1
|
Li Y, Dai Y, Jin T, Liu X, Xie L. Study on the changes of extracellular matrix morphology and components in COPD animal model by using lung decellularized scaffold. FASEB J 2025; 39:e70463. [PMID: 40150895 PMCID: PMC11950666 DOI: 10.1096/fj.202401522rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/10/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Airway remodeling is a critical pathological process that influences the progression of chronic obstructive pulmonary disease(COPD). To better study small airway remodeling in COPD, we employed advanced techniques such as decellularized scaffolds, immunofluorescence, scanning electron microscopy, and proteomics to analyze morphological and compositional changes in the extracellular matrix (ECM). Our study revealed significant ultrastructural abnormalities in the decellularized scaffolds from the COPD group, including thinning of alveolar septa, enlargement of alveolar spaces, and fusion of multiple alveoli. Additionally, the ECM composition in the COPD group exhibited notable changes characterized by an increase in collagen fibers, type I and IV collagens, fibronectin, and laminin (p < .05), along with a decrease in elastin and glycosaminoglycans (p < .05). Proteomic analysis identified 70 differentially expressed proteins between the COPD group and the control group. These included 34 upregulated proteins such as Smarca2, Skt, Acvrl1, Myl2 (all with ratios >10.64), and 36 downregulated proteins such as Col6a6, Col6a5, and AnK3 (all with ratios <0.27). Pathway analysis indicated that activation of apoptosis (Enrichment Score, ES = 0.23) and epithelial-mesenchymal transition (ES = 0.38) genes and inhibition of collagen synthesis (ES = -0.43) and degradation (ES = -0.63) genes were observed in the COPD group. These findings enhance our understanding of the mechanisms underlying airway remodeling and provide a scientific basis for developing novel therapeutic strategies for COPD.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pulmonary and Critical Care MedicineThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Yingbing Dai
- Department of Internal MedicineHunan Provincial Chest HospitalChangshaChina
| | - Ting Jin
- Department of Pulmonary and Critical Care MedicineThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Xianyang Liu
- Department of Pulmonary and Critical Care MedicineThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Lihua Xie
- Department of Pulmonary and Critical Care MedicineThe Third Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
2
|
Kolliopoulos V, Mikos AG. Decellularized extracellular matrix as a drug delivery carrier. J Control Release 2025; 382:113661. [PMID: 40139392 DOI: 10.1016/j.jconrel.2025.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Tissue engineering and regenerative medicine approaches seek to enhance biomaterial mimicry with the goal of driving cell recruitment, proliferation, and differentiation. Decellularized extracellular matrix (dECM) biomaterials have emerged as a promising platform for biomaterials development as they capture the complexity of native tissues and offer a rich environment of signals to guide cellular responses. However, the decellularization process can affect both the structure and composition of the ECM. Recent efforts have focused on leveraging dECM as drug delivery carriers for controlled release of bioactive molecules. This review highlights current strategies for incorporating therapeutic agents into dECM which include encapsulation within hydrogel formulations, direct bulk absorption of biomolecules, and affinity-based binding and conjugation. Each method offers unique advantages for modulating release profiles, which can range from rapid initial burst to prolonged, sustained release, depending on factors such as crosslinking density, degradation rate, and specific interactions of biomolecules with dECM components such as glycosaminoglycans.
Collapse
Affiliation(s)
- Vasiliki Kolliopoulos
- Department of Bioengineering, Rice University, Houston, TX 77030, United States of America
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, United States of America.
| |
Collapse
|
3
|
Puthiya Veettil J, Sasikumar Lolitha D, Payanam Ramachandra U. Combinatorial Decellularization as a Better Approach to Porcine Liver Extracellular Matrix Scaffold Fabrication With Preserved Bioactivity: A Comparative Evaluation. Xenotransplantation 2025; 32:e70031. [PMID: 40106378 DOI: 10.1111/xen.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Soft tissue repair patches of decellularized extracellular matrices (ECM) with inherently preserved structural components and biomacromolecules are desirable in regenerative applications. This study characterizes three detergent-based decellularization methods to fabricate acellular porcine liver matrices to remove antigenic determinants without compromising the structural integrity, glycosaminoglycans (GAG) content, and bound growth factors within the resulting ECM. Three detergents chosen for decellularization were sodium dodecyl sulfate (SDS), SDS with sodium deoxycholate (SