1
|
Paccez JD, Foret CLM, de Vasconcellos JF, Donaldson L, Zerbini LF. DCUN1D1 and neddylation: Potential targets for cancer therapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167308. [PMID: 38885797 DOI: 10.1016/j.bbadis.2024.167308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Cancer affects millions of people and understanding the molecular mechanisms related to disease development and progression is essential to manage the disease. Post-translational modification (PTM) processes such as ubiquitination and neddylation have a significant role in cancer development and progression by regulating protein stability, function, and interaction with other biomolecules. Both ubiquitination and neddylation are analogous processes that involves a series of enzymatic steps leading to the covalent attachment of ubiquitin or NEDD8 to target proteins. Neddylation modifies the CRL family of E3 ligase and regulates target proteins' function and stability. The DCUN1D1 protein is a regulator of protein neddylation and ubiquitination and acts promoting the neddylation of the cullin family components of E3-CRL complexes and is known to be upregulated in several types of cancers. In this review we compare the PTM ubiquitination and neddylation. Our discussion is focused on the neddylation process and the role of DCUN1D1 protein in cancer development. Furthermore, we provide describe DCUN1D1 protein and discuss its role in pathogenesis and signalling pathway in six different types of cancer. Additionally, we explore both the neddylation and DCUN1D1 pathways as potential druggable targets for therapeutic interventions. We focus our analysis on the development of compounds that target specifically neddylation or DCUN1D1. Finally, we provide a critical analysis about the challenges and perspectives in the field of DCUN1D1 and neddylation in cancer research. KEY POINTS: Neddylation is a post-translational modification that regulates target proteins' function and stability. One regulator of the neddylation process is a protein named DCUN1D1 and it is known to have its expression deregulated in several types of cancers. Here, we provide a detailed description of DCUN1D1 structure and its consequence for the development of cancer. We discuss both the neddylation and DCUN1D1 pathways as potential druggable targets for therapeutic interventions and provide a critical analysis about the challenges and perspectives in the field of DCUN1D1 and neddylation in cancer research.
Collapse
Affiliation(s)
- Juliano D Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa.
| | - Chiara L M Foret
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
| | | | - Lara Donaldson
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa.
| |
Collapse
|
2
|
Kamble P, Nagar PR, Bhakhar KA, Garg P, Sobhia ME, Naidu S, Bharatam PV. Cancer pharmacoinformatics: Databases and analytical tools. Funct Integr Genomics 2024; 24:166. [PMID: 39294509 DOI: 10.1007/s10142-024-01445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cancer is a subject of extensive investigation, and the utilization of omics technology has resulted in the generation of substantial volumes of big data in cancer research. Numerous databases are being developed to manage and organize this data effectively. These databases encompass various domains such as genomics, transcriptomics, proteomics, metabolomics, immunology, and drug discovery. The application of computational tools into various core components of pharmaceutical sciences constitutes "Pharmacoinformatics", an emerging paradigm in rational drug discovery. The three major features of pharmacoinformatics include (i) Structure modelling of putative drugs and targets, (ii) Compilation of databases and analysis using statistical approaches, and (iii) Employing artificial intelligence/machine learning algorithms for the discovery of novel therapeutic molecules. The development, updating, and analysis of databases using statistical approaches play a pivotal role in pharmacoinformatics. Multiple software tools are associated with oncoinformatics research. This review catalogs the databases and computational tools related to cancer drug discovery and highlights their potential implications in the pharmacoinformatics of cancer.
Collapse
Affiliation(s)
- Pradnya Kamble
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Prinsa R Nagar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Kaushikkumar A Bhakhar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Srivatsava Naidu
- Center of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
3
|
High-Intensity Focused Ultrasound Decreases Subcutaneous Fat Tissue Thickness by Increasing Apoptosis and Autophagy. Biomolecules 2023; 13:biom13020392. [PMID: 36830763 PMCID: PMC9953651 DOI: 10.3390/biom13020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
High-intensity focused ultrasound (HIFU) leads to decreased subcutaneous adipose tissue (SAT) thickness via heat-induced adipocyte necrosis. Heat can induce adipocyte apoptosis and autophagy, and it is known that nuclear or mitochondrial p53 is involved in apoptosis and autophagy. However, whether HIFU leads to apoptosis or autophagy is unclear. We evaluated whether HIFU decreases SAT thickness via p53-related apoptosis or autophagy in high-fat diet (HFD)-fed animals. The expression of nuclear and mitochondrial p53 was increased by HIFU. HIFU also led to decreased expression of BCL2/BCL-xL (an antiapoptotic signal), increased expression of BAX/BAK (an apoptotic signal), increased levels of cleaved caspase 3/9, and increased numbers of apoptotic cells as evaluated by TUNEL assay. Furthermore, HIFU led to increased levels of ATG5, BECN1, and LC3II/LC3I, and decreased levels of p62, a marker of increased autophagy. The thickness of SAT was decreased by HIFU. In conclusion, HIFU led to nuclear and mitochondrial p53 expression, which led to apoptosis and autophagy, and eventually decreased SAT thickness in HFD-fed animals.
Collapse
|
4
|
Liang D, Yu C, Ma Z, Yang X, Li Z, Dong X, Qin X, Du L, Li M. Identification of anthelmintic parbendazole as a therapeutic molecule for HNSCC through connectivity map-based drug repositioning. Acta Pharm Sin B 2022; 12:2429-2442. [PMID: 35646536 PMCID: PMC9136614 DOI: 10.1016/j.apsb.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common human cancers; however, its outcome of pharmacotherapy is always very limited. Herein, we performed a batch query in the connectivity map (cMap) based on bioinformatics, queried out 35 compounds with therapeutic potential, and screened out parbendazole as a most promising compound, which had an excellent inhibitory effect on the proliferation of HNSCC cell lines. In addition, tubulin was identified as a primary target of parbendazole, and the direct binding between them was further verified. Parbendazole was further proved as an effective tubulin polymerization inhibitor, which can block the cell cycle, cause apoptosis and prevent cell migration, and it exhibited reasonable therapeutic effect and low toxicity in the in vivo and in vitro anti-tumor evaluation. Our study repositioned an anthelmintic parbendazole to treat HNSCC, which revealed a therapeutic utility and provided a new treatment option for human cancers.
Collapse
Affiliation(s)
- Dong Liang
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chen Yu
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhao Ma
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xingye Yang
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhenzhen Li
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xuhui Dong
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaojun Qin
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lupei Du
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Minyong Li
- Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
5
|
Mascia F, Mazo I, Alterovitz WL, Karagiannis K, Wu WW, Shen RF, Beaver JA, Rao VA. In search of autophagy biomarkers in breast cancer: Receptor status and drug agnostic transcriptional changes during autophagy flux in cell lines. PLoS One 2022; 17:e0262134. [PMID: 34990474 PMCID: PMC8735604 DOI: 10.1371/journal.pone.0262134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Autophagy drives drug resistance and drug-induced cancer cell cytotoxicity. Targeting the autophagy process could greatly improve chemotherapy outcomes. The discovery of specific inhibitors or activators has been hindered by challenges with reliably measuring autophagy levels in a clinical setting. We investigated drug-induced autophagy in breast cancer cell lines with differing ER/PR/Her2 receptor status by exposing them to known but divergent autophagy inducers each with a unique molecular target, tamoxifen, trastuzumab, bortezomib or rapamycin. Differential gene expression analysis from total RNA extracted during the earliest sign of autophagy flux showed both cell- and drug-specific changes. We analyzed the list of differentially expressed genes to find a common, cell- and drug-agnostic autophagy signature. Twelve mRNAs were significantly modulated by all the drugs and 11 were orthogonally verified with Q-RT-PCR (Klhl24, Hbp1, Crebrf, Ypel2, Fbxo32, Gdf15, Cdc25a, Ddit4, Psat1, Cd22, Ypel3). The drug agnostic mRNA signature was similarly induced by a mitochondrially targeted agent, MitoQ. In-silico analysis on the KM-plotter cancer database showed that the levels of these mRNAs are detectable in human samples and associated with breast cancer prognosis outcomes of Relapse-Free Survival in all patients (RSF), Overall Survival in all patients (OS), and Relapse-Free Survival in ER+ Patients (RSF ER+). High levels of Klhl24, Hbp1, Crebrf, Ypel2, CD22 and Ypel3 were correlated with better outcomes, whereas lower levels of Gdf15, Cdc25a, Ddit4 and Psat1 were associated with better prognosis in breast cancer patients. This gene signature uncovers candidate autophagy biomarkers that could be tested during preclinical and clinical studies to monitor the autophagy process.
Collapse
Affiliation(s)
- Francesca Mascia
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, CDER, FDA, Silver Spring, Maryland, United States of America
| | - Ilya Mazo
- HIVE Bioinformatics Group, Office of Biostatistics and Epidemiology, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Wei-Lun Alterovitz
- HIVE Bioinformatics Group, Office of Biostatistics and Epidemiology, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Konstantinos Karagiannis
- HIVE Bioinformatics Group, Office of Biostatistics and Epidemiology, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Wells W. Wu
- Facility for Biotechnology Resource CBER, FDA, Silver Spring, Maryland, United States of America
| | - Rong-Fong Shen
- Facility for Biotechnology Resource CBER, FDA, Silver Spring, Maryland, United States of America
| | - Julia A. Beaver
- Oncology Center of Excellence, FDA, Silver Spring, Maryland, United States of America
| | - V. Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, CDER, FDA, Silver Spring, Maryland, United States of America
| |
Collapse
|
6
|
Logli E, Marzuolo E, D'Agostino M, Conti LA, Lena AM, Diociaiuti A, Dellambra E, Has C, Cianfanelli V, Zambruno G, El Hachem M, Magenta A, Candi E, Condorelli AG. Proteasome-mediated degradation of keratins 7, 8, 17 and 18 by mutant KLHL24 in a foetal keratinocyte model: Novel insight in congenital skin defects and fragility of epidermolysis bullosa simplex with cardiomyopathy. Hum Mol Genet 2021; 31:1308-1324. [PMID: 34740256 PMCID: PMC9029237 DOI: 10.1093/hmg/ddab318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Epidermolysis bullosa simplex (EBS) with cardiomyopathy (EBS-KLHL24) is an EBS subtype caused by dominantly inherited, gain-of-function mutations in the gene encoding for the ubiquitin-ligase KLHL24, which addresses specific proteins to proteasomal degradation. EBS-KLHL24 patients are born with extensive denuded skin areas and skin fragility. Whilst skin fragility rapidly ameliorates, atrophy and scarring develop over time, accompanied by life-threatening cardiomyopathy. To date, pathogenetic mechanisms underlying such a unique disease phenotype are not fully characterized. The basal keratin 14 (K14) has been indicated as a KLHL24 substrate in keratinocytes. However, EBS-KLHL24 pathobiology cannot be determined by the mutation-enhanced disruption of K14 alone, as K14 is similarly expressed in foetal and postnatal epidermis and its protein levels are preserved both in vivo and in vitro disease models. In this study, we focused on foetal keratins as additional KLHL24 substrates. We showed that K7, K8, K17 and K18 protein levels are markedly reduced via proteasome degradation in normal foetal keratinocytes transduced with the mutant KLHL24 protein (ΔN28-KLHL24) as compared to control cells expressing the wild-type form. In addition, heat stress led to keratin network defects and decreased resilience in ΔN28-KLHL24 cells. The KLHL24-mediated degradation of foetal keratins could contribute to congenital skin defects in EBS-KLHL24. Furthermore, we observed that primary keratinocytes from EBS-KLHL24 patients undergo accelerated clonal conversion with reduced colony forming efficiency (CFE) and early replicative senescence. Finally, our findings pointed out a reduced CFE in ΔN28-KLHL24-transduced foetal keratinocytes as compared to controls, suggesting that mutant KLHL24 contributes to patients’ keratinocyte clonogenicity impairment.
Collapse
Affiliation(s)
- Elena Logli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Elisa Marzuolo
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Marco D'Agostino
- Laboratory of Experimental Immunology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | | | - Cristina Has
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Valentina Cianfanelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Alessandra Magenta
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
7
|
Logotheti S, Richter C, Murr N, Spitschak A, Marquardt S, Pützer BM. Mechanisms of Functional Pleiotropy of p73 in Cancer and Beyond. Front Cell Dev Biol 2021; 9:737735. [PMID: 34650986 PMCID: PMC8506118 DOI: 10.3389/fcell.2021.737735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
The transcription factor p73 is a structural and functional homolog of TP53, the most famous and frequently mutated tumor-suppressor gene. The TP73 gene can synthesize an overwhelming number of isoforms via splicing events in 5′ and 3′ ends and alternative promoter usage. Although it originally came into the spotlight due to the potential of several of these isoforms to mimic p53 functions, it is now clear that TP73 has its own unique identity as a master regulator of multifaceted processes in embryonic development, tissue homeostasis, and cancer. This remarkable functional pleiotropy is supported by a high degree of mechanistic heterogeneity, which extends far-beyond the typical mode of action by transactivation and largely relies on the ability of p73 isoforms to form protein–protein interactions (PPIs) with a variety of nuclear and cytoplasmic proteins. Importantly, each p73 isoform carries a unique combination of functional domains and residues that facilitates the establishment of PPIs in a highly selective manner. Herein, we summarize the expanding functional repertoire of TP73 in physiological and oncogenic processes. We emphasize how TP73’s ability to control neurodevelopment and neurodifferentiation is co-opted in cancer cells toward neoneurogenesis, an emerging cancer hallmark, whereby tumors promote their own innervation. By further exploring the canonical and non-canonical mechanistic patterns of p73, we apprehend its functional diversity as the result of a sophisticated and coordinated interplay of: (a) the type of p73 isoforms (b) the presence of p73 interaction partners in the cell milieu, and (c) the architecture of target gene promoters. We suppose that dysregulation of one or more of these parameters in tumors may lead to cancer initiation and progression by reactivating p73 isoforms and/or p73-regulated differentiation programs thereof in a spatiotemporally inappropriate manner. A thorough understanding of the mechanisms supporting p73 functional diversity is of paramount importance for the efficient and precise p73 targeting not only in cancer, but also in other pathological conditions where TP73 dysregulation is causally involved.
Collapse
Affiliation(s)
- Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Christin Richter
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Nico Murr
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Stephan Marquardt
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
8
|
Mishra S, Charan M, Verma AK, Ramaswamy B, Ahirwar DK, Ganju RK. Racially Disparate Expression of mTOR/ERK-1/2 Allied Proteins in Cancer. Front Cell Dev Biol 2021; 9:601929. [PMID: 33996789 PMCID: PMC8120233 DOI: 10.3389/fcell.2021.601929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies revealed that ethnic differences in mechanistic target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK-1/2) signaling pathways might be associated with the development and progression of different human malignancies. The African American (AA) population has an increased rate of cancer incidence and mortality compared to the Caucasian American (CA) population. Although the socioeconomic differences across different ethnic groups contribute to the disparity in developing different cancers, recent scientific evidence indicates the association of molecular and genetic variations in racial disparities of different human malignancies. The mTOR and ERK-1/2 signaling pathways are one of the well-known oncogenic signaling mechanisms that regulate diverse molecular and phenotypic aspects of normal as well as cancer cells in response to different external or internal stimuli. To date, very few studies have been carried out to explore the significance of racial disparity with abnormal mTOR and ERK-1/2 kinase signaling pathways, which may contribute to the development of aggressive human cancers. In this review, we discuss the differential regulation of mTOR and ERK-1/2 kinase signaling pathways across different ethnic groups, especially between AA and CA populations. Notably, we observed that key signaling proteins associated with mTOR and ERK-1/2 pathway including transforming growth factor-beta (TGF-β), Akt, and VEGFR showed racially disparate expression in cancer patients. Overall, this review article encompasses the significance of racially disparate signaling molecules related to mTOR/ERK1/2 and their potential in developing tailor-made anti-cancer therapies.
Collapse
Affiliation(s)
- Sanjay Mishra
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Manish Charan
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ajeet Kumar Verma
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | | | - Dinesh Kumar Ahirwar
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ramesh K Ganju
- Department of Pathology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Verma AK, Bharti PS, Rafat S, Bhatt D, Goyal Y, Pandey KK, Ranjan S, Almatroodi SA, Alsahli MA, Rahmani AH, Almatroudi A, Dev K. Autophagy Paradox of Cancer: Role, Regulation, and Duality. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8832541. [PMID: 33628386 PMCID: PMC7892237 DOI: 10.1155/2021/8832541] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Autophagy, a catabolic process, degrades damaged and defective cellular materials through lysosomes, thus working as a recycling mechanism of the cell. It is an evolutionarily conserved and highly regulated process that plays an important role in maintaining cellular homeostasis. Autophagy is constitutively active at the basal level; however, it gets enhanced to meet cellular needs in various stress conditions. The process involves various autophagy-related genes that ultimately lead to the degradation of targeted cytosolic substrates. Many factors modulate both upstream and downstream autophagy pathways like nutritional status, energy level, growth factors, hypoxic conditions, and localization of p53. Any problem in executing autophagy can lead to various pathological conditions including neurodegeneration, aging, and cancer. In cancer, autophagy plays a contradictory role; it inhibits the formation of tumors, whereas, during advanced stages, autophagy promotes tumor progression. Besides, autophagy protects the tumor from various therapies by providing recycled nutrition and energy to the tumor cells. Autophagy is stimulated by tumor suppressor proteins, whereas it gets inhibited by oncogenes. Due to its dynamic and dual role in the pathogenesis of cancer, autophagy provides promising opportunities in developing novel and effective cancer therapies along with managing chemoresistant cancers. In this article, we summarize different strategies that can modulate autophagy in cancer to overcome the major obstacle, i.e., resistance developed in cancer to anticancer therapies.
Collapse
Affiliation(s)
- Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institutes of Medical Sciences, New Delhi, India
| | - Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Deepti Bhatt
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Kamlesh Kumar Pandey
- Department of Anatomy, All India Institutes of Medical Sciences, New Delhi, India
| | - Sanjeev Ranjan
- Institute of Biomedicine, Cell and Tissue Imaging Unit, Finland
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
10
|
Ghatak D, Das Ghosh D, Roychoudhury S. Cancer Stemness: p53 at the Wheel. Front Oncol 2021; 10:604124. [PMID: 33505918 PMCID: PMC7830093 DOI: 10.3389/fonc.2020.604124] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor p53 maintains an equilibrium between self-renewal and differentiation to sustain a limited repertoire of stem cells for proper development and maintenance of tissue homeostasis. Inactivation of p53 disrupts this balance and promotes pluripotency and somatic cell reprogramming. A few reports in recent years have indicated that prevalent TP53 oncogenic gain-of-function (GOF) mutations further boosts the stemness properties of cancer cells. In this review, we discuss the role of wild type p53 in regulating pluripotency of normal stem cells and various mechanisms that control the balance between self-renewal and differentiation in embryonic and adult stem cells. We also highlight how inactivating and GOF mutations in p53 stimulate stemness in cancer cells. Further, we have explored the various mechanisms of mutant p53-driven cancer stemness, particularly emphasizing on the non-coding RNA mediated epigenetic regulation. We have also analyzed the association of cancer stemness with other crucial gain-of-function properties of mutant p53 such as epithelial to mesenchymal transition phenotypes and chemoresistance to understand how activation of one affects the other. Given the critical role of cancer stem-like cells in tumor maintenance, cancer progression, and therapy resistance of mutant p53 tumors, targeting them might improve therapeutic efficacy in human cancers with TP53 mutations.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Damayanti Das Ghosh
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
11
|
Targeting autophagy to overcome drug resistance: further developments. J Hematol Oncol 2020; 13:159. [PMID: 33239065 PMCID: PMC7687716 DOI: 10.1186/s13045-020-01000-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibiting cell survival and inducing cell death are the main approaches of tumor therapy. Autophagy plays an important role on intracellular metabolic homeostasis by eliminating dysfunctional or unnecessary proteins and damaged or aged cellular organelles to recycle their constituent metabolites that enable the maintenance of cell survival and genetic stability and even promotes the drug resistance, which severely limits the efficacy of chemotherapeutic drugs. Currently, targeting autophagy has a seemingly contradictory effect to suppress and promote tumor survival, which makes the effect of targeting autophagy on drug resistance more confusing and fuzzier. In the review, we summarize the regulation of autophagy by emerging ways, the action of targeting autophagy on drug resistance and some of the new therapeutic approaches to treat tumor drug resistance by interfering with autophagy-related pathways. The full-scale understanding of the tumor-associated signaling pathways and physiological functions of autophagy will hopefully open new possibilities for the treatment of tumor drug resistance and the improvement in clinical outcomes.
