1
|
Lin A, Jiang A, Huang L, Li Y, Zhang C, Zhu L, Mou W, Liu Z, Zhang J, Cheng Q, Wei T, Luo P. From chaos to order: optimizing fecal microbiota transplantation for enhanced immune checkpoint inhibitors efficacy. Gut Microbes 2025; 17:2452277. [PMID: 39826104 DOI: 10.1080/19490976.2025.2452277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
The integration of fecal microbiota transplantation (FMT) with immune checkpoint inhibitors (ICIs) presents a promising approach for enhancing cancer treatment efficacy and overcoming therapeutic resistance. This review critically examines the controversial effects of FMT on ICIs outcomes and elucidates the underlying mechanisms. We investigate how FMT modulates gut microbiota composition, microbial metabolite profiles, and the tumor microenvironment, thereby influencing ICIs effectiveness. Key factors influencing FMT efficacy, including donor selection criteria, recipient characteristics, and administration protocols, are comprehensively discussed. The review delineates strategies for optimizing FMT formulations and systematically monitoring post-transplant microbiome dynamics. Through a comprehensive synthesis of evidence from clinical trials and preclinical studies, we elucidate the potential benefits and challenges of combining FMT with ICIs across diverse cancer types. While some studies report improved outcomes, others indicate no benefit or potential adverse effects, emphasizing the complexity of host-microbiome interactions in cancer immunotherapy. We outline critical research directions, encompassing the need for large-scale, multi-center randomized controlled trials, in-depth microbial ecology studies, and the integration of multi-omics approaches with artificial intelligence. Regulatory and ethical challenges are critically addressed, underscoring the imperative for standardized protocols and rigorous long-term safety assessments. This comprehensive review seeks to guide future research endeavors and clinical applications of FMT-ICIs combination therapy, with the potential to improve cancer patient outcomes while ensuring both safety and efficacy. As this rapidly evolving field advances, maintaining a judicious balance between openness to innovation and cautious scrutiny is crucial for realizing the full potential of microbiome modulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lihaoyun Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Yu Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Chunyanx Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
2
|
Xu Y, Gao Z, Liu J, Yang Q, Xu S. Role of gut microbiome in suppression of cancers. Gut Microbes 2025; 17:2495183. [PMID: 40254597 PMCID: PMC12013426 DOI: 10.1080/19490976.2025.2495183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/23/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
The pathogenesis of cancer is closely related to the disruption of homeostasis in the human body. The gut microbiome plays crucial roles in maintaining the homeostasis of its host throughout lifespan. In recent years, a large number of studies have shown that dysbiosis of the gut microbiome is involved in the entire process of cancer initiation, development, and prognosis by influencing the host immune system and metabolism. Some specific intestinal bacteria promote the occurrence and development of cancers under certain conditions. Conversely, some other specific intestinal bacteria suppress the oncogenesis and progression of cancers, including inhibiting the occurrence of cancers, delaying the progression of cancers and boosting the therapeutic effect on cancers. The promoting effects of the gut microbiome on cancers have been comprehensively discussed in the previous review. This article will review the latest advances in the roles and mechanisms of gut microbiome in cancer suppression, providing a new perspective for developing strategies of cancer prevention and treatment.
Collapse
Affiliation(s)
- Yao Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Jiaying Liu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qianqian Yang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| |
Collapse
|
3
|
Huang M, Ji Q, Huang H, Wang X, Wang L. Gut microbiota in hepatocellular carcinoma immunotherapy: immune microenvironment remodeling and gut microbiota modification. Gut Microbes 2025; 17:2486519. [PMID: 40166981 PMCID: PMC11970798 DOI: 10.1080/19490976.2025.2486519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, with limited treatment options at advanced stages. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, plays a pivotal role in regulating immune responses through the gut-liver axis. Emerging evidence underscores its impact on HCC progression and the efficacy of immunotherapy. This review explores the intricate interactions between gut microbiota and the immune system in HCC, with a focus on key immune cells and pathways involved in tumor immunity. Additionally, it highlights strategies for modulating the gut microbiota - such as fecal microbiota transplantation, dietary interventions, and probiotics - as potential approaches to enhancing immunotherapy outcomes. A deeper understanding of these mechanisms could pave the way for novel therapeutic strategies aimed at improving patient prognosis.
Collapse
Affiliation(s)
- Mingyao Huang
- School of Basic Medicine, Putian University, Putian, Fujian, China
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Quansong Ji
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huiyan Huang
- Ward 3, De’an Hospital, Xianyou County, Putian, Fujian, China
| | - Xiaoqian Wang
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Wang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Thulasinathan B, Suvilesh KN, Maram S, Grossmann E, Ghouri Y, Teixeiro EP, Chan J, Kaif JT, Rachagani S. The impact of gut microbial short-chain fatty acids on colorectal cancer development and prevention. Gut Microbes 2025; 17:2483780. [PMID: 40189834 PMCID: PMC11980463 DOI: 10.1080/19490976.2025.2483780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer is a long-term illness that involves an imbalance in cellular and immune functions. It can be caused by a range of factors, including exposure to environmental carcinogens, poor diet, infections, and genetic alterations. Maintaining a healthy gut microbiome is crucial for overall health, and short-chain fatty acids (SCFAs) produced by gut microbiota play a vital role in this process. Recent research has established that alterations in the gut microbiome led to decreased production of SCFA's in lumen of the colon, which associated with changes in the intestinal epithelial barrier function, and immunity, are closely linked to colorectal cancer (CRC) development and its progression. SCFAs influence cancer progression by modifying epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNA functions thereby affecting tumor initiation and metastasis. This suggests that restoring SCFA levels in colon through microbiota modulation could serve as an innovative strategy for CRC prevention and treatment. This review highlights the critical relationship between gut microbiota and CRC, emphasizing the potential of targeting SCFAs to enhance gut health and reduce CRC risk.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Kanve N. Suvilesh
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Sumanas Maram
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Erik Grossmann
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Yezaz Ghouri
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Emma Pernas Teixeiro
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Joshua Chan
- Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jussuf T. Kaif
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| |
Collapse
|
5
|
Almonte AA, Thomas S, Zitvogel L. Microbiota-centered interventions to boost immune checkpoint blockade therapies. J Exp Med 2025; 222:e20250378. [PMID: 40261296 PMCID: PMC12013646 DOI: 10.1084/jem.20250378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Immune checkpoint blockade therapies have markedly advanced cancer treatment by invigorating antitumor immunity and extending patient survival. However, therapeutic resistance and immune-related toxicities remain major concerns. Emerging evidence indicates that microbial dysbiosis diminishes therapeutic response rates, while a diverse gut ecology and key beneficial taxa correlate with improved treatment outcomes. Therefore, there is a growing understanding that manipulating the gut microbiota could boost therapy efficacy. This review examines burgeoning methods that target the gut microbiome to optimize therapy and innovative diagnostic tools to detect dysbiosis, and highlights challenges that remain to be addressed in the field.
Collapse
Affiliation(s)
- Andrew A. Almonte
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
| | - Simon Thomas
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| |
Collapse
|
6
|
Liu W, Yang X, Zhou Y, Huang Z, Huang J. Gut microbiota in melanoma: Effects and pathogeneses. Microbiol Res 2025; 296:128144. [PMID: 40120565 DOI: 10.1016/j.micres.2025.128144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
The gut microbiota exhibits intricate connections with the body's immune system and holds significant implications for various diseases and cancers. Currently, accumulating evidence suggests a correlation between the composition of the gut microbiota and the development, treatment, and prognosis of melanoma. However, the underlying pathogenesis remains incompletely elucidated. In this comprehensive review, we present an in-depth review of the role played by gut microbiota in melanoma tumorigenesis, growth, metastasis, treatment response, and prognosis. Furthermore, we discuss the potential utility of gut microbiota as a promising prognostic marker. Lastly, we summarize three routes through which gut microbiota influences melanoma: immunity, aging, and the endocrine system. By modulating innate and adaptive immunity in patients with melanoma across different age groups and genders, the gut microbiota plays a crucial role in anti-tumor immune regulation from tumorigenesis to prognosis management, thereby impacting tumor growth and metastasis. This review also addresses current study limitations while highlighting future research prospects.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xin Yang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuwei Zhou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ziru Huang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jian Huang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Hamza M, Wang S, Liu Y, Li K, Zhu M, Chen L. Unraveling the potential of bioengineered microbiome-based strategies to enhance cancer immunotherapy. Microbiol Res 2025; 296:128156. [PMID: 40158322 DOI: 10.1016/j.micres.2025.128156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
The human microbiome plays a pivotal role in the field of cancer immunotherapy. The microbial communities that inhabit the gastrointestinal tract, as well as the bacterial populations within tumors, have been identified as key modulators of therapeutic outcomes, affecting immune responses and reprogramming the tumor microenvironment. Advances in synthetic biology have made it possible to reprogram and engineer these microorganisms to improve antitumor activity, enhance T-cell function, and enable targeted delivery of therapies to neoplasms. This review discusses the role of the microbiome in modulating both innate and adaptive immune mechanisms-ranging from the initiation of cytokine production and antigen presentation to the regulation of immune checkpoints-and discusses how these mechanisms improve the efficacy of immune checkpoint inhibitors. We highlight significant advances with bioengineered strains like Escherichia coli Nissle 1917, Lactococcus lactis, Bifidobacterium, and Bacteroides, which have shown promising antitumor efficacy in preclinical models. These engineered microorganisms not only efficiently colonize tumor tissues but also help overcome resistance to standard therapies by reprogramming the local immune environment. Nevertheless, several challenges remain, such as the requirement for genetic stability, effective tumor colonization, and the control of potential safety issues. In the future, the ongoing development of genetic engineering tools and the optimization of bacterial delivery systems are crucial for the translation of microbiome-based therapies into the clinic. This review highlights the potential of bioengineered microbiota as an innovative, personalized approach in cancer immunotherapy, bringing hope for more effective and personalized treatment options for patients with advanced malignancies.
