loads. And a negative correlation between NKILA expression level and HBV viral loads was observed in blood serum from HBV-positive patients. Lower levels of endogenous NKILA were also observed in HepG2 cells expressing a 1.3-fold HBV genome, HBV-infected HepG2-NTCP cells, stable HBV-producing HepG2.2.15 and HepAD38 cells, compared to those HBV-negative cells. Furthermore, HBx was required for NKILA-mediated inhibition on HBV replication. NKILA decreased HBx-induced NF-κB activation by interrupting the interaction between HBx and p65, whereas NKILA mutants lack of essential domains for NF-ĸB inhibition, lost the ability to inhibit HBV replication. Together, our data demonstrate that NKILA may serve as a suppressor of HBV replication via NF-ĸB signalling.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China; Department of Ophthalmology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yuanyuan Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Chen Huan
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yubao Hou
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Rujia Liu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Hongyun Shi
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Peng Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China
| | - Yingchao Wang
- Hepatobiliary Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130012, China.
| | - Hong Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China.
| | - Wenyan Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130012, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130012, China.
| |
Collapse
|
19
|
Piewbang C, Wardhani SW, Siripoonsub J, Sirivisoot S, Rungsipipat A, Techangamsuwan S. Domestic cat hepadnavirus detection in blood and tissue samples of cats with lymphoma. Vet Q 2023; 43:1-10. [PMID: 37768269 PMCID: PMC10563604 DOI: 10.1080/01652176.2023.2265172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Abstract
Domestic cat hepadnavirus (DCH), a relative hepatitis B virus (HBV) in human, has been recently identified in cats; however, association of DCH infection with lymphoma in cats is not investigated. To determine the association between DCH infection and feline lymphoma, seven hundred and seventeen cats included 131 cats with lymphoma (68 blood and 63 tumor samples) and 586 (526 blood and 60 lymph node samples) cats without lymphoma. DCH DNA was investigated in blood and formalin-fixed paraffin-embedded (FFPE) tissues by quantitative polymerase chain reaction (qPCR). The FFPE lymphoma tissues were immunohistochemically subtyped, and the localization of DCH in lymphoma sections was investigated using in situ hybridization (ISH). Feline retroviral infection was investigated in the DCH-positive cases. DCH DNA was detected in 16.18% (11/68) (p = 0.002; odds ratio [OR], 5.15; 95% confidence interval [CI], 2.33-11.36) of blood and 9.52% (6/63) (p = 0.028; OR, 13.68; 95% CI, 0.75-248.36) of neoplastic samples obtained from lymphoma cats, whereas only 3.61% (19/526) of blood obtained from non-lymphoma cats was positive for DCH detection. Within the DCH-positive lymphoma, in 3/6 cats, feline leukemia virus was co-detected, and in 6/6 were B-cell lymphoma (p > 0.9; OR, 1.93; 95% CI, 0.09-37.89) and were multicentric form (p = 0.008; OR, 1.327; 95% CI, 0.06-31.18). DCH was found in the CD79-positive pleomorphic cells. Cats with lymphoma were more likely to be positive for DCH than cats without lymphoma, and infection associated with lymphoma development needs further investigations.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sabrina Wahyu Wardhani
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jedsada Siripoonsub
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirintra Sirivisoot
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Nayak S, Gowda J, Abbas SA, Kim H, Han SB. Recent Advances in the Development of Sulfamoyl-Based Hepatitis B Virus Nucleocapsid Assembly Modulators. Viruses 2023; 15:2367. [PMID: 38140607 PMCID: PMC10747759 DOI: 10.3390/v15122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) is the primary contributor to severe liver ailments, encompassing conditions such as cirrhosis and hepatocellular carcinoma. Globally, 257 million people are affected by HBV annually and 887,000 deaths are attributed to it, representing a substantial health burden. Regrettably, none of the existing therapies for chronic hepatitis B (CHB) have achieved satisfactory clinical cure rates. This issue stems from the existence of covalently closed circular DNA (cccDNA), which is difficult to eliminate from the nucleus of infected hepatocytes. HBV genetic material is composed of partially double-stranded DNA that forms complexes with viral polymerase inside an icosahedral capsid composed of a dimeric core protein. The HBV core protein, consisting of 183 to 185 amino acids, plays integral roles in multiple essential functions within the HBV replication process. In this review, we describe the effects of sulfamoyl-based carboxamide capsid assembly modulators (CAMs) on capsid assembly, which can suppress HBV replication and disrupt the production of new cccDNA. We present research on classical, first-generation sulfamoyl benzocarboxamide CAMs, elucidating their structural composition and antiviral efficacy. Additionally, we explore newly identified sulfamoyl-based CAMs, including sulfamoyl bicyclic carboxamides, sulfamoyl aromatic heterocyclic carboxamides, sulfamoyl aliphatic heterocyclic carboxamides, cyclic sulfonamides, and non-carboxamide sulfomoyl-based CAMs. We believe that certain molecules derived from sulfamoyl groups have the potential to be developed into essential components of a well-suited combination therapy, ultimately yielding superior clinical efficacy outcomes in the future.
Collapse
Affiliation(s)
- Sandesha Nayak
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jayaraj Gowda
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Syed Azeem Abbas
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyejin Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Bong Han
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
21
|
Liao F, Xie J, Du R, Gao W, Lan L, Wang M, Rong X, Fu Y, Wang H. Replication and Expression of the Consensus Genome of Hepatitis B Virus Genotype C from the Chinese Population. Viruses 2023; 15:2302. [PMID: 38140543 PMCID: PMC10747539 DOI: 10.3390/v15122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) genotype C is a prevalent HBV genotype in the Chinese population. Although genotype C shows higher sequence heterogeneity and more severe liver disease than other genotypes, its pathogenesis and immunological traits are not yet fully elucidated. In this study, we first established and chemically synthesized the consensus sequence based on representative 138 full-length HBV genotype C genomes from the Chinese population. The pHBV1.3C plasmid system, containing a 1.3-fold full-length HBV genotype C consensus sequence, was constructed for subsequent validation. Next, we performed functional assays to investigate the replicative competence of pHBV1.3C in vitro through the transient transfection of HepG2 and Huh7 cells and validated the in vivo function via a hydrodynamic injection to BALB/c recipient mice. The in vitro investigation revealed that the extracellular HBV DNA and intracellular replicative intermediate (i.e., pregenomic RNA, pgRNA) were apparently measurable at 48 h, and the HBsAg and HBcAg were still positive in hepatoma cells at 96 h. We also found that HBsAg and HBeAg accumulated at the extracellular and intracellular levels in a time-dependent manner. The in vivo validation demonstrated that pHBV1.3C plasmids induced HBV viremia, triggered morphological changes and HBsAg- or HBcAg- positivity of hepatocytes, and ultimately caused inflammatory infiltration and focal or piecemeal necrosis in the livers of the murine recipients. HBV protein (HBsAg) colocalized with CD8+ T cells or CD4+ T cells in the liver. F4/80+ Kupffer cells were abundantly recruited around the altered murine hepatocytes. Taken together, our results indicate that the synthetic consensus sequence of HBV genotype C is replication-competent in vitro and in vivo. This genotype C consensus genome supports the full HBV life cycle, which is conducive to studying its pathogenesis and immune response, screening novel antiviral agents, and further optimizing testing and therapeutics.
Collapse
Affiliation(s)
- Fenfang Liao
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Junmou Xie
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Rongsong Du
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Wenbo Gao
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Lanyin Lan
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Xia Rong
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Hao Wang
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| |
Collapse
|
22
|
Gohar M, Rehman IU, Ullah A, Khan MA, Yasmin H, Ahmad J, Butt S, Ahmad A. Phylogenetic Analysis and Emerging Drug Resistance against Different Nucleoside Analogues in Hepatitis B Virus Positive Patients. Microorganisms 2023; 11:2622. [PMID: 38004634 PMCID: PMC10673510 DOI: 10.3390/microorganisms11112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Several nucleotide analogues have been approved for use in treating hepatitis B virus (HBV) infection. Long-term exposure to therapy leads to the emergence of mutations within the HBV DNA polymerase gene, resulting in drug resistance, a major factor contributing to therapy failure. Chronic HBV patients from the Khyber Pakhtunkhwa province, Pakistan, who had completed 6 months of therapy participated in this study. Samples were collected from 60 patients. In this study, the entire reverse transcriptase domain of the HBV polymerase gene was amplified using nested polymerase chain reaction and sequenced. Drug-resistant mutations were detected in nine (22.5%) patients. All of these patients had lamivudine-resistant mutations (rtM204V + L180M), while seven individuals (17.5%) had both lamivudine- plus entecavir-resistant mutations (L180M + M204V + S202G). N236T, a mutation that gives rise to tenofovir and adefovir resistance, was observed in two (5%) patients. T184A, a partial drug-resistant mutation to entecavir, was found in five (12.5%) patients. Furthermore, other genotypic variants (100%) and vaccine escape mutations (5%) were additionally observed. Moreover, pN459Y (35%), pN131D (20%), pL231S (20%), pP130Q (17.5%), pS189Q (12.5%), pP161S (5%), pH160P (2.5%), pT322S (2.5%), and pA223S (2.5%) mutations in the polymerase gene, as well as sA166V (17.5%), sQ181K (12.5%), sV184R (7.5%), sA17E (5%), sP153S/K (5%), sW156C (5%), sC76Y (2.5%), and S132F (2.5%) mutations in the small surface gene, were identified for the first time in this study. Phylogenetic analysis showed that genotype D was predominant amongst the HBV carriers. Subtype D1 was found in most patients, while two patients were subtype D9. These novel findings may contribute to the body of knowledge and have clinical significance for treating and curing HBV infections in Pakistan.
Collapse
Affiliation(s)
- Maryam Gohar
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar 25000, Pakistan; (M.G.); (J.A.)
| | - Irshad Ur Rehman
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar 25000, Pakistan; (M.G.); (J.A.)
| | - Amin Ullah
- Department of Health & Biological Sciences, Abasyn University Peshawar, Peshawar 25000, Pakistan
| | | | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan;
| | - Jamshaid Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar 25000, Pakistan; (M.G.); (J.A.)
| | - Sadia Butt
- Department of Microbiology, Shaheed Benazir Bhutto Women University Peshawar, Peshawar 25000, Pakistan;
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
23
|
Duchemin NJ, Loonawat R, Yeakle K, Rosenkranz A, Bouchard MJ. Hypoxia-inducible factor affects hepatitis B virus transcripts and genome levels as well as the expression and subcellular location of the hepatitis B virus core protein. Virology 2023; 586:76-90. [PMID: 37490813 DOI: 10.1016/j.virol.2023.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
Globally, a chronic-hepatitis B virus (HBV) infection is the leading cause of hepatocellular carcinoma (HCC). The transcription factor hypoxia-inducible factor 1 (HIF1) is often elevated in HCC, including HBV-associated HCC. Previous studies have suggested that the expression of the HIF1 subunit, HIF1α, is elevated in HBV-infected hepatocytes; however, whether HIF1 activity affects the HBV lifecycle has not been fully explored. We used a liver-derived cell line and ex vivo cultured primary hepatocytes as models to determine how HIF1 affects the HBV lifecycle. We observed that HIF1 elevates HBV RNA transcript levels, core protein levels, core protein localization to the cytoplasm, and HBV genome replication. Attenuating the transcription activity of HIF1 blocked HIF1-mediated effects on the HBV lifecycle. Our studies show that HIF1 regulates various stages of the HBV lifecycle in hepatocytes and could be a therapeutic target for blocking HBV replication and the development of HBV-associated diseases.
Collapse
Affiliation(s)
- Nicholas J Duchemin
- Molecular and Cellular Biology and Genetic Graduate Program, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, USA
| | - Ronak Loonawat
- Microbiology and Immunology Graduate Program, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, USA
| | - Kyle Yeakle
- Molecular and Cellular Biology and Genetic Graduate Program, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, USA
| | - Andrea Rosenkranz
- Molecular and Cellular Biology and Genetic Graduate Program, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, USA
| | - Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
24
|
Makokha GN, Chayama K, Hayes CN, Abe-Chayama H, Abuduwaili M, Hijikata M. Deficiency of SCAP inhibits HBV pathogenesis via activation of the interferon signaling pathway. Virology 2023; 585:248-258. [PMID: 37437369 DOI: 10.1016/j.virol.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Hepatitis B virus (HBV) infects the liver and is a major risk factor for liver cirrhosis and hepatocellular carcinoma. Approaches for an effective cure are thwarted by limited knowledge of virus-host interactions. Herein, we identified SCAP as a novel host factor that regulates HBV gene expression. SCAP, sterol regulatory element-binding protein (SREBP) cleavage-activating protein, is an integral membrane protein located in the endoplasmic reticulum. The protein plays a central role in controlling lipid synthesis and uptake by cells. We found that gene silencing of SCAP significantly inhibited HBV replication; furthermore, knockdown of SREBP2 but not SREBP1, the downstream effectors of SCAP, reduced HBs antigen production from HBV infected primary hepatocytes. We also demonstrated that knockdown of SCAP resulted in activation of interferons (IFNs) and IFN stimulated genes (ISGs). Conversely, ectopic expression of SREBP2 in SCAP-deficient cells restored expression of IFNs and ISGs. Importantly, expression of SREBP2 restored HBV production in SCAP knockdown cells, suggesting that SCAP participates in HBV replication through an effect on IFN production via its downstream effector SREBP2. This observation was further confirmed by blocking IFN signaling by an anti-IFN antibody, which restored HBV infection in SCAP-deficient cells. This led to the conclusion that SCAP regulates the IFN pathway through SREBP, thereby affecting the HBV lifecycle. This is the first study to reveal the involvement of SCAP in regulation of HBV infection. These results may facilitate development of new antiviral strategies against HBV.
Collapse
Affiliation(s)
- Grace Naswa Makokha
- Laboratory of Medical Innovation, Department of Collaborative Research, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Kazuaki Chayama
- Laboratory of Medical Innovation, Department of Collaborative Research, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe-Chayama
- Center for Medical Specialist Graduate Education and Research, Hiroshima University, Hiroshima, Japan
| | - Maidina Abuduwaili
- Laboratory of Medical Innovation, Department of Collaborative Research, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makoto Hijikata
- Laboratory of Medical Innovation, Department of Collaborative Research, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
25
|
Xu J, Xue Y, Bolinger AA, Li J, Zhou M, Chen H, Li H, Zhou J. Therapeutic potential of salicylamide derivatives for combating viral infections. Med Res Rev 2023; 43:897-931. [PMID: 36905090 PMCID: PMC10247541 DOI: 10.1002/med.21940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/09/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023]
Abstract
Since time immemorial human beings have constantly been fighting against viral infections. The ongoing and devastating coronavirus disease 2019 pandemic represents one of the most severe and most significant public health emergencies in human history, highlighting an urgent need to develop broad-spectrum antiviral agents. Salicylamide (2-hydroxybenzamide) derivatives, represented by niclosamide and nitazoxanide, inhibit the replication of a broad range of RNA and DNA viruses such as flavivirus, influenza A virus, and coronavirus. Moreover, nitazoxanide was effective in clinical trials against different viral infections including diarrhea caused by rotavirus and norovirus, uncomplicated influenza A and B, hepatitis B, and hepatitis C. In this review, we summarize the broad antiviral activities of salicylamide derivatives, the clinical progress, and the potential targets or mechanisms against different viral infections and highlight their therapeutic potential in combating the circulating and emerging viral infections in the future.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
26
|
Hojatizadeh M, Amiri MM, Mobini M, Hassanzadeh Makoui M, Ghaedi M, Ghotloo S, Peyghami K, Jeddi-Tehrani M, Golsaz-Shirazi F, Shokri F. Cross-Reactivity of HBe Antigen-Specific Polyclonal Antibody with HBc Antigen. Viral Immunol 2023; 36:378-388. [PMID: 37294935 DOI: 10.1089/vim.2022.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem worldwide and causes almost one million deaths annually. The HBV core gene codes for two related antigens, known as core antigen (HBcAg) and e-antigen (HBeAg), sharing 149 residues but having different amino- and carboxy-terminals. HBeAg is a soluble variant of HBcAg and a clinical marker for determining the disease severity and patients' screening. Currently available HBeAg assays have a shortcoming of showing cross-reactivity with HBcAg. In this study, for the first time, we evaluated whether HBcAg-adsorbed anti-HBe polyclonal antibodies could specifically recognize HBeAg or still show cross-reactivity with HBcAg. Recombinant HBeAg was cloned in pCold1 vector and successfully expressed in Escherichia coli and after purification by Ni-NTA resin was used to generate polyclonal anti-HBe antibodies in rabbit. Purified HBeAg was further characterized by assessing its reactivity with anti-HBe in the sera of chronically infected patients and HBeAg-immunized rabbit. Sera from patients with chronic HBV infection, containing anti-HBe, specifically reacted with recombinant HBeAg, implying antigenic similarity between the prokaryotic and native HBeAg in the serum of HBV-infected patients. In addition, the designed enzyme-linked immunosorbent assay (ELISA) with rabbit anti-HBe polyclonal antibodies could detect recombinant HBeAg with high sensitivity, while high cross-reactivity with HBcAg was observed. It is noteworthy that HBcAg-adsorbed anti-HBe polyclonal antibodies still showed high cross-reactivity with HBcAg, implying that due to the presence of highly similar epitopes in both antigens, HBcAg-adsorbed polyclonal antibodies cannot differentiate between the two antigens.
Collapse
Affiliation(s)
- Maryam Hojatizadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Hassanzadeh Makoui
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Ghaedi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ghotloo
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Kiana Peyghami
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACER, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACER, Tehran, Iran
| |
Collapse
|
27
|
Han J, Jang KL. All- trans Retinoic Acid Inhibits Hepatitis B Virus Replication by Downregulating HBx Levels via Siah-1-Mediated Proteasomal Degradation. Viruses 2023; 15:1456. [PMID: 37515144 PMCID: PMC10386411 DOI: 10.3390/v15071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to abolish the potential of HBx to downregulate the levels of p14, p16, and p21 and to stimulate cell growth during hepatitis B virus (HBV) infection, contributing to its chemopreventive and therapeutic effects against HBV-associated hepatocellular carcinoma. Here, we demonstrated that ATRA antagonizes HBx to inhibit HBV replication. For this effect, ATRA individually or in combination with HBx upregulated p53 levels, resulting in upregulation of seven in absentia homolog 1 (Siah-1) levels. Siah-1, an E3 ligase, induces ubiquitination and proteasomal degradation of HBx in the presence of ATRA. The ability of ATRA to induce Siah-1-mediated HBx degradation and the subsequent inhibition of HBV replication was proven in an in vitro HBV replication model. The effects of ATRA became invalid when either p53 or Siah-1 was knocked down by a specific shRNA, providing direct evidence for the role of p53 and Siah-1 in the negative regulation of HBV replication by ATRA.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
28
|
Ranga A, Gupta A, Yadav L, Kumar S, Jain P. Advancing beyond reverse transcriptase inhibitors: The new era of hepatitis B polymerase inhibitors. Eur J Med Chem 2023; 257:115455. [PMID: 37216809 DOI: 10.1016/j.ejmech.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Hepatitis B virus (HBV) is a genetically diverse blood-borne virus responsible for chronic hepatitis B. The HBV polymerase plays a key role in viral genome replication within the human body and has been identified as a potential drug target for chronic hepatitis B therapeutics. However, available nucleotide reverse transcriptase inhibitors only target the reverse transcriptase domain of the HBV polymerase; they also pose resistance issues and require lifelong treatment that can burden patients financially. In this study, various chemical classes are reviewed that have been developed to target different domains of the HBV polymerase: Terminal protein, which plays a vital role in the formation of the viral DNA; Reverse transcriptase, which is responsible for the synthesis of the viral DNA from RNA, and; Ribonuclease H, which is responsible for degrading the RNA strand in the RNA-DNA duplex formed during the reverse transcription process. Host factors that interact with the HBV polymerase to achieve HBV replication are also reviewed; these host factors can be targeted by inhibitors to indirectly inhibit polymerase functionality. A detailed analysis of the scope and limitations of these inhibitors from a medicinal chemistry perspective is provided. The structure-activity relationship of these inhibitors and the factors that may affect their potency and selectivity are also examined. This analysis will be useful in supporting the further development of these inhibitors and in designing new inhibitors that can inhibit HBV replication more efficiently.
Collapse
Affiliation(s)
- Abhishek Ranga
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India
| | - Aarti Gupta
- Department of Pharmaceutical Biotechnology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India
| | - Laxmi Yadav
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India.
| | - Priti Jain
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India.
| |
Collapse
|
29
|
Sarfaraz N, Somarowthu S, Bouchard MJ. The interplay of long noncoding RNAs and hepatitis B virus. J Med Virol 2023; 95:e28058. [PMID: 35946066 DOI: 10.1002/jmv.28058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023]
Abstract
Hepatitis B Virus (HBV) infections remain a major global health burden with an estimated 296 million people living with a chronic infection and 884,000 HBV-related deaths annually. Notably, patients with a chronic hepatitis B (CHB) infection are at a 30-fold greater risk of developing hepatocellular carcinoma (HCC), the most common type of primary liver cancer, which is the 3rd deadliest cancer worldwide. Several groups have assessed HBV-related aberrant expression of host-cell long noncoding RNAs (lncRNAs) and how altered expression of specific lncRNAs affects HBV replication and progression to associated disease states. Given the challenges in establishing effective HBV models and analyzing transcriptomic data, this review focuses on lncRNA expression data primarily collected from clinical patient samples and primary human hepatocytes, with the subsequent mechanism of action analysis in cell lines or other model systems. Ultimately, understanding HBV-induced lncRNA-expression dysregulation could lead to new treatments and biomarkers for HBV infection and its associated diseases.
Collapse
Affiliation(s)
- Nima Sarfaraz
- Graduate Program in Molecular and Cell Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Michael J Bouchard
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Kori M, Arga KY. Human oncogenic viruses: an overview of protein biomarkers in viral cancers and their potential use in clinics. Expert Rev Anticancer Ther 2022; 22:1211-1224. [PMID: 36270027 DOI: 10.1080/14737140.2022.2139681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Although the idea that carcinogenesis might be caused by viruses was first voiced about 100 years ago, today's data disappointingly show that we have not made much progress in preventing and/or treating viral cancers in a century. According to recent studies, infections are responsible for approximately 13% of cancer development in the world. Today, it is accepted and proven by many authorities that Epstein-Barr virus (EBV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human Herpesvirus 8 (HHV8), Human T-cell Lymphotropic virus 1 (HTLV1) and highly oncogenic Human Papillomaviruses (HPVs) cause or/and contribute to cancer development in humans. AREAS COVERED Considering the insufficient prevention and/or treatment strategies for viral cancers, in this review we present the current knowledge on protein biomarkers of oncogenic viruses. In addition, we aimed to decipher their potential for clinical use by evaluating whether the proposed biomarkers are expressed in body fluids, are druggable, and act as tumor suppressors or oncoproteins. EXPERT OPINION Consequently, we believe that this review will shed light on researchers and provide a guide to find remarkable solutions for the prevention and/or treatment of viral cancers.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| |
Collapse
|
31
|
Tumor Suppressor p53 Inhibits Hepatitis B Virus Replication by Downregulating HBx via E6AP-Mediated Proteasomal Degradation in Human Hepatocellular Carcinoma Cell Lines. Viruses 2022; 14:v14102313. [PMID: 36298868 PMCID: PMC9609658 DOI: 10.3390/v14102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
HBx, a multifunctional regulatory protein, plays an essential role in the replication and pathogenesis of the hepatitis B virus (HBV). In this study, we found that in human hepatoma cells, the tumor suppressor p53 downregulates HBx via ubiquitin-dependent proteasomal degradation. p53 transcriptional activity that results from HBV infection was not essential for this effect. This was shown by treatment with a potent p53 inhibitor, pifithrin-α. Instead, we found that p53 facilitated the binding of E6-associated protein (E6AP), which is an E3 ligase, to HBx and induced E6AP-mediated HBx ubiquitination in a ternary complex of p53, E6AP, and HBx. The ability of p53 to induce E6AP-mediated downregulation of HBx and inhibit HBV replication was demonstrated in an in vitro HBV infection system. This study may provide insights into the regulation of HBx and HBV replication, especially with respect to p53 status, which may also help in understanding HBV-associated tumorigenesis in patients.
Collapse
|
32
|
Core promoter mutation of nucleotides A1762T and G1764A of hepatitis B virus increases core promoter transactivation by hepatocyte nuclear factor 1. J Microbiol 2022; 60:1039-1047. [DOI: 10.1007/s12275-022-1675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
|
33
|
Roca TP, Villar LM, Nogueira Lima FS, Vasconcelos MPA, Borzacov LMP, Silva EDCE, do Lago BV, da Silva MTL, Botelho Souza LF, Salcedo JMV, dos Santos ADO, Vieira DS. Genomic Variability of Hepatitis B Virus Circulating in Brazilian Western Amazon. Viruses 2022; 14:v14102100. [PMID: 36298655 PMCID: PMC9611064 DOI: 10.3390/v14102100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
The emergence of clinically relevant mutations in the hepatitis B virus (HBV) genome has been a matter of great debate because of the possibility of escape from the host’s immune system, the potential to cause more severe progression of liver diseases and the emergence of treatment-resistant variants. Here we characterized the circulating variants of HBV in Rondônia State, in the north of Brazil. Serum samples of 62 chronic HBV carriers were subjected to PCR assays and clinical data were collected. Mutations and genotypes were characterized through direct sequencing. The findings show the presence of subgenotypes A1 (54.83%, 34/62), D3 (16.13%, 10/62), F2 (16.13%, 10/62), A2 (4.84%, 3/62), D2 (3.23%, 2/62), D1 (1.61%, 1/62), D4 (1.61%, 1/62) and F4 (1.61%, 1/62). Deletions in the pre-S2 region were found in 13.79% (8/58) of the samples, mutations in the S gene in 59.68% (37/62) and RT mutations in 48.39% (30/62). We found a variable genotypic distribution in different locations and important mutations related to immune escape and drug resistance in Western Amazonia, which contributed to genetic surveillance and provided important information to help control the disease.
Collapse
Affiliation(s)
- Tárcio Peixoto Roca
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Laboratory of Molecular Virology, Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho 76812-245, Brazil
- Correspondence: (T.P.R.); (L.M.V.)
| | - Livia Melo Villar
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Correspondence: (T.P.R.); (L.M.V.)
| | - Felipe Souza Nogueira Lima
- Laboratory of Molecular Virology, Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho 76812-245, Brazil
| | | | | | | | - Bárbara Vieira do Lago
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Mayara Torquato Lima da Silva
- Laboratory of Biotechnology and Structural Bioengineering, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | | | - Juan Miguel Villalobos Salcedo
- Laboratory of Molecular Virology, Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho 76812-245, Brazil
- Tropical Medicine Research Center of Rondônia—CEPEM/RO, Porto Velho 76812-329, Brazil
| | | | - Deusilene Souza Vieira
- Laboratory of Molecular Virology, Oswaldo Cruz Foundation of Rondônia—FIOCRUZ/RO, Porto Velho 76812-245, Brazil
- Tropical Medicine Research Center of Rondônia—CEPEM/RO, Porto Velho 76812-329, Brazil
- Postgraduate Program in Experimental Biology, Federal University of Rondônia—PGBIOEXP/UNIR, Porto Velho 76801-059, Brazil
| |
Collapse
|
34
|
Viral Agents as Potential Drivers of Diffuse Large B-Cell Lymphoma Tumorigenesis. Viruses 2022; 14:v14102105. [DOI: 10.3390/v14102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Among numerous causative agents recognized as oncogenic drivers, 13% of total cancer cases occur as a result of viral infections. The intricacy and diversity of carcinogenic processes, however, raise significant concerns about the mechanistic function of viruses in cancer. All tumor-associated viruses have been shown to encode viral oncogenes with a potential for cell transformation and the development of malignancies, including diffuse large B-cell lymphoma (DLBCL). Given the difficulties in identifying single mechanistic explanations, it is necessary to combine ideas from systems biology and viral evolution to comprehend the processes driving viral cancer. The potential for more efficient and acceptable therapies lies in targeted medicines that aim at viral proteins or trigger immune responses to either avoid infection or eliminate infected or cancerous cells. In this review, we aim to describe the role of viral infections and their mechanistic approaches in DLBCL tumorigenesis. To the best of our knowledge, this is the first review summarizing the oncogenic potential of numerous viral agents in DLBCL development.
Collapse
|
35
|
Hamdany AK, Parewangi ML, Saleh S, Bakri S, Akil F, Abadi S, Seweng A. Comparison of plasminogen activator inhibitor-1 levels in chronic hepatitis B patients with hepatic cirrhosis and without hepatic cirrhosis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction: One of the hepatic cirrhosis manifestations is bleeding disorders. Among all the substance that plays a pivotal role in maintaining the balance between thrombosis and thrombolysis is PAI-1, synthesized by hepatocytes. The dynamics of increase and decrease of PAI-1 is a natural response to the ongoing hepatic cirrhosis, but may not be seen in non-hepatic cirrhosis. PAI-1 levels also depends on the stage of fibrosis. Several conditions may interfere with PAI-1 levels including age, body mass index, and gender
Objectives: This study aims to find out the comparison of PAI-1 levels in hepatitis B patients with hepatic cirrhosis and without hepatic cirrhosis and to compare it with every stage of hepatic cirrhosis.
Patients and Methods: This study is an observational analytical study with a cross-sectional approach conducted at Wahidin Sudirohusodo hospitals, Makassar. Subjects are chronic hepatitis B patients with and without hepatic cirrhosis which meet inclusion criteria. Serum PAI-1 levels were measured by using Bender MedSystems human plasminogen activator inhibitor-1 ELISA kit (BMS2033) and using the ELISA technique. Statistical analysis was performed using the Kolmogorov Smirnov normality test as well as the Mann-Whitney method. Statistical results are considered significant if the p-value <0.05.
Results: The research was conducted on 60 subjects who meet inclusion criteria, consisting of 33 men and 27 women. There were 16 patients with hepatic cirrhosis. Levels of PAI-1 in hepatic cirrhosis was significantly different which lower than non-hepatic cirrhosis patient (0.43 ng/mL Vs 1.11 ng/mL, p=0.024). By staging of hepatic fibrosis, stage F2 hepatic fibrosis had the highest levels of PAI-1, in contrast with end-stage hepatic fibrosis which had the lowest levels.
Conclusion: Levels of PAI-1 fluctuate through different stages of hepatic fibrosis. The significant difference in PAI-1 levels in hepatic cirrhosis and non-hepatic cirrhosis demonstrates a correlation between PAI-1 and hepatic cirrhosis
Keywords: Chronic hepatitis B, Hepatic cirrhosis, Plasminogen Activator Inhibitor-1
Collapse
|
36
|
HBeAg-Negative/Anti-HBe-Positive Chronic Hepatitis B: A 40-Year-Old History. Viruses 2022; 14:v14081691. [PMID: 36016312 PMCID: PMC9416321 DOI: 10.3390/v14081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022] Open
Abstract
Hepatitis B “e” antigen (HBeAg) negative chronic hepatitis B (CHB), 40 years since discovery in the Mediterranean area, has become the most prevalent form of HBV-induced liver disease worldwide and a major health care burden caused by HBV infection. A great deal of knowledge accumulated over the last decades provides consistent evidence on the bimodal dynamics of the expression of structural and non-structural forms of the viral core proteins which associate with different virologic and clinic–pathologic outcomes of HBV infection. In absence of serum HBeAg, the presence and persistence of HBV replication causes and maintains virus-related liver injury. Thus, in clinical practice it is mandatory to screen HBV carriers with HBeAg-negative infection for the early diagnosis of HBeAg-negative CHB since antiviral therapy can cure HBV-induced liver disease when started at early stages.
Collapse
|
37
|
Mersinoglu B, Cristinelli S, Ciuffi A. The Impact of Epitranscriptomics on Antiviral Innate Immunity. Viruses 2022; 14:1666. [PMID: 36016289 PMCID: PMC9412694 DOI: 10.3390/v14081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Epitranscriptomics, i.e., chemical modifications of RNA molecules, has proven to be a new layer of modulation and regulation of protein expression, asking for the revisiting of some aspects of cellular biology. At the virological level, epitranscriptomics can thus directly impact the viral life cycle itself, acting on viral or cellular proteins promoting replication, or impacting the innate antiviral response of the host cell, the latter being the focus of the present review.
Collapse
Affiliation(s)
| | | | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (B.M.); (S.C.)
| |
Collapse
|
38
|
Skrlec I, Talapko J. Hepatitis B and circadian rhythm of the liver. World J Gastroenterol 2022; 28:3282-3296. [PMID: 36158265 PMCID: PMC9346465 DOI: 10.3748/wjg.v28.i27.3282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm in humans is determined by the central clock located in the hypothalamus’s suprachiasmatic nucleus, and it synchronizes the peripheral clocks in other tissues. Circadian clock genes and clock-controlled genes exist in almost all cell types. They have an essential role in many physiological processes, including lipid metabolism in the liver, regulation of the immune system, and the severity of infections. In addition, circadian rhythm genes can stimulate the immune response of host cells to virus infection. Hepatitis B virus (HBV) infection is the leading cause of liver disease and liver cancer globally. HBV infection depends on the host cell, and hepatocyte circadian rhythm genes are associated with HBV replication, survival, and spread. The core circadian rhythm proteins, REV-ERB and brain and muscle ARNTL-like protein 1, have a crucial role in HBV replication in hepatocytes. In addition to influencing the virus’s life cycle, the circadian rhythm also affects the pharmacokinetics and efficacy of antiviral vaccines. Therefore, it is vital to apply antiviral therapy at the appropriate time of day to reduce toxicity and improve the effectiveness of antiviral treatment. For these reasons, understanding the role of the circadian rhythm in the regulation of HBV infection and host responses to the virus provides us with a new perspective of the interplay of the circadian rhythm and anti-HBV therapy. Therefore, this review emphasizes the importance of the circadian rhythm in HBV infection and the optimization of antiviral treatment based on the circadian rhythm-dependent immune response.
Collapse
Affiliation(s)
- Ivana Skrlec
- Department of Biophysics, Biology, and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Jasminka Talapko
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, Osijek 31000, Croatia
| |
Collapse
|
39
|
Evidence for a Hepatitis B Virus Short RNA Fragment Directly Targeting the Cellular RRM2 Gene. Cells 2022; 11:cells11142248. [PMID: 35883690 PMCID: PMC9318981 DOI: 10.3390/cells11142248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
The hepatitis B virus (HBV) is one of the smallest but most highly infectious human pathogens. With a DNA genome of only 3.2 kb and only four genes, HBV successfully completes its life cycle by using intricate processes to hijack the host machinery. HBV infects non-dividing liver cells in which dNTPs are limited. As a DNA virus, HBV requires dNTPs for its replication. HBV induces the ATR-mediated cellular DNA damage response pathway to overcome this constraint. This pathway upregulates R2 (RRM2) expression in generating an active RNR holoenzyme catalyzing de novo dNTP synthesis. Previously we reported that ERE, a small RNA fragment within the HBx ORF, is sufficient to induce R2 upregulation. Interestingly, there is high sequence similarity between ERE and a region within the R2 5′UTR that we named R2-box. Here, we established a mutant cell line in the R2-box region of the R2 gene using CRISPR-Cas9 technology to investigate the R2 regulation by ERE. This cell line expresses a much lower R2 level than the parental cell line. Interestingly, the HBV infection and life cycle were severely impaired. These cells became permissive to HBV infection upon ectopically R2 expression. These results validate the requirement of the R2 gene expression for HBV replication. Remarkably, the R2-box mutated cells became ERE refractory, suggesting that the homology region between ERE and R2 gene is critical for ERE-mediated R2 upregulation. Thus, along with the induction of the ATR pathway of the DNA damage response, ERE might also directly target the R2 gene via the R2-box.
Collapse
|
40
|
Yan HZ, Huang ZH, Guo XG, Peng TT, Yang LL, Liu CW, Ou-Yang S. A Study on Pregenomic RNA and Factors Related to Hepatitis B Virus Infection Based on Real World. Front Public Health 2022; 10:856103. [PMID: 35784246 PMCID: PMC9240609 DOI: 10.3389/fpubh.2022.856103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis article aims to study the influencing factors of pgRNA and its change magnitude based on the real world.MethodsA total of 421 patients who were tested for pgRNA were selected. According to the baseline data, the subjects were divided into negative and positive groups. The Chi-square test and logistic regression were used to analyze the influencing factors of pgRNA status. Based on the follow-up data, the rank-sum test and linear regression were used to analyze the influencing factors of pgRNA change magnitude.ResultsA total of 153 (36.3%) of the 421 subjects were pgRNA-negative and 268 (63.7%) were pgRNA-positive. Logistic regression analysis showed that positive HBV DNA (OR: 40.51), positive HBeAg (OR: 66.24), tenofovir treatment (OR: 23.47), and entecavir treatment (OR: 14.90) were the independent risk factors for positive pgRNA. Univariate linear regression showed that the pgRNA change magnitude of patients treated with entecavir was higher than that of patients treated with tenofovir. Multivariate linear regression showed that age was an independent factor influencing pgRNA change magnitude.ConclusionsThe pgRNA of patients who were young, female, HBV DNA-positive, high-HBsAg, HBeAg-positive is higher than the detection line. HBV DNA and HBeAg are the independent risk factors of positive pgRNA. Different antiviral regimens and disease stages have significantly different effects on pgRNA status. There was a significant correlation between pgRNA and FIB-4, suggesting that pgRNA is related to liver fibrosis. The decrease in pgRNA was greater in young patients than in non-young patients. The decrease in pgRNA was greater in patients treated with tenofovir than in patients treated with entecavir.
Collapse
Affiliation(s)
- Hao-Zhen Yan
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Public Health, Department of Preventive Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhi-Hao Huang
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Public Health, Department of Preventive Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting-Ting Peng
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li-Li Yang
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chong-Wen Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shi Ou-Yang
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shi Ou-Yang
| |
Collapse
|
41
|
Bianca C, Sidhartha E, Tiribelli C, El-Khobar KE, Sukowati CHC. Role of hepatitis B virus in development of hepatocellular carcinoma: Focus on covalently closed circular DNA. World J Hepatol 2022; 14:866-884. [PMID: 35721287 PMCID: PMC9157711 DOI: 10.4254/wjh.v14.i5.866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) remains a major global health problem, especially in developing countries. It may lead to prolonged liver damage, fibrosis, cirrhosis, and hepatocellular carcinoma. Persistent chronic HBV infection is related to host immune response and the stability of the covalently closed circular DNA (cccDNA) in human hepatocytes. In addition to being essential for viral transcription and replication, cccDNA is also suspected to play a role in persistent HBV infections or hepatitis relapses since cccDNA is very stable in non-dividing human hepatocytes. Understanding the pathogenicity and oncogenicity of HBV components would be essential in the development of new diagnostic tools and treatment strategies. This review summarizes the role and molecular mechanisms of HBV cccDNA in hepatocyte transformation and hepatocarcinogenesis and current efforts to its detection and targeting.
Collapse
Affiliation(s)
- Claryssa Bianca
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Elizabeth Sidhartha
- Department of Biomedicine, Indonesia International Institute for Life Sciences, Jakarta 13210, Indonesia
| | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| | - Korri Elvanita El-Khobar
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Caecilia H C Sukowati
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
- Eijkman Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| |
Collapse
|
42
|
Vakili ME, Faghih Z, Sarvari J, Doroudchi M, Hosseini SN, Kabelitz D, Kalantar K. Lower frequency of T stem cell memory (TSCM) cells in hepatitis B vaccine nonresponders. Immunol Res 2022; 70:469-480. [PMID: 35445310 PMCID: PMC9273562 DOI: 10.1007/s12026-022-09278-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Despite the availability of an effective vaccine and antiviral treatments, hepatitis B is still a global public health problem. Hepatitis B vaccination can prevent the disease. Vaccination induces long-lasting protective immune memory, and the identification of memory cell subsets can indicate the effectiveness of vaccines. Here, we compared the frequency of CD4+ memory T cell subsets between responders and nonresponders to HB vaccination. Besides, the frequency of IFN-γ+ memory T cells was compared between studied groups. Study participants were grouped according to their anti-HBsAb titer. For restimulation of CD4+ memory T cells, peripheral blood mononuclear cells (PBMCs) were cultured in the presence of HBsAg and PHA for 48 h. Besides, PMA, ionomycin, and brefeldin were added during the last 5 h of incubation to induce IFN-γ production. Flow cytometry was used for analysis. There was a statistically significant difference in the frequency of CD4+CD95+, CD4+CD95Hi, and CD4+CD95low/med T stem cell memory (TSCM) cells between responder and nonresponder groups. However, the comparison of the frequency of memory T cells producing IFN-γ showed no differences. Our results identified a possible defect of immunological CD4+ memory T cell formation in nonresponders due to their lower frequency of CD4+ TSCM cells.
Collapse
Affiliation(s)
- Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nezamedin Hosseini
- Department of Recombinant Hepatitis B Vaccine, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig, Holstein Campus Kiel, 24105, Kiel, Germany.