Collapse
|
12
|
p73: From the p53 shadow to a major pharmacological target in anticancer therapy. Pharmacol Res 2020; 162:105245. [PMID: 33069756 DOI: 10.1016/j.phrs.2020.105245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
p73, along with p53 and p63, belongs to the p53 family of transcription factors. Besides the p53-like tumor suppressive activities, p73 has unique roles, namely in neuronal development and differentiation. In addition, the TP73 gene is rarely mutated in tumors. This makes p73 a highly appealing therapeutic target, particularly towards cancers with a null or disrupted p53 pathway. Distinct isoforms are transcribed from the TP73 locus either with (TAp73) and without (ΔNp73) the N-terminal transactivation domain. Conversely to TA tumor suppressors, ΔN proteins exhibit oncogenic properties by inhibiting p53 and TA protein functions. As such, p73 isoforms compose a puzzled and challenging regulatory pathway. This state-of-the-art review affords an update overview on p73 structure, biological functions and pharmacological regulation. Importantly, it addresses the relevance of p73 isoforms in carcinogenesis, highlighting their potential as drug targets in anticancer therapy. A critical discussion of major pharmacological approaches to promote p73 tumor suppressive activities, with relevant survival outcomes for cancer patients, is also provided.
Collapse
|
13
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
14
|
Wang C, Teo CR, Sabapathy K. p53-Related Transcription Targets of TAp73 in Cancer Cells-Bona Fide or Distorted Reality? Int J Mol Sci 2020; 21:ijms21041346. [PMID: 32079264 PMCID: PMC7072922 DOI: 10.3390/ijms21041346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
Identification of p73 as a structural homolog of p53 fueled early studies aimed at determining if it was capable of performing p53-like functions. This led to a conundrum as p73 was discovered to be hardly mutated in cancers, and yet, TAp73, the full-length form, was found capable of performing p53-like functions, including transactivation of many p53 target genes in cancer cell lines. Generation of mice lacking p73/TAp73 revealed a plethora of developmental defects, with very limited spontaneous tumors arising only at a later stage. Concurrently, novel TAp73 target genes involved in cellular growth promotion that are not regulated by p53 were identified, mooting the possibility that TAp73 may have diametrically opposite functions to p53 in tumorigenesis. We have therefore comprehensively evaluated the TAp73 target genes identified and validated in human cancer cell lines, to examine their contextual relevance. Data from focused studies aimed at appraising if p53 targets are also regulated by TAp73—often by TAp73 overexpression in cell lines with non-functional p53—were affirmative. However, genome-wide and phenotype-based studies led to the identification of TAp73-regulated genes involved in cellular survival and thus, tumor promotion. Our analyses therefore suggest that TAp73 may not necessarily be p53’s natural substitute in enforcing tumor suppression. It has likely evolved to perform unique functions in regulating developmental processes and promoting cellular growth through entirely different sets of target genes that are not common to, and cannot be substituted by p53. The p53-related targets initially reported to be regulated by TAp73 may therefore represent an experimental possibility rather than the reality.
Collapse
Affiliation(s)
- Chao Wang
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore;
| | - Cui Rong Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore;
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore;
- Institute of Molecular and Cell Biology, Biopolis, Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
15
|
Gao Y, Kim S, Lee YI, Lee J. Cellular Stress-Modulating Drugs Can Potentially Be Identified by in Silico Screening with Connectivity Map (CMap). Int J Mol Sci 2019; 20:ijms20225601. [PMID: 31717493 PMCID: PMC6888006 DOI: 10.3390/ijms20225601] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
Accompanied by increased life span, aging-associated diseases, such as metabolic diseases and cancers, have become serious health threats. Recent studies have documented that aging-associated diseases are caused by prolonged cellular stresses such as endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress. Thus, ameliorating cellular stresses could be an effective approach to treat aging-associated diseases and, more importantly, to prevent such diseases from happening. However, cellular stresses and their molecular responses within the cell are typically mediated by a variety of factors encompassing different signaling pathways. Therefore, a target-based drug discovery method currently being used widely (reverse pharmacology) may not be adequate to uncover novel drugs targeting cellular stresses and related diseases. The connectivity map (CMap) is an online pharmacogenomic database cataloging gene expression data from cultured cells treated individually with various chemicals, including a variety of phytochemicals. Moreover, by querying through CMap, researchers may screen registered chemicals in silico and obtain the likelihood of drugs showing a similar gene expression profile with desired and chemopreventive conditions. Thus, CMap is an effective genome-based tool to discover novel chemopreventive drugs.
Collapse
Affiliation(s)
- Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
| | - Sungwoo Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
| | - Yun-Il Lee
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: (Y.-I.L.); (J.L.)
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
- Correspondence: (Y.-I.L.); (J.L.)
| |
Collapse
|
16
|
Sciarretta S, Forte M, Frati G, Sadoshima J. New Insights Into the Role of mTOR Signaling in the Cardiovascular System. Circ Res 2019; 122:489-505. [PMID: 29420210 DOI: 10.1161/circresaha.117.311147] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mTOR (mechanistic target of rapamycin) is a master regulator of several crucial cellular processes, including protein synthesis, cellular growth, proliferation, autophagy, lysosomal function, and cell metabolism. mTOR interacts with specific adaptor proteins to form 2 multiprotein complexes, called mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2). In the cardiovascular system, the mTOR pathway regulates both physiological and pathological processes in the heart. It is needed for embryonic cardiovascular development and for maintaining cardiac homeostasis in postnatal life. Studies involving mTOR loss-of-function models revealed that mTORC1 activation is indispensable for the development of adaptive cardiac hypertrophy in response to mechanical overload. mTORC2 is also required for normal cardiac physiology and ensures cardiomyocyte survival in response to pressure overload. However, partial genetic or pharmacological inhibition of mTORC1 reduces cardiac remodeling and heart failure in response to pressure overload and chronic myocardial infarction. In addition, mTORC1 blockade reduces cardiac derangements induced by genetic and metabolic disorders and has been reported to extend life span in mice. These studies suggest that pharmacological targeting of mTOR may represent a therapeutic strategy to confer cardioprotection, although clinical evidence in support of this notion is still scarce. This review summarizes and discusses the new evidence on the pathophysiological role of mTOR signaling in the cardiovascular system.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- From the Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S.S., G.F.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S., M.F., G.F.); and Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (J.S.)
| | - Maurizio Forte
- From the Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S.S., G.F.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S., M.F., G.F.); and Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (J.S.)
| | - Giacomo Frati
- From the Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S.S., G.F.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S., M.F., G.F.); and Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (J.S.)
| | - Junichi Sadoshima
- From the Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S.S., G.F.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S., M.F., G.F.); and Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (J.S.).
| |
Collapse
|
17
|
Yi Y, Zhang W, Yi J, Xiao ZX. Role of p53 Family Proteins in Metformin Anti-Cancer Activities. J Cancer 2019; 10:2434-2442. [PMID: 31258748 PMCID: PMC6584340 DOI: 10.7150/jca.30659] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used as therapy for type 2 diabetes for many years. Clinical and basic evidence as indicated that metformin has anti-cancer activities. It has been well-established that metformin activates AMP-activated protein kinase (AMPK), which in turn regulates energy homeostasis. However, the mechanistic aspects of metformin anti-cancer activity remain elusive. p53 family proteins, including p53, p63 and p73, have diverse biological functions, including regulation of cell growth, survival, development, senescence and aging. In this review, we highlight the evidence and mechanisms by which metformin inhibits cancer cell survival and tumor growth. We also aimed to discuss the role of p53 family proteins in metformin-mediated suppression of cancer growth and survival.
Collapse
|
18
|
Liu D, Xu L, Zhang X, Shi C, Qiao S, Ma Z, Yuan J. Snapshot: Implications for mTOR in Aging-related Ischemia/Reperfusion Injury. Aging Dis 2019; 10:116-133. [PMID: 30705773 PMCID: PMC6345330 DOI: 10.14336/ad.2018.0501] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/01/2018] [Indexed: 12/15/2022] Open
Abstract
Aging may aggravate the damage and dysfunction of different components of multiorgan and thus increasing multiorgan ischemia/reperfusion (IR) injury. IR injury occurs in many organs and tissues, which is a major cause of morbidity and mortality worldwide. The kinase mammalian target of rapamycin (mTOR), an atypical serine/threonine protein kinase, involves in the pathophysiological process of IR injury. In this review, we first briefly introduce the molecular features of mTOR, the association between mTOR and aging, and especially its role on autophagy. Special focus is placed on the roles of mTOR during ischemic and IR injury. We then clarify the association between mTOR and conditioning phenomena. Following this background, we expand our discussion to potential future directions of research in this area. Collectively, information reviewed herein will serve as a comprehensive reference for the actions of mTOR in IR injury and may be significant for the design of future research and increase the potential of mTOR as a therapeutic target.
Collapse
Affiliation(s)
- Dong Liu
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Liqun Xu
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.,2Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China.,3Cadet group 3, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an 710032, China.,4Laboratory Animal Center, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoyan Zhang
- 2Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China.,3Cadet group 3, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an 710032, China
| | - Changhong Shi
- 4Laboratory Animal Center, The Fourth Military Medical University, Xi'an 710032, China
| | - Shubin Qiao
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zhiqiang Ma
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.,2Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Jiansong Yuan
- 1State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
19
|
Krivtsova O, Makarova A, Lazarevich N. Aberrant expression of alternative isoforms of transcription factors in hepatocellular carcinoma. World J Hepatol 2018; 10:645-661. [PMID: 30386458 PMCID: PMC6206146 DOI: 10.4254/wjh.v10.i10.645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and the second leading cause of death among all cancer types. Deregulation of the networks of tissue-specific transcription factors (TFs) observed in HCC leads to profound changes in the hepatic transcriptional program that facilitates tumor progression. In addition, recent reports suggest that substantial aberrations in the production of TF isoforms occur in HCC. In vitro experiments have identified distinct isoform-specific regulatory functions and related biological effects of liver-specific TFs that are implicated in carcinogenesis, which may be relevant for tumor progression and clinical outcome. This study reviews available data on the expression of isoforms of liver-specific and ubiquitous TFs in the liver and HCC and their effects, including HNF4α, C/EBPs, p73 and TCF7L2, and indicates that assessment of the ratio of isoforms and targeting specific TF variants may be beneficial for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Olga Krivtsova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| | - Anna Makarova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
| | - Natalia Lazarevich
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| |
Collapse
|
20
|
Santos Guasch GL, Beeler JS, Marshall CB, Shaver TM, Sheng Q, Johnson KN, Boyd KL, Venters BJ, Cook RS, Pietenpol JA. p73 Is Required for Ovarian Follicle Development and Regulates a Gene Network Involved in Cell-to-Cell Adhesion. iScience 2018; 8:236-249. [PMID: 30340069 PMCID: PMC6197761 DOI: 10.1016/j.isci.2018.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/23/2018] [Accepted: 09/19/2018] [Indexed: 01/21/2023] Open
Abstract
We report that p73 is expressed in ovarian granulosa cells and that loss of p73 leads to attenuated follicle development, ovulation, and corpus luteum formation, resulting in decreased levels of circulating progesterone and defects in mammary gland branching. Ectopic progesterone in p73-deficient mice completely rescued the mammary branching and partially rescued the ovarian follicle development defects. Performing RNA sequencing (RNA-seq) on transcripts from murine wild-type and p73-deficient antral follicles, we discovered differentially expressed genes that regulate biological adhesion programs. Through modulation of p73 expression in murine granulosa cells and transformed cell lines, followed by RNA-seq and chromatin immunoprecipitation sequencing, we discovered p73-dependent regulation of a gene set necessary for cell adhesion and migration and components of the focimatrix (focal intra-epithelial matrix), a basal lamina between granulosa cells that promotes follicle maturation. In summary, p73 is essential for ovarian folliculogenesis and functions as a key regulator of a gene network involved in cell-to-cell adhesion and migration.
p73 is required for murine ovarian folliculogenesis and proper corpus luteum formation p73 loss leads to defects in progesterone signaling and mammary gland branching In murine ovaries, p73 is expressed specifically in granulosa cells p73 regulates components of the granulosa cell focimatrix and migration
Collapse
Affiliation(s)
| | - J Scott Beeler
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Clayton B Marshall
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Timothy M Shaver
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Quanhu Sheng
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Deparment of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kimberly N Johnson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelli L Boyd
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bryan J Venters
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca S Cook
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer A Pietenpol
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
21
|
Mrakovcic M, Fröhlich LF. p53-Mediated Molecular Control of Autophagy in Tumor Cells. Biomolecules 2018; 8:E14. [PMID: 29561758 PMCID: PMC6022997 DOI: 10.3390/biom8020014] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an indispensable mechanism of the eukaryotic cell, facilitating the removal and renewal of cellular components and thereby balancing the cell's energy consumption and homeostasis. Deregulation of autophagy is now regarded as one of the characteristic key features contributing to the development of tumors. In recent years, the suppression of autophagy in combination with chemotherapeutic treatment has been approached as a novel therapy in cancer treatment. However, depending on the type of cancer and context, interference with the autophagic machinery can either promote or disrupt tumorigenesis. Therefore, disclosure of the major signaling pathways that regulate autophagy and control tumorigenesis is crucial. To date, several tumor suppressor proteins and oncogenes have emerged as eminent regulators of autophagy whose depletion or mutation favor tumor formation. The mammalian cell "janitor" p53 belongs to one of these tumor suppressors that are most commonly mutated in human tumors. Experimental evidence over the last decade convincingly reports that p53 can act as either an activator or an inhibitor of autophagy depending on its subcellular localization and its mode of action. This finding gains particular significance as p53 deficiency or mutant variants of p53 that accumulate in the cytoplasm of tumor cells enable activation of autophagy. Accordingly, we recently identified p53 as a molecular hub that regulates autophagy and apoptosis in histone deacetylase inhibitor-treated uterine sarcoma cells. In light of this novel experimental evidence, in this review, we focus on p53 signaling as a mediator of the autophagic pathway in tumor cells.
Collapse
Affiliation(s)
- Maria Mrakovcic
- AG VABOS, Department of Cranio-Maxillofacial Surgery, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.
| | - Leopold F Fröhlich
- AG VABOS, Department of Cranio-Maxillofacial Surgery, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.
| |
Collapse
|
22
|
Abstract
Osteosarcoma(OS) remains a major health concern in childhood and adolescence, although cisplatin is one of the gold standard chemotherapeutic drugs in the treatment of OS, chemoresistant to cisplatin is common. Phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin inhibitor (mTOR) pathway and autophagy regulates chemosensitivity incancer cells. In this study, we hypothesized that NVP-BEZ235, a dual inhibitor of PI3K/mTOR, could synergize cisplatin sensitivity in OS. In vitro, NVP-BEZ235 plus cisplatinexerted a synergistic effect on cell proliferation inhibition and apoptosis induction. Cisplatin could activate PI3K-Akt-mTOR pathway activity in early times, whereas, NVP-BEZ235 could inhibit PI3K-Akt -mTOR pathway activity all the times alone or combined with cisplatin. What's more, NVP-BEZ235 could switch function of autophagy induced by cisplatin to synergize cisplatin sensitivity. In vivo, pronounced decrease in tumor cell proliferation and increase in apoptosisin combination-treated mouse xenograft models compared with cisplatin or NVP-BEZ235 treated models. All these results suggest NVP-BEZ235 could synergize cisplatin sensitivity in OS, combination of NVP-BEZ235 with cisplatin could represent a novel therapeutic strategy for treatment of OS.
Collapse
|
23
|
A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 2017; 171:1437-1452.e17. [PMID: 29195078 DOI: 10.1016/j.cell.2017.10.049] [Citation(s) in RCA: 2032] [Impact Index Per Article: 254.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/25/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022]
Abstract
We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs, and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.
Collapse
|
24
|
Histone Deacetylase Inhibitor-Induced Autophagy in Tumor Cells: Implications for p53. Int J Mol Sci 2017; 18:ijms18091883. [PMID: 30563957 PMCID: PMC5618532 DOI: 10.3390/ijms18091883] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an essential process of the eukaryotic cell allowing degradation and recycling of dysfunctional cellular components in response to either physiological or pathological changes. Inhibition of autophagy in combination with chemotherapeutic treatment has emerged as a novel approach in cancer treatment leading to cell cycle arrest, differentiation, and apoptosis. Suberoyl hydroxamic acid (SAHA) is a broad-spectrum histone deacetylase inhibitor (HDACi) suppressing family members in multiple HDAC classes. Increasing evidence indicates that SAHA and other HDACi can, in addition to mitochondria-mediated apoptosis, also promote caspase-independent autophagy. SAHA-induced mTOR inactivation as a major regulator of autophagy activating the remaining autophagic core machinery is by far the most reported pathway in several tumor models. However, the question of which upstream mechanisms regulate SAHA-induced mTOR inactivation that consequently initiate autophagy has been mainly left unexplored. To elucidate this issue, we recently initiated a study clarifying different modes of SAHA-induced cell death in two human uterine sarcoma cell lines which led to the conclusion that the tumor suppressor protein p53 could act as a molecular switch between SAHA-triggered autophagic or apoptotic cell death. In this review, we present current research evidence about HDACi-mediated apoptotic and autophagic pathways, in particular with regard to p53 and its therapeutic implications.
Collapse
|
25
|
Füllgrabe J, Ghislat G, Cho DH, Rubinsztein DC. Transcriptional regulation of mammalian autophagy at a glance. J Cell Sci 2017; 129:3059-66. [PMID: 27528206 DOI: 10.1242/jcs.188920] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy, hereafter referred to as autophagy, is a catabolic process that results in the lysosomal degradation of cytoplasmic contents ranging from abnormal proteins to damaged cell organelles. It is activated under diverse conditions, including nutrient deprivation and hypoxia. During autophagy, members of the core autophagy-related (ATG) family of proteins mediate membrane rearrangements, which lead to the engulfment and degradation of cytoplasmic cargo. Recently, the nuclear regulation of autophagy, especially by transcription factors and histone modifiers, has gained increased attention. These factors are not only involved in rapid responses to autophagic stimuli, but also regulate the long-term outcome of autophagy. Now there are more than 20 transcription factors that have been shown to be linked to the autophagic process. However, their interplay and timing appear enigmatic as several have been individually shown to act as major regulators of autophagy. This Cell Science at a Glance article and the accompanying poster highlights the main cellular regulators of transcription involved in mammalian autophagy and their target genes.
Collapse
Affiliation(s)
- Jens Füllgrabe
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Ghita Ghislat
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Dong-Hyung Cho
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, South Korea
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
26
|
Zhang H, Wang H, Zeng C, Yan B, Ouyang J, Liu X, Sun Q, Zhao C, Fang H, Pan J, Xie D, Yang J, Zhang T, Bai X, Cai D. mTORC1 activation downregulates FGFR3 and PTH/PTHrP receptor in articular chondrocytes to initiate osteoarthritis. Osteoarthritis Cartilage 2017; 25:952-963. [PMID: 28043938 DOI: 10.1016/j.joca.2016.12.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/09/2016] [Accepted: 12/21/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Articular chondrocyte activation, involving aberrant proliferation and prehypertrophic differentiation, is essential for osteoarthritis (OA) initiation and progression. Disruption of mechanistic target of rapamycin complex 1 (mTORC1) promotes chondrocyte autophagy and survival, and decreases the severity of experimental OA. However, the role of cartilage mTORC1 activation in OA initiation is unknown. In this study, we elucidated the specific role of mTORC1 activation in OA initiation, and identify the underlying mechanisms. METHOD Expression of mTORC1 in articular cartilage of OA patients and OA mice was assessed by immunostaining. Cartilage-specific tuberous sclerosis complex 1 (Tsc1, mTORC1 upstream inhibitor) knockout (TSC1CKO) and inducible Tsc1 KO (TSC1CKOER) mice were generated. The functional effects of mTORC1 in OA initiation and development on its downstream targets were examined by immunostaining, western blotting and qPCR. RESULTS Articular chondrocyte mTORC1 was activated in early-stage OA and in aged mice. TSC1CKO mice exhibited spontaneous OA, and TSC1CKOER mice (from 2 months) exhibited accelerated age-related and DMM-induced OA phenotypes, with aberrant chondrocyte proliferation and hypertrophic differentiation. This was associated with hyperactivation of mTORC1 and dramatic downregulation of FGFR3 and PPR, two receptors critical for preventing chondrocyte proliferation and differentiation. Rapamycin treatment reversed these phenotypes in KO mice. Furthermore, in vitro rescue experiments demonstrated that p73 and ERK1/2 may mediate the negative regulation of FGFR3 and PPR by mTORC1. CONCLUSION mTORC1 activation stimulates articular chondrocyte proliferation and differentiation to initiate OA, in part by downregulating FGFR3 and PPR.
Collapse
Affiliation(s)
- H Zhang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - H Wang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Medical College, Haikou, China.
| | - C Zeng
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - B Yan
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - J Ouyang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - X Liu
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Q Sun
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - C Zhao
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - H Fang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - J Pan
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - D Xie
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - J Yang
- Academy of Orthopedics, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China.
| | - T Zhang
- Academy of Orthopedics, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China.
| | - X Bai
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - D Cai
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Cadherins Associate with Distinct Stem Cell-Related Transcription Factors to Coordinate the Maintenance of Stemness in Triple-Negative Breast Cancer. Stem Cells Int 2017; 2017:5091541. [PMID: 28392805 PMCID: PMC5368378 DOI: 10.1155/2017/5091541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with poor prognosis and is enriched in cancer stem cells (CSCs). However, it is not completely understood how the CSCs were maintained in TNBC. In this study, by analyzing The Cancer Genome Atlas (TCGA) provisional datasets and several small-size breast datasets, we found that cadherins (CDHs) 2, 4, 6, and 17 were frequently amplified/overexpressed in 47% of TNBC while E-cadherin (CDH1) was downregulated/mutated at 10%. The alterations of CDH2/4/6/17 were strongly associated with the elevated levels of several stem cell-related transcription factors (SC-TFs) including FOXM1, MCM2, WWTR1, SNAI1, and SOX9. CDH2/4/6/17-enriched genes including FOXM1 and MCM2 were also clustered and regulated by NFY (nuclear transcription factor Y) and/or EVI1/MECOM. Meanwhile, these SC-TFs including NFYA were upregulated in TNBC cells, but they were downregulated in luminal type of cells. Furthermore, small compounds might be predicted via the Connectivity Map analysis to target TNBC with the alterations of CDH2/4/6/17 and SC-TFs. Together with the important role of these SC-TFs in the stem cell regulation, our data provide novel insights into the maintenance of CSCs in TNBC and the discovery of these SC-TFs associated with the alterations of CDH2/4/6/17 has an implication in targeted therapy of TNBC.
Collapse
|
28
|
Jovanović B, Mayer IA, Mayer EL, Abramson VG, Bardia A, Sanders ME, Kuba MG, Estrada MV, Beeler JS, Shaver TM, Johnson KC, Sanchez V, Rosenbluth JM, Dillon PM, Forero-Torres A, Chang JC, Meszoely IM, Grau AM, Lehmann BD, Shyr Y, Sheng Q, Chen SC, Arteaga CL, Pietenpol JA. A Randomized Phase II Neoadjuvant Study of Cisplatin, Paclitaxel With or Without Everolimus in Patients with Stage II/III Triple-Negative Breast Cancer (TNBC): Responses and Long-term Outcome Correlated with Increased Frequency of DNA Damage Response Gene Mutations, TNBC Subtype, AR Status, and Ki67. Clin Cancer Res 2017; 23:4035-4045. [PMID: 28270498 DOI: 10.1158/1078-0432.ccr-16-3055] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/17/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022]
Abstract
Purpose: Because of inherent disease heterogeneity, targeted therapies have eluded triple-negative breast cancer (TNBC), and biomarkers predictive of treatment response have not yet been identified. This study was designed to determine whether the mTOR inhibitor everolimus with cisplatin and paclitaxel would provide synergistic antitumor effects in TNBC.Methods: Patients with stage II/III TNBC were enrolled in a randomized phase II trial of preoperative weekly cisplatin, paclitaxel and daily everolimus or placebo for 12 weeks, until definitive surgery. Tumor specimens were obtained at baseline, cycle 1, and surgery. Primary endpoint was pathologic complete response (pCR); secondary endpoints included clinical responses, breast conservation rate, safety, and discovery of molecular features associated with outcome.Results: Between 2009 and 2013, 145 patients were accrued; 36% of patients in the everolimus arm and 49% of patients in the placebo arm achieved pCR; in each arm, 50% of patients achieved complete responses by imaging. Higher rates of neutropenia, mucositis, and transaminase elevation were seen with everolimus. Clinical response to therapy and long-term outcome correlated with increased frequency of DNA damage response (DDR) gene mutations, Basal-like1 and Mesenchymal TNBC-subtypes, AR-negative status, and high Ki67, but not with tumor-infiltrating lymphocytes.Conclusions: The paclitaxel/cisplatin combination was well tolerated and active, but addition of everolimus was associated with more adverse events without improvement in pCR or clinical response. However, discoveries made from correlative studies could lead to predictive TNBC biomarkers that may impact clinical decision-making and provide new avenues for mechanistic exploration that could lead to clinical utility. Clin Cancer Res; 23(15); 4035-45. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | - Patrick M Dillon
- University of Virginia Health Sciences Center, Charlottesville, Virginia
| | | | - Jenny C Chang
- Methodist Hospital Research Institute, Houston, Texas
| | | | - Ana M Grau
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | | | - Yu Shyr
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Quanhu Sheng
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | | | | | | |
Collapse
|
29
|
Nakamura M, Nishikawa J, Saito M, Sakai K, Sasaki S, Hashimoto S, Okamoto T, Suehiro Y, Yamasaki T, Sakaida I. Decitabine inhibits tumor cell proliferation and up-regulates e-cadherin expression in Epstein-Barr virus-associated gastric cancer. J Med Virol 2016; 89:508-517. [PMID: 27430892 DOI: 10.1002/jmv.24634] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 01/08/2023]
Abstract
The present study investigated the effect of a DNA demethylating agent, decitabine, against Epstein-Barr virus-associated gastric cancer (EBVaGC). Decitabine inhibited cell growth and induced G2/M arrest and apoptosis in EBVaGC cell lines. The expression of E-cadherin was up-regulated and cell motility was significantly inhibited in the cells treated with decitabine. The promoter regions of p73 and RUNX3 were demethylated, and their expression was up-regulated by decitabine. They enhanced the transcription of p21, which induced G2/M arrest and apoptosis through down-regulation of c-Myc. Decitabine also induced the expression of BZLF1 in SNU719. Induction of EBV lytic infection was an alternative way to cause apoptosis of the host cells. This study is the first report to reveal the effectiveness of a demethylating agent in inhibiting tumor cell proliferation and up-regulation of E-cadherin in EBVaGC. J. Med. Virol. 89:508-517, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Munetaka Nakamura
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Jun Nishikawa
- Department of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Mari Saito
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kouhei Sakai
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Sho Sasaki
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shinichi Hashimoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takeshi Okamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
30
|
Lin Z, Li S, Feng C, Yang S, Wang H, Ma D, Zhang J, Gou M, Bu D, Zhang T, Kong X, Wang X, Sarig O, Ren Y, Dai L, Liu H, Zhang J, Li F, Hu Y, Padalon-Brauch G, Vodo D, Zhou F, Chen T, Deng H, Sprecher E, Yang Y, Tan X. Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility. Nat Genet 2016; 48:1508-1516. [DOI: 10.1038/ng.3701] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/26/2016] [Indexed: 12/30/2022]
|
31
|
Kresty LA, Weh KM, Zeyzus-Johns B, Perez LN, Howell AB. Cranberry proanthocyanidins inhibit esophageal adenocarcinoma in vitro and in vivo through pleiotropic cell death induction and PI3K/AKT/mTOR inactivation. Oncotarget 2016; 6:33438-55. [PMID: 26378019 PMCID: PMC4741777 DOI: 10.18632/oncotarget.5586] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022] Open
Abstract
Cranberries are rich in bioactive constituents known to improve urinary tract health and more recent evidence supports cranberries possess cancer inhibitory properties. However, mechanisms of cancer inhibition by cranberries remain to be elucidated, particularly in vivo. Properties of a purified cranberry-derived proanthocyanidin extract (C-PAC) were investigated utilizing acid-sensitive and acid-resistant human esophageal adenocarcinoma (EAC) cell lines and esophageal tumor xenografts in athymic NU/NU mice. C-PAC induced caspase-independent cell death mainly via autophagy and low levels of apoptosis in acid-sensitive JHAD1 and OE33 cells, but resulted in cellular necrosis in acid-resistant OE19 cells. Similarly, C-PAC induced necrosis in JHAD1 cells pushed to acid-resistance via repeated exposures to an acidified bile cocktail. C-PAC associated cell death involved PI3K/AKT/mTOR inactivation, pro-apoptotic protein induction (BAX, BAK1, deamidated BCL-xL, Cytochrome C, PARP), modulation of MAPKs (P-P38/P-JNK) and G2-M cell cycle arrest in vitro. Importantly, oral delivery of C-PAC significantly inhibited OE19 tumor xenograft growth via modulation of AKT/mTOR/MAPK signaling and induction of the autophagic form of LC3B supporting in vivo efficacy against EAC for the first time. C-PAC is a potent inducer of EAC cell death and is efficacious in vivo at non-toxic behaviorally achievable concentrations, holding promise for preventive or therapeutic interventions in cohorts at increased risk for EAC, a rapidly rising and extremely deadly malignancy.
Collapse
Affiliation(s)
- Laura A Kresty
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Katherine M Weh
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Bree Zeyzus-Johns
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Laura N Perez
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amy B Howell
- Marucci Center for Blueberry and Cranberry Research, Rutgers University, Chatsworth, New Jersey, USA
| |
Collapse
|
32
|
Marshall CB, Mays DJ, Beeler JS, Rosenbluth JM, Boyd KL, Santos Guasch GL, Shaver TM, Tang LJ, Liu Q, Shyr Y, Venters BJ, Magnuson MA, Pietenpol JA. p73 Is Required for Multiciliogenesis and Regulates the Foxj1-Associated Gene Network. Cell Rep 2016; 14:2289-300. [PMID: 26947080 DOI: 10.1016/j.celrep.2016.02.035] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 12/11/2022] Open
Abstract
We report that p73 is expressed in multiciliated cells (MCCs), is required for MCC differentiation, and directly regulates transcriptional modulators of multiciliogenesis. Loss of ciliary biogenesis provides a unifying mechanism for many phenotypes observed in p73 knockout mice including hydrocephalus; hippocampal dysgenesis; sterility; and chronic inflammation/infection of lung, middle ear, and sinus. Through p73 and p63 ChIP-seq using murine tracheal cells, we identified over 100 putative p73 target genes that regulate MCC differentiation and homeostasis. We validated Foxj1, a transcriptional regulator of multiciliogenesis, and many other cilia-associated genes as direct target genes of p73 and p63. We show p73 and p63 are co-expressed in a subset of basal cells and suggest that p73 marks these cells for MCC differentiation. In summary, p73 is essential for MCC differentiation, functions as a critical regulator of a transcriptome required for MCC differentiation, and, like p63, has an essential role in development of tissues.
Collapse
Affiliation(s)
- Clayton B Marshall
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Deborah J Mays
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - J Scott Beeler
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer M Rosenbluth
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Timothy M Shaver
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Lucy J Tang
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Yu Shyr
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA; Center for Quantitative Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Bryan J Venters
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A Magnuson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer A Pietenpol
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
33
|
Fatt M, Hsu K, He L, Wondisford F, Miller FD, Kaplan DR, Wang J. Metformin Acts on Two Different Molecular Pathways to Enhance Adult Neural Precursor Proliferation/Self-Renewal and Differentiation. Stem Cell Reports 2015; 5:988-995. [PMID: 26677765 PMCID: PMC4682208 DOI: 10.1016/j.stemcr.2015.10.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022] Open
Abstract
The recruitment of endogenous adult neural stem cells for brain repair is a promising regenerative therapeutic strategy. This strategy involves stimulation of multiple stages of adult neural stem cell development, including proliferation, self-renewal, and differentiation. Currently, there is a lack of a single therapeutic approach that can act on these multiple stages of adult neural stem cell development to enhance neural regeneration. Here we show that metformin, an FDA-approved diabetes drug, promotes proliferation, self-renewal, and differentiation of adult neural precursors (NPCs). Specifically, we show that metformin enhances adult NPC proliferation and self-renewal dependent upon the p53 family member and transcription factor TAp73, while it promotes neuronal differentiation of these cells by activating the AMPK-aPKC-CBP pathway. Thus, metformin represents an optimal candidate neuro-regenerative agent that is capable of not only expanding the adult NPC population but also subsequently driving them toward neuronal differentiation by activating two distinct molecular pathways.
Collapse
Affiliation(s)
- Michael Fatt
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Karolynn Hsu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | - Fredric Wondisford
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
34
|
p53-mediated autophagic regulation: A prospective strategy for cancer therapy. Cancer Lett 2015; 363:101-7. [PMID: 25896632 DOI: 10.1016/j.canlet.2015.04.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/25/2022]
Abstract
Autophagy is a major catabolic process that degrades and recycles cytosolic components in autophagosomes, which fuse with lysosomes. This process enables starving cells to sustain their energy requirements and metabolic states, thus facilitating their survival, especially in cancer pathogenesis. The regulation of autophagy is quite intricate. It involves a series of signaling cascades including p53, known as the best-characterized tumor suppressor protein. Recent reports have indicated that p53 plays dual roles in regulating autophagy depending on its subcellular localization. Nuclear p53 facilitates autophagy by transactivating its target genes, whereas cytoplasmic p53 mainly inhibits autophagy through extranuclear, transcription-independent mechanisms. The relationship between autophagy and neoplasia is complicated. It may be intrinsically associated with the functional status of p53, but this is not clearly elucidated. This review focuses on the role of p53 as a master regulator of autophagy. We conclude that the contextual role of autophagy in cancer, which could be switched by p53 status, is expected to be developed into a new anticancer therapeutic approach.
Collapse
|
35
|
Hypoxia-inducible TAp73 supports tumorigenesis by regulating the angiogenic transcriptome. Nat Cell Biol 2015; 17:511-23. [PMID: 25774835 DOI: 10.1038/ncb3130] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/06/2015] [Indexed: 12/20/2022]
Abstract
The functional significance of the overexpression of unmutated TAp73, a homologue of the tumour suppressor p53, in multiple human cancers is unclear, but raises the possibility of unidentified roles in promoting tumorigenesis. We show here that TAp73 is stabilized by hypoxia, a condition highly prevalent in tumours, through HIF-1α-mediated repression of the ubiquitin ligase Siah1, which targets TAp73 for degradation. Consequently, TAp73-deficient tumours are less vascular and reduced in size, and conversely, TAp73 overexpression leads to increased vasculature. Moreover, we show that TAp73 is a critical regulator of the angiogenic transcriptome and is sufficient to directly activate the expression of several angiogenic genes. Finally, expression of TAp73 positively correlates with these angiogenic genes in several human tumours, and the angiogenic gene signature is sufficient to segregate the TAp73(Hi)- from TAp73(Low)-expressing tumours. These data demonstrate a pro-angiogenic role for TAp73 in supporting tumorigenesis, providing a rationale for its overexpression in cancers.
Collapse
|
36
|
Chen-Scarabelli C, Agrawal PR, Saravolatz L, Abuniat C, Scarabelli G, Stephanou A, Loomba L, Narula J, Scarabelli TM, Knight R. The role and modulation of autophagy in experimental models of myocardial ischemia-reperfusion injury. J Geriatr Cardiol 2014; 11:338-48. [PMID: 25593583 PMCID: PMC4294150 DOI: 10.11909/j.issn.1671-5411.2014.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 11/21/2022] Open
Abstract
A physiological sequence called autophagy qualitatively determines cellular viability by removing protein aggregates and damaged cytoplasmic constituents, and contributes significantly to the degree of myocardial ischemia-reperfusion (I/R) injury. This tightly orchestrated catabolic cellular 'housekeeping' process provides cells with a new source of energy to adapt to stressful conditions. This process was first described as a pro-survival mechanism, but increasing evidence suggests that it can also lead to the demise of the cell. Autophagy has been implicated in the pathogenesis of multiple cardiac conditions including myocardial I/R injury. However, a debate persists as to whether autophagy acts as a protective mechanism or contributes to the injurious effects of I/R injury in the heart. This controversy may stem from several factors including the variability in the experimental models and species, and the methodology used to assess autophagy. This review provides updated knowledge on the modulation and role of autophagy in isolated cardiac cells subjected to I/R, and the growing interest towards manipulating autophagy to increase the survival of cardiac myocytes under conditions of stress-most notably being I/R injury. Perturbation of this evolutionarily conserved intracellular cleansing autophagy mechanism, by targeted modulation through, among others, mammalian target of rapamycin (mTOR) inhibitors, adenosine monophosphate-activated protein kinase (AMPK) modulators, calcium lowering agents, resveratrol, longevinex, sirtuin activators, the proapoptotic gene Bnip3, IP3 and lysosome inhibitors, may confer resistance to heart cells against I/R induced cell death. Thus, therapeutic manipulation of autophagy in the challenged myocardium may benefit post-infarction cardiac healing and remodeling.
Collapse
Affiliation(s)
- Carol Chen-Scarabelli
- VA Ann Arbor Health Care System, University of Michigan, 2215 Fuller Rd, Ann Arbor, MI 48105, USA
| | - Pratik R. Agrawal
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA
| | - Louis Saravolatz
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Cadigia Abuniat
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Gabriele Scarabelli
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Anastasis Stephanou
- Medical and Molecular Biology Unit, University College London, UCL, 30 Guildford St., London, WC1N 1EH, UK
| | - Leena Loomba
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Jagat Narula
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA
| | - Tiziano M. Scarabelli
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Richard Knight
- Medical and Molecular Biology Unit, University College London, UCL, 30 Guildford St., London, WC1N 1EH, UK
| |
Collapse
|
37
|
Logotheti S, Pavlopoulou A, Galtsidis S, Vojtesek B, Zoumpourlis V. Functions, divergence and clinical value of TAp73 isoforms in cancer. Cancer Metastasis Rev 2014; 32:511-34. [PMID: 23592418 DOI: 10.1007/s10555-013-9424-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The p73 gene encodes the tumour suppressive full-length TAp73 and N-terminal-truncated DNp73 isoforms that act as dominant negative inhibitors of TAp73. The overall effect of p73 in oncogenesis is thought to depend on the TAp73 to DNp73 isoforms' ratio. TAp73 isoforms include a number of C-terminal variants as a result of alternative splicing in 3'-end. TAp73 isoforms protect cells from oncogenic alterations in a multifaceted way since they are implicated in the suppression of all demonstrated hallmarks and enabling characteristics of cancer. Their best established role is in apoptosis, a process which seems to be differently affected by each TAp73 C-terminal variant. Based on previous findings and our thorough bioinformatics analysis, we highlight that TAp73 variants are functionally non-equivalent, since they present major differences in their transactivation efficiencies, protein interactions, response to DNA damage and apoptotic effects that are attributable to the primary structure of their C terminus. In this review, we summarise these differences and we unveil the link between crucial C-terminal motifs/residues and the oncosuppressive potential of TAp73 isoforms, emphasising on the importance of considering C terminus during the development of p73-based anticancer biologics.
Collapse
Affiliation(s)
- Stella Logotheti
- Unit of Biomedical Applications, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave, 11635, Athens, Greece
| | | | | | | | | |
Collapse
|
38
|
Engelmann D, Meier C, Alla V, Pützer BM. A balancing act: orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression. Oncogene 2014; 34:4287-99. [PMID: 25381823 DOI: 10.1038/onc.2014.365] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022]
Abstract
p73 is the older sibling of p53 and mimics most of its tumor-suppressor functions. Through alternative promoter usage and splicing, the TP73 gene generates more than two dozen isoforms of which N-terminal truncated DNp73 variants have a decisive role in cancer pathogenesis as they outweigh the positive effects of full-length TAp73 and p53 in acting as a barrier to tumor development. Beyond the prevailing view that DNp73 predominantly counteract cell cycle arrest and apoptosis, latest progress indicates that these isoforms acquire novel functions in epithelial-to-mesenchymal transition, metastasis and therapy resistance. New insight into the mechanisms underlying this behavior reinforced the expectation that DNp73 variants contribute to aggressive cellular traits through both loss of wild-type tumor-suppressor activity and gain-of-function, suggesting an equally important role in cancer progression as mutant p53. In this review, we describe the novel properties of DNp73 in the invasion metastasis cascade and outline the comprehensive p73 regulatome with an emphasis on molecular processes putting TAp73 out of action in advanced tumors. These intriguing insights provoke a new understanding of the acquisition of aggressive traits by cancer cells and may help to set novel therapies for a broad range of metastatic tumors.
Collapse
Affiliation(s)
- D Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - C Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - V Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - B M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
39
|
Lu H, Yan C, Quan XX, Yang X, Zhang J, Bian Y, Chen Z, Van Waes C. CK2 phosphorylates and inhibits TAp73 tumor suppressor function to promote expression of cancer stem cell genes and phenotype in head and neck cancer. Neoplasia 2014; 16:789-800. [PMID: 25379016 PMCID: PMC4212254 DOI: 10.1016/j.neo.2014.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 01/03/2023]
Abstract
Cancer stem cells (CSC) and genes have been linked to cancer development and therapeutic resistance, but the signaling mechanisms regulating CSC genes and phenotype are incompletely understood. CK2 has emerged as a key signal serine/threonine kinase that modulates diverse signal cascades regulating cell fate and growth. We previously showed that CK2 is often aberrantly expressed and activated in head and neck squamous cell carcinomas (HNSCC), concomitantly with mutant (mt) tumor suppressor TP53, and inactivation of its family member, TAp73. Unexpectedly, we observed that classical stem cell genes Nanog, Sox2, and Oct4, are overexpressed in HNSCC with inactivated TAp73 and mtTP53. However, the potential relationship between CK2, TAp73 inactivation, and CSC phenotype is unknown. We reveal that inhibition of CK2 by pharmacologic inhibitors or siRNA inhibits the expression of CSC genes and side population (SP), while enhancing TAp73 mRNA and protein expression. Conversely, CK2 inhibitor attenuation of CSC protein expression and the SP by was abrogated by TAp73 siRNA. Bioinformatic analysis uncovered a single predicted CK2 threonine phosphorylation site (T27) within the N-terminal transactivation domain of TAp73. Nuclear CK2 and TAp73 interaction, confirmed by co-immunoprecipitation, was attenuated by CK2 inhibitor, or a T27A point-mutation of this predicted CK2 threonine phospho-acceptor site of TAp73. Further, T27A mutation attenuated phosphorylation, while enhancing TAp73 function in repressing CSC gene expression and SP cells. A new CK2 inhibitor, CX-4945, inhibited CSC related SP cells, clonogenic survival, and spheroid formation. Our study unveils a novel regulatory mechanism whereby aberrant CK2 signaling inhibits TAp73 to promote the expression of CSC genes and phenotype.
Collapse
Key Words
- CK2, Casein Kinase 2
- CSC, Cancer Stem Cells
- DMAT, 2-Dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole
- HEKA, Human epidermal keratinocytes
- HNSCC, Head and neck squamous cell carcinoma
- HOK, Human oral keratinocytes
- SP, Side population
- TAp73, Transactivating p73
- TP53, Transforming Protein p53
- UM-SCC, University of Michigan Squamous Cell Carcinoma
- mt, Mutant
- wt, Wild-type
Collapse
Affiliation(s)
- Hai Lu
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
- Orthopaedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Carol Yan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
- Howard Hughes Medical Institute-NIH Research Scholars Program, Bethesda, MD 20892, USA
| | - Xin Xin Quan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Jialing Zhang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Yansong Bian
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
40
|
Drug repositioning discovery for early- and late-stage non-small-cell lung cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:193817. [PMID: 25210704 PMCID: PMC4156989 DOI: 10.1155/2014/193817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/07/2014] [Accepted: 07/12/2014] [Indexed: 12/30/2022]
Abstract
Drug repositioning is a popular approach in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development time. Non-small-cell lung cancer (NSCLC) is one of the leading causes of death worldwide. To reduce the biological heterogeneity effects among different individuals, both normal and cancer tissues were taken from the same patient, hence allowing pairwise testing. By comparing early- and late-stage cancer patients, we can identify stage-specific NSCLC genes. Differentially expressed genes are clustered separately to form up- and downregulated communities that are used as queries to perform enrichment analysis. The results suggest that pathways for early- and late-stage cancers are different. Sets of up- and downregulated genes were submitted to the cMap web resource to identify potential drugs. To achieve high confidence drug prediction, multiple microarray experimental results were merged by performing meta-analysis. The results of a few drug findings are supported by MTT assay or clonogenic assay data. In conclusion, we have been able to assess the potential existing drugs to identify novel anticancer drugs, which may be helpful in drug repositioning discovery for NSCLC.
Collapse
|
41
|
Huang CH, Wu MY, Chang PMH, Huang CY, Ng KL. In silico identification of potential targets and drugs for non-small cell lung cancer. IET Syst Biol 2014; 8:56-66. [PMID: 25014226 PMCID: PMC8687210 DOI: 10.1049/iet-syb.2013.0035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/03/2013] [Accepted: 12/23/2013] [Indexed: 12/28/2022] Open
Abstract
Lung cancer is one of the leading causes of death in both the USA and Taiwan, and it is thought that the cause of cancer could be because of the gain of function of an oncoprotein or the loss of function of a tumour suppressor protein. Consequently, these proteins are potential targets for drugs. In this study, differentially expressed genes are identified, via an expression dataset generated from lung adenocarcinoma tumour and adjacent non-tumour tissues. This study has integrated many complementary resources, that is, microarray, protein-protein interaction and protein complex. After constructing the lung cancer protein-protein interaction network (PPIN), the authors performed graph theory analysis of PPIN. Highly dense modules are identified, which are potential cancer-associated protein complexes. Up- and down-regulated communities were used as queries to perform functional enrichment analysis. Enriched biological processes and pathways are determined. These sets of up- and down-regulated genes were submitted to the Connectivity Map web resource to identify potential drugs. The authors' findings suggested that eight drugs from DrugBank and three drugs from NCBI can potentially reverse certain up- and down-regulated genes' expression. In conclusion, this study provides a systematic strategy to discover potential drugs and target genes for lung cancer.
Collapse
Affiliation(s)
- Chien-Hung Huang
- Department of Computer Science and Information Engineering, National Formosa University, 64, Wen-Hwa Road, Hu-wei 632, Yun-Lin, Taiwan
| | - Min-You Wu
- Department of Computer Science and Information Engineering, National Formosa University, 64, Wen-Hwa Road, Hu-wei 632, Yun-Lin, Taiwan
| | - Peter Mu-Hsin Chang
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Faculty of Medicine, National Yang Ming University, Taipei 112, Taiwan
| | - Chi-Ying Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, 155, Sec. 2, Linong Street, Taipei 112, Taiwan
| | - Ka-Lok Ng
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
42
|
Abstract
The protein kinase mammalian or mechanistic target of rapamycin (mTOR) is an atypical serine/threonine kinase that exerts its main cellular functions by interacting with specific adaptor proteins to form 2 different multiprotein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 regulates protein synthesis, cell growth and proliferation, autophagy, cell metabolism, and stress responses, whereas mTORC2 seems to regulate cell survival and polarity. The mTOR pathway plays a key regulatory function in cardiovascular physiology and pathology. However, the majority of information available about mTOR function in the cardiovascular system is related to the role of mTORC1 in the unstressed and stressed heart. mTORC1 is required for embryonic cardiovascular development and for postnatal maintenance of cardiac structure and function. In addition, mTORC1 is necessary for cardiac adaptation to pressure overload and development of compensatory hypertrophy. However, partial and selective pharmacological and genetic inhibition of mTORC1 was shown to extend life span in mammals, reduce pathological hypertrophy and heart failure caused by increased load or genetic cardiomyopathies, reduce myocardial damage after acute and chronic myocardial infarction, and reduce cardiac derangements caused by metabolic disorders. The optimal therapeutic strategy to target mTORC1 and increase cardioprotection is under intense investigation. This article reviews the information available regarding the effects exerted by mTOR signaling in cardiovascular physiology and pathological states.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ (S.S., J.S.); IRCCS Neuromed, Pozzilli, Italy (S.S., M.V.); and Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University Sapienza, Rome, Italy (M.V.)
| | | | | |
Collapse
|
43
|
Candi E, Agostini M, Melino G, Bernassola F. How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat 2014; 35:702-14. [PMID: 24488880 DOI: 10.1002/humu.22523] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/12/2014] [Indexed: 12/23/2022]
Abstract
In mammals, the p53 family comprises two additional members, p63 and p73 (hereafter referred to as TP53, TP63, and TP73, respectively). The usage of two alternative promoters produces protein variants either with (transactivating [TA] isoforms) or without (ΔN isoforms) the N-terminal transactivation domain (TAD). In general, the TA proteins exert TP53-like tumor-suppressive activities through their ability to activate a common set of target genes. The ΔN proteins can act as dominant-negative inhibitors of the transcriptionally active family members. Additionally, they possess intrinsic-specific biological activities due to the presence of alternative TADs, and as a result of engaging a different set of regulators. This review summarizes the current understanding of upstream regulators and downstream effectors of the TP53 family proteins, with particular emphasis on those that are relevant for their role in tumorigenesis. Furthermore, we highlight the existence of networks and cross-talks among the TP53 family members, their modulators, as well as the transcriptional targets.
Collapse
Affiliation(s)
- Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, 00133, Italy
| | | | | | | |
Collapse
|
44
|
Hong B, Prabhu VV, Zhang S, van den Heuvel APJ, Dicker DT, Kopelovich L, El-Deiry WS. Prodigiosin rescues deficient p53 signaling and antitumor effects via upregulating p73 and disrupting its interaction with mutant p53. Cancer Res 2013; 74:1153-65. [PMID: 24247721 DOI: 10.1158/0008-5472.can-13-0955] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
p53 reactivation offers a broad-based strategy for cancer therapy. In this study, we report the identification of prodigiosin that can reactivate p53 family-dependent transcriptional activity in p53-deficient human colon cancer cells. Prodigiosin and its structural analogue (compound R) induced the expression of p53 target genes accompanied by cell-cycle arrest and apoptosis in p53-deficient cancer cells. Prodigiosin restored p53 signaling in cancer cells harboring hotspot TP53 mutations, with little to no detectable cytotoxicity in normal human fibroblasts and with no genotoxicity. Prodigiosin induced the expression of p73 and disrupted its interaction with mutant p53, thereby rescuing p53 pathway deficiency and promoting antitumor effects. The disruption of mutant p53/p73 interaction was specific to prodigiosin and not related to mTOR inhibition. Our findings suggest that mutant p53 needs to be targeted in the context of p73 stimulation to allow efficient restoration of the p53 pathway. In exhibiting this capability, prodigiosin and its analogue provide lead compounds to rescue deficiencies in the p53 pathway in cancer cells by upregulating p73 and targeting mutant p53/p73 interaction there.
Collapse
Affiliation(s)
- Bo Hong
- Authors' Affiliations: Hematology/Oncology Division, Penn State College of Medicine, Penn State Hershey Cancer Institute, Penn State Hershey Medical Center, Hershey, Pennsylvania; and Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The function of p53 is best understood in response to genotoxic stress, but increasing evidence suggests that p53 also plays a key role in the regulation of metabolic homeostasis. p53 and its family members directly influence various metabolic pathways, enabling cells to respond to metabolic stress. These functions are likely to be important for restraining the development of cancer but could also have a profound effect on the development of metabolic diseases, including diabetes. A better understanding of the metabolic functions of p53 family members may aid in the identification of therapeutic targets and reveal novel uses for p53-modulating drugs.
Collapse
|
46
|
Steder M, Alla V, Meier C, Spitschak A, Pahnke J, Fürst K, Kowtharapu BS, Engelmann D, Petigk J, Egberts F, Schäd-Trcka SG, Gross G, Nettelbeck DM, Niemetz A, Pützer BM. DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/STAT3 signaling. Cancer Cell 2013; 24:512-27. [PMID: 24135282 DOI: 10.1016/j.ccr.2013.08.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/14/2013] [Accepted: 08/24/2013] [Indexed: 12/29/2022]
Abstract
Dissemination of cancer cells from primary tumors is the key event in metastasis, but specific determinants are widely unknown. Here, we show that DNp73, an inhibitor of the p53 tumor suppressor family, drives migration and invasion of nonmetastatic melanoma cells. Knockdown of endogenous DNp73 reduces this behavior in highly metastatic cell lines. Tumor xenografts expressing DNp73 show a higher ability to invade and metastasize, while growth remains unaffected. DNp73 facilitates an EMT-like phenotype with loss of E-cadherin and Slug upregulation. We provide mechanistic insight toward regulation of LIMA1/EPLIN by p73/DNp73 and demonstrate a direct link between the DNp73-EPLIN axis and IGF1R-AKT/STAT3 activation. These findings establish initiation of the invasion-metastasis cascade via EPLIN-dependent IGF1R regulation as major activity of DNp73.
Collapse
Affiliation(s)
- Marc Steder
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Humphries LA, Godbersen JC, Danilova OV, Kaur P, Christensen BC, Danilov AV. Pro-apoptotic TP53 homolog TAp63 is repressed via epigenetic silencing and B-cell receptor signalling in chronic lymphocytic leukaemia. Br J Haematol 2013; 163:590-602. [PMID: 24117128 DOI: 10.1111/bjh.12580] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/21/2013] [Indexed: 02/05/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) is an accumulative disorder marked by deficient apoptosis. The TP53 homolog TAp63 promotes apoptosis and chemosensitivity in solid tumours and its deregulation may contribute to CLL cell survival. We found that TAp63α was the most prevalent TP63 isoform in CLL. Compared to healthy B cells, TAp63 mRNA was repressed in 55·7% of CLL samples. TP63 promoter methylation was high in CLL and inversely correlated with TP63 protein expression in B-cell lymphoma cell lines. siRNA-mediated knockdown of TP63 resulted in partial protection from spontaneous apoptosis accompanied by reductions in PMAIP1 (NOXA), BBC3 (PUMA), and BAX mRNA in CLL cells and increased proliferation of Raji lymphoma cells. TAp63 mRNA levels were higher in CLL with unmutated IGHV. B-cell receptor (BCR) engagement led to repression of TP63 mRNA expression in malignant B cells, while pharmacological inhibition of BCR signalling prevented TP63 downregulation. MIR21, known to target TAp63, correlated inversely with TAp63 expression in CLL, and BCR-mediated downregulation of TP63 was accompanied by MIR21 upregulation in most CLL samples. Our data illustrate the pro-apoptotic function of TP63, provide insights into the mechanisms of BCR-targeting agents, and establish a rationale for designing novel approaches to induce TP63 in CLL and B-cell lymphoma.
Collapse
|
48
|
D’Alessandro A, Marrocco C, Rinalducci S, Peschiaroli A, Timperio AM, Bongiorno-Borbone L, Finazzi Agrò A, Melino G, Zolla L. Analysis of TAp73-Dependent Signaling via Omics Technologies. J Proteome Res 2013; 12:4207-20. [DOI: 10.1021/pr4005508] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Angelo D’Alessandro
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | - Cristina Marrocco
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | | | - Anna Maria Timperio
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | - Lucilla Bongiorno-Borbone
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandro Finazzi Agrò
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Medical Research Council, Toxicology
Unit, Hodgkin Building, Leicester University, Lancaster Road, P.O. Box 138, Leicester LE1 9HN, U.K
| | - Lello Zolla
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| |
Collapse
|
49
|
Soldevilla B, Millán CS, Bonilla F, Domínguez G. The TP73 complex network: ready for clinical translation in cancer? Genes Chromosomes Cancer 2013; 52:989-1006. [PMID: 23913810 DOI: 10.1002/gcc.22095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/28/2013] [Indexed: 01/05/2023] Open
Abstract
TP73 is a member of the TP53 family, whose deregulated expression has been reported in a wide variety of cancers and linked to patients' outcome. The fact that TP73 encodes a complex number of isoforms (TAp73 and ΔTAp73) with opposing functions and the cross-talk with other members of the family (TP53 and TP63) make it difficult to determine its clinical relevance. Here, we review the molecular mechanisms driving TAp73 and ΔTAp73 expression and how these variants inhibit or promote carcinogenesis. We also highlight the intricate interplay between TP53 family members. In addition, we comment on current pharmacological approaches targeting the TP73 pathway and those affecting the TAp73/ΔTAp73 ratio. Finally, we discuss the current data available in the literature that provide evidence on the role of TP73 variants in predicting prognosis. To date, most of the studies that evaluate the status levels of TP73 isoforms have been based on limited-size series. Despite this limitation, these publications highlight the correlation between high levels of the oncogenic forms and failure to respond to chemotherapy and/or shorter survival. Finally, we emphasize the need for studies to evaluate the significance of combining the deregulation of various members of the TP53 family in order to define patient outcome or their responsiveness to specific therapies.
Collapse
Affiliation(s)
- Beatriz Soldevilla
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Raimondi I, Ciribilli Y, Monti P, Bisio A, Pollegioni L, Fronza G, Inga A, Campomenosi P. P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements. PLoS One 2013; 8:e69152. [PMID: 23861960 PMCID: PMC3704516 DOI: 10.1371/journal.pone.0069152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 06/12/2013] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor p53 was previously shown to markedly up-regulate the expression of the PRODH gene, encoding the proline dehydrogenase (PRODH) enzyme, which catalyzes the first step in proline degradation. Also PRODH2, which degrades 4-hydroxy-L-proline, a product of protein (e.g. collagen) catabolism, was recently described as a p53 target. Here, we confirmed p53-dependent induction of endogenous PRODH in response to genotoxic damage in cell lines of different histological origin. We established that over-expression of TAp73β or TAp63β is sufficient to induce PRODH expression in p53-null cells and that PRODH expression parallels the modulation of endogenous p73 by genotoxic drugs in several cell lines. The p53, p63, and p73-dependent transcriptional activation was linked to specific intronic response elements (REs), among those predicted by bioinformatics tools and experimentally validated by a yeast-based transactivation assay. p53 occupancy measurements were validated in HCT116 and MCF7 human cell lines. Conversely, PRODH2 was not responsive to p63 nor p73 and, at best, could be considered a weak p53 target. In fact, minimal levels of PRODH2 transcript induction by genotoxic stress was observed exclusively in one of four p53 wild-type cell lines tested. Consistently, all predicted p53 REs in PRODH2 were poor matches to the p53 RE consensus and showed very weak responsiveness, only to p53, in the functional assay. Taken together, our results highlight that PRODH, but not PRODH2, expression is under the control of p53 family members, specifically p53 and p73. This supports a deeper link between proteins of the p53-family and metabolic pathways, as PRODH modulates the balance of proline and glutamate levels and those of their derivative alpha-keto-glutarate (α-KG) under normal and pathological (tumor) conditions.
Collapse
Affiliation(s)
- Ivan Raimondi
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Mattarello, Trento, Italy
| | - Paola Monti
- Department of Diagnosis, Pathology and Treatment of High Technological Complexity, IRCCS Azienda Ospedaliera Universitaria San Martino – IST - Istituto Nazionale Per La Ricerca Sul Cancro, Genova, Italy
| | - Alessandra Bisio
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Mattarello, Trento, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
- The Protein Factory, Centro Interuniversitario di Ricerca in Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR Milano and Università degli Studi dell'Insubria, Varese, Italy
| | - Gilberto Fronza
- Department of Diagnosis, Pathology and Treatment of High Technological Complexity, IRCCS Azienda Ospedaliera Universitaria San Martino – IST - Istituto Nazionale Per La Ricerca Sul Cancro, Genova, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Mattarello, Trento, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
- The Protein Factory, Centro Interuniversitario di Ricerca in Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR Milano and Università degli Studi dell'Insubria, Varese, Italy
- * E-mail:
| |
Collapse
|