Collapse
Affiliation(s)
- Muhammad Hamza
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| | - Yike Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Motao Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Ballal S, Naidu KS, Bareja L, Chahar M, Gupta S, Sameer HN, Yaseen A, Athab ZH, Adil M. Exploring preventive and treatment strategies for oral cancer: Modulation of signaling pathways and microbiota by probiotics. Gene 2025; 952:149380. [PMID: 40089085 DOI: 10.1016/j.gene.2025.149380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/11/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
The evidence suggests that the microbiome plays a crucial role in cancer development. The oral cavity has many microorganisms that can influence oral cancer progression. Understanding the mechanisms and signaling pathways of the oral, gum, and teeth microbiome in tumor progression can lead to new treatment strategies. Probiotics, which are friendly microorganisms, have shown potential as anti-cancer agents. These positive characteristics of probiotic strains make them suitable for cancer prevention or treatment. The oral-gut microbiome axis supports health and homeostasis, and imbalances in the oral microbiome can disrupt immune signaling pathways, epithelial barriers, cell cycles, apoptosis, genomic stability, angiogenesis, and metabolic processes. Changes in the oral microbiome in oral cancer may suggest using probiotics-based treatments for their direct or indirect positive roles in cancer development, progression, and metastasis, specifically oral squamous cell carcinoma (OSCC). Here, reported relationships between probiotics, oral microbiota, and oral cancer are summarized.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003 Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
9
|
Elkrief A, Routy B, Derosa L, Bolte L, Wargo JA, McQuade JL, Zitvogel L. Gut Microbiota in Immuno-Oncology: A Practical Guide for Medical Oncologists With a Focus on Antibiotics Stewardship. Am Soc Clin Oncol Educ Book 2025; 45:e472902. [PMID: 40262063 DOI: 10.1200/edbk-25-472902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The gut microbiota has emerged as a critical determinant of immune checkpoint inhibitor (ICI) efficacy, resistance, and toxicity. Retrospective and prospective studies profiling the taxonomic composition of intestinal microbes of patients treated with ICI have revealed specific gut microbial signatures associated with response. By contrast, dysbiosis, which can be caused by chronic inflammatory processes (such as cancer) or comedications, is a risk factor of resistance to ICI. Recent large-scale meta-analyses have confirmed that antibiotic (ATB) use before or during ICI therapy alters the microbiota repertoire and significantly shortens overall survival, even after adjusting for prognostic factors. These results underscore the importance of implementing ATB stewardship recommendations in routine oncology practice. Microbiota-centered interventions are now being explored to treat gut dysbiosis and optimize ICI responses. Early-phase clinical trials evaluating fecal microbiota transplantation (FMT) from ICI responders or healthy donors have shown that this approach is safe and provided preliminary data on potential efficacy to overcome both primary and secondary resistance to ICI in melanoma, non-small cell lung cancer, and renal cell carcinoma. More targeted interventions including live bacterial products including Clostridium butyricum and Akkermansia massiliensis represent novel microbiome-based adjunct therapies. Likewise, dietary interventions, such as high-fiber diets, have shown promise in enhancing ICI activity. In this ASCO Educational Book, we summarize the current state-of-the-evidence of the clinical relevance of the intestinal microbiota in cancer immunotherapy and provide a practical guide for ATB stewardship.
Collapse
Affiliation(s)
- Arielle Elkrief
- University of Montreal Hospital Research Centre, Cancer Axis, Montreal, Canada
- University of Montreal Hospital Centre, Department of Hematology-Oncology, Montreal, Canada
| | - Bertrand Routy
- University of Montreal Hospital Research Centre, Cancer Axis, Montreal, Canada
- University of Montreal Hospital Centre, Department of Hematology-Oncology, Montreal, Canada
| | - Lisa Derosa
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Gustave Roussy, ClinicObiome, Villejuif, France
- Université Paris-Saclay, Faculty of Medicine, Kremlin-Bicêtre, France
| | - Laura Bolte
- Department of Medical Oncology, University Groningen and University Medical Center, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University Groningen and University Medical Center, Groningen, the Netherlands
| | | | | | - Laurence Zitvogel
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Gustave Roussy, ClinicObiome, Villejuif, France
- Université Paris-Saclay, Faculty of Medicine, Kremlin-Bicêtre, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| |
Collapse
|
10
|
Hesami Z, Sabzehali F, Khorsand B, Alipour S, Sadeghi A, Asri N, Pazienza V, Houri H. Microbiota as a state-of-the-art approach in precision medicine for pancreatic cancer management: A comprehensive systematic review. iScience 2025; 28:112314. [PMID: 40276756 PMCID: PMC12019022 DOI: 10.1016/j.isci.2025.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/22/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Emerging evidence suggests that harnessing the microbiome holds promise for innovative diagnostic and therapeutic strategies in the management of pancreatic cancer (PC). This study aims to systematically summarize the microbial markers associated with PC and assess their potential application in clinical outcome. Forty-one studies were included to assess the associations between microbial markers and PC. Among these, 13 were developed prediction models related to the microbiome in which the highest diagnostic and prognostic model belong to blood and intratumor markers, respectively. Notably, findings that utilize microbiotas from various body sites were elucidated, demonstrating their importance as unique signatures in biomarker discovery for diverse clinical applications. This review provides unique perspectives on overcoming challenges in PC by highlighting potential microbial-related markers as non-invasive approaches. Further clinical studies should evaluate the utility and accuracy of key indicators in the microbiome as a personalized tool for managing PC.
Collapse
Affiliation(s)
- Zeinab Hesami
- Student Research Committee, Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fattaneh Sabzehali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Khorsand
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Samira Alipour
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wang H, Baba Y, Hara Y, Toihata T, Kosumi K, Harada K, Iwatsuki M, Miyamoto Y, Baba H. The Relationship Between Gut Microbiome Bifidobacterium and Anti-tumor Immune Responses in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2025; 32:3828-3838. [PMID: 40035906 PMCID: PMC11976794 DOI: 10.1245/s10434-024-16288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 03/06/2025]
Abstract
BACKGROUND The Bifidobacterium genus is a prominent bacterial population in the gastrointestinal tract. Previous findings suggest that Bifidobacterium is linked to tumor suppression in mouse models of melanoma. Additionally, when combined with the programmed death-ligand 1 (PD-L1) antibody, it can enhance anti-tumor treatment by increasing tumor-specific T-cell responses and promoting infiltration of antigen-specific T cells into tumors. However, there is a lack of studies on Bifidobacterium in esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the potential impact of Bifidobacterium on this cancer type. METHODS We examined 213 samples from ESCC patients who underwent tumor resection. The presence of Bifidobacterium was confirmed using quantitative polymerase chain reaction and fluorescent in situ hybridization (FISH). Patient overall survival (OS) was analyzed with Bifidobacterium positivity. Tumor-infiltrating lymphocytes (TILs) were evaluated via hematoxylin and eosin stains, and immunohistochemistry was used to assess programmed death-1 (PD-1), PD-L1, cluster of differentiation 8 (CD8), and forkhead box P3 (FOXP3) expression. Nutritional status was evaluated via computed tomography scans. RESULTS Bifidobacterium positivity showed no correlation with patient OS or TIL levels; however, Bifidobacterium positivity in normal tissue was associated with lower FOXP3 levels, suggesting a potential role in upregulating anti-tumor immune responses. Patients with Bifidobacterium present in peritumor normal tissue exhibited better skeletal muscle area and volume. Conversely, Bifidobacterium positivity in tumor tissue was associated with poorer prognostic nutrition index values, likely due to decreased albumin levels. CONCLUSION Bifidobacterium can induce the upregulated anti-tumor immune response and is more prevalent in cases with good nutritional status.
Collapse
Affiliation(s)
- Haolin Wang
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Yoshihiro Hara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tasuku Toihata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Kosumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuto Harada
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
12
|
Nejat Dehkordi A, Maddahi M, Vafa P, Ebrahimi N, Aref AR. Salivary biomarkers: a promising approach for predicting immunotherapy response in head and neck cancers. Clin Transl Oncol 2025; 27:1887-1920. [PMID: 39377974 DOI: 10.1007/s12094-024-03742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/21/2024] [Indexed: 04/27/2025]
Abstract
Head and neck cancers, including cancers of the mouth, throat, voice box, salivary glands, and nose, are a significant global health issue. Radiotherapy and surgery are commonly used treatments. However, due to treatment resistance and disease recurrence, new approaches such as immunotherapy are being explored. Immune checkpoint inhibitors (ICIs) have shown promise, but patient responses vary, necessitating predictive markers to guide appropriate treatment selection. This study investigates the potential of non-invasive biomarkers found in saliva, oral rinses, and tumor-derived exosomes to predict ICI response in head and neck cancer patients. The tumor microenvironment significantly impacts immunotherapy efficacy. Oral biomarkers can provide valuable information on composition, such as immune cell presence and checkpoint expression. Elevated tumor mutation load is also associated with heightened immunogenicity and ICI responsiveness. Furthermore, the oral microbiota may influence treatment outcomes. Current research aims to identify predictive salivary biomarkers. Initial studies indicate that tumor-derived exosomes and miRNAs present in saliva could identify immunosuppressive pathways and predict ICI response. While tissue-based markers like PD-L1 have limitations, combining multiple oral fluid biomarkers could create a robust panel to guide treatment decisions and advance personalized immunotherapy for head and neck cancer patients.
Collapse
Affiliation(s)
| | - Moein Maddahi
- Faculty of Density, Yeditepe University, Istanbul, Turkey
| | - Parinaz Vafa
- Faculty of Density, Yeditepe University, Istanbul, Turkey
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
13
|
Lin HC, Hsiao WC, Hsu YC, Lin MC, Hsu CC, Zhang MM. Highly efficient CRISPR-Cas9 base editing in Bifidobacterium with bypass of restriction modification systems. Appl Environ Microbiol 2025; 91:e0198524. [PMID: 40062897 PMCID: PMC12016496 DOI: 10.1128/aem.01985-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/10/2025] [Indexed: 04/24/2025] Open
Abstract
Intestinal microbiota members of the Bifidobacterium genus are increasingly explored as probiotics and therapeutics. However, the paucity of genetic tools and the widespread restriction modification (RM) systems in Bifidobacterium limit our ability to genetically manipulate these bacteria. Here we established a CRISPR-Cas9 cytosine base editor system (cBEST) for portable genome editing in bifidobacteria. Harboring different promoters characterized in this study, these cBEST plasmids showed a range of editing efficiencies in different strains and genomic contexts, highlighting the importance of fine-tuning base editor and sgRNA expression. Additionally, we showed that disruption or bypass of RM systems dramatically improved editing efficiencies in otherwise hard-to-edit genomic loci and Bifidobacterium strains. Notably, we demonstrated the use of RM-disrupted Bifidobacterium longum strains for simultaneous assembly, amplification, and methylation of the all-in-one editing plasmids, greatly streamlining the workflow for high-efficiency base editing. Last but not least, we showed the portability of cBESTs using the same editing construct to disrupt a conserved metabolic gene in multiple Bifidobacterium species. Looking ahead, the ability to efficiently edit and engineer bifidobacterial genomes will give rise to new opportunities for research and applications toward improving human health.IMPORTANCEThe ability to genetically manipulate specific genes and biological pathways in Bifidobacterium is essential to unlocking their probiotic and therapeutic potential in human health applications. The DNA double-strand break-free CRISPR-Cas9 cytosine base editor system established in this work allows portable and efficient base editing in Bifidobacterium spp. We further showed that bypass of restriction modification systems significantly improved base editing efficiency, especially for hard-to-edit genomic loci and strains. This expanded Bifidobacterium genome editing toolbox should facilitate mechanistic investigations into the roles of Bifidobacterium in host physiology and disease.
Collapse
Affiliation(s)
- Hung-Chun Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wan-Chi Hsiao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Chen Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Meng-Chieh Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
- Leeuwenhoek Laboratories Co. Ltd, Taipei, Taiwan
| | - Mingzi M. Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
14
|
Yang Q, Zhang X, Luo Y, Jiang Y, You J, Li C, Ye F, Chen T, Chen Q. Ameliorative effect of "intestinal-vaginal" probiotics on 5-fluorouracil-induced microbial dysbiosis in colorectal cancer. Food Funct 2025. [PMID: 40264268 DOI: 10.1039/d5fo00940e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The interaction between the gut microbiome and cancer chemotherapy has been extensively studied. However, the exact role of the vaginal microbiome in chemotherapy remains unknown. To address this issue, we established a colorectal cancer chemotherapy mouse model. Here, we confirmed that 5-fluorouracil induced dysbiosis in both the vaginal and gut microbiomes, presenting a new challenge for conventional chemotherapy. Therefore, we innovatively propose an "intestinal-vaginal" probiotics administration strategy, which involves the simultaneous delivery of probiotics to both the gut and vagina, aiming to enhance chemotherapy efficacy while alleviating dysbiosis and associated side effects. Our results indicate that, compared to gut-only probiotic intervention, "intestinal-vaginal" probiotics administration significantly enhanced the anticancer efficacy of 5-fluorouracil by upregulating the p53 pathway. Furthermore, regarding gastrointestinal side effects, "intestinal-vaginal" probiotics more effectively reduced the release of vomit-associated neurotransmitters (e.g., 5-HT and SP), while also alleviating mucositis by downregulating the NF-κB pathway. Additionally, "intestinal-vaginal" probiotics outperformed the oral probiotic by increasing beneficial microbiota and reducing pathogenic bacteria. Notably, regarding vaginal side effects, "intestinal-vaginal" probiotics significantly inhibited the NF-κB inflammatory pathway and pro-apoptotic proteins, and improved vaginal dysbiosis compared to vaginal-only probiotics. These findings provide the first evidence of the significant potential of the "intestinal-vaginal" probiotics delivery approach as an adjunctive cancer therapy, which offers a novel perspective on the synergistic interactions between host microbiota communities.
Collapse
Affiliation(s)
- Qingling Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Xinfeng Zhang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yonglian Luo
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ying Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Jie You
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Cong Li
- Department of Pathology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Feifei Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330000, China
| |
Collapse
|
15
|
Situ Y, Zhang P, Zhang C, Jiang A, Zhang N, Zhu L, Mou W, Liu Z, Wong HZH, Zhang J, Cheng Q, Lin A, Luo P. The metabolic dialogue between intratumoural microbes and cancer: implications for immunotherapy. EBioMedicine 2025; 115:105708. [PMID: 40267755 DOI: 10.1016/j.ebiom.2025.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
The tumour microenvironment (TME) exerts a profound influence on cancer progression and treatment outcomes. Recent investigations have elucidated the crucial role of intratumoural microbiota and their metabolites in shaping the TME and modulating anti-tumour immunity. This review critically assesses the influence of intratumoural microbial metabolites on the TME and cancer immunotherapy. We systematically analyse how microbial-derived glucose, amino acid, and lipid metabolites modulate immune cell function, cytokine secretion, and tumour growth. The roles of specific metabolites, including lactate, short-chain fatty acids, bile acids, and tryptophan derivatives, are comprehensively examined in regulating immune responses and tumour progression. Furthermore, we investigate the potential of these metabolites to augment the efficacy of cancer immunotherapies, with particular emphasis on immune checkpoint inhibitors. By delineating the mechanisms through which microbial metabolites influence the TME, this review provides insights into novel microbiome-based therapeutic strategies, thereby highlighting a promising frontier in personalised cancer medicine.
Collapse
Affiliation(s)
- Yingheng Situ
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University); Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiming Mou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hank Z H Wong
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China.
| | - Anqi Lin
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University); Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Peng Luo
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University); Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
16
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
17
|
Fan Z, Yi Z, Li S, He J. Parabacteroides distasonis promotes CXCL9 secretion of tumor-associated macrophages and enhances CD8 +T cell activity to trigger anti-tumor immunity against anti-PD-1 treatment in non-small cell lung cancer mice. BMC Biotechnol 2025; 25:30. [PMID: 40241108 PMCID: PMC12004837 DOI: 10.1186/s12896-025-00963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Parabacteroides distasonis (P. distasonis) could regulate inflammatory markers, promote intestinal barrier integrity, and block tumor formation in colon. However, the regulatory effect of P. distasonis on non-small cell lung cancer (NSCLC) remains unknown. This study aimed to investigate the regulatory effect of P. distasonis on NSCLC and its impact on tumor immunity. METHODS We first established a mouse model of Lewis lung cancer, and administered P. distasonis and intrabitoneal injection of anti-mouse PD-1 monoclonal antibody to assess the impact of P. distasonis on tumor immunity, and mouse intestinal barrier. Then, we explored the effect of P. distasonis on CD8+T cells and CXCL9 secretion mediated by tumor-associated macrophages (TAM). We used the TLR1/2 complex inhibitor CPT22 to evaluate its effect on macrophage activation. Finally, we explored the effect of P. distasonis on CD8+T cells and CXCL9 secreted by TAM in vivo. RESULTS In vivo, P. distasonis enhanced anti-tumor effects of anti-PD-1 in NSCLC mice, improved intestinal barrier integrity, recruited macrophages, and promoted M1 polarization. In vitro, CD86 and iNOS levels in BMDM were elevated and CD206 and Arg1 levels were suppressed in membrane fraction of P. distasonis (PdMb) group in comparison to Control group. With additional CPT22 pre-treatment, the levels of CD86 and iNOS in BMDM were reduced, and the levels of CD206 and Arg1 were increased. Compared to PBS group, P. distasonis group exhibited higher proportion of CD8+T cells in tumor tissues, along with increased positive proportion of GZMB and IFN-γ in CD8+T cells. Additionally, in comparison to Control group, PdMb group showed an elevated proportion of GZMB+T and IFN-γ+T cells within CD8+T cells, and secretion of IFN-γ, TNF-α, perforin, and GZMB in CD8+T cell supernatant increased. Moreover, the proportion of CXCL9+F4/80+ macrophages in tumor tissues was higher in P. distasonis group compared to PBS group. In comparison to Control group, CXCL9 protein level in BMDM and CXCL9 secretion level in BMDM supernatant were increased in PdMb group. Finally, P. distasonis enhanced CD8+T cell activity by secreting CXCL9 from macrophages in vivo. CONCLUSIONS P. distasonis promoted CXCL9 secretion of TAM and enhanced CD8+T cell activity to trigger anti-tumor immunity against anti-PD-1 treatment in NSCLC mice.
Collapse
Affiliation(s)
- Zhijun Fan
- Department of Cardiothoracic Surgery, The People's Hospital of Liuyang, Changsha, China
| | - Zheng Yi
- Department of Cardiothoracic Surgery, The People's Hospital of Liuyang, Changsha, China
| | - Sheng Li
- Department of Gastrointestinal Surgery, The Central Hospital of Shaoyang, Shaoyang, China
| | - Junjun He
- Department of Gastrointestinal Surgery, The Central Hospital of Shaoyang, Shaoyang, China.
| |
Collapse
|
18
|
Sammallahti H, Rezasoltani S, Pekkala S, Kokkola A, Asadzadeh Agdaei H, Azizmohhammad Looha M, Ghanbari R, Zamani F, Sadeghi A, Sarhadi VK, Tiirola M, Puolakkainen P, Knuutila S. Fecal profiling reveals a common microbial signature for pancreatic cancer in Finnish and Iranian cohorts. Gut Pathog 2025; 17:24. [PMID: 40241224 PMCID: PMC12001732 DOI: 10.1186/s13099-025-00698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) presents a significant challenge in oncology because of its late-stage diagnosis and limited treatment options. The inadequacy of current screening methods has prompted investigations into stool-based assays and microbial classifiers as potential early detection markers. The gut microbiota composition of PC patients may be influenced by population differences, thereby impacting the accuracy of disease prediction. However, comprehensive profiling of the PC gut microbiota and analysis of these cofactors remain limited. Therefore, we analyzed the stool microbiota of 33 Finnish and 50 Iranian PC patients along with 35 Finnish and 34 Iranian healthy controls using 16S rRNA gene sequencing. We assessed similarities and differences of PC gut microbiota in both populations while considering sociocultural impacts and generated a statistical model for disease prediction based on microbial classifiers. Our aim was to expand the current understanding of the PC gut microbiota, discuss the impact of population differences, and contribute to the development of early PC diagnosis through microbial biomarkers. RESULTS Compared with healthy controls, PC patients presented reduced microbial diversity, with discernible microbial profiles influenced by factors such as ethnicity, demographics, and lifestyle. PC was marked by significantly higher abundances of facultative pathogens including Enterobacteriaceae, Enterococcaceae, and Fusobacteriaceae, and significantly lower abundances of beneficial bacteria. In particular, bacteria belonging to the Clostridia class, such as butyrate-producing Lachnospiraceae, Butyricicoccaceae, and Ruminococcaceae, were depleted. A microbial classifier for the prediction of pancreatic ductal adenocarcinoma (PDAC) was developed in the Iranian cohort and evaluated in the Finnish cohort, where it yielded a respectable AUC of 0.88 (95% CI 0.78, 0.97). CONCLUSIONS This study highlights the potential of gut microbes as biomarkers for noninvasive PC screening and the development of targeted therapies, emphasizing the need for further research to validate these findings in diverse populations. A comprehensive understanding of the role of the gut microbiome in PC could significantly enhance early detection efforts and improve patient outcomes.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Surgery, Abdominal Center, University of Helsinki, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Sama Rezasoltani
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074, Aachen, Germany
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland
| | - Hamid Asadzadeh Agdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717411, Tehran, Iran
| | - Mehdi Azizmohhammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717411, Tehran, Iran
| | - Reza Ghanbari
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Marja Tiirola
- Department of Environmental and Biological Sciences, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
- BiopSense Oy, Eeronkatu 10, 40720, Jyväskylä, Finland
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, University of Helsinki, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
19
|
Kim Y, Ki MS, Shin MH, Choi JS, Park MS, Kim Y, Oh CM, Lee SH. Thrombospondin-1 modulation by Bifidobacterium spp. mitigates lung damage in an acute lung injury mouse model. Microbiol Res 2025; 297:128173. [PMID: 40267843 DOI: 10.1016/j.micres.2025.128173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/18/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Our study shows that Bifidobacterium spp. supplementation reduces lung damage in acute lung injury by enhancing immune cell activity and restoring thrombospondin-1 levels, offering a promising therapeutic approach for the treatment of ALI/ARDS. BACKGROUND Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are critical conditions characterized by severe lung inflammation and damage, often exacerbated by mechanical ventilation. Probiotics, particularly those containing Bifidobacterium spp. (Bifidus) have shown promise in modulating immune responses and reducing inflammation. METHODS In this study, we investigated the effects of Bifidus supplementation in a mouse model of lipopolysaccharide induced ALI and ventilator-induced lung injury. RESULTS Our results demonstrate that Bifidus significantly ameliorates lung injury by enhancing efferocytosis and reducing pro-inflammatory cytokine levels. Single-cell RNA sequencing revealed significant changes in lung immune cell populations, particularly macrophages and monocytes, which showed increased efferocytosis activity and modulation of key signaling pathways such as TNF, MAPK and TLR. Notably, Bifidus feeding restored thrombospondin-1 levels in lung tissue, facilitating clearance of apoptotic cells and promoting resolution of inflammation. CONCLUSIONS Overall, our study highlights the potential of Bifidus as a therapeutic strategy to mitigate lung injury in ALI/ARDS.
Collapse
Affiliation(s)
- Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Min Seo Ki
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Pulmonology and Allergy, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, Republic of Korea
| | - Mi Hwa Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Pulmonology and Allergy, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, Republic of Korea
| | - Ji Soo Choi
- Division of Pulmonology and Allergy, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, Republic of Korea; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Pulmonology and Allergy, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, Republic of Korea
| | - Yeongmin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Pulmonology and Allergy, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang-si, Republic of Korea.
| |
Collapse
|
20
|
Abken H. CAR T cell therapies in gastrointestinal cancers: current clinical trials and strategies to overcome challenges. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01062-y. [PMID: 40229574 DOI: 10.1038/s41575-025-01062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/16/2025]
Abstract
Despite multimodal treatment options, most gastrointestinal cancers are still associated with high mortality rates and poor responsiveness to immunotherapy. The unprecedented efficacy of chimeric antigen receptor (CAR)-engineered T cells in the treatment of haematological malignancies raised interest in translating CAR T cell therapies to the treatment of gastrointestinal cancers. Treatment of solid cancers with canonical CAR T cells faces substantial challenges, including the dense architecture of the tumour tissue, the tolerogenic environment with low tumour-intrinsic immunogenicity, the rareness of targetable tumour-selective antigens, the antigenic heterogeneity of cancer cells, and the profound metabolic and immune cell disbalances. This Review provides an overview of CAR T cell trials in the treatment of gastrointestinal cancers, discussing considerations relating to safety, efficacy, potential reasons for failure and options for improving CAR T cells for the future. In addition, lessons regarding how to improve efficacy are drawn from CAR T cells armed with adjuvants that sustain their activation within the hostile environment and activate resident immune cells. As the field is rapidly evolving, current treatment modalities and editing CAR T cell functionalities are being refined towards a potentially more successful CAR T cell therapy for gastrointestinal cancers.
Collapse
Affiliation(s)
- Hinrich Abken
- Leibniz Institute for Immunotherapy, Genetic Immunotherapy Division, Regensburg, Germany.
- Genetic Immunotherapy, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
21
|
Wang SL, Chan TA. Navigating established and emerging biomarkers for immune checkpoint inhibitor therapy. Cancer Cell 2025; 43:641-664. [PMID: 40154483 DOI: 10.1016/j.ccell.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have improved outcomes of patients with many different cancers. These antibodies target molecules such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4) which normally function to limit immune activity. Treatment with ICIs reactivates T cells to destroy tumor cells in a highly specific manner, which in some patients, results in dramatic remissions and durable disease control. Over the last decade, much effort has been directed at characterizing factors that drive efficacy and resistance to ICI therapy. Food and Drug Administration (FDA)-approved biomarkers for ICI therapy have facilitated more judicious treatment of cancer patients and transformed the field of precision oncology. Yet, adaptive immunity against cancers is complex, and newer data have revealed the potential utility of other biomarkers. In this review, we discuss the utility of currently approved biomarkers and highlight how emerging biomarkers can further improve the identification of patients who benefit from ICIs.
Collapse
Affiliation(s)
- Stephen L Wang
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA.
| |
Collapse
|
22
|
Du J, Guan Y, Zhang E. Regulatory role of gut microbiota in immunotherapy of hepatocellular carcinoma. Hepatol Int 2025:10.1007/s12072-025-10822-6. [PMID: 40229514 DOI: 10.1007/s12072-025-10822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/07/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND The gut microbiota plays a role in triggering innate immunity and regulating the immune microenvironment (IME) of hepatocellular carcinoma (HCC) by acting on various signaling receptors and transcription factors through its metabolites and related molecules. Furthermore, there is an increasing recognition of the gut microbiota as a potential therapeutic target for HCC, given its ability to modulate the efficacy of immune checkpoint inhibitors (ICIs). OBJECTIVE This review will discuss the mechanisms of gut microbiota in modulating immunotherapy of HCC, the predictive value of efficacy, and the therapeutic strategies for modulating the gut microbiota in detail. METHODS We conducted a systematic literature search in PubMed, Embase, Scopus, Cochrane Library, China National Knowledge Infrastructure, and Wanfang Chinese databases for articles involving the influence of gut microbiota on HCC immunotherapy. RESULTS The mechanisms underlying the effect of gut microbiota on HCC immunotherapy include gut-liver axis, tumor immune microenvironment (TIME), and antibodies. Patients who benefit from ICIs exhibit a higher abundance of gut microbiota. Antibiotics, fecal microbiota transplantation (FMT), probiotics, and prebiotics are effective methods to regulate gut microbiota. CONCLUSION The strong connection between the liver and gut will provide numerous opportunities for the development of microbiome-based diagnostics, treatments, or prevention strategies for HCC patients.
Collapse
Affiliation(s)
- Jiajia Du
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yan Guan
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| |
Collapse
|
23
|
Preet R, Islam MA, Shim J, Rajendran G, Mitra A, Vishwakarma V, Kutz C, Choudhury S, Pathak H, Dai Q, Sun W, Madan R, Zhong C, Markiewicz MA, Zhang J. Gut commensal Bifidobacterium-derived extracellular vesicles modulate the therapeutic effects of anti-PD-1 in lung cancer. Nat Commun 2025; 16:3500. [PMID: 40221398 PMCID: PMC11993705 DOI: 10.1038/s41467-025-58553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Although immunotherapy such as anti-programmed death-1 and its ligand 1 (PD-1/L1) is a standard treatment for advanced non-small cell lung cancer (NSCLC), many patients do not derive benefit directly. Several studies have elucidated new strategies to improve the antitumor immune response through gut microbiota modulation. However, it remains largely debatable regarding how gut microbiota remotely affect lung cancer microenvironment and subsequently modulate immunotherapy response. Here we show that commensal Bifidobacterium-derived extracellular vesicles (Bif.BEVs) can modulate the therapeutic effect of anti-PD-1 therapy in NSCLC. These Bif.BEVs are up-taken by lung cancer cells predominantly via dynamin-dependent endocytosis and upregulate PD-L1 expression through TLR4-NF-κB pathway. They also efficiently penetrate murine intestinal and patient-derived lung cancer organoids. Oral gavage of these Bif.BEVs result in their accumulation in tumors in mice. Using a syngeneic mouse model, Bif.BEVs are found to synergize the anti-tumor effect of anti-PD-1 via modulation of key cytokines, immune response and oncogenic pathways, and increase in tumor-infiltrating CD8+ T cells. Our study therefore identifies a link between Bif.BEVs and the tumor microenvironment, providing an alternative mechanism to explain how gut microbiota can influence immunotherapy response, particularly in tumors located anatomically distant from the gut.
Collapse
Affiliation(s)
- Ranjan Preet
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Md Atiqul Islam
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jiyoung Shim
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ganeshkumar Rajendran
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Amrita Mitra
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Vikalp Vishwakarma
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Caleb Kutz
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sonali Choudhury
- Department of Cancer Biology, University of Kansas Comprehensive Cancer Center, Kansas City, KS, 66160, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Qun Dai
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Weijing Sun
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, 66045, USA
| | - Mary A Markiewicz
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Cancer Biology, University of Kansas Comprehensive Cancer Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
24
|
Lee J, McClure S, Weichselbaum RR, Mimee M. Designing live bacterial therapeutics for cancer. Adv Drug Deliv Rev 2025; 221:115579. [PMID: 40228606 DOI: 10.1016/j.addr.2025.115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Humans are home to a diverse community of bacteria, many of which form symbiotic relationships with their host. Notably, tumors can also harbor their own unique bacterial populations that can influence tumor growth and progression. These bacteria, which selectively colonize hypoxic and acidic tumor microenvironments, present a novel therapeutic strategy to combat cancer. Advancements in synthetic biology enable us to safely and efficiently program therapeutic drug production in bacteria, further enhancing their potential. This review provides a comprehensive guide to utilizing bacteria for cancer treatment. We discuss key considerations for selecting bacterial strains, emphasizing their colonization efficiency, the delicate balance between safety and anti-tumor efficacy, and the availability of tools for genetic engineering. We also delve into strategies for precise spatiotemporal control of drug delivery to minimize adverse effects and maximize therapeutic impact, exploring recent examples of engineered bacteria designed to combat tumors. Finally, we address the underlying challenges and future prospects of bacterial cancer therapy. This review underscores the versatility of bacterial therapies and outlines strategies to fully harness their potential in the fight against cancer.
Collapse
Affiliation(s)
- Jaehyun Lee
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Sandra McClure
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee On Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago 60637, USA; The Ludwig Center for Metastasis Research, University of Chicago, Chicago 60637, USA
| | - Mark Mimee
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee On Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Liu S, Liu J, Mei Y, Zhang W. Gut microbiota affects PD-L1 therapy and its mechanism in melanoma. Cancer Immunol Immunother 2025; 74:169. [PMID: 40214675 PMCID: PMC11992302 DOI: 10.1007/s00262-025-04018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 blockade, have shown great success in treating melanoma. PD-L1 (B7-H1, CD274), a ligand of PD-1, binds to PD-1 on T cells, inhibiting their activation and proliferation through multiple pathways, thus dampening tumor-reactive T cell activity. Studies have linked PD-L1 expression in melanoma with tumor growth, invasion, and metastasis, making the PD-1/PD-L1 pathway a critical target in melanoma therapy. However, immune-related adverse events are common, reducing the effectiveness of anti-PD-L1 treatments. Recent evidence suggests that the gut microbiome significantly influences anti-tumor immunity, with the microbiome potentially reprogramming the tumor microenvironment and overcoming resistance to anti-PD-1 therapies in melanoma patients. This review explores the mechanisms of PD-1/PD-L1 in melanoma and examines how gut microbiota and its metabolites may help address resistance to anti-PD-1 therapy, offering new insights for improving melanoma treatment strategies.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jiahui Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yingwu Mei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Wenjuan Zhang
- Beijing Life Science Academy (BLSA), Beijing, China.
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China.
| |
Collapse
|
26
|
Lu C, Wang X, Chen X, Qin T, Ye P, Liu J, Wang S, Luo W. Causal Analysis Between Gut Microbes, Aging Indicator, and Age-Related Disease, Involving the Discovery and Validation of Biomarkers. Aging Cell 2025:e70057. [PMID: 40202110 DOI: 10.1111/acel.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
The influence of gut microbes on aging has been reported in several studies, but the mediating pathways of gut microbiota, whether there is a causal relationship between the two, and biomarker screening and validation have not been fully discussed. In this study, Mendelian Randomization (MR) and Linkage Disequilibrium Score Regression (LDSC) are used to systematically investigate the associations between gut microbiota, three aging indicators, and 14 age-related diseases. Additionally, this study integrates machine learning algorithms to explore the potential of MR and LDSC methods for biomarker screening. Gut microbiota is found to be a potential risk factor for 14 age-related diseases. The causal effects of gut microbiota on chronic kidney disease, cirrhosis, and heart failure are partially mediated by aging indicators. Additionally, gut microbiota identified through MR and LDSC methods exhibit biomarker properties for disease prediction (average AUC = 0.731). These methods can serve as auxiliary tools for conventional biomarker screening, effectively enhancing the performance of disease models (average AUC increased from 0.808 to 0.832). This study provides evidence that supports the association between the gut microbiota and aging and highlights the potential of genetic correlation and causal relationship analysis in biomarker discovery. These findings may help to develop new approaches for healthy aging detection and intervention.
Collapse
Affiliation(s)
- Chunrong Lu
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone, Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Xiaojun Wang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone, Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- Guangxi Key Laboratory of Longevity Science and Technology, Nanning, Guangxi, P.R. China
| | - Xiaochun Chen
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone, Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- Guangxi Key Laboratory of Longevity Science and Technology, Nanning, Guangxi, P.R. China
| | - Tao Qin
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone, Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Pengpeng Ye
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone, Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- Guangxi Key Laboratory of Longevity Science and Technology, Nanning, Guangxi, P.R. China
| | - Jianqun Liu
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone, Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Shuai Wang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone, Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Weifei Luo
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone, Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- Guangxi Key Laboratory of Longevity Science and Technology, Nanning, Guangxi, P.R. China
| |
Collapse
|
27
|
Wang X, Geng Q, Jiang H, Yue J, Qi C, Qin L. Fecal microbiota transplantation enhanced the effect of chemoimmunotherapy by restoring intestinal microbiota in LLC tumor-bearing mice. BMC Immunol 2025; 26:30. [PMID: 40200137 PMCID: PMC11978186 DOI: 10.1186/s12865-025-00710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE To assess the effect of half-dose chemotherapy (HDC) and standard-dose chemotherapy (SDC) on the intestinal microbiota and to investigate whether fecal microbiota transplantation (FMT) can restore the intestinal microecology to enhance the efficacy of chemoimmunotherapy containing an anti-PD- 1 antibody (PD1). METHODS Lewis lung cancer (LLC) tumor-bearing mice were divided into six groups, including Control, HDC, SDC, SDC + FMT, SDC + PD1, and SDC + PD1 + FMT. After the treatment, analyses were conducted on intestinal microbiota using 16S rRNA sequencing, immune cells through flow cytometry, cytokines and chemokines via polymerase chain reaction (PCR), and programmed death-ligand 1 (PD-L1) expression in tumor tissues by immunohistochemistry. RESULTS Alpha and beta diversity of intestinal flora were not significantly different between HDC and SDC groups, nor was there a significant difference in the abundance of the top 10 species at the phylum, class, order, family, genus, or species levels. FMT increased both alpha and beta diversity and led to an increase in the abundance of Ruminococcus_callidus and Alistipes_finegoldii at the species level in mice receiving SDC + FMT. Besides, tumor growth was significantly slowed in SDC + PD1 + FMT compared to SDC + PD1 group, accompanied by an up-regulated Bacteroidetes/Firmicutes ratio, down-regulated abundance of Proteobacteria species (including Pseudolabrys, Comamonas, Alcaligenaceae, Xanthobacteraceae and Comamonadaceae), as well as Faecalicoccus of Firmicutes, the increased number of cDC1 cells, cDC2 cells, CD4+ T cells and CD8+ T cells in the peripheral blood, and IFN-γ+CD8+ T cells, IFN-γ, granzyme B, TNF-α, CXCL9 and CXCL10 in intestinal tissues. CONCLUSIONS There were no significant differences between HDC and SDC in their effects on the intestinal microbiota. FMT exhibited a beneficial impact on gut microbiota and improved the efficacy of chemoimmunotherapy, possibly associated with the increase of immune cells and the modulation of related cytokines and chemokines.
Collapse
Affiliation(s)
- Xinmeng Wang
- Department of Oncology, Changzhou No.2 People's Hospital, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Qian Geng
- Department of Oncology, Changzhou No.2 People's Hospital, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Hua Jiang
- Department of Oncology, Changzhou No.2 People's Hospital, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Jingyan Yue
- Department of Oncology, Changzhou No.2 People's Hospital, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Chunjian Qi
- Department of Oncology, Changzhou No.2 People's Hospital, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Lanqun Qin
- Department of Oncology, Changzhou No.2 People's Hospital, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213000, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
28
|
Chen C, Wang X, Han X, Peng L, Zhang Z. Gut microbiota and gastrointestinal tumors: insights from a bibliometric analysis. Front Microbiol 2025; 16:1558490. [PMID: 40264971 PMCID: PMC12012581 DOI: 10.3389/fmicb.2025.1558490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Despite the growing number of studies on the role of gut microbiota in treating gastrointestinal tumors, the overall research trends in this field remain inadequately characterized. Methods A bibliometric analysis was conducted using publications retrieved from the Web of Science Core Collection (up to September 30, 2024). Analytical tools including VOSviewer, CiteSpace, and an online bibliometric platform were employed to evaluate trends and hotspots. Results Analysis of 1,421 publications revealed significant geographical disparities in research output, with China and the United States leading contributions. Institutionally, the University of Adelaide, Zhejiang University, and Shanghai Jiao Tong University were prominent contributors. Authorship analysis identified Hannah R. Wardill as the most prolific author, while the International Journal of Molecular Sciences emerged as a leading journal. Rapidly growing frontiers include "proliferation," "inhibition," "immunotherapy," "drug delivery," and "tumorigenesis." Discussion This study provides a comprehensive overview of research trends and highlights emerging directions, aiming to advance scientific and clinical applications of gut microbiota in gastrointestinal tumor therapy.
Collapse
Affiliation(s)
- Chaofan Chen
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaolan Wang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xu Han
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lifan Peng
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhiyun Zhang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
29
|
Konishi H, Saito T, Takahashi S, Tanaka H, Okuda K, Akutsu H, Dokoshi T, Sakatani A, Takahashi K, Ando K, Kashima S, Ueno N, Moriichi K, Ogawa N, Fujiya M. The butyrate derived from probiotic Clostridium butyricum exhibits an inhibitory effect on multiple myeloma through cell death induction. Sci Rep 2025; 15:11919. [PMID: 40195469 PMCID: PMC11976985 DOI: 10.1038/s41598-025-97038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by a poor prognosis. While certain probiotics have been shown to produce antitumor molecules that inhibit solid tumor progression, it remains unclear whether probiotic-derived compounds can exert similar effects on hematological tumors, such as MM. In this study, we screened the cell-free culture supernatants (CFCS) of 24 probiotic strains for antitumor effects against multiple myeloma (MM) cells and identified that the CFCS from Clostridium butyricum (C. butyricum) demonstrated the most significant reduction in MM cell viability. Further fractionation of this CFCS through reverse-phase and gel filtration chromatography revealed a high enrichment of butyrate in the antitumor fraction, as confirmed by gas chromatography-mass spectrometry. Butyrate reduced MM cell viability in a concentration-dependent manner. Butyrate was significantly more cytotoxic to RPMI-8226 cells than peripheral blood mononuclear cells (PBMCs) isolated from two non-cancerous individuals. In the xenograft model of RPMI-8226 cells, butyrate showed significant inhibition of tumor formation. Cell cycle analysis showed that butyrate induced G1 phase arrest and increased sub-G1 phase, suggesting DNA fragmentation. Western blot analysis demonstrated that butyrate treatment led to cleaved poly ADP-ribose polymerase (PARP) accumulation. Additionally, flow cytometry showed an increase in annexin V positive MM cells, indicating apoptosis. Butyrate also exhibited synergistic antitumor activity when combined with bortezomib, a proteasome inhibitor. These findings suggest that probiotic-derived molecules, including butyrate, may enhance the therapeutic effect of hematological malignancy, such as MM.
Collapse
Affiliation(s)
- Hiroaki Konishi
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Takeshi Saito
- Division of Hematology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Shuichiro Takahashi
- Division of Hematology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, 2-1 -1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Katsuhiro Okuda
- Department of Legal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroaki Akutsu
- Central Laboratory for Research and Education, Research Technology Support Center, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tatsuya Dokoshi
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Aki Sakatani
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Keitaro Takahashi
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Katsuyoshi Ando
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Shin Kashima
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Nobuhiro Ueno
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kentaro Moriichi
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Naoki Ogawa
- Central Laboratory for Research and Education, Research Technology Support Center, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Mikihiro Fujiya
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
30
|
Kim K, Lee M, Shin Y, Lee Y, Kim TJ. Optimizing Cancer Treatment Through Gut Microbiome Modulation. Cancers (Basel) 2025; 17:1252. [PMID: 40227841 PMCID: PMC11988035 DOI: 10.3390/cancers17071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome plays a pivotal role in modulating cancer therapies, including immunotherapy and chemotherapy. Emerging evidence demonstrates its influence on treatment efficacy, immune response, and resistance mechanisms. Specific microbial taxa enhance immune checkpoint inhibitor efficacy, while dysbiosis can contribute to adverse outcomes. Chemotherapy effectiveness is also influenced by microbiome composition, with engineered probiotics and prebiotics offering promising strategies to enhance drug delivery and reduce toxicity. Moreover, microbial metabolites, such as short-chain fatty acids, and engineered microbial systems have shown potential to improve therapeutic responses. These findings underscore the importance of personalized microbiome-based approaches in optimizing cancer treatments.
Collapse
Affiliation(s)
- Kyuri Kim
- College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul 03760, Republic of Korea;
| | - Mingyu Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoojin Shin
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoonji Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
31
|
Leigh J, Skidmore B, Wong A, Maleki Vareki S, Ng TL. Exploring the Microbiome's Impact on Glioma and Brain Metastases: Insights into Development, Progression, and Treatment Response-A Scoping Review. Cancers (Basel) 2025; 17:1228. [PMID: 40227812 PMCID: PMC11988003 DOI: 10.3390/cancers17071228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
Background: The human microbiome plays a crucial role in health and disease. Dysbiosis, an imbalance of microorganisms, has been implicated in cancer development and treatment response, including in primary brain tumors and brain metastases, through interactions mediated by the gut-brain axis. This scoping review synthesizes current evidence on the relationship between the human microbiome and brain tumors. Methods: A systematic search of five electronic databases was conducted by an expert librarian, using controlled vocabulary and keywords. A targeted grey literature search in Google Scholar and clinical trial registries was also undertaken. Eligible studies included primary research involving human patients, or in vivo, or in vitro models of glioma or brain metastasis, with a focus on the microbiome's role in tumor development, treatment response, and outcomes. Results: Out of 584 citations screened, 40 studies met inclusion criteria, comprising 24 articles and 16 conference abstracts. These included 12 human studies, 16 using mouse models, 7 combining both, and 5 employing large datasets or next-generation sequencing of tumor samples. Thirty-one studies focused on primary brain tumors, six on brain metastases, and three on both. Of the 20 studies examining dysbiosis in tumor development, 95% (n = 19) found an association with tumor growth. Additionally, 71.4% (n = 5/7) of studies reported that microbiome alterations influenced treatment efficacy. Conclusions: Although the role of the gut-brain axis in brain tumors is still emerging and is characterized by heterogeneity across studies, existing evidence consistently supports a relationship between the gut microbiome and both brain tumor development and treatment outcomes.
Collapse
Affiliation(s)
- Jennifer Leigh
- Division of Medical Oncology, Department of Medicine, The Ottawa Hospital Cancer Centre, Ottawa, ON K1Y 4E9, Canada;
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Becky Skidmore
- Skidmore Research & Information Consulting Inc., Ottawa, ON, Canada;
| | - Adrian Wong
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada;
- Verspeeten Family Cancer Centre, London Health Sciences Research Institute, London, ON N6A 5W9, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| | - Terry L. Ng
- Division of Medical Oncology, Department of Medicine, The Ottawa Hospital Cancer Centre, Ottawa, ON K1Y 4E9, Canada;
| |
Collapse
|
32
|
Li Y, Feng Z, Liang C, Lu S, Wang G, Meng G. The double-edged sword: impact of antibiotic use on immunotherapy efficacy in advanced hepatocellular carcinoma. BMC Gastroenterol 2025; 25:221. [PMID: 40186095 PMCID: PMC11969785 DOI: 10.1186/s12876-025-03819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
OBJECTIVE This retrospective study aims to evaluate the impact of antibiotics (ATBs) use on the efficacy of immunotherapy in patients with advanced hepatocellular carcinoma (HCC), providing insights into the prudent use of ATBs in patients undergoing immunotherapy. METHODS We retrospectively collected data from patients with advanced HCC treated with immune checkpoint inhibitors (ICIs) at our institution between January 1, 2021, and December 30, 2023. Patients were divided into two groups based on ATBs use: an ATB group and a non-ATB group. Clinical baseline characteristics were analyzed, and survival curves were plotted using the Kaplan-Meier model. A Cox proportional hazards model was employed to analyze influencing factors. RESULTS Among the 102 advanced HCC patients receiving ICIs treatment, 29 were in the ATB group, and 73 were in the non-ATB group. The progression-free survival (PFS) (P = 0.034) and overall survival (OS) (P = 0.021) were significantly shorter in the ATB group compared to the non-ATB group. The difference in PFS between the two groups was associated with ATBs use and patients' AFP levels, while ATBs use was identified as an independent risk factor for the difference in OS between the groups. CONCLUSION ATB use in the context of immunotherapy for advanced HCC is associated with reduced PFS and OS. Caution is warranted in the administration of ATBs to patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- Department of pharmacy, The First People's Hospital of Yulin, Guangxi, Yulin, 537000, China
| | - Ziwei Feng
- Department of pharmacy, The First People's Hospital of Yulin, Guangxi, Yulin, 537000, China
| | - Canhua Liang
- Department of pharmacy, The First People's Hospital of Yulin, Guangxi, Yulin, 537000, China
| | - Shaohuan Lu
- Department of pharmacy, The First People's Hospital of Yulin, Guangxi, Yulin, 537000, China
| | - GuangZhao Wang
- Department of pharmacy, The First People's Hospital of Yulin, Guangxi, Yulin, 537000, China
| | - Guangyi Meng
- Department of pharmacy, The First People's Hospital of Yulin, Guangxi, Yulin, 537000, China.
| |
Collapse
|
33
|
Nahm WJ, Sakunchotpanit G, Nambudiri VE. Abscopal Effects and Immunomodulation in Skin Cancer Therapy. Am J Clin Dermatol 2025:10.1007/s40257-025-00943-x. [PMID: 40180765 DOI: 10.1007/s40257-025-00943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Radiation therapy (RT) is a crucial modality in cancer treatment, functioning through direct DNA damage and immune stimulation. However, RT's effects extend beyond targeted cells, influencing neighboring cells through the bystander effect (ByE) and distant sites via the abscopal effect (AbE). The AbE, first described by Mole in 1953, encompasses biological reactions at sites distant from the irradiation field. While RT can enhance antitumor immune responses, it may also contribute to an immunosuppressive microenvironment. To address this limitation, combining RT with immune checkpoint inhibitors (ICIs) has gained renewed interest, aiming to amplify antitumor immune responses. Evidence of AbEs has been observed in various metastatic or advanced cutaneous cancers, including melanoma, basal cell carcinoma, cutaneous lymphoma, Merkel cell carcinoma, and cutaneous squamous cell carcinoma. Clinical studies suggest combining RT with ICIs targeting CTLA-4 and PD-1/PD-L1 may enhance AbE incidence in these cancers. This review primarily explores the current understanding of AbEs in skin cancers, briefly acknowledging the ByE focusing on combining RT with immunomodulation. It focuses on proposed mechanisms, preclinical and clinical evidence, challenges in clinical translation, and future directions for harnessing AbEs in managing advanced skin malignancies. Alternative modalities for inducing abscopal-like responses are also explored. While promising, challenges remain in consistently reproducing AbEs in clinical practice, necessitating further research to optimize treatment combinations, timing, and patient selection.
Collapse
Affiliation(s)
- William J Nahm
- New York University Grossman School of Medicine, New York, NY, USA.
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA.
| | - Goranit Sakunchotpanit
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Pascal-Moussellard V, Alcaraz JP, Tanguy S, Salomez-Ihl C, Cinquin P, Boucher F, Boucher E. Molecular hydrogen as a potential mediator of the antitumor effect of inulin consumption. Sci Rep 2025; 15:11482. [PMID: 40181080 PMCID: PMC11968927 DOI: 10.1038/s41598-025-96346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025] Open
Abstract
Inulin consumption and dihydrogen (H2) administration both exert antitumor effects on preclinical models as well as in clinical trials. As H2 is one of the major byproducts of inulin fermentation by bacterial species of the gut microbiota (GM), we hypothesized that H2 could mediate the antitumor effects of inulin. To provide evidence in favor of this hypothesis, we first determined the pattern of H2-exposure to which mice are subjected after inulin administration and developed an inhaled hydrogen therapy (H2T) protocol replicating this pattern. We then compared the effects on circulating immunity of a two-week daily inulin gavage with those of the corresponding H2T. We also compared the effects of inulin supplementation to those of the corresponding H2T on implanted melanoma growth and infiltration by T lymphocytes. Inulin and H2T induced a similar increase in circulating CD4+ and CD8+ T cells. In addition, both treatments similarly inhibited melanoma tumor growth. These results support a mechanism by which the H2 resulting from inulin fermentation by the GM diffuses across the intestinal barrier and stimulates the immunosurveillance responsible for the antitumor effect.
Collapse
Affiliation(s)
| | - Jean-Pierre Alcaraz
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, 38000, France
| | - Stéphane Tanguy
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, 38000, France
| | - Cordélia Salomez-Ihl
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, 38000, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, Inserm, Grenoble, CIC1406, 38000, France
| | - Philippe Cinquin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, 38000, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, Inserm, Grenoble, CIC1406, 38000, France
| | - François Boucher
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, 38000, France.
- Bâtiment Jean Roget, Université Grenoble Alpes, TIMC UMR, 5525, Equipe PRETA, La Tronche, 38700, France.
| | - Emilie Boucher
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, 38000, France
| |
Collapse
|
35
|
Huang M, Zhang Y, Chen Z, Yu X, Luo S, Peng X, Li X. Gut microbiota reshapes the TNBC immune microenvironment: Emerging immunotherapeutic strategies. Pharmacol Res 2025; 215:107726. [PMID: 40184763 DOI: 10.1016/j.phrs.2025.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treatment options and poor prognosis. The gut microbiota, a diverse community of microorganisms in the gastrointestinal tract, plays a crucial role in regulating immune responses through the gut-immune axis. Recent studies have highlighted its significant impact on TNBC progression and the efficacy of immunotherapies. This review examines the interactions between gut microbiota and the immune system in TNBC, focusing on key immune cells and pathways involved in tumor immunity. It also explores microbiota modulation strategies, including probiotics, prebiotics, dietary interventions, and fecal microbiota transplantation, as potential methods to enhance immunotherapeutic outcomes. Understanding these mechanisms offers promising avenues for improving treatment efficacy and patient prognosis in TNBC.
Collapse
Affiliation(s)
- Mingyao Huang
- School of Basic Medicine, Putian University, Putian, Fujian 351100, China
| | - Yikai Zhang
- School of Basic Medicine, Putian University, Putian, Fujian 351100, China
| | - Zhaoji Chen
- School of Basic Medicine, Putian University, Putian, Fujian 351100, China
| | - Xin Yu
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian 350011, China
| | - Shiping Luo
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian 350011, China.
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management, China.
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning 110122, China; Department of Physiologyand Pharmacology, Karolinska Institutet, Solna 171 65, Sweden.
| |
Collapse
|
36
|
Roichman A, Reyes-Castellanos G, Chen Z, Chen Z, Mitchell SJ, MacArthur MR, Sawant A, Levett L, Powers J, Gomez M, Ibrahim M, Xu X, Tomlinson B, Hang X, Wei Y, Kang Y, White E, Rabinowitz JD. Lack of consistent effect of dietary fiber on immune checkpoint blockade efficacy across diverse murine tumor models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645975. [PMID: 40235983 PMCID: PMC11996298 DOI: 10.1101/2025.03.28.645975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Immune checkpoint blockade (ICB) has transformed cancer treatment, but success rates remain low in most cancers. Recent research suggest that dietary fiber enhances ICB response in melanoma patients and murine preclinical models through microbiome-dependent mechanisms. Yet, the robustness of this effect across cancer types and dietary contexts remains unclear. Specifically, prior literature compared grain-based chow (high fiber) to low-fiber purified diet, but these diets differ also on other dimensions including phytochemicals. Here we investigated, in mice fed grain-based chow or purified diets with differing quantities of isolated fibers (cellulose and inulin), metabolite levels and ICB activity in multiple tumor models. The blood and fecal metabolome were relatively similar between mice fed high- and low-fiber purified diets, but differed massively between mice fed purified diets or chow, identifying the factor as diet type, independent of fiber. Tumor growth studies in three implantable and two spontaneous genetically engineered tumor models revealed that fiber has a weaker impact on ICB (anti-PD-1) efficacy than previously reported. In some models, dietary modulation impacted ICB activity, but not in a consistent direction across models. In none of the models did we observe the pattern expected if fiber controlled ICB efficacy: strong efficacy in both chow and high-fiber purified diet but low efficacy in low-fiber purified diet. Thus, dietary fiber appears to have limited or inconsistent effect on ICB efficacy in mouse models, and other dietary factors that correlate with fiber intake may underlie the clinical correlations between fiber consumption and immunotherapy outcomes.
Collapse
|
37
|
Zhou K, Liu Y, Tang C, Zhu H. Pancreatic Cancer: Pathogenesis and Clinical Studies. MedComm (Beijing) 2025; 6:e70162. [PMID: 40182139 PMCID: PMC11965705 DOI: 10.1002/mco2.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy, with pancreatic ductal adenocarcinoma (PDAC) being the most common and aggressive subtype, characterized by late diagnosis, aggressive progression, and resistance to conventional therapies. Despite advances in understanding its pathogenesis, including the identification of common genetic mutations (e.g., KRAS, TP53, CDKN2A, SMAD4) and dysregulated signaling pathways (e.g., KRAS-MAPK, PI3K-AKT, and TGF-β pathways), effective therapeutic strategies remain limited. Current treatment modalities including chemotherapy, targeted therapy, immunotherapy, radiotherapy, and emerging therapies such as antibody-drug conjugates (ADCs), chimeric antigen receptor T (CAR-T) cells, oncolytic viruses (OVs), cancer vaccines, and bispecific antibodies (BsAbs), face significant challenges. This review comprehensively summarizes these treatment approaches, emphasizing their mechanisms, limitations, and potential solutions, to overcome these bottlenecks. By integrating recent advancements and outlining critical challenges, this review aims to provide insights into future directions and guide the development of more effective treatment strategies for PC, with a specific focus on PDAC. Our work underscores the urgency of addressing the unmet needs in PDAC therapy and highlights promising areas for innovation in this field.
Collapse
Affiliation(s)
- Kexun Zhou
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Yingping Liu
- Department of RadiotherapyCancer HospitalChinese Academy of Medical SciencesBeijingChina
| | - Chuanyun Tang
- The First Clinical Medical College of Nanchang UniversityNanchang UniversityNanchangChina
| | - Hong Zhu
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
38
|
Luri-Rey C, Teijeira Á, Wculek SK, de Andrea C, Herrero C, Lopez-Janeiro A, Rodríguez-Ruiz ME, Heras I, Aggelakopoulou M, Berraondo P, Sancho D, Melero I. Cross-priming in cancer immunology and immunotherapy. Nat Rev Cancer 2025; 25:249-273. [PMID: 39881005 DOI: 10.1038/s41568-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Cytotoxic T cell immune responses against cancer crucially depend on the ability of a subtype of professional antigen-presenting cells termed conventional type 1 dendritic cells (cDC1s) to cross-present antigens. Cross-presentation comprises redirection of exogenous antigens taken from other cells to the major histocompatibility complex class I antigen-presenting machinery. In addition, once activated and having sensed viral moieties or T helper cell cooperation via CD40-CD40L interactions, cDC1s provide key co-stimulatory ligands and cytokines to mount and sustain CD8+ T cell immune responses. This regulated process of cognate T cell activation is termed cross-priming. In cancer mouse models, CD8+ T cell cross-priming by cDC1s is crucial for the efficacy of most, if not all, immunotherapy strategies. In patients with cancer, the presence and abundance of cDC1s in the tumour microenvironment is markedly associated with the level of T cell infiltration and responsiveness to immune checkpoint inhibitors. Therapeutic strategies to increase the numbers of cDC1s using FMS-like tyrosine kinase 3 ligand (FLT3L) and/or their activation status show evidence of efficacy in cancer mouse models and are currently being tested in initial clinical trials with promising results so far.
Collapse
Affiliation(s)
- Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Claudia Herrero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Ignacio Heras
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Departments of Immunology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
39
|
Golshani M, Taylor JA, Woolbright BL. Understanding the microbiome as a mediator of bladder cancer progression and therapeutic response. Urol Oncol 2025; 43:254-265. [PMID: 39117491 DOI: 10.1016/j.urolonc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Bladder cancer (BCa) remains a significant source of morbidity and mortality. BCa is one of the most expensive tumors to treat, in part because of a lack of nonsurgical options. The recent advent of immunotherapy, alone or in combination with other compounds, has improved therapeutic options. Resistance to immunotherapy remains common, and many patients do not have durable response. Recent advances indicate immunotherapy efficacy may be tied in part to the endogenous bacteria present in our body, more commonly referred to as the microbiome. Laboratory and clinical data now support the idea that a healthy microbiome is critical to effective response to immunotherapy. At the same time, pathogenic interactions between the microbiome and immune cells can also serve to drive formation of tumors, increasing the complexity of these interactions. Given the rising importance of immunotherapy in BCa, understanding how we might be able to alter the microbiome to improve therapeutic efficacy offers a novel route to improved patient care. The goal of this review is to examine our current understanding of microbial interactions with the immune system and cancer with an emphasis on BCa. We will further attempt to define both current gaps in knowledge and future directions that may yield beneficial results to the field.
Collapse
Affiliation(s)
- Mahgol Golshani
- School of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | | |
Collapse
|
40
|
Chalif J, Goldstein N, Mehra Y, Spakowicz D, Chambers LM. The Role of the Microbiome in Cancer Therapies: Current Evidence and Future Directions. Hematol Oncol Clin North Am 2025; 39:269-294. [PMID: 39856008 DOI: 10.1016/j.hoc.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
The microbiome is essential for maintaining human health and is also a key factor in the development and progression of various diseases, including cancer. Growing evidence has highlighted the microbiome's significant impact on cancer development, progression, and treatment outcomes. As research continues to unfold, the microbiome and its modulation stand out as a promising frontier in cancer research and therapy. This review highlights current literature on the interplay between various cancer treatment modalities and human microbiotas, focusing on how the microbiome may affect treatment efficacy and toxicity and its potential as a therapeutic target to enhance future outcomes.
Collapse
Affiliation(s)
- Julia Chalif
- Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Naomi Goldstein
- Division of Obstetrics & Gynecology, The Ohio State University, Columbus, OH, USA
| | - Yogita Mehra
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Dan Spakowicz
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Laura M Chambers
- Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
41
|
Liu J, Ye Z, Zhang Y, Su W, Liu J, Chen T, Shi Y, Liu L, Lu J, Cai Z, Zhong Q, Wang P, Pu J, Liu J, Wei Y, Pan H, Zhu H, Deng K, Wang R, Lu L, Hu X, Yao Y. Exploring the gut microbiome and serum metabolome interplay in non-functioning pituitary neuroendocrine tumors. Front Microbiol 2025; 16:1541683. [PMID: 40236482 PMCID: PMC11997625 DOI: 10.3389/fmicb.2025.1541683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
The gut microbiome has emerged as a potential factor in cancer pathogenesis, but its role in non-functioning pituitary neuroendocrine tumors (NF-PitNETs) remains unclear. This study aimed to elucidate gut microbiome and metabolomic alterations in NF-PitNETs by comparing microbial diversity, pathogenic bacteria, and serum metabolomic profiles between NF-PitNET patients and healthy controls. The gut microbiome was assessed through 16S rRNA sequencing, while serum metabolomics was analyzed using mass spectrometry. Correlation analyses identified potential links between microbial characteristics and metabolic markers. The results revealed that specific pathogenic bacteria, such as Bacteroides, were significantly enriched in NF-PitNET patients. Multi-omics correlations suggested that altered microbiota might contribute to NF-PitNET pathogenesis by modulating host metabolic pathways. These findings highlight the potential role of gut microbiome dysbiosis and its metabolic effects in NF-PitNET development, offering insights into possible therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Jifang Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhang Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wan Su
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianqi Chen
- State Key Laboratory for Complex Severe and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanan Shi
- State Key Laboratory for Complex Severe and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lulu Liu
- State Key Laboratory for Complex Severe and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiao Lu
- State Key Laboratory for Complex Severe and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zian Cai
- State Key Laboratory for Complex Severe and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Zhong
- State Key Laboratory for Complex Severe and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Wang
- State Key Laboratory for Complex Severe and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Pu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghua Liu
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Wei
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Lin Lu
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaomin Hu
- State Key Laboratory for Complex Severe and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Pituitary Disease Innovative Diagnosis and Treatment Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Chang Y, Long M, Shan H, Liu L, Zhong S, Luo JL. Combining gut microbiota modulation and immunotherapy: A promising approach for treating microsatellite stable colorectal cancer. Crit Rev Oncol Hematol 2025; 208:104629. [PMID: 39864533 DOI: 10.1016/j.critrevonc.2025.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal cancers worldwide, ranking third in incidence and second in mortality. While immunotherapy has shown promise in patients with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H), its effectiveness in proficient mismatch repair (pMMR) or microsatellite stable (MSS) CRC remains limited. Recent advances highlight the gut microbiota as a potential modulator of anti-tumor immunity. The gut microbiome can significantly influence the efficacy of immune checkpoint inhibitors (ICIs), especially in pMMR/MSS CRC, by modulating immune responses and systemic inflammation. This review explores the role of the gut microbiota in pMMR/MSS CRC, the mechanisms by which it may enhance immunotherapy, and current strategies for microbiota modulation. We discuss the potential benefits of combining microbiota-targeting interventions with immunotherapy to improve treatment outcomes for pMMR/MSS CRC patients.
Collapse
Affiliation(s)
- Yujie Chang
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Min Long
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Hanguo Shan
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hunan 410008, China.
| |
Collapse
|
43
|
Chen Y, Li P, Huang W, Yang N, Zhang X, Cai K, Chen Y, Xie Z, Gong J, Liao Q. Structural characterization and immunomodulatory activity of an exopolysaccharide isolated from Bifidobacterium adolescentis. Int J Biol Macromol 2025; 304:140747. [PMID: 39922339 DOI: 10.1016/j.ijbiomac.2025.140747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Bifidobacterium adolescentis is a key probiotic that has been proven to possess various bioactivities. A water-soluble heteropolysaccharide (BEP-1A) was isolated from the probiotic and systematically investigated for the first time. The molecular weight of BEP-1A was calculated to be 9.69 × 106 Da. Combined with monosaccharide composition, Fourier transform infrared (FT-IR) spectroscopy, methylation and nuclear magnetic resonance (NMR) analysis, BEP-1A was composed of mannose, glucose and galactose at a molar ratio of 0.11⁚4.30⁚1.32. The backbone included β-1,2-Glcp, β-1,3-Glcp, α-1,4-Glcp, α-1,4-Galp, α-1,6-Galp and α-1,3-Manp, with the branch at the O-2 position of α-1,6-Galp, consisting of α-1,2-Galp and α-1-Glcp. Moreover, a filamentous structure of BEP-1A was detected by scanning electron microscopy (SEM). BEP-1A presented high thermal stability based on thermogravimetric analysis (TGA). X-ray diffractometry (XRD) results revealed that BEP-1A was an amorphous molecule without a crystal structure. Furthermore, BEP-1A significantly increased the viability of RAW 264.7 macrophages, improved phagocytosis, and promoted the secretion of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). BEP-1A was also found to induce the nuclear translocation of the NF-κB subunit p65 and upregulate the phosphorylation of p65 and IκB-α, which suggested that the NF-κB pathway was involved in the BEP-1A-induced immunomodulatory effect. Overall, this study provides a theoretical basis for the development of BEP-1A as an immunomodulator in pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangming District, Gongchang Road, Shenzhen, Guangdong Province 518106, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
44
|
Zugman M, Wong M, Jaime-Casas S, Pal SK. The gut microbiome and dietary metabolites in the treatment of renal cell carcinoma. Urol Oncol 2025; 43:244-253. [PMID: 39095306 DOI: 10.1016/j.urolonc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The gut microbiome is interlinked with renal cell carcinoma (RCC) and its response to systemic treatment. Mounting data suggests that certain elements of the gut microbiome may correlate with improved outcomes. New generation sequencing techniques and advanced bioinformatic data curation are accelerating the investigation of specific markers and metabolites that could predict treatment response. A variety of new therapeutic strategies, such as fecal microbiota transplantation, probiotic supplements, and dietary interventions, are currently being developed to modify the gut microbiome and improve anticancer therapies in patients with RCC. This review discusses the preliminary evidence indicating the role of the microbiome in cancer treatment, the techniques and tools necessary for its proper study and some of the current forms with which the microbiome can be modulated to improve patient outcomes.
Collapse
Affiliation(s)
- Miguel Zugman
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA; Centro de Oncologia e Hematologia Família Dayan-Daycoval Einstein, Hospital Israelita Albert, São Paulo, São Paulo, Brazil
| | - Megan Wong
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Salvador Jaime-Casas
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sumanta K Pal
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
45
|
Liu XH, Wang GR, Zhong NN, Wang WY, Liu B, Li Z, Bu LL. Multi-omics in immunotherapy research for HNSCC: present situation and future perspectives. NPJ Precis Oncol 2025; 9:93. [PMID: 40158059 PMCID: PMC11954913 DOI: 10.1038/s41698-025-00886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, significantly impacting patient survival and quality of life. The recent emergence of immunotherapy has provided new hope for HNSCC patients, improving survival rates; however, only 15%-20% of patients benefit, and side effects are inevitable. With advancements in omics technologies and the growing prevalence of bioinformatics research, the immune microenvironment of HNSCC has become increasingly well understood, and the molecular mechanisms underlying immunotherapy responses continue to be elucidated. In this review, we summarize commonly used omics techniques and their applications in the research of HNSCC immunotherapy, including predicting and enhancing efficacy, formulating personalized treatment plans, establishing robust preclinical research models, and identifying new immunotherapy targets. Finally, we explore future perspective in terms of sequencing samples, data integration analysis, emerging technologies, clinicopathological features, and interdisciplinary approaches.
Collapse
Affiliation(s)
- Xuan-Hao Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Wei-Yu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Zheng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
46
|
Jing Z, Yinhang W, Jian C, Zhanbo Q, Xinyue W, Shuwen H. Interaction between gut microbiota and T cell immunity in colorectal cancer. Autoimmun Rev 2025; 24:103807. [PMID: 40139455 DOI: 10.1016/j.autrev.2025.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/26/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
This review delves into the complex and multi-layered mechanisms that govern the interaction between gut microbiota and T cells in the context of colorectal cancer (CRC), revealing a novel "microbiota-immune regulatory landscape" within the tumor microenvironment. As CRC progresses, the gut microbiota experiences a significant transformation in both its composition and metabolic patterns. On one hand, specific microbial entities within the gut microbiota can directly engage with T cells, functioning as "immunological triggers" that shape T-cell behavior. Simultaneously, microbial metabolites, such as short-chain fatty acids and bile acids, serve as "molecular regulators" that intricately govern T-cell function and differentiation, fine-tuning the immune response. On the other hand, the quorum-sensing mechanism, a recently recognized communication network among bacteria, also plays a pivotal role in orchestrating T-cell immunity. Additionally, the gut microbiota forms an intriguing connection with the neuro-immune regulatory axis, a largely unexplored "territory" in CRC research. Regarding treatment strategies, a diverse array of intervention approaches-including dietary modifications, the utilization of probiotics, bacteriophages, and targeted antibiotic therapies-offer promising prospects for restoring the equilibrium of the gut microbiota, thereby acting as "ecosystem renovators" that impede tumor initiation and progression. Nevertheless, the current research landscape in this field is fraught with challenges. These include significant variations in microbial composition, dietary preferences, and tumor microenvironments among individuals, a lack of large-scale cohort studies, and insufficient research that integrates tumor mutation analysis, gut microbiota investigations, and immune microenvironment evaluations. This review emphasizes the necessity for future research efforts to seamlessly incorporate multiple factors and utilize bioinformatics analysis to construct a more comprehensive "interactive map" of the gut microbiota-T cell relationship in CRC. The aim is to establish a solid theoretical basis for the development of highly effective and personalized treatment regimens, ultimately transforming the therapeutic approach to CRC.
Collapse
Affiliation(s)
- Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Wu Xinyue
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; ASIR (Institute - Association of intelligent systems and robotics), 14B rue Henri Sainte Claire Deville, 92500 Rueil-Malmaison, France.
| |
Collapse
|
47
|
Gao Q, Wu H, Li Z, Yang Z, Li L, Sun X, Wu Q, Sui X. Synergistic Strategies for Lung Cancer Immunotherapy: Combining Phytochemicals and Immune-Checkpoint Inhibitors. Phytother Res 2025. [PMID: 40122686 DOI: 10.1002/ptr.8482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 03/25/2025]
Abstract
Lung cancer remains one of the most widespread and deadliest malignant tumors globally, with a particularly high mortality rate among all cancers. Recently, immunotherapy, particularly immune checkpoint inhibitors (ICIs), has emerged as a crucial treatment strategy for lung cancer patients, following surgical intervention, radiotherapy, chemotherapy, and targeted drug therapies. However, the therapeutic limitations are caused owing to their low response rate and undesirable side effects such as immune-related pneumonitis. Therefore, developing new strategies to improve the efficacy of ICIs while minimizing immune-related adverse events will be crucial for cancer immunotherapy. The tumor immune microenvironment plays a significant role in the success of lung cancer immunotherapy, and the immunosuppressive characteristics of the immune microenvironment are one of the major obstacles to the poor immunotherapeutic effect. Phytochemicals, naturally occurring compounds in plants, have shown promise in enhancing cancer immunotherapy by remodeling the immunosuppressive microenvironment, offering the potential to increase the efficacy of ICIs. Therefore, this review summarizes the associated mechanisms of phytochemicals remodeling the immunosuppressive microenvironment in lung cancer. Additionally, the review will focus on the synergistic effects of combining phytochemicals with ICIs, aiming to improve anticancer efficacy and reduce side effects, which may hopefully offer novel strategies to overcome current limitations in immunotherapy.
Collapse
Affiliation(s)
- Quan Gao
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Hao Wu
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Zhengjun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Engineering Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijing Yang
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Lin Li
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Xueni Sun
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Qibiao Wu
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Xinbing Sui
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
48
|
Wilson RP, Rink L, Tükel Ç. Microbiota and cancer: unraveling the significant influence of microbial communities on cancer treatment. Cancer Metastasis Rev 2025; 44:42. [PMID: 40120010 DOI: 10.1007/s10555-025-10256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Affiliation(s)
- R Paul Wilson
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Lori Rink
- Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
- Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Zhao S, Lu Z, Zhao F, Tang S, Zhang L, Feng C. Assessing the impact of probiotics on immunotherapy effectiveness and antibiotic-mediated resistance in cancer: a systematic review and meta-analysis. Front Immunol 2025; 16:1538969. [PMID: 40191197 PMCID: PMC11968366 DOI: 10.3389/fimmu.2025.1538969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
Background Probiotics have been demonstrated to exert a potential clinical enhancing effect in cancer patients receiving immune checkpoint inhibitors (ICIs), while antibiotics exert a detrimental impact. Prior meta-analysis papers have substantial limitations and are devoid of recent published studies. Therefore, this study aimed to perform an updated meta-analysis and, for the first time, assess whether probiotics can restore the damage of antibiotics to immunotherapy. Methods A comprehensive literature search was conducted in three English databases and three Chinese databases with a cutoff date of August 11, 2024. The methodological quality of the studies was evaluated using the Newcastle-Ottawa Quality Assessment Scale (NOS) or the Revised Cochrane risk-of-bias tool (RoB 2). Engauge Digitizer v12.1 was employed to extract hazard ratios (HRs) with 95% confidence interval (CI) for survival outcomes when these data were not explicitly provided in the manuscripts. Meta-analysis was conducted using Stata 14 software. Results The study sample comprised eight retrospective and four prospective studies, involving a total of 3,142 participants. The findings indicate that probiotics significantly prolong the overall survival (OS) (I2 = 31.2%; HR=0.58, 95% CI: 0.46-0.73, p < 0.001) and progression-free survival (PFS) (I2 = 65.2%; HR=0.66, 95% CI: 0.54-0.81, p < 0.001) in cancer patients receiving ICIs, enhance the objective response rate (ORR) (I2 = 33.5%; OR=1.75, 95% CI: 1.27-2.40, p = 0.001) and disease control rate (DCR) (I2 = 50.0%; OR=1.93, 95% CI: 1.11-3.35, p = 0.002). For non-small cell lung cancer (NSCLC) patients exposed to antibiotics, the use of probiotics was associated with superior OS (I2 = 0.0%; HR=0.45, 95% CI: 0.34-0.59, p < 0.001) and PFS (I2 = 0.0%; HR=0.48, 95% CI: 0.38-0.62, p < 0.001) when compared to non-users. Subgroup differences were observed regarding the cancer type (P=0.006) and ethnic backgrounds (P=0.011) in OS. Conclusions The meta-analysis findings suggest that probiotics can effectively extend the survival of cancer treated with ICIs. In NSCLC, probiotics appear to mitigate the negative impact of antibiotics on immunotherapy effectiveness, which has profound clinical significance. Nevertheless, additional large-scale, high-quality randomized controlled trials are necessary to further validate these findings. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=579047, identifier CRD42024579047.
Collapse
Affiliation(s)
- Shuya Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Peking University People’s Hospital, Beijing, China
| | - Zian Lu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fangmin Zhao
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shihuan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China
| | - Lishan Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cuiling Feng
- Peking University People’s Hospital, Beijing, China
| |
Collapse
|
50
|
MAFFEZZOLI MICHELE, GIUDICE GIULIACLAIRE, IOVANE GIACOMO, MANINI MARTINA, RAPACCHI ELENA, CARUSO GIUSEPPE, SIMONI NICOLA, FERRETTI STEFANIA, PULIATTI STEFANO, CAMPOBASSO DAVIDE, BUTI SEBASTIANO. The effect of concomitant drugs on oncological outcomes in patients treated with immunotherapy for metastatic urothelial carcinoma: a narrative review. Oncol Res 2025; 33:741-757. [PMID: 40191722 PMCID: PMC11964881 DOI: 10.32604/or.2024.057278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 04/09/2025] Open
Abstract
Background immune checkpoint inhibitors (ICIs) have revolutionized the treatment of metastatic urothelial carcinoma (mUC), significantly improving survival outcomes. However, a subset of patients do not respond to ICIs, prompting research into potential predictive factors. Commonly prescribed medications such as corticosteroids, proton-pump inhibitors (PPIs), antibiotics (Abs), antihypertensives, and analgesics may influence ICI effectiveness. Methods we conducted a literature search on PubMed to investigate the impact of concomitant medications on the outcomes of patients with mUC, treated with ICIs. We selected the most relevant studies and performed a narrative review. Results corticosteroids, PPIs and Abs have been associated with reduced survival in ICI-treated patients, including those with mUC. In contrast, antihypertensive agents like renin-angiotensin system inhibitors and beta-blockers may enhance ICI efficacy, though evidence remains inconclusive. The impact of other medications, such as statins, metformin, and analgesics, on ICI outcomes is less clear, with some data suggesting a detrimental impact on immune response. Conclusions this narrative review synthesizes current evidence on how concomitant medications affect outcomes in mUC patients treated with ICIs.
Collapse
Affiliation(s)
- MICHELE MAFFEZZOLI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - GIULIA CLAIRE GIUDICE
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - GIACOMO IOVANE
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - MARTINA MANINI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - ELENA RAPACCHI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
| | - GIUSEPPE CARUSO
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
| | - NICOLA SIMONI
- Radiotherapy Unit, University Hospital of Parma, Parma, 43126, Italy
| | - STEFANIA FERRETTI
- Department of Urology, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - STEFANO PULIATTI
- Department of Urology, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | | | - SEBASTIANO BUTI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| |
Collapse
|