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
43
|
Kitamura K, Fukano K, Que L, Li Y, Wakae K, Muramatsu M. Activities of endogenous APOBEC3s and uracil-DNA-glycosylase affect the hypermutation frequency of hepatitis B virus cccDNA. J Gen Virol 2022; 103. [PMID: 35438620 DOI: 10.1099/jgv.0.001732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) plays a key role in the persistence of viral infection. We have previously shown that overexpression of an antiviral factor APOBEC3G (A3G) induces hypermutation in duck HBV (DHBV) cccDNA, whereas uracil-DNA-glycosylase (UNG) reduces these mutations. In this study, using cell-culture systems, we examined whether endogenous A3s and UNG affect HBV cccDNA mutation frequency. IFNγ stimulation induced a significant increase in endogenous A3G expression and cccDNA hypermutation. UNG inhibition enhanced the IFNγ-mediated hypermutation frequency. Transfection of reconstructed cccDNA revealed that this enhanced hypermutation caused a reduction in viral replication. These results suggest that the balance of endogenous A3s and UNG activities affects HBV cccDNA mutation and replication competency.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Lusheng Que
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Yingfang Li
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| |
Collapse
|
44
|
Najafi S, Tan SC, Aghamiri S, Raee P, Ebrahimi Z, Jahromi ZK, Rahmati Y, Sadri Nahand J, Piroozmand A, Jajarmi V, Mirzaei H. Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Biomed Pharmacother 2022; 148:112743. [PMID: 35228065 PMCID: PMC8872819 DOI: 10.1016/j.biopha.2022.112743] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.
Collapse
Affiliation(s)
- Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahimi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Kargar Jahromi
- Central Research Laboratory, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Piroozmand
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19395-4818, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,Corresponding author at: Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
45
|
Anti-rheumatic drug-induced hepatitis B virus reactivation and preventive strategies for hepatocellular carcinoma. Pharmacol Res 2022; 178:106181. [PMID: 35301112 DOI: 10.1016/j.phrs.2022.106181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022]
Abstract
To date, an estimated 3 million people worldwide have been infected with chronic hepatitis B virus (HBV). Although anti-HBV therapies have improved the long-term survival profile of chronic carriers, viral reactivation still poses a significant challenge for preventing HBV-related hepatitis, hepatocellular carcinoma (HCC), and death. Immuno-modulating drugs, which are widely applied in managing rheumatic conditions, are commonly associated with HBV reactivation (HBVr) as a result of drug-induced immune suppression. However, there are few reports on the risk of HBVr and the medication management plan for HBV carriers, especially rheumatic patients. In this review, we summarize immuno-modulating drug-induced HBVr during rheumatoid therapy and its preventive strategies for HBVr-induced liver diseases, especially cirrhosis and HCC. These findings will assist with developing treatments for rheumatic patients, and prevent HBV-related cirrhosis and HCC.
Collapse
|
46
|
Péneau C, Imbeaud S, La Bella T, Hirsch TZ, Caruso S, Calderaro J, Paradis V, Blanc JF, Letouzé E, Nault JC, Amaddeo G, Zucman-Rossi J. Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma. Gut 2022; 71:616-626. [PMID: 33563643 PMCID: PMC8862055 DOI: 10.1136/gutjnl-2020-323153] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Infection by HBV is the main risk factor for hepatocellular carcinoma (HCC) worldwide. HBV directly drives carcinogenesis through integrations in the human genome. This study aimed to precisely characterise HBV integrations, in relation with viral and host genomics and clinical features. DESIGN A novel pipeline was set up to perform viral capture on tumours and non-tumour liver tissues from a French cohort of 177 patients mainly of European and African origins. Clonality of each integration event was determined with the localisation, orientation and content of the integrated sequence. In three selected tumours, complex integrations were reconstructed using long-read sequencing or Bionano whole genome mapping. RESULTS Replicating HBV DNA was more frequently detected in non-tumour tissues and associated with a higher number of non-clonal integrations. In HCC, clonal selection of HBV integrations was related to two different mechanisms involved in carcinogenesis. First, integration of viral enhancer nearby a cancer-driver gene may lead to a strong overexpression of oncogenes. Second, we identified frequent chromosome rearrangements at HBV integration sites leading to cancer-driver genes (TERT, TP53, MYC) alterations at distance. Moreover, HBV integrations have direct clinical implications as HCC with a high number of insertions develop in young patients and have a poor prognosis. CONCLUSION Deep characterisation of HBV integrations in liver tissues highlights new HBV-associated driver mechanisms involved in hepatocarcinogenesis. HBV integrations have multiple direct oncogenic consequences that remain an important challenge for the follow-up of HBV-infected patients.
Collapse
Affiliation(s)
- Camille Péneau
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France
| | - Tiziana La Bella
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France
| | - Julien Calderaro
- Service d’Anatomopathologie, Hôpital Henri Mondor, APHP, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Valerie Paradis
- Service de Pathologie, Hôpital Beaujon, APHP, Clichy, France,Université Paris Diderot, CNRS, Centre de Recherche 27 sur l'Inflammation (CRI), Paris, France
| | - Jean-Frederic Blanc
- Service Hépato-Gastroentérologie et Oncologie Digestive, Hôpital Haut-Lévêque, CHU de Bordeaux, Bordeaux, France,Service de Pathologie, CHU Bordeaux GH Pellegrin, Bordeaux, France,Université Bordeaux, Inserm, Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France,Service d’Hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, APHP, Bobigny, France
| | - Giuliana Amaddeo
- Service d’Hépato-Gastro-Entérologie, Hôpital Henri Mondor, APHP, Université Paris Est Créteil, Inserm U955, Institut Mondor de recherche biomedicale, Creteil, Île-de-France, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France .,Functional Genomics of Solid Tumors laboratory, équipe labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, Paris, France.,Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
47
|
Multiomics Analysis of Endocytosis upon HBV Infection and Identification of SCAMP1 as a Novel Host Restriction Factor against HBV Replication. Int J Mol Sci 2022; 23:ijms23042211. [PMID: 35216324 PMCID: PMC8874515 DOI: 10.3390/ijms23042211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a major global health problem and the primary cause of cirrhosis and hepatocellular carcinoma (HCC). HBV intrusion into host cells is prompted by virus–receptor interactions in clathrin-mediated endocytosis. Here, we report a comprehensive view of the cellular endocytosis-associated transcriptome, proteome and ubiquitylome upon HBV infection. In this study, we quantified 273 genes in the transcriptome and 190 endocytosis-associated proteins in the proteome by performing multi-omics analysis. We further identified 221 Lys sites in 77 endocytosis-associated ubiquitinated proteins. A weak negative correlation was observed among endocytosis-associated transcriptome, proteome and ubiquitylome. We found 33 common differentially expressed genes (DEGs), differentially expressed proteins (DEPs), and Kub-sites. Notably, we reported the HBV-induced ubiquitination change of secretory carrier membrane protein (SCAMP1) for the first time, differentially expressed across all three omics data sets. Overexpression of SCAMP1 efficiently inhibited HBV RNAs/pgRNA and secreted viral proteins, whereas knockdown of SCAMP1 significantly increased viral production. Mechanistically, the EnhI/XP, SP1, and SP2 promoters were inhibited by SCAMP1, which accounts for HBV X and S mRNA inhibition. Overall, our study unveils the previously unknown role of SCAMP1 in viral replication and HBV pathogenesis and provides cumulative and novel information for a better understanding of endocytosis in response to HBV infection.
Collapse
|
48
|
Schemmer P, Burra P, Hu R, Hüber CM, Loinaz C, Machida K, Vogel A, Samuel D. State of the art treatment of hepatitis B virus hepatocellular carcinoma and the role of hepatitis B surface antigen post-liver transplantation and resection. Liver Int 2022; 42:288-298. [PMID: 34846790 PMCID: PMC9300017 DOI: 10.1111/liv.15124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 01/27/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is the major aetiology of hepatocellular carcinoma (HCC). The optimal goal of therapy, hepatitis B surface antigen (HBsAg) loss and anti-HBs production, is achieved rarely and HBsAg-associated HCC risk is well recognized. Here we review the role of HBsAg in HCC, the link between HBsAg and HCC recurrence post-liver transplantation or resection, and the implications for therapy. HBV-associated carcinogenesis is a multifactorial process. The observation that HBV-related HCC can occur in the absence of cirrhosis is compatible with a direct oncogenic effect of the virus, which may occur via multiple mechanisms, including those mediated by both mutated and unmutated HBsAg. HCC recurrence in HBsAg-positive patients post-liver transplantation has been reported in 10%-15% of patients and is likely to be because of expansion of residual HCC tumour cell populations containing integrated HBV DNA, which expand and independently replicate HBV, leading to the recurrence of both HCC and HBV. The direct role of HBsAg in HCC recurrence post-liver resection is less clear. Cirrhosis is the most important risk factor for HCC development, and precancerous cirrhotic liver remains after resection, with the potential to undergo malignant transformation regardless of the existence of HBV-derived oncogenic drivers. The role of HBsAg in the development of HCC and its recurrence post-surgical intervention has multiple implications for therapy and suggests a potential role for immunotherapy in the future management of HCC, in particular post-liver transplantation. Use of hepatitis B immunoglobulins that target HBsAg directly, alongside immune-oncology therapies, may be relevant in this setting.
Collapse
Affiliation(s)
- Peter Schemmer
- General, Visceral and Transplant SurgeryDepartment of SurgeryMedical University of GrazGrazAustria
| | - Patrizia Burra
- Department of Surgery, Oncology, and GastroenterologyPadua University HospitalPaduaItaly
| | - Rey‐Heng Hu
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | | | - Carmelo Loinaz
- Department of General and Digestive SurgeryUniversity Hospital 12 de OctubreMadridSpain
| | - Keigo Machida
- Keck Hospital of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and EndocrinologyMedizinische Hochschule HannoverHannoverGermany
| | - Didier Samuel
- Centre HepatobiliaireUniversity Hospital Paul BrousseUniversity Paris‐Saclay and Inserm‐Paris Saclay Research Unit 1193VillejuifFrance
| |
Collapse
|
49
|
Wang H, Liao F, Xie J, Gao W, Wang M, Huang J, Xu R, Liao Q, Shan Z, Zheng Y, Rong X, Li C, Fu Y. E2 Site Mutations in S Protein Strongly Affect Hepatitis B Surface Antigen Detection in the Occult Hepatitis B Virus. Front Microbiol 2021; 12:664833. [PMID: 34867835 PMCID: PMC8635997 DOI: 10.3389/fmicb.2021.664833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
The mechanism of occult hepatitis B infection (OBI) has not yet been fully clarified. Our previous research found that novel OBI-related mutation within S protein, E2G, could cause the hepatitis B surface antigen (HBsAg) secretion impairment, which resulted in intracellular accumulation in OBI of genotype B. Here, to further explore the role of E2 site mutations in the occurrence of OBI, we analyzed these site mutations among 119 OBI strains identified from blood donors. Meanwhile, 109 wild-type HBV strains (HBsAg positive/HBV DNA positive) were used as control group. Furthermore, to verify the E2 site mutations, two conservative 1.3-fold full-gene expression vectors of HBV genotype B and C (pHBV1.3B and pHBV1.3C) were constructed. Then, the E2 mutant plasmids on the basis of pHBV1.3B or pHBV1.3C were constructed and transfected into HepG2 cells, respectively. The extracellular and intracellular HBsAg were analyzed by electrochemical luminescence and cellular immunohistochemistry. The structural characteristics of S proteins with or without E2 mutations were analyzed using relevant bioinformatics software. E2 mutations (E2G/A/V/D) existed in 21.8% (26/119) of OBIs, while no E2 mutations were found in the control group. E2G/A/V/D mutations could strongly affect extracellular and intracellular level of HBsAg (p < 0.05). Notably, unlike E2G in genotype B that could cause HBsAg intracellular accumulation and secretion decrease (p < 0.05), E2G in genotype C could lead to a very significant HBsAg decrease both extracellularly (0.46% vs. pHBV1.3C) and intracellularly (11.2% vs. pHBV1.3C) (p < 0.05). Meanwhile, for E2G/A mutations, the relative intracellular HBsAg (110.7-338.3% vs. extracellular) and its fluorescence intensity (1.5-2.4-fold vs. with genotype-matched pHBV1.3B/C) were significantly higher (p < 0.05). Furthermore, N-terminal signal peptides, with a typical cleavage site for peptidase at positions 27 and 28, were exclusively detected in S proteins with secretion-defective mutants (E2G/A). Our findings suggest that: (1) E2G/A/V/D mutations were confirmed to significantly influence the detection of HBsAg, (2) the underlying mechanism of OBI caused by E2G mutation is quite different between genotype B and genotype C, and (3) E2G/A could produce a N-terminal truncated S protein, which might attribute to the HBsAg secretion impairment in the OBIs.
Collapse
Affiliation(s)
- Hao Wang
- Guangzhou Blood Center, Guangzhou, China
| | | | - Junmo Xie
- Guangzhou Blood Center, Guangzhou, China
| | - Wenbo Gao
- Guangzhou Blood Center, Guangzhou, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou, China
| | | | - Ru Xu
- Guangzhou Blood Center, Guangzhou, China
| | - Qiao Liao
- Guangzhou Blood Center, Guangzhou, China
| | | | | | - Xia Rong
- Guangzhou Blood Center, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
50
|
Han J, Kim H, Jeong H, Yoon H, Jang KL. Proteasomal activator 28 gamma stabilizes hepatitis B virus X protein by competitively inhibiting the Siah-1-mediated proteasomal degradation. Biochem Biophys Res Commun 2021; 578:97-103. [PMID: 34555669 DOI: 10.1016/j.bbrc.2021.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
Proteasomal activator 28 gamma (PA28γ) upregulates the levels of HBx, a regulatory protein of hepatitis B virus (HBV) to stimulate HBV replication; however, the detailed mechanism remains unknown. Here, we found that PA28γ impaired the ability of seven in absentia homolog 1 (Siah-1) as an E3 ubiquitin ligase of HBx. PA28γ competitively inhibited the binding of Siah-1 to HBx in human hepatoma cells. Accordingly, PA28γ increased the stability of HBx and decreased HBx ubiquitination, abolishing the potential of Siah-1 to downregulate HBx levels. PA28γ also executed its role as an antagonist of Siah-1 during HBV replication, as demonstrated by an in vitro HBV replication system. The present study may provide insights into the mechanisms underlying the regulation of HBV replication.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Haeji Kim
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyerin Jeong
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunyoung Yoon
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea; Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|