1
|
Luo Z, Jin R, Pan F, Guo R, Li M, Zhang S, Shi J, Zheng J, Wang H, Yang X, Yang J, Yu G. Integration analysis of miRNA-mRNA uncovers the mechanisms of ochratoxin A-induced hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118039. [PMID: 40086031 DOI: 10.1016/j.ecoenv.2025.118039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Ochratoxin A (OTA), the most toxic member of the ochratoxin family, is frequently detected in contaminated food and beverages, posing substantial health risks to both humans and animals, particularly due to its hepatotoxic effects. Although OTA is known to cause liver damage, the precise molecular mechanisms driving its toxicity remain poorly understood. In this study, we explored the hepatotoxic effects of OTA using LO2 cells and zebrafish models, combining miRNA and mRNA analyses to uncover the underlying mechanisms. Our results demonstrated that OTA significantly suppressed cell proliferation and viability, induced cell cycle arrest, triggered apoptosis and elevated reactive oxygen species (ROS) production in LO2 cells, with analogous apoptotic effects observed in zebrafish larvae. Additionally, miRNA-mRNA analysis revealed that differentially expressed genes (DEGs) and miRNAs (DEMs) were significantly enriched in pathways related to apoptosis, cell cycle regulation, and MAPK signaling. We constructed a potential regulatory network, identifying three key miRNAs (hsa-miR-3065-5p, hsa-miR-520g-3p, and hsa-miR-5698) and three associated hub mRNAs (CACNA1D, CDC6, and E2F1). Moreover, OTA treatment specifically induced p38 phosphorylation without significantly altering the phosphorylation levels of ERK or JNK. Collectively, this study established a comprehensive framework for understanding the hepatotoxic mechanisms of OTA at the miRNA and mRNA levels, providing critical insights into the pathogenesis of hepatotoxicity induced by ochratoxins and contributing to the prevention and management of related diseases.
Collapse
Affiliation(s)
- Zhiqiang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruyi Jin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fulu Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruofan Guo
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mengyu Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shuo Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiaru Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jingqi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huijie Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xinyu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Li M, Hu D, Zhang D, Xu G, Wu D, Gao C, Meng L, Feng X, Cheng W, Wang Z, Yang Y, Tang X. Encapsulation of oleanolic acid into cyclodextrin metal-organic frameworks by co-crystallization: Preparation, structure characterization and its effect on a zebrafish larva NAFLD model. Food Res Int 2025; 204:115936. [PMID: 39986782 DOI: 10.1016/j.foodres.2025.115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Oleanolic acid (OA) is a common pentacyclic triterpenoid and has been used to relieve metabolic-related diseases. However, its low water solubility severely limits its clinical application. In this study, OA was encapsulated by a cyclodextrin metal-organic framework material (CD-MOF) using the co-crystallization method to obtain the OA and CD-MOF inclusion complex (OA@CD-MOF). The OA@CD-MOF was characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis, which proved that OA was successfully loaded into the CD-MOF. Molecular docking data revealed that OA tends to occupy the cyclodextrin dimolecular cavity outside the CD-MOF. The formation of OA@CD-MOF significantly increased the apparent water solubility of OA to 269.27 ± 19.40 μg/mL. Further zebrafish experiments showed that the OA@CD-MOF exhibited better anti-steatosis, anti-lipid accumulation, and anti-oxidative stress activities than OA. Overall, this study presents a promising approach for delivering OA, enhancing its bioavailability in vivo and mitigating metabolic-related diseases such as non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Meng Li
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Dongxia Hu
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Dian Zhang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Guangya Xu
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Di Wu
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Chengcheng Gao
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Linghan Meng
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Xiao Feng
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Weiwei Cheng
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Zhenjiong Wang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China.
| | - Yuling Yang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Xiaozhi Tang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China.
| |
Collapse
|
3
|
Lachowicz-Radulska J, Widelski J, Nowaczyński F, Serefko A, Sobczyński J, Ludwiczuk A, Kasica N, Szopa A. Zebrafish as a Suitable Model for Utilizing the Bioactivity of Coumarins and Coumarin-Based Compounds. Int J Mol Sci 2025; 26:1444. [PMID: 40003910 PMCID: PMC11855297 DOI: 10.3390/ijms26041444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this review is to summarize the current knowledge on the use of coumarin-derived compounds in the zebrafish (Danio rerio) model. Coumarins, a class of naturally occurring compounds with diverse biological activities, including compounds such as coumarin, angelicin, and warfarin, have attracted considerable attention in the study of potential therapeutic agents for cancer, central nervous system disorders, and infectious diseases. The capabilities of coumarins as active compounds have led to synthesizing various derivatives with their own properties. While such variety is certainly promising, it is also cumbersome due to the large amount of research needed to find the most optimal compounds. The zebrafish model offers unique advantages for such studies, including high genetic and physiological homology to mammals, optical transparency of the embryos, and rapid developmental processes, facilitating the assessment of compound toxicity and underlying mechanisms of action. This review provides an in-depth analysis of the chemical properties of coumarins, their mechanisms of biological activity, and the results of previous studies evaluating the toxicity and efficacy of these compounds in zebrafish assays. The zebrafish model allows for a holistic assessment of the therapeutic potential of coumarin derivatives, offering valuable insights for advancing drug discovery and development.
Collapse
Affiliation(s)
- Joanna Lachowicz-Radulska
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Filip Nowaczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jan Sobczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| |
Collapse
|
4
|
Wang D, Wang J, Yan D, Wang M, Yang L, Demin KA, de Abreu MS, Kalueff AV. Minocycline reduces neurobehavioral deficits evoked by chronic unpredictable stress in adult zebrafish. Brain Res 2024; 1845:149209. [PMID: 39233136 DOI: 10.1016/j.brainres.2024.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Chronic stress-related brain disorders are widespread and debilitating, and often cause lasting neurobehavioral deficits. Minocycline, a common antibiotic and an established inhibitor of microglia, emerges as potential treatment of these disorders. The zebrafish (Danio rerio) is an important emerging model organism in translational neuroscience and stress research. Here, we evaluated the potential of minocycline to correct microglia-mediated behavioral, genomic and neuroimmune responses induced by chronic unpredictable stress (CUS) in adult zebrafish. We demonstrated that CUS evoked overt behavioral deficits in the novel tank, light-dark box and shoaling tests, paralleled by elevated stress hormones (CRH, ACTH and cortisol), and upregulated brain expression of the 'neurotoxic M1' microglia-specific biomarker gene (MHC-2) and pro-inflammatory cytokine genes (IL-1β, IL-6 and IFN-γ). CUS also elevated peripheral (whole-body) pro-inflammatory (IL-1β, IFN-γ) and lowered anti-inflammatory cytokines (IL-4 and IL-10), as well as reduced whole-brain serotonin, dopamine and norepinephrine levels, and increased brain dopamine and serotonin turnover. In contrast, minocycline attenuated most of these effects, also reducing CUS-elevated peripheral levels of IL-6 and IFN-γ. Collectively, this implicates microglia in zebrafish responses to chronic stress, and suggests glial pathways as potential evolutionarily conserved drug targets for treating stress-evoked neuropathogenesis. Our findings also support the growing translational value of zebrafish models for understanding complex molecular mechanisms of brain pathogenesis and its therapy.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Longen Yang
- School of Pharmacy, Southwest University, Chongqing, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
5
|
Mukherjee S, Mohanty AK, Chinnadurai RK, Barman DD, Poddar A. Zebrafish: A Cost-Effective Model for Enhanced Forensic Toxicology Capabilities in Low- and Middle-Income Countries. Cureus 2024; 16:e76223. [PMID: 39845220 PMCID: PMC11751116 DOI: 10.7759/cureus.76223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
Low- and middle-income countries (LMICs) are increasingly challenged by the rising burden of medicolegal cases. Traditional forensic infrastructure and in vivo rodent models often have significant limitations due to high costs and ethical concerns. As a result, zebrafish (Danio rerio) are gaining popularity as an attractive alternative model for LMICs because of their cost-effectiveness and practical advantages. Zebrafish have a lower acquisition cost, require less demanding husbandry, and have rapid development cycles, all of which facilitate faster and more economical toxicological studies, even in limited laboratory space. Additionally, the optical transparency of zebrafish embryos and larvae allows for non-invasive in vivo observations, reducing the need for extra resources. Research has shown that zebrafish can effectively investigate the behavioral, developmental, and cardiotoxic effects of various novel psychoactive substances (NPSs), including synthetic opioids, cathinones, and hallucinogens. They also excel in metabolic profiling, producing a broader range of metabolites than other models, with significant overlap in human metabolism. The presence of mammalian-like metabolic enzymes further positions zebrafish as a valuable tool for understanding human NPS metabolism and predicting potential effects. Notably, they can identify metabolites that traditional models may not detect, underscoring their potential for novel metabolite discovery. Despite these advantages, standardizing data collection protocols and addressing interlaboratory variability are crucial challenges that must be overcome for the widespread adoption of the zebrafish model. However, ongoing global efforts are paving the way to address these limitations and ensure the successful integration of zebrafish models into the field of forensic toxicology. This review highlights the potential of zebrafish as a cost-effective and versatile model for LMICs, emphasizing their growing application in NPS research and forecasting broader adoption in forensic toxicology.
Collapse
Affiliation(s)
- Sourik Mukherjee
- Zebrafish Research Unit, Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed-to-be-University), Pondicherry, IND
| | - Aman K Mohanty
- Zebrafish Research Unit, Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed-to-be-University), Pondicherry, IND
| | - Raj Kumar Chinnadurai
- Zebrafish Research Unit, Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed-to-be-University), Pondicherry, IND
| | - Dipayan Deb Barman
- Forensic Medicine and Toxicology, Shri Sathya Sai Medical College and Research Institute, Sri Balaji Vidyapeeth (Deemed-to-be-University), Pondicherry, IND
| | - Abhijit Poddar
- Zebrafish Research Unit, Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed-to-be-University), Pondicherry, IND
| |
Collapse
|
6
|
Martins MSDA, Carneiro WF, Monteiro KS, Souza SPD, Vianna ARDCB, Murgas LDS. Metabolic effects of physical exercise on zebrafish (Danio rerio) fed a high-fat diet. J Comp Physiol B 2024; 194:793-804. [PMID: 39085644 DOI: 10.1007/s00360-024-01577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/19/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
The present study aimed to establish zebrafish as an experimental model for investigations into obesity and physical exercise, as well as to assess the effects of these factors on metabolism. The experiment spanned twelve weeks, comprising a feeding trial during which the last four weeks incorporated a physical exercise protocol. This protocol involved placing fifteen animals in a five-liter aquarium, where they were subjected to swimming at an approximate speed of 0.08 m/s for 30 min daily. Throughout the experiment, histological analyses of visceral, subcutaneous, and hepatic adipose tissues were conducted, along with biochemical analyses of total cholesterol and its fractions, triglycerides, glucose, lactate, and alanine aminotransferase (ALT) levels. Additionally, oxidative stress markers, such as reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, and catalase activity and the formation of thiobarbituric acid-reactive substances, were investigated. The results revealed that the group fed a high-fat diet exhibited an increase in ROS production and SOD activity. In contrast, the group administered the high-fat diet and subjected to physical exercise demonstrated a notable reduction in visceral adipocyte area, hepatic steatosis levels, ALT levels, and SOD activity. These findings indicate that physical exercise has a positive effect on obesity and oxidative stress in zebrafish, providing promising evidence for future investigations in this field.
Collapse
Affiliation(s)
| | - William Franco Carneiro
- Graduate Program in Veterinary Sciences, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Kianne Silva Monteiro
- Graduate Program in Veterinary Sciences, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Stefania Priscilla de Souza
- Enzymology Laboratory, Department of Animal Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | | - Luis David Solis Murgas
- Graduate Program in Veterinary Sciences, Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil.
- Enzymology Laboratory, Department of Animal Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Tasnim M, Wahlquist P, Hill JT. Zebrafish: unraveling genetic complexity through duplicated genes. Dev Genes Evol 2024; 234:99-116. [PMID: 39079985 PMCID: PMC11612004 DOI: 10.1007/s00427-024-00720-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 12/06/2024]
Abstract
The zebrafish is an invaluable model organism for genetic, developmental, and disease research. Although its high conservation with humans is often cited as justification for its use, the zebrafish harbors oft-ignored genetic characteristics that may provide unique insights into gene structure and function. Zebrafish, along with other teleost fish, underwent an additional round of whole genome duplication after their split from tetrapods-resulting in an abundance of duplicated genes when compared to other vertebrates. These duplicated genes have evolved in distinct ways over the ensuing 350 million years. Thus, each gene within a duplicated gene pair has nuanced differences that create a unique identity. By investigating both members of the gene pair together, we can elucidate the mechanisms that underly protein structure and function and drive the complex interplay within biological systems, such as signal transduction cascades, genetic regulatory networks, and evolution of tissue and organ function. It is crucial to leverage such studies to explore these molecular dynamics, which could have far-reaching implications for both basic science and therapeutic development. Here, we will review the role of gene duplications and the existing models for gene divergence and retention following these events. We will also highlight examples within each of these models where studies comparing duplicated genes in the zebrafish have yielded key insights into protein structure, function, and regulation.
Collapse
Affiliation(s)
- Maliha Tasnim
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA
| | - Preston Wahlquist
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA.
| |
Collapse
|
8
|
Bellantoni E, Marini M, Chieca M, Gabellini C, Crapanzano EL, Souza Monteiro de Araujo D, Nosi D, Roschi L, Landini L, De Siena G, Pensieri P, Mastricci A, Scuffi I, Geppetti P, Nassini R, De Logu F. Schwann cell transient receptor potential ankyrin 1 (TRPA1) ortholog in zebrafish larvae mediates chemotherapy-induced peripheral neuropathy. Br J Pharmacol 2024; 181:4859-4873. [PMID: 39238161 DOI: 10.1111/bph.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND AND PURPOSE The oxidant sensor transient receptor potential ankyrin 1 (TRPA1) channel expressed by Schwann cells (SCs) has recently been implicated in several models of neuropathic pain in rodents. Here we investigate whether the pro-algesic function of Schwann cell TRPA1 is not limited to mammals by exploring the role of TRPA1 in a model of chemotherapy-induced peripheral neuropathy (CIPN) in zebrafish larvae. EXPERIMENTAL APPROACH We used zebrafish larvae and a mouse model to test oxaliplatin-evoked nociceptive behaviours. We also performed a TRPA1 selective silencing in Schwann cells both in zebrafish larvae and mice to study their contribution in oxaliplatin-induced CIPN model. KEY RESULTS We found that zebrafish larvae and zebrafish TRPA1 (zTRPA1)-transfected HEK293T cells respond to reactive oxygen species (ROS) with nociceptive behaviours and intracellular calcium increases, respectively. TRPA1 was found to be co-expressed with the Schwann cell marker, SOX10, in zebrafish larvae. Oxaliplatin caused nociceptive behaviours in zebrafish larvae that were attenuated by a TRPA1 antagonist and a ROS scavenger. Oxaliplatin failed to produce mechanical allodynia in mice with Schwann cell TRPA1 selective silencing (Plp1+-Trpa1 mice). Comparable results were observed in zebrafish larvae where TRPA1 selective silencing in Schwann cells, using the specific Schwann cell promoter myelin basic protein (MBP), attenuated oxaliplatin-evoked nociceptive behaviours. CONCLUSION AND IMPLICATIONS These results indicate that the contribution of the oxidative stress/Schwann cell/TRPA1 pro-allodynic pathway to neuropathic pain models seems to be conserved across the animal kingdom.
Collapse
Affiliation(s)
- Elisa Bellantoni
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Martina Chieca
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Chiara Gabellini
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Erica Lucia Crapanzano
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | | | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Roschi
- LENS-European Laboratory for Nonlinear Spectroscopy, University of Florence, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Gaetano De Siena
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Pasquale Pensieri
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Alessandra Mastricci
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Irene Scuffi
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
- Pain Research Center, College of Dentistry, New York University, New York, New York, USA
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Anjaneyulu J, Godbole A. Small organism models for mode of action research on anti-ageing and nootropic herbs, foods, and formulations. Nutr Neurosci 2024:1-19. [PMID: 39432435 DOI: 10.1080/1028415x.2024.2409128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
With global increase in ageing population along with increasing age-related neurodegenerative diseases (NDs), development of sustainable, safe and effective solutions for promoting healthy ageing and preventing diseases has become a priority. Traditional healthcare systems/medicines prescribe several herbs, foods and formulations to promote healthy ageing and prevent and/or treat age-related diseases. However, the scientific data elucidating their mechanism of action is very limited and deeper research using different models is warranted for timely and wider use. The clinical studies and research with higher model organisms, although useful, have several practical, technical, and financial limitations. Conversely, small organism models like Yeast, Roundworm, Fruit fly, and Zebrafish, which have genetic similarities to humans, can replicate the disease features and provide behavioural, cellular and molecular insights. The common features of ageing and NDs, like amyloid protein aggregations, oxidative stress, energy dysregulation, inflammation and neurodegeneration can be mimicked in the small organism models for Alzheimer's, Parkinson's, Huntington's diseases, and Amyotrophic Lateral Sclerosis. This review focuses on small organism model- based research unveiling interesting modes of action and synergistic effects of herbal extracts, foods, and formulations, which are indicated especially for healthy ageing and management of NDs. This will provide leads for the quick and sustainable development of scientifically evaluated solutions for clinically relevant, age-related conditions.
Collapse
Affiliation(s)
- Jalagam Anjaneyulu
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| | - Ashwini Godbole
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| |
Collapse
|
10
|
Dey S, Thamaraikani T, Vellapandian C. Advancing Alzheimer's Research With Zebrafish Models: Current Insights, Addressing Challenges, and Charting Future Courses. Cureus 2024; 16:e66935. [PMID: 39280389 PMCID: PMC11401598 DOI: 10.7759/cureus.66935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that progressively impairs cognitive function and results in memory loss. Despite substantial research efforts, little is known about the specific processes driving AD, and there are few proven therapies. Because of their physiological and genetic resemblance to humans, zebrafish (Danio rerio) have become an important model organism for furthering research on AD. This abstract discusses the difficulties faced, looks at the insights currently garnered from zebrafish models, and suggests future research options. AD knowledge has greatly benefited from the use of zebrafish models. Transgenic zebrafish that express human AD-associated genes, such as tau and amyloid precursor protein (APP), display tau neurofibrillary tangles (NFTs) and amyloid-beta (Aβ) plaques, two of the disease's main clinical characteristics. These models have clarified the roles of oxidative stress, inflammation, and calcium homeostasis in the course of AD and allowed for the purpose of high-throughput screening of potential therapeutic agents. Understanding the growth and deterioration of neurons has been greatly aided by real-time zebrafish imaging. Fully using zebrafish models in AD research requires addressing a number of issues. The dissimilarities in zebrafish anatomy and physiology from humans, the difficulty of developing models that replicate progressive and late-onset AD (LOAD), and the requirement for standardized procedures to evaluate alterations in zebrafish cognition and behavior are a few issues. Furthermore, variations in the genetic makeup of zebrafish strains might affect the results of experiments. Future directions include developing standardized behavioral assays and cognitive tests, working together to create extensive databases of zebrafish genetic and phenotypic data, and using genetic engineering techniques like CRISPR/Cas9 to create more complex zebrafish models. Combining zebrafish models with other model species helps expedite the conversion of research results into therapeutic applications and offers a more thorough knowledge of AD. To sum up, zebrafish models have made a substantial contribution to Alzheimer's research by offering insightful information on the causes of the illness and possible therapies. By tackling present issues and formulating a planned future path, we can improve the use of zebrafish to decipher the mysteries of Alzheimer's and help create successful treatments.
Collapse
Affiliation(s)
- Shreya Dey
- Pharmacy/Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Tamilanban Thamaraikani
- Pharmacy/Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Chitra Vellapandian
- Pharmacy/Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, IND
| |
Collapse
|
11
|
Rao C, Hu R, Hu Y, Jiang Y, Zou X, Tang H, Chen X, He X, Hu G. Theoretical exploring of potential mechanisms of antithrombotic ingredients in danshen-chishao herb-pair by network pharmacological study, molecular docking and zebrafish models. Chin Med 2024; 19:100. [PMID: 39014502 PMCID: PMC11253416 DOI: 10.1186/s13020-024-00970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Salvia miltiorrhiza (Danshen, DS) and Radix Paeoniae Rubra (Chishao, CS) herbal pair (DS-CS) is a famous traditional Chinese combination which has been used as antithrombotic formular for centuries. However, there is still lack of sufficient scientific evidence to illustrate its underlying mechanisms. The purpose of this study is to investigate the antithrombotic effects of DS-CS extract in zebrafish and explore its possible mechanism of action. METHODS The quality of traditional Chinese medicines DS and CS granules was evaluated using High Performance Liquid Chromatography (HPLC). Subsequently, the therapeutic effect of the DS-CS combination and its components, Salvianolic Acid A (SAA) and Paeoniflorin (PF), in various concentrations on thrombosis was experimentally validated. Moreover, the interaction between DS-CS and the thrombosis disease targets was analyzed through network pharmacology, predicting the potential antithrombotic mechanism of DS-CS. Molecular docking and in vivo zebrafish experiments were conducted to validate the predicted targets, with qRT-PCR utilized for target validation. RESULTS DS-CS exhibited anti-thrombotic effect in zebrafish with concentrations ranging from 25 to 300 μg/mL. The co-administration of PF and SAA at 25 μg/mL each revealed a synergistic antithrombotic effect exceeding that of individual components when contrasted with PHZ treatment. Protein-protein interaction (PPI) analysis identified key genes, including Albumin (ALB), Proto-oncogene tyro-sine-protein kinase Src (SRC), Matrix metalloproteinase-9 (MMP9), Caspase-3 (CASP3), Epidermal growth factor receptor (EGFR), Fibroblast growth factor 2 (FGF2), Vascular endothelial growth factor receptor 2 (KDR), Matrix metalloprotein-ase-2(MMP2), Thrombin (F2), and Coagulation factor Xa (F10), associated with the antithrombotic action of PF and SAA. Furthermore, KEGG pathway analysis indicated involvement of lipid metabolism and atherosclerosis pathways. Molecular docking revealed strong binding of PF and SAA to pivotal hub genes, such as SRC, EGFR, and F10. The experimental findings demonstrated that DS-CS could upregulate the mRNA expression levels of EGFR while inhibiting F10 and SRC mRNA levels, thereby ameliorating thrombotic conditions. CONCLUSION This research provided valuable insights into the potential mechanisms underlying the antithrombotic activity of DS-CS. Our findings suggested that PF and SAA could be the key active ingredients responsible for this activity. The antithrombotic effects of DS-CS appeared to be mediated through the regulation of mRNA expression of SRC, EGFR, and F10. These results enhanced our understanding of DS-CS's therapeutic potential and lay the groundwork for future studies to further elucidate its mechanisms of action.
Collapse
Affiliation(s)
- Chang Rao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ruixue Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yongxin Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Jiang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xu Zou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Huilan Tang
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Xing Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Department of Pharmacy, Women and Children's Hospital, Chongqing Medical University, Chongqing, 401147, China
| | - Xiaoli He
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
- Children's Hospital of Yongchuan District, Chongqing, 402160, China.
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
12
|
Yin JH, Horzmann KA. Embryonic Zebrafish as a Model for Investigating the Interaction between Environmental Pollutants and Neurodegenerative Disorders. Biomedicines 2024; 12:1559. [PMID: 39062132 PMCID: PMC11275083 DOI: 10.3390/biomedicines12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollutants have been linked to neurotoxicity and are proposed to contribute to neurodegenerative disorders. The zebrafish model provides a high-throughput platform for large-scale chemical screening and toxicity assessment and is widely accepted as an important animal model for the investigation of neurodegenerative disorders. Although recent studies explore the roles of environmental pollutants in neurodegenerative disorders in zebrafish models, current knowledge of the mechanisms of environmentally induced neurodegenerative disorders is relatively complex and overlapping. This review primarily discusses utilizing embryonic zebrafish as the model to investigate environmental pollutants-related neurodegenerative disease. We also review current applicable approaches and important biomarkers to unravel the underlying mechanism of environmentally related neurodegenerative disorders. We found embryonic zebrafish to be a powerful tool that provides a platform for evaluating neurotoxicity triggered by environmentally relevant concentrations of neurotoxic compounds. Additionally, using variable approaches to assess neurotoxicity in the embryonic zebrafish allows researchers to have insights into the complex interaction between environmental pollutants and neurodegenerative disorders and, ultimately, an understanding of the underlying mechanisms related to environmental toxicants.
Collapse
Affiliation(s)
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
13
|
Roohi TF, Faizan S, Shaikh MF, Krishna KL, Mehdi S, Kinattingal N, Arulsamy A. Beyond drug discovery: Exploring the physiological and methodological dimensions of zebrafish in diabetes research. Exp Physiol 2024; 109:847-872. [PMID: 38279951 PMCID: PMC11140176 DOI: 10.1113/ep091587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
Diabetes mellitus is a chronic disease that is now considered a global epidemic. Chronic diabetes conditions include type 1 and type 2 diabetes, both of which are normally irreversible. As a result of long-term uncontrolled high levels of glucose, diabetes can progress to hyperglycaemic pathologies, such as cardiovascular diseases, retinopathy, nephropathy and neuropathy, among many other complications. The complete mechanism underlying diabetes remains unclear due to its complexity. In this scenario, zebrafish (Danio rerio) have arisen as a versatile and promising animal model due to their good reproducibility, simplicity, and time- and cost-effectiveness. The Zebrafish model allows us to make progress in the investigation and comprehension of the root cause of diabetes, which in turn would aid in the development of pharmacological and surgical approaches for its management. The current review provides valuable reference information on zebrafish models, from the first zebrafish diabetes models using genetic, disease induction and chemical approaches, to the newest ones that further allow for drug screening and testing. This review aims to update our knowledge related to diabetes mellitus by gathering the most authoritative studies on zebrafish as a chemical, dietary and insulin induction, and genetic model for diabetes research.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Syed Faizan
- Department of Pharmaceutical ChemistryJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Mohd. Farooq Shaikh
- School of Dentistry and Medical SciencesCharles Sturt UniversityOrangeNew South WalesAustralia
| | - Kamsagara Linganna Krishna
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Seema Mehdi
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Nabeel Kinattingal
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Alina Arulsamy
- Neuropharmacology Research LaboratoryJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
14
|
Serafini MM, Sepehri S, Midali M, Stinckens M, Biesiekierska M, Wolniakowska A, Gatzios A, Rundén-Pran E, Reszka E, Marinovich M, Vanhaecke T, Roszak J, Viviani B, SenGupta T. Recent advances and current challenges of new approach methodologies in developmental and adult neurotoxicity testing. Arch Toxicol 2024; 98:1271-1295. [PMID: 38480536 PMCID: PMC10965660 DOI: 10.1007/s00204-024-03703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
Adult neurotoxicity (ANT) and developmental neurotoxicity (DNT) assessments aim to understand the adverse effects and underlying mechanisms of toxicants on the human nervous system. In recent years, there has been an increasing focus on the so-called new approach methodologies (NAMs). The Organization for Economic Co-operation and Development (OECD), together with European and American regulatory agencies, promote the use of validated alternative test systems, but to date, guidelines for regulatory DNT and ANT assessment rely primarily on classical animal testing. Alternative methods include both non-animal approaches and test systems on non-vertebrates (e.g., nematodes) or non-mammals (e.g., fish). Therefore, this review summarizes the recent advances of NAMs focusing on ANT and DNT and highlights the potential and current critical issues for the full implementation of these methods in the future. The status of the DNT in vitro battery (DNT IVB) is also reviewed as a first step of NAMs for the assessment of neurotoxicity in the regulatory context. Critical issues such as (i) the need for test batteries and method integration (from in silico and in vitro to in vivo alternatives, e.g., zebrafish, C. elegans) requiring interdisciplinarity to manage complexity, (ii) interlaboratory transferability, and (iii) the urgent need for method validation are discussed.
Collapse
Affiliation(s)
- Melania Maria Serafini
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| | - Sara Sepehri
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Miriam Midali
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Marth Stinckens
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Marta Biesiekierska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Anna Wolniakowska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Alexandra Gatzios
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Elise Rundén-Pran
- The Climate and Environmental Research Institute NILU, Kjeller, Norway
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Center of Research on New Approach Methodologies (NAMs) in chemical risk assessment (SAFE-MI), Università degli Studi di Milano, Milan, Italy
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussels, Brussels, Belgium
| | - Joanna Roszak
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Center of Research on New Approach Methodologies (NAMs) in chemical risk assessment (SAFE-MI), Università degli Studi di Milano, Milan, Italy
| | - Tanima SenGupta
- The Climate and Environmental Research Institute NILU, Kjeller, Norway
| |
Collapse
|
15
|
Nadarajapillai K, Jung S, Sellaththurai S, Ganeshalingam S, Kim MJ, Lee J. CRISPR/Cas9-mediated knockout of tnf-α1 in zebrafish reduces disease resistance after Edwardsiella piscicida bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109249. [PMID: 38040136 DOI: 10.1016/j.fsi.2023.109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Tumor necrosis factor (TNF) is an important cytokine involved in immune responses to bacterial infections in vertebrates, including fish. Although Tnf-α is a well-studied cytokine, there are contradictory findings about Tnf-α function following bacterial infection. In this study, we analyzed the expression and function of the Tnf-α-type I isoform (Tnf-α1) in zebrafish by knockout experiments using the CRISPR/Cas9 gene-editing tool. The open reading frame of tnf-α1 encodes a 25.82 kDa protein with 234 amino acids (aa). The expression of tnf-α1 in the early stages of zebrafish was observed from the 2-cell stage. Adult zebrafish spleens showed the highest expression of tnf-α1. To evaluate the function of Tnf-α1, an 8 bp deletion in the target region, resulting in a short truncated protein of 55 aa, was used to create the tnf-α1 knockout mutant. The pattern of downstream gene expression in 7-day larvae in wild-type (WT) and tnf-α1 knockout fish was examined. We also verified the fish mortality rate after Edwardsiella piscicida challenge and found that it was much higher in tnf-α1 knockout fish than in WT fish. Additionally, downstream gene expression analyses after E. piscicida exposure revealed a distinct expression pattern in tnf-α1 knockout fish compared to that in WT fish. Overall, our study using tnf-α1 deletion in zebrafish confirmed that Tnf-α1 is critical for immune regulation during bacterial infection.
Collapse
Affiliation(s)
- Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Subothini Ganeshalingam
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
16
|
Misner E, Zhang M, Sapi E. Establishing a Zebrafish Model for Borrelia burgdorferi Infection Using Immersion and Microinjection Methods. Methods Mol Biol 2024; 2742:131-149. [PMID: 38165621 DOI: 10.1007/978-1-0716-3561-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Borrelia burgdorferi is the spirochetal bacterium that causes Lyme disease. Even though antimicrobial sensitivity of B. burgdorferi has been widely studied, there is still a need to develop an affordable, practical, high-throughput in vivo model which can be used to find effective antibiotic therapies, especially for the recently discovered persister and biofilm forms. Here, we describe the immersion and microinjection methods to introduce B. burgdorferi spirochetes into zebrafish larvae. The B. burgdorferi-zebrafish model can be produced by immersing 5-day post-fertilization (dpf) zebrafish in a B. burgdorferi culture, or by injecting B. burgdorferi into the hindbrain of zebrafish at 28 h post-fertilization (hpf). To demonstrate that B. burgdorferi indeed infect the fish, nested polymerase chain reaction (PCR), reverse transcription PCR (RT-PCR), live fluorescence imaging, histological staining, and wholemount immunohistochemical (IHC) methods can be used on B. burgdorferi-infected zebrafish.
Collapse
Affiliation(s)
- Erica Misner
- Department of Biology and Environmental Science, Lyme Disease Research Group, University of New Haven, New Haven, CT, USA
| | - Min Zhang
- Department of Biology and Environmental Science, Lyme Disease Research Group, University of New Haven, New Haven, CT, USA
- Department of Criminal Justice, Coppin State University, Baltimore, MD, USA
| | - Eva Sapi
- Department of Biology and Environmental Science, Lyme Disease Research Group, University of New Haven, New Haven, CT, USA
| |
Collapse
|
17
|
Wilson LB, Moran IL, Anderson KA, Tanguay RL. Advances in PAH mixture toxicology enabled by zebrafish. CURRENT OPINION IN TOXICOLOGY 2023; 34:100392. [PMID: 37377741 PMCID: PMC10292781 DOI: 10.1016/j.cotox.2023.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds produced by a variety of petrogenic and pyrogenic sources. PAHs inherently occur in the environment in complex mixtures. The early life-stage zebrafish model is a valuable tool for high-throughput screening (HTS) for toxicity of complex chemical mixtures due to its rapid development, high fecundity, and superb sensitivity to chemical insult. Zebrafish are amenable to exposure to surrogate mixtures as well as extracts of environmental samples and effect-directed analysis. In addition to its utility to HTS, the zebrafish has proven an excellent model for assessing chemical modes of action and identifying molecular initiating and other key events in an Adverse Outcome Pathway framework. Traditional methods of assessing PAH mixture toxicity prioritize carcinogenic potential and lack consideration of non-carcinogenic modes of action, assuming a similar molecular initiating event for all PAHs. Recent work in zebrafish has made it clear that while PAHs belong to the same chemical class, their modes of action can be divergent. Future research should use zebrafish to better classify PAHs by their bioactivity and modes of action to better understand mixture hazards.
Collapse
Affiliation(s)
- Lindsay B. Wilson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97333
| | - Ian L. Moran
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97333
| |
Collapse
|
18
|
Davidović P, Blagojević D, Meriluoto J, Simeunović J, Svirčev Z. Biotests in Cyanobacterial Toxicity Assessment-Efficient Enough or Not? BIOLOGY 2023; 12:biology12050711. [PMID: 37237524 DOI: 10.3390/biology12050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Cyanobacteria are a diverse group of organisms known for producing highly potent cyanotoxins that pose a threat to human, animal, and environmental health. These toxins have varying chemical structures and toxicity mechanisms and several toxin classes can be present simultaneously, making it difficult to assess their toxic effects using physico-chemical methods, even when the producing organism and its abundance are identified. To address these challenges, alternative organisms among aquatic vertebrates and invertebrates are being explored as more assays evolve and diverge from the initially established and routinely used mouse bioassay. However, detecting cyanotoxins in complex environmental samples and characterizing their toxic modes of action remain major challenges. This review provides a systematic overview of the use of some of these alternative models and their responses to harmful cyanobacterial metabolites. It also assesses the general usefulness, sensitivity, and efficiency of these models in investigating the mechanisms of cyanotoxicity expressed at different levels of biological organization. From the reported findings, it is clear that cyanotoxin testing requires a multi-level approach. While studying changes at the whole-organism level is essential, as the complexities of whole organisms are still beyond the reach of in vitro methodologies, understanding cyanotoxicity at the molecular and biochemical levels is necessary for meaningful toxicity evaluations. Further research is needed to refine and optimize bioassays for cyanotoxicity testing, which includes developing standardized protocols and identifying novel model organisms for improved understanding of the mechanisms with fewer ethical concerns. In vitro models and computational modeling can complement vertebrate bioassays and reduce animal use, leading to better risk assessment and characterization of cyanotoxins.
Collapse
Affiliation(s)
- Petar Davidović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dajana Blagojević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Jussi Meriluoto
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| | - Jelica Simeunović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| |
Collapse
|
19
|
Jia PP, Yang YF, Junaid M, Jia HJ, Li WG, Pei DS. Bacteriophage-based techniques for elucidating the function of zebrafish gut microbiota. Appl Microbiol Biotechnol 2023; 107:2039-2059. [PMID: 36847856 DOI: 10.1007/s00253-023-12439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
Bacteriophages (or phages) are unique viruses that can specifically infect bacteria. Since their discovery by Twort and d'Herelle, phages with bacterial specificity have played important roles in microbial regulation. The intestinal microbiota and host health are intimately linked with nutrient, metabolism, development, and immunity aspects. However, the mechanism of interactions between the composition of the microbiota and their functions in maintaining host health still needs to be further explored. To address the lack of methodology and functions of intestinal microbiota in the host, we first proposed that, with the regulations of special intestinal microbiota and applications of germ-free (GF) zebrafish model, phages would be used to infect and reduce/eliminate the defined gut bacteria in the conventionally raised (CR) zebrafish and compared with the GF zebrafish colonized with defined bacterial strains. Thus, this review highlighted the background and roles of phages and their functional characteristics, and we also summarized the phage-specific infection of target microorganisms, methods to improve the phage specificity, and their regulation within the zebrafish model and gut microbial functional study. Moreover, the primary protocol of phage therapy to control the intestinal microbiota in zebrafish models from larvae to adults was recommended including phage screening from natural sources, identification of host ranges, and experimental design in the animal. A well understanding of the interaction and mechanism between phages and gut bacteria in the host can potentially provide powerful strategies or techniques for preventing bacteria-related human diseases by precisely regulating in vitro and in vivo, which will provide novel insights for phages' application and combined research in the future. KEY POINTS: • Zebrafish models for clarifying the microbial and phages' functions were discussed • Phages infect host bacteria with exquisite specificity and efficacy • Phages can reduce/eliminate the defined gut bacteria to clarify their function.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Yi-Fan Yang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huang-Jie Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
20
|
Beneficial Effect of Vitamin D on Non-Alcoholic Fatty Liver Disease (NAFLD) Progression in the Zebrafish Model. Nutrients 2023; 15:nu15061362. [PMID: 36986092 PMCID: PMC10052639 DOI: 10.3390/nu15061362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
A major cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma, non-alcoholic fatty liver disease (NAFLD) results from excessive liver fat accumulation. Vitamin D (VitD) plays multiple important roles in diverse physiologic processes. Here, we describe the role of VitD in the complex pathogenesis of NAFLD and explore the possible therapeutic role of VitD supplementation in NAFLD therapy. To compare the effect of VitD to other interventions such as low-calorie diet, we induced NAFLD in young adult zebrafish (Danio rerio, AB strain) and monitored the effects of VitD supplementation on the disease course. The zebrafish administered with high-dose VitD (1.25 μg) had significantly reduced liver fat compared to those that received low-dose VitD (0.049 μg) or caloric restriction. Gene expression analysis revealed that VitD downregulated several pathways that may play a role in NAFLD etiology, which affected fatty acid metabolism, vitamins and their cofactors, ethanol oxidation, and glycolysis. The pathway analysis revealed that the cholesterol biosynthesis pathway and the isoprenoid biosynthetic process pathway were significantly upregulated whereas the small molecule catabolic process pathway significantly downregulated following the exposure of NAFLD zebrafish model to high VitD dose. Therefore, our findings suggest the association of novel biochemical pathways with NAFLD and highlight the potential of VitD supplementation to reverse the severity of NAFLD, especially in younger people.
Collapse
|
21
|
Adhish M, Manjubala I. Effectiveness of zebrafish models in understanding human diseases-A review of models. Heliyon 2023; 9:e14557. [PMID: 36950605 PMCID: PMC10025926 DOI: 10.1016/j.heliyon.2023.e14557] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Understanding the detailed mechanism behind every human disease, disorder, defect, and deficiency is a daunting task concerning the clinical diagnostic tools for patients. Hence, a closely resembling living or simulated model is of paramount interest for the development and testing of a probable novel drug for rectifying the conditions pertaining to the various ailments. The animal model that can be easily genetically manipulated to suit the study of the therapeutic motive is an indispensable asset and within the last few decades, the zebrafish models have proven their effectiveness by becoming such potent human disease models with their use being extended to various avenues of research to understand the underlying mechanisms of the diseases. As zebrafish are explored as model animals in understanding the molecular basis and genetics of many diseases owing to the 70% genetic homology between the human and zebrafish genes; new and fascinating facts about the diseases are being surfaced, establishing it as a very powerful tool for upcoming research. These prospective research areas can be explored in the near future using zebrafish as a model. In this review, the effectiveness of the zebrafish as an animal model against several human diseases such as osteoporosis, atrial fibrillation, Noonan syndrome, leukemia, autism spectrum disorders, etc. has been discussed.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - I. Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| |
Collapse
|
22
|
Lactobacillus rhamnosus GG treatment potentiates ethanol-induced behavioral changes through modulation of intestinal epithelium in Danio rerio. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023:10.1007/s10123-022-00320-2. [PMID: 36656417 DOI: 10.1007/s10123-022-00320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023]
Abstract
The gut-brain axis directly regulates the brain homeostatic environment; an imbalance in gut microbial composition following ethanol exposure is maleficent. In this context, involvement of probiotics as prophylactic intervention against ethanol-induced neurotoxicity is elusive in the literature. Therefore, the present study was aimed to determine the impact of chronic ethanol exposure on the neurobehavioral response of zebrafish and possible neuroprotection through co-supplementation of probiotic Lactobacillus rhamnosus GG (LGG). Zebrafish were divided into naive, control, ethanol (0.01% v/v), LGG, and ethanol co-supplemented with LGG groups. Neurobehavioral assessment was performed after 7 days of chronic waterborne exposure to ethanol with LGG co-supplementation followed by histopathological studies. The findings indicated that there was a clear alteration in locomotor activity and habitat preference, with animals preferentially migrating toward altered zones on exposure to ethanol. However, co-supplementation of LGG showed restoration against ethanol-induced neurobehavioral and cognitive dysfunction. Brain tissue pyknosis and intestinal epithelial disruption were significantly mitigated on LGG co-supplementation against ethanol in zebrafish. The present study provides a novel approach toward supplementation of probiotics such as LGG in modulation of gut commensal microbiota influencing zebrafish behavior. Moreover, the findings delineate the possible role of probiotics as a curative administration to counter ethanol-persuaded neurological outcomes.
Collapse
|
23
|
Chakraborty S, Dissanayake M, Godwin J, Wang X, Bhandari RK. Ancestral BPA exposure caused defects in the liver of medaka for four generations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159067. [PMID: 36174697 PMCID: PMC10593180 DOI: 10.1016/j.scitotenv.2022.159067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Environmental chemicals can induce liver defects in experimental animals due to their direct and acute exposure. It is not clear whether environmental chemical exposures result in the transgenerational passage of liver defects in subsequent generations living in an uncontaminated environment. Bisphenol A (BPA), a plasticizer chemical, has been ubiquitous in the environment in the recent decade. Every organism is exposed to this chemical at some point during its lifetime. Literature suggests that direct BPA exposure can result in several metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). Despite the phasing out of BPA from several consumer goods, it is unclear whether ancestral BPA exposure causes liver health problems in the unexposed future generations. Here, we demonstrate an advanced stage of NAFLD in the grandchildren (F2 generation) of medaka fish (Oryzias latipes) due to embryonic BPA exposure in the grandparental generation (F0), which persists for five generations (F4) even in the absence of BPA. The severity of transgenerational NAFLD phenotype included steatosis together with perisinusoidal fibrosis and apoptosis of hepatocytes. Adult females developed more severe histopathological conditions in the liver than males. Genes encoding enzymes involved in lipolytic pathways were significantly decreased. The present results suggest that ancestral BPA exposure can result in transgenerational metabolic diseases that can persist for five generations and that the NAFLD trait is sexually dimorphic. Given that ancestral BPA exposure can lead to altered metabolic health outcomes in the subsequent unexposed generations, the development of the methods and strategies to mitigate the transgenerational onset of metabolic diseases seem imperative to protect future generations.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Manthi Dissanayake
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Julia Godwin
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA; Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
24
|
Dietary Supplementation with a Blend of Hydrolyzable and Condensed Tannins Ameliorates Diet-Induced Intestinal Inflammation in Zebrafish ( Danio rerio). Animals (Basel) 2022; 13:ani13010167. [PMID: 36611775 PMCID: PMC9818001 DOI: 10.3390/ani13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
The current study evaluated the effects of hydrolyzable and condensed tannins from chestnut and quebracho wood, respectively (TSP, Silvafeed®), on zebrafish with intestinal inflammation induced by a plant-based diet (basal diet). Four experimental diets were prepared as follows: the basal diet + 0 TSP, the basal diet + TSP at 0.9 g/kg of feed, the basal diet + TSP at 1.7 g/kg of feed, and the basal diet + TSP at 3.4 g/kg of feed. Eighty-four zebrafish (Danio rerio) were fed for 12 days with the experimental diets. In zebrafish fed the basal diet, intestine integrity appeared to be altered, with damaged intestinal villi, high immunoexpression of tumor necrosis factor-α (TNFα) and cyclooxygenase 2 (COX2), and high expression of the cox2, interleukin 1 (il-1b), interleukin 8 (cxcl8-l1), and tnfα genes. The tannin treatment partially restored intestinal morphology and downregulated the expression of cytokines. The best activity was detected with 1.7 and 3.4 g/kg of feed. In the guts of all groups, Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes were the most represented phyla. The most represented genera were Plesiomonas and Sphingomonas, belonging to the Proteobacteria phylum; Cetobacterium, belonging to the Fusobacteria phylum; and Lactobacillus, belonging to the Firmicutes phylum. No significant differences were detected among groups, except for a slight decrease in the Fusobacteria phylum and slight increases in the Shewanella and Bacteroides genera with TSP. In conclusion, these results suggest that tannins can improve the zebrafish intestinal inflammation caused by a terrestrial-plant-based diet in a dose-dependent manner.
Collapse
|
25
|
Lichtenegger A, Tamaoki J, Licandro R, Mori T, Mukherjee P, Bian L, Greutter L, Makita S, Wöhrer A, Matsusaka S, Kobayashi M, Baumann B, Yasuno Y. Longitudinal investigation of a xenograft tumor zebrafish model using polarization-sensitive optical coherence tomography. Sci Rep 2022; 12:15381. [PMID: 36100620 PMCID: PMC9470556 DOI: 10.1038/s41598-022-19483-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 01/19/2023] Open
Abstract
Breast cancer is a leading cause of death in female patients worldwide. Further research is needed to get a deeper insight into the mechanisms involved in the development of this devastating disease and to find new therapy strategies. The zebrafish is an established animal model, especially in the field of oncology, which has shown to be a promising candidate for pre-clinical research and precision-based medicine. To investigate cancer growth in vivo in zebrafish, one approach is to explore xenograft tumor models. In this article, we present the investigation of a juvenile xenograft zebrafish model using a Jones matrix optical coherence tomography (JM-OCT) prototype. Immunosuppressed wild-type fish at 1-month post-fertilization were injected with human breast cancer cells and control animals with phosphate buffered saline in the tail musculature. In a longitudinal study, the scatter, polarization, and vasculature changes over time were investigated and quantified in control versus tumor injected animals. A significant decrease in birefringence and an increase in scattering signal was detected in tumor injected zebrafish in comparison to the control once. This work shows the potential of JM-OCT as a non-invasive, label-free, three-dimensional, high-resolution, and tissue-specific imaging tool in pre-clinical cancer research based on juvenile zebrafish models.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan.
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Roxane Licandro
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Lixuan Bian
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Lisa Greutter
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan
| | - Adelheid Wöhrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
26
|
Bozzer S, De Maso L, Grimaldi MC, Capolla S, Dal Bo M, Toffoli G, Macor P. Zebrafish: A Useful Animal Model for the Characterization of Drug-Loaded Polymeric NPs. Biomedicines 2022; 10:biomedicines10092252. [PMID: 36140353 PMCID: PMC9496256 DOI: 10.3390/biomedicines10092252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
The use of zebrafish (ZF) embryos as an in vivo model is increasingly attractive thanks to different features that include easy handling, transparency, and the absence of adaptive immunity until 4–6 weeks. These factors allow the development of xenografts that can be easily analyzed through fluorescence techniques. In this work, ZF were exploited to characterize the efficiency of drug-loaded polymeric NPs as a therapeutical approach for B-cell malignancies. Fluorescent probes, fluorescent transgenic lines of ZF, or their combination allowed to deeply examine biodistribution, elimination, and therapeutic efficacy. In particular, the fluorescent signal of nanoparticles (NPs) was exploited to investigate the in vivo distribution, while the colocalization between the fluorescence in macrophages and NPs allows following the elimination pathway of these polymeric NPs. Xenotransplanted human B-cells (Nalm-6) developed a reproducible model useful for demonstrating drug delivery by polymeric NPs loaded with doxorubicin and, as a consequence, the arrest of tumor growth and the reduction in tumor burden. ZF proved to be a versatile model, able to rapidly provide answers in the development of animal models and in the characterization of the activity and the efficacy of drug delivery systems.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.B.); (P.M.)
| | - Luca De Maso
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.B.); (P.M.)
| |
Collapse
|
27
|
Kurchaba N, Charette JM, LeMoine CMR. Metabolic consequences of PGC-1α dysregulation in adult zebrafish muscle. Am J Physiol Regul Integr Comp Physiol 2022; 323:R319-R330. [PMID: 35670765 DOI: 10.1152/ajpregu.00188.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The peroxisome proliferator activated receptor gamma co-activator 1 alpha (PGC-1α) is central to the regulation of cellular and mitochondrial energy homeostasis in mammals, but its role in other vertebrates remains unclear. Indeed, previous work suggests extensive structural and functional divergence of PGC-1α in teleosts but this remains to be directly tested. Here, we describe the initial characterization of heterozygous PGC-1α mutant zebrafish lines created by CRISPR-Cas9 disruptions of an evolutionarily conserved regulatory region of the PGC-1α proximal promoter. Using qPCR, we confirmed the disruption of PGC-1α gene expression in striated muscle, leading to a simultaneous 4-fold increase in mixed skeletal muscle PGC-1α mRNA levels and an opposite 4-fold downregulation in cardiac muscle. In mixed skeletal muscle, most downstream effector genes were largely unaffected yet two mitochondrial lipid transporters, carnitine palmitoyltransferase 1 and 2, were strongly induced. Conversely, PGC-1α depression in cardiac muscle reduced the expression of several transcriptional regulators (estrogen related receptor alpha, nuclear respiratory factor 1 and PGC-1β) without altering metabolic gene expression. Using high resolution respirometry, we determined that white muscle exhibited increased lipid oxidative capacity with little difference in markers of mitochondrial abundance. Finally, using whole animal intermittent respirometry, we show that mutant fish exhibit a 2-fold higher basal metabolism than their wildtype counterparts. Altogether, this new model confirms a central but complex role for PGC-1α in mediating energy utilization in zebrafish and we propose its use as a valuable tool to explore the intricate regulatory pathways of energy homeostasis in a popular biomedical model.
Collapse
Affiliation(s)
| | - J Michael Charette
- Department of Chemistry, Brandon University, Brandon, MB, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada.,CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | | |
Collapse
|
28
|
Kassotis CD, Vom Saal FS, Babin PJ, Lagadic-Gossmann D, Le Mentec H, Blumberg B, Mohajer N, Legrand A, Munic Kos V, Martin-Chouly C, Podechard N, Langouët S, Touma C, Barouki R, Kim MJ, Audouze K, Choudhury M, Shree N, Bansal A, Howard S, Heindel JJ. Obesity III: Obesogen assays: Limitations, strengths, and new directions. Biochem Pharmacol 2022; 199:115014. [PMID: 35393121 PMCID: PMC9050906 DOI: 10.1016/j.bcp.2022.115014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022]
Abstract
There is increasing evidence of a role for environmental contaminants in disrupting metabolic health in both humans and animals. Despite a growing need for well-understood models for evaluating adipogenic and potential obesogenic contaminants, there has been a reliance on decades-old in vitro models that have not been appropriately managed by cell line providers. There has been a quick rise in available in vitro models in the last ten years, including commercial availability of human mesenchymal stem cell and preadipocyte models; these models require more comprehensive validation but demonstrate real promise in improved translation to human metabolic health. There is also progress in developing three-dimensional and co-culture techniques that allow for the interrogation of a more physiologically relevant state. While diverse rodent models exist for evaluating putative obesogenic and/or adipogenic chemicals in a physiologically relevant context, increasing capabilities have been identified for alternative model organisms such as Drosophila, C. elegans, zebrafish, and medaka in metabolic health testing. These models have several appreciable advantages, including most notably their size, rapid development, large brood sizes, and ease of high-resolution lipid accumulation imaging throughout the organisms. They are anticipated to expand the capabilities of metabolic health research, particularly when coupled with emerging obesogen evaluation techniques as described herein.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States.
| | - Frederick S Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, United States
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Helene Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, The University of California, Irvine, Irvine CA 92697, United States
| | - Nicole Mohajer
- Department of Developmental and Cell Biology, The University of California, Irvine, Irvine CA 92697, United States
| | - Antoine Legrand
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Sophie Langouët
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Charbel Touma
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, Paris, France
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Texas A & M University, College Station, TX 77843, United States
| | - Nitya Shree
- Department of Pharmaceutical Sciences, Texas A & M University, College Station, TX 77843, United States
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, ACT, 2611, Australia
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| |
Collapse
|
29
|
Lichtenegger A, Mukherjee P, Zhu L, Morishita R, Tomita K, Oida D, Leskovar K, Abd El-Sadek I, Makita S, Kirchberger S, Distel M, Baumann B, Yasuno Y. Non-destructive characterization of adult zebrafish models using Jones matrix optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:2202-2223. [PMID: 35519284 PMCID: PMC9045912 DOI: 10.1364/boe.455876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The zebrafish is a valuable vertebrate animal model in pre-clinical cancer research. A Jones matrix optical coherence tomography (JM-OCT) prototype operating at 1310 nm and an intensity-based spectral-domain OCT setup at 840 nm were utilized to investigate adult wildtype and a tumor-developing zebrafish model. Various anatomical features were characterized based on their inherent scattering and polarization signature. A motorized translation stage in combination with the JM-OCT prototype enabled large field-of-view imaging to investigate adult zebrafish in a non-destructive way. The diseased animals exhibited tumor-related abnormalities in the brain and near the eye region. The scatter intensity, the attenuation coefficients and local polarization parameters such as the birefringence and the degree of polarization uniformity were analyzed to quantify differences in tumor versus control regions. The proof-of-concept study in a limited number of animals revealed a significant decrease in birefringence in tumors found in the brain and near the eye compared to control regions. The presented work showed the potential of OCT and JM-OCT as non-destructive, high-resolution, and real-time imaging modalities for pre-clinical research based on zebrafish.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Lida Zhu
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Rion Morishita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Kiriko Tomita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Daisuke Oida
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | - Konrad Leskovar
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
- Department of Physics, Faculty of Science, Damietta University, Egypt
| | - Shuichi Makita
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| | | | - Martin Distel
- St. Anna Children’s Cancer Research Institute (CCRI), Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, Institute of Applied Physics, University of Tsukuba, Japan
| |
Collapse
|
30
|
Road Runoff Characterization: Ecotoxicological Assessment Combined with (Non-)Target Screenings of Micropollutants for the Identification of Relevant Toxicants in the Dissolved Phase. WATER 2022. [DOI: 10.3390/w14040511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Road runoff (RR) is an important vector of micropollutants towards groundwater and soils, threatening the environment and ecosystems. Through combined chemical and biological approaches, the purpose of this study was to get insights on specific toxicants present in RR from two sites differing by their traffic intensity and their toxicological risk assessment. Non-target screening was performed by HRMS on RR dissolved phase. Ecotoxicological risk was evaluated in a zebrafish embryos model and on rat liver mitochondrial respiratory chain. Specific HRMS fingerprints were obtained for each site, reflecting their respective traffic intensities. Several micropollutants, including 1,3-diphenylguanidine (DPG) and benzotriazole (BZT) were identified in greater concentrations at the high-traffic site. The origin of DPG was confirmed by analyzing HRMS fingerprints from shredded tires. RR samples from each site, DPG and BZT were of relatively low toxicity (no mortality) to zebrafish embryos, but all generated distinct and marked stress responses in the light–dark transition test, while DPG/BZT mixes abolished this effect. The moderate-traffic RR and DPG inhibited mitochondrial complex I. Our study highlights (i) the unpredictability of pollutants cocktail effect and (ii) the importance of a multi-approaches strategy to characterize environmental matrices, essential for their management at the source and optimization of depollution devices.
Collapse
|
31
|
Rai AR, Joy T, Rashmi KS, Rai R, Vinodini NA, Jiji PJ. Zebrafish as an experimental model for the simulation of neurological and craniofacial disorders. Vet World 2022; 15:22-29. [PMID: 35369579 PMCID: PMC8924399 DOI: 10.14202/vetworld.2022.22-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Zebrafish have gained momentum as a leading experimental model in recent years. At present, the zebrafish vertebrate model is increasingly used due to its multifactorial similarities to humans that include genetic, organ, and cellular factors. With the emergence of novel research techniques that are very expensive, it is necessary to develop affordable and valid experimental models. This review aimed to highlight some of the most important similarities between zebrafish and humans by emphasizing the relevance of the first in simulating neurological disorders and craniofacial deformity.
Collapse
Affiliation(s)
- Ashwin Rohan Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Teresa Joy
- Department of Anatomy, American University of Antigua College of Medicine, University Park, Coolidge, St. John's, Antigua
| | - K. S. Rashmi
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajalakshmi Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - N. A. Vinodini
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - P. J. Jiji
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
32
|
Lichtenegger A, Mukherjee P, Tamaoki J, Bian L, Zhu L, El-Sadek IA, Makita S, Leskovar K, Kobayashi M, Baumann B, Yasuno Y. Multicontrast investigation of in vivo wildtype zebrafish in three development stages using polarization-sensitive optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210313LR. [PMID: 35064657 PMCID: PMC8781523 DOI: 10.1117/1.jbo.27.1.016001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/29/2021] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE The scattering and polarization characteristics of various organs of in vivo wildtype zebrafish in three development stages were investigated using a non-destructive and label-free approach. The presented results showed a promising first step for the usability of Jones-matrix optical coherence tomography (JM-OCT) in zebrafish-based research. AIM We aim to visualize and quantify the scatter and polarization signatures of various zebrafish organs for larvae, juvenile, and young adult animals in vivo in a non-invasive and label-free way. APPROACH A custom-built polarization-sensitive JM-OCT setup in combination with a motorized translation stage was utilized to investigate live zebrafish. Depth-resolved scattering (intensity and attenuation coefficient) and polarization (birefringence and degree of polarization uniformity) properties were analyzed. OCT angiography (OCT-A) was utilized to investigate the vasculature label-free and non-destructively. RESULTS The scatter and polarization signatures of the zebrafish organs such as the eye, gills, and muscles were investigated. The attenuation coefficient and birefringence changes between 1- and 2-month-old animals were evaluated in selected organs. OCT-A revealed the vasculature of in vivo larvae and juvenile zebrafish in a label-free manner. CONCLUSIONS JM-OCT offers a rapid, label-free, non-invasive, tissue specific, and three-dimensional imaging tool to investigate in vivo processes in zebrafish in various development stages.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- University of Tsukuba, Computational Optics Group, Tsukuba, Japan
- Address all correspondence to Antonia Lichtenegger,
| | | | - Junya Tamaoki
- University of Tsukuba, Faculty of Medicine, Department of Molecular and Developmental Biology, Tsukuba, Japan
| | - Lixuan Bian
- University of Tsukuba, Faculty of Medicine, Department of Molecular and Developmental Biology, Tsukuba, Japan
| | - Lida Zhu
- University of Tsukuba, Computational Optics Group, Tsukuba, Japan
| | - Ibrahim Abd El-Sadek
- University of Tsukuba, Computational Optics Group, Tsukuba, Japan
- Damietta University, Faculty of Science, Department of Physics, Damietta, Egypt
| | - Shuichi Makita
- University of Tsukuba, Computational Optics Group, Tsukuba, Japan
| | - Konrad Leskovar
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Makoto Kobayashi
- University of Tsukuba, Faculty of Medicine, Department of Molecular and Developmental Biology, Tsukuba, Japan
| | - Bernhard Baumann
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Yoshiaki Yasuno
- University of Tsukuba, Computational Optics Group, Tsukuba, Japan
| |
Collapse
|
33
|
Piccione M, Facchinello N, Schrenk S, Gasparella M, Pathak S, Ammar RM, Rabini S, Dalla Valle L, Di Liddo R. STW 5 Herbal Preparation Modulates Wnt3a and Claudin 1 Gene Expression in Zebrafish IBS-like Model. Pharmaceuticals (Basel) 2021; 14:ph14121234. [PMID: 34959635 PMCID: PMC8704787 DOI: 10.3390/ph14121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by chronic abdominal pain and stool irregularities. STW 5 has proven clinical efficacy in functional gastrointestinal disorders, including IBS, targeting pathways that suppress inflammation and protect the mucosa. Wnt signaling is known to modulate NF-kβ-dependent inflammatory cytokine production. This sparked the idea of evaluating the impact of STW 5 on the expression of inflammatory-response and Wnt/β catenin-target genes in an IBS-like model. Main methods: We used zebrafish and dextran sodium sulfate (DSS) treatment to model IBS-like conditions in vivo and in vitro and examined the effects of subsequent STW 5 treatment on the intestines of DSS-treated fish and primary cultured intestinal and neuronal cells. Gross gut anatomy, histology, and the expression of Wnt-signaling and cytokine genes were analyzed in treated animals and/or cells, and in controls. Key findings: DSS treatment up-regulated the expression of interleukin-8, tumor necrosis factor-α, wnt3a, and claudin-1 in explanted zebrafish gut. Subsequent STW 5 treatment abolished both the macroscopic signs of gut inflammation, DSS-induced mucosecretory phenotype, and normalized the DSS-induced upregulated expression of il10 and Wnt signaling genes, such as wnt3a and cldn1 in explanted zebrafish gut. Under inflammatory conditions, STW 5 downregulated the expression of the pro-inflammatory cytokine genes il1β, il6, il8, and tnfα while it upregulated the expression of the anti-inflammatory genes il10 and wnt3a in enteric neuronal cells in vitro. Significance: Wnt signaling could be a novel target for the anti-inflammatory and intestinal permeability-restoring effects of STW 5, possibly explaining its clinical efficacy in IBS.
Collapse
Affiliation(s)
- Monica Piccione
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.P.); (S.S.)
| | - Nicola Facchinello
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (L.D.V.)
| | - Sandra Schrenk
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.P.); (S.S.)
| | - Marco Gasparella
- Department of Pediatric Surgery, Ca’ Foncello Hospital, 31100 Treviso, Italy;
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India;
| | - Ramy M. Ammar
- BAYER Consumer Health, Global Medical Affairs, 64295 Darmstadt, Germany; (R.M.A.); (S.R.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafr-El Sheikh 33516, Egypt
| | - Sabine Rabini
- BAYER Consumer Health, Global Medical Affairs, 64295 Darmstadt, Germany; (R.M.A.); (S.R.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (L.D.V.)
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.P.); (S.S.)
- Correspondence: ; Tel.: +39-0498275636
| |
Collapse
|
34
|
Effect of Tempeh on Gut Microbiota and Anti-Stress Activity in Zebrafish. Int J Mol Sci 2021; 22:ijms222312660. [PMID: 34884465 PMCID: PMC8658004 DOI: 10.3390/ijms222312660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Rhizopus oryzae is a fungus used to ferment tempeh in Indonesia and is generally recognized as safe (GRAS) for human consumption by the USA FDA. We previously assessed the effect of a tempeh extract on cortisol levels in zebrafish but did not include behavioral studies. Here, we measured the GABA content in three strains of Rhizopus oryzae, two isolated by us (MHU 001 and MHU 002) and one purchased. We then investigated the effect of tempeh on cortisol and the gut microbiota in a zebrafish experimental model. GABA concentration was the highest in MHU 002 (9.712 ± 0.404 g kg−1) followed by our MHU 001 strain and the purchased one. The fish were divided into one control group fed a normal diet and three experimental groups fed soybean tempeh fermented with one of the three strains of Rhizopus oryzae. After two weeks, individual fish were subjected to unpredicted chronic stress using the novel tank diving test and the tank light–dark test. Next-generation sequencing was used to analyze gut microbial communities and RT-PCR to analyze the expression of BDNF (brain-derived neurotrophic factor) gene and of other genes involved in serotonin signaling/metabolism in gut and brain. Tempeh-fed zebrafish exhibited increased exploratory behavior (less stress) in both tank tests. They also had significantly reduced gut Proteobacteria (include E. coli) (51.90% vs. 84.97%) and significantly increased gut Actinobacteria (include Bifidobacterium spp.) (1.80% vs. 0.79%). The content of Bifidobacteriumadolescentis, a “psychobiotic”, increased ten-fold from 0.04% to 0.45%. Tempeh also increases BDNF levels in zebrafish brain. Rhizopus oryzae MHU 001 greatly improved the anti-stress effect of tempeh and microbiota composition in zebrafish gut.
Collapse
|
35
|
Lee AQ, Li Y, Gong Z. Inducible Liver Cancer Models in Transgenic Zebrafish to Investigate Cancer Biology. Cancers (Basel) 2021; 13:5148. [PMID: 34680297 PMCID: PMC8533791 DOI: 10.3390/cancers13205148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is one of the most prevalent and deadly cancers, which incidence continues to increase while treatment response remains poor; thus, in-depth understanding of tumour events is necessary to develop more effective therapies. Animal models for liver cancer are powerful tools to reach this goal. Over the past decade, our laboratory has established multiple oncogene transgenic zebrafish lines that can be robustly induced to develop liver cancer. Histological, transcriptomic and molecular analyses validate the use of these transgenic zebrafish as experimental models for liver cancer. In this review, we provide a comprehensive summary of our findings with these inducible zebrafish liver cancer models in tumour initiation, oncogene addiction, tumour microenvironment, gender disparity, cancer cachexia, drug screening and others. Induced oncogene expression causes a rapid change of the tumour microenvironment such as inflammatory responses, increased vascularisation and rapid hepatic growth. In several models, histologically-proven carcinoma can be induced within one week of chemical inducer administration. Interestingly, the induced liver tumours show the ability to regress when the transgenic oncogene is suppressed by the withdrawal of the chemical inducer. Like human liver cancer, there is a strong bias of liver cancer severity in male zebrafish. After long-term tumour progression, liver cancer-bearing zebrafish also show symptoms of cancer cachexia such as muscle-wasting. In addition, the zebrafish models have been used to screen for anti-metastasis drugs as well as to evaluate environmental toxicants in carcinogenesis. These findings demonstrated that these inducible zebrafish liver cancer models provide rapid and convenient experimental tools for further investigation of fundamental cancer biology, with the potential for the discovery of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore; (A.Q.L.); (Y.L.)
| |
Collapse
|
36
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
37
|
Ujibe K, Nishimura K, Kashima M, Hirata H. Direct-TRI: High-throughput RNA-extracting Method for All Stages of Zebrafish Development. Bio Protoc 2021; 11:e4136. [PMID: 34604443 PMCID: PMC8443459 DOI: 10.21769/bioprotoc.4136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 01/05/2023] Open
Abstract
Recent popularization of next-generation sequencing enables conducting easy transcriptome analysis. Nevertheless, substantial RNA isolation work prior to RNA sequencing, as well as the high cost involved, still makes the routine use of large-scale transcriptome analysis difficult. For example, conventional phenol-chloroform RNA extraction cannot be easily applied to hundreds of samples. Therefore, we developed Direct-TRI, a new cost-effective and high throughput RNA-extraction method that uses a commercial guanidine-phenol-based RNA extraction reagent and a 96-well silica column plate. We applied Direct-TRI to zebrafish whole larvae and juvenile samples and obtained comparable RNA qualities by several different homogenization methods such as vortexing, manual homogenizing, and freezing/crushing. Direct-TRI enabled the extraction of 192 RNA samples in an hour with a cost of less than a dollar per sample. Direct-TRI is useful for large-scale transcriptome studies, manipulating hundreds of zebrafish individuals, and may be used with other animal samples.
Collapse
Affiliation(s)
- Kota Ujibe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Kanako Nishimura
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Makoto Kashima
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| |
Collapse
|
38
|
Zebrafish as a preclinical model for Extracellular Vesicle-based therapeutic development. Adv Drug Deliv Rev 2021; 176:113815. [PMID: 34058284 DOI: 10.1016/j.addr.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022]
Abstract
Extracellular Vesicles (EVs) are released during various pathophysiological processes and reflect the state of their cell of origin. Once released, they can propagate through biological fluids, target cells, deliver their content and elicit functional responses. These specific features would allow their harnessing as biomarkers, drug nano-vehicles and therapeutic intrinsic modulators. However, the further development of their potential therapeutic application is hampered by the lack of knowledge about how EVs behave in vivo. Recent advances in the field of imaging EVs in vivo now allow live-tracking of endogenous and exogenous EV in various model organisms at high spatiotemporal resolution to define their distribution, half-life and fate. This review highlights current imaging tools available to image EVs in vivo and how live imaging especially in the zebrafish embryo can bring further insights into the characterization of EVs dynamics, biodistribution and functions to potentiate their development for therapeutic applications.
Collapse
|
39
|
Saleem S, Kannan RR. Zebrafish: A Promising Real-Time Model System for Nanotechnology-Mediated Neurospecific Drug Delivery. NANOSCALE RESEARCH LETTERS 2021; 16:135. [PMID: 34424426 PMCID: PMC8382796 DOI: 10.1186/s11671-021-03592-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Delivering drugs to the brain has always remained a challenge for the research community and physicians. The blood-brain barrier (BBB) acts as a major hurdle for delivering drugs to specific parts of the brain and the central nervous system. It is physiologically comprised of complex network of capillaries to protect the brain from any invasive agents or foreign particles. Therefore, there is an absolute need for understanding of the BBB for successful therapeutic interventions. Recent research indicates the strong emergence of zebrafish as a model for assessing the permeability of the BBB, which is highly conserved in its structure and function between the zebrafish and mammals. The zebrafish model system offers a plethora of advantages including easy maintenance, high fecundity and transparency of embryos and larvae. Therefore, it has the potential to be developed as a model for analysing and elucidating the permeability of BBB to novel permeation technologies with neurospecificity. Nanotechnology has now become a focus area within the industrial and research community for delivering drugs to the brain. Nanoparticles are being developed with increased efficiency and accuracy for overcoming the BBB and delivering neurospecific drugs to the brain. The zebrafish stands as an excellent model system to assess nanoparticle biocompatibility and toxicity. Hence, the zebrafish model is indispensable for the discovery or development of novel technologies for neurospecific drug delivery and potential therapies for brain diseases.
Collapse
Affiliation(s)
- Suraiya Saleem
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India
| | - Rajaretinam Rajesh Kannan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India.
| |
Collapse
|
40
|
Bootorabi F, Saadat F, Falak R, Manouchehri H, Changizi R, Mohammadi H, Safavifar F, Khorramizadeh MR. Gut micobiota alteration by Lactobacillus rhamnosus reduces pro-inflammatory cytokines and glucose level in the adult model of Zebrafish. BMC Res Notes 2021; 14:302. [PMID: 34372916 PMCID: PMC8351095 DOI: 10.1186/s13104-021-05706-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM) is still a challenge for physicians to manage patient’s circumstances. It is assumed that alterations in the normal flora may be involved in the pathogenesis of T2DM through inducing chronic inflammation. To investigate the effect of Lactobacillus rhamnosus as a common probiotic on T2DM, we induced an experimental model of T2DM in adult male Zebrafish by gradient hyper-glucose accumulation methodology. Results In this trial 3-month old male adult Zebrafish were divided in to four groups including two control groups and T2DM induced groups with or without probiotic treatment. After 5 days of acclimation, T2DM was induced by a gradient hyper-glucose accumulation methodology. Diabetic fishes had statistically abnormal blood glucose and pro-inflammatory cytokine levels compared to control group (p = 0.0001). These results suggest that probiotic intervention decreased the blood glucose level in the T2DM-P group by decreasing pro-inflammatory cytokines responsible for signaling in T2DM therapeutic modalities. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05706-5.
Collapse
Affiliation(s)
- Fatemeh Bootorabi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Endocrinology and Metabolism Research Institute (EMRI), Next to Dr. Shariati Hospital,#10 Jalal Al-E-Ahmad Expy, 1411713119, Tehran, Iran
| | - Farshid Saadat
- Department of Immunology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Manouchehri
- Department of Aquaculture, Babol Branch of Islamic Azad University, 47134, Babol, Iran
| | - Reza Changizi
- Department of Aquaculture, Babol Branch of Islamic Azad University, 47134, Babol, Iran
| | - Hasan Mohammadi
- Zebrafish Core Facility, Endocrinology and Metabolism Research Institute (EMRI), Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Safavifar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Endocrinology and Metabolism Research Institute (EMRI), Next to Dr. Shariati Hospital,#10 Jalal Al-E-Ahmad Expy, 1411713119, Tehran, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Quiroz J, Yazdanyar A. Animal models of diabetic retinopathy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1272. [PMID: 34532409 PMCID: PMC8421981 DOI: 10.21037/atm-20-6737] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
The retina is the posterior neuro-integrated layer of the eye that conducts impulses induced by light to the optic nerve for human vision. Diseases of the retina often leads to diminished vision and in some cases blindness. Diabetes mellitus (DM) is a worldwide public health issue and globally, there is an estimated 463 million people that are affected by DM and its consequences. Diabetic retinopathy (DR) is a blinding complication of chronic uncontrolled DM and is the most common cause of blindness in the United States between the ages 24-75. It is estimated that the global prevalence of DR will increase to 191.0 million by 2030, of those 56.3 million possessing vision-threatening diabetic retinopathy (VTDR). For the most part, current treatment modalities control the complications of DR without addressing the underlying pathophysiology of the disease. Therefore, there is an unmet need for new therapeutics that not only repair the damaged retinal tissue, but also reverse the course of DR. The key element in developing these treatments is expanding our basic knowledge by studying DR pathogenesis in animal models of proliferative and non-proliferative DR (PDR and NPDR). There are numerous models available for the research of both PDR and NPDR with substantial overlap. Animal models available include those with genetic backgrounds prone to hyperglycemic states, immunologic etiologies, or environmentally induced disease. In this review we aimed to comprehensively summarize the available animal models for DR while also providing insight to each model's ocular therapeutic potential for drug discovery.
Collapse
Affiliation(s)
- Jose Quiroz
- Medical Scientist Training Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amirfarbod Yazdanyar
- Department of Ophthalmology and Visual Sciences, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
42
|
Kowalewski J, Paris T, Gonzalez C, Lelièvre E, Castaño Valencia L, Boutrois M, Augier C, Lutfalla G, Yatime L. Characterization of a member of the CEACAM protein family as a novel marker of proton pump-rich ionocytes on the zebrafish epidermis. PLoS One 2021; 16:e0254533. [PMID: 34252160 PMCID: PMC8274849 DOI: 10.1371/journal.pone.0254533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
In humans, several members of the CEACAM receptor family have been shown to interact with intestinal pathogens in an inflammatory context. While CEACAMs have long been thought to be only present in mammals, recent studies have identified ceacam genes in other vertebrates, including teleosts. The function of these related genes remains however largely unknown. To gain insight into the function of CEACAM proteins in fish, we undertook the study of a putative member of the family, CEACAMz1, identified in Danio rerio. Sequence analysis of the ceacamz1 gene product predicted a GPI-anchored extracellular protein containing eleven immunoglobulin domains but revealed no evident orthology with human CEACAMs. Using a combination of RT-PCR analyses and in situ hybridization experiments, as well as a fluorescent reporter line, we showed that CEACAMz1 is first expressed in discrete cells on the ventral skin of zebrafish larvae and later on in the developing gills. This distribution remains constant until juvenile stage is reached, at which point CEACAMz1 is almost exclusively expressed in gills. We further observed that at late larval stages, CEACAMz1-expressing cells mostly localize on the afferent side of the branchial filaments and possibly in the inter-lamellar space. Using immunolabelling and 3D-reconstructions, we showed that CEACAMz1 is expressed in cells from the uppermost layer of skin epidermis. These cells are embedded within the keratinocytes pavement and we unambiguously identified them as proton-pump rich ionocytes (HR cells). As the expression of ceacamz1 is turned on concomitantly to that of other known markers of HR cells, we propose that ceacamz1 may serve as a novel marker of mature HR cells from the zebrafish epidermis.
Collapse
Affiliation(s)
- Julien Kowalewski
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Théo Paris
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Catherine Gonzalez
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Lelièvre
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Lina Castaño Valencia
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Morgan Boutrois
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Camille Augier
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Georges Lutfalla
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laure Yatime
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
43
|
Graves CL, Chen A, Kwon V, Shiau CE. Zebrafish harbor diverse intestinal macrophage populations including a subset intimately associated with enteric neural processes. iScience 2021; 24:102496. [PMID: 34142024 PMCID: PMC8185245 DOI: 10.1016/j.isci.2021.102496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal macrophages are essential for gut health but remain understudied outside of human and mouse systems. Here, we establish zebrafish as a powerful model that provides superior imaging capabilities for whole-gut analysis along all dimensions (anterior-posterior and center-outer axes) for dissecting macrophage biology in gastrointestinal health and disease. We utilized high-resolution imaging to show that the zebrafish gut contains bona fide muscularis and mucosal macrophages, as well as surprisingly large subsets intimately associated with enteric neural processes. Interestingly, most muscularis macrophages span multiple gut layers in stark contrast to their mammalian counterparts typically restricted to a single layer. Using macrophage-deficient irf8 zebrafish, we found a depletion of muscularis but not mucosal macrophages, and that they may be dispensable for gross intestinal transit in adults but not during development. These characterizations provide first insights into intestinal macrophages and their association with the enteric nervous system from development to adulthood in teleosts.
Collapse
Affiliation(s)
- Christina L. Graves
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Angela Chen
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Kwon
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celia E. Shiau
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
44
|
Velozo-Sa VS, Oliveira RM, Leite CM, Cominetti MR, Barbosa IM, Silva FL, Martins Feitosa N, Schultz MS, Batista AA. Scavenging capacity and cytotoxicity of new Ru(II)-diphosphine/α-amino acid complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Wang Z, Liu P, Hu M, Lu S, Lyu Z, Kou Y, Sun Y, Zhao X, Liu F, Tian J. Naoxintong restores ischemia injury and inhibits thrombosis via COX2-VEGF/ NFκB signaling. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113809. [PMID: 33444716 DOI: 10.1016/j.jep.2021.113809] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Naoxintong (NXT) is a traditional Chinese medicine preparation that is often used in combination with aspirin in the treatment of cardiovascular diseases (CVD). One of the main symptoms of CVD is hypoxic-ischemia (HI). The purpose of this study is to find out the molecular nodes targeted by NXT and its related molecular pathways in vascular repair. MATERIALS AND METHODS First, human vein umbilical endothelial cells (EA.hy926) were utilized to set up the Oxygen-Glucose Deprivation-Reoxygenation (OGD/R) model and treated with NXT. Cell proliferation, damage and apoptosis were detected by MTT, LDH, and flow cytometry assays. Second, transcriptional responses of OGD/R cells to NXT treatment were investigated. qRT-PCR, western blotting and inhibitor assays were performed. Third, the anti-thrombotic effect of NXT was evaluated by the zebrafish thrombosis model. Morphological observation, histological staining and qRT-PCR assays were implemented on zebrafish model to further observe in vivo the therapeutic effects of NXT on ischemia and thrombosis. RESULTS In OGD/R EA.hy926 cells, NXT treatment could reduce ischemic vascular injury, increase cell viability and decrease the proportion of apoptosis. Through RNA-seq analysis, 183 differentially expressed genes (DEGs) were screened with 110 up-regulated genes and 73 down-regulated genes between OGD/R and OGD/R + NXT treated EA.hy926 cells. VEGF and NFκB pathways were enriched. Among these genes, COX2 was identified as one of important targets via which NXT could restore vascular injury. COX2 inhibitor (NS-398), and aspirin, a drug that prevents the development of CVD by targeting COX2, exhibited similar effects to NXT in the treatment of OGD/R EA.hy926 cells. In zebrafish thrombosis model, NXT could attenuate tail venous thrombus and recover the quantity of heart red blood cells. Furthermore, NXT could prevent the formulation of thrombosis and eliminate inflammation in zebrafish by COX2-VEGF/NFκB signaling. CONCLUSION Our studies implicated that NXT could restore HI injury and inhibit thrombosis through COX2-VEGF/NFκB signaling, which is consistent with the molecular target of aspirin. This finding might explain the principle of NXT combined with aspirin in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Zhihao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Peirong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Mengyan Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Shuxian Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Zhaojie Lyu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Yao Kou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Yuhong Sun
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an, 710075, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Liu
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an, 710075, China; Shaanxi Institute of International Trade & Commence, Xi'an, 712046, China.
| | - Jing Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
46
|
Razali K, Othman N, Mohd Nasir MH, Doolaanea AA, Kumar J, Ibrahim WN, Mohamed Ibrahim N, Mohamed WMY. The Promise of the Zebrafish Model for Parkinson's Disease: Today's Science and Tomorrow's Treatment. Front Genet 2021; 12:655550. [PMID: 33936174 PMCID: PMC8082503 DOI: 10.3389/fgene.2021.655550] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
The second most prevalent neurodegenerative disorder in the elderly is Parkinson's disease (PD). Its etiology is unclear and there are no available disease-modifying medicines. Therefore, more evidence is required concerning its pathogenesis. The use of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is the basis of most animal models of PD. MPTP is metabolized by monoamine oxidase B (MAO B) to MPP + and induces the loss of dopaminergic neurons in the substantia nigra in mammals. Zebrafish have been commonly used in developmental biology as a model organism, but owing to its perfect mix of properties, it is now emerging as a model for human diseases. Zebrafish (Danio rerio) are cheap and easy to sustain, evolve rapidly, breed transparent embryos in large amounts, and are readily manipulated by different methods, particularly genetic ones. Furthermore, zebrafish are vertebrate species and mammalian findings obtained from zebrafish may be more applicable than those derived from genetic models of invertebrates such as Drosophila melanogaster and Caenorhabditis elegans. The resemblance cannot be taken for granted, however. The goal of the present review article is to highlight the promise of zebrafish as a PD animal model. As its aminergic structures, MPTP mode of action, and PINK1 roles mimic those of mammalians, zebrafish seems to be a viable model for studying PD. The roles of zebrafish MAO, however, vary from those of the two types of MAO present in mammals. The benefits unique to zebrafish, such as the ability to perform large-scale genetic or drug screens, should be exploited in future experiments utilizing zebrafish PD models.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Noratikah Othman
- Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Central Research and Animal Facility (CREAM), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | | | - Wael M. Y. Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Menoufia, Egypt
| |
Collapse
|
47
|
Da Silveira Cavalcante L, Tessier SN. Zebrafish as a New Tool in Heart Preservation Research. J Cardiovasc Dev Dis 2021; 8:39. [PMID: 33917701 PMCID: PMC8068018 DOI: 10.3390/jcdd8040039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Heart transplantation became a reality at the end of the 1960s as a life-saving option for patients with end-stage heart failure. Static cold storage (SCS) at 4-6 °C has remained the standard for heart preservation for decades. However, SCS only allows for short-term storage that precludes optimal matching programs, requires emergency surgeries, and results in the unnecessary discard of organs. Among the alternatives seeking to extend ex vivo lifespan and mitigate the shortage of organs are sub-zero or machine perfusion modalities. Sub-zero approaches aim to prolong cold ischemia tolerance by deepening metabolic stasis, while machine perfusion aims to support metabolism through the continuous delivery of oxygen and nutrients. Each of these approaches hold promise; however, complex barriers must be overcome before their potential can be fully realized. We suggest that one barrier facing all experimental efforts to extend ex vivo lifespan are limited research tools. Mammalian models are usually the first choice due to translational aspects, yet experimentation can be restricted by expertise, time, and resources. Instead, there are instances when smaller vertebrate models, like the zebrafish, could fill critical experimental gaps in the field. Taken together, this review provides a summary of the current gold standard for heart preservation as well as new technologies in ex vivo lifespan extension. Furthermore, we describe how existing tools in zebrafish research, including isolated organ, cell specific and functional assays, as well as molecular tools, could complement and elevate heart preservation research.
Collapse
Affiliation(s)
- Luciana Da Silveira Cavalcante
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 2114, USA;
- Shriners Hospitals for Children, Boston, MA 2114, USA
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 2114, USA;
- Shriners Hospitals for Children, Boston, MA 2114, USA
| |
Collapse
|
48
|
Carnovali M, Valli R, Banfi G, Porta G, Mariotti M. Soybean Meal-Dependent Intestinal Inflammation Induces Different Patterns of Bone-Loss in Adult Zebrafish Scale. Biomedicines 2021; 9:biomedicines9040393. [PMID: 33917641 PMCID: PMC8067592 DOI: 10.3390/biomedicines9040393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease have been linked to several health issues, including high risk of low bone mineral density. Danio rerio (zebrafish) is a good model to verify the effects of intestinal inflammation, since its gastrointestinal and immune systems are closely related to that of mammalians. Zebrafish is also a powerful model to study bone metabolism using the scale as the read-out model. Food strongly impacts zebrafish gut physiology, and it is well known that soybean meal induces intestinal inflammation. Adult zebrafish fed with defatted soybean meal (SBM) exhibited an intestinal inflammation evidenced by morphological alterations, inflammatory infiltrate, and increased mRNA expression of inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10, TGFβ, TNF-α). The peak of acute intestinal inflammation, spanning between week 2 and 3, correlates with a transitory osteoporosis-like phenotype in the scale border. Later, a chronic inflammatory condition, associated with persistent IL-8 expression, correlates with the progression of resorption lacunae in the scale center. Both types of resorption lacunae were associated with intense osteoclastic tartrate-resistant acid phosphatase (TRAP) activity. After 3 weeks of SBM treatment, osteoclast activity decreased in the scale border but not in the center. At the same time, alkaline phosphatase (ALP) is activated in the border to repair the bone matrix. This model can contribute to elucidate in vivo the molecular mechanisms that links intestinal inflammation and bone metabolism in IBD.
Collapse
Affiliation(s)
- Marta Carnovali
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.C.); (G.B.)
| | - Roberto Valli
- Centro di Medicina Genomica, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (R.V.); (G.P.)
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.C.); (G.B.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giovanni Porta
- Centro di Medicina Genomica, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (R.V.); (G.P.)
| | - Massimo Mariotti
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.C.); (G.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
49
|
Tan MTH, Li Y, Eshaghi Gorji M, Gong Z, Li D. Fucoidan But Not 2'-Fucosyllactose Inhibits Human Norovirus Replication in Zebrafish Larvae. Viruses 2021; 13:v13030461. [PMID: 33799811 PMCID: PMC8001738 DOI: 10.3390/v13030461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Human noroviruses (hNoVs) cause heavy disease burden worldwide and there is no clinically approved vaccination or antiviral hitherto. In this study, with the use of a zebrafish larva in vivo platform, we investigated the anti-hNoV potentials of fucoidan (from brown algae Fucus vesiculosus) and 2'-Fucosyllactose (2'-FL). As a result, although both fucoidan and 2'-FL were able to block hNoV GII.4 virus-like particle (VLPs) from binding to type A saliva as expected, only fucoidan, but not 2'-FL, was able to inhibit the replication of hNoV GII.P16-GII.4 in zebrafish larvae, indicating the possible needs of higher molecular weights for fucosylated carbohydrates to exert anti-hNoV effect.
Collapse
Affiliation(s)
- Malcolm Turk Hsern Tan
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore 119077, Singapore; (M.T.H.T.); (M.E.G.)
| | - Yan Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 119077, Singapore; (Y.L.); (Z.G.)
| | - Mohamad Eshaghi Gorji
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore 119077, Singapore; (M.T.H.T.); (M.E.G.)
| | - Zhiyuan Gong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 119077, Singapore; (Y.L.); (Z.G.)
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore 119077, Singapore; (M.T.H.T.); (M.E.G.)
- Correspondence:
| |
Collapse
|
50
|
Jonckheere S, Adams J, De Groote D, Campbell K, Berx G, Goossens S. Epithelial-Mesenchymal Transition (EMT) as a Therapeutic Target. Cells Tissues Organs 2021; 211:157-182. [PMID: 33401271 DOI: 10.1159/000512218] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/11/2020] [Indexed: 11/19/2022] Open
Abstract
Metastasis is the spread of cancer cells from the primary tumour to distant sites and organs throughout the body. It is the primary cause of cancer morbidity and mortality, and is estimated to account for 90% of cancer-related deaths. During the initial steps of the metastatic cascade, epithelial cancer cells undergo an epithelial-mesenchymal transition (EMT), and as a result become migratory and invasive mesenchymal-like cells while acquiring cancer stem cell properties and therapy resistance. As EMT is involved in such a broad range of processes associated with malignant transformation, it has become an increasingly interesting target for the development of novel therapeutic strategies. Anti-EMT therapeutic strategies could potentially not only prevent the invasion and dissemination of cancer cells, and as such prevent the formation of metastatic lesions, but also attenuate cancer stemness and increase the effectiveness of more classical chemotherapeutics. In this review, we give an overview about the pros and cons of therapies targeting EMT and discuss some already existing candidate drug targets and high-throughput screening tools to identify novel anti-EMT compounds.
Collapse
Affiliation(s)
- Sven Jonckheere
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jamie Adams
- Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Dominic De Groote
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Kyra Campbell
- Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium, .,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,
| |
Collapse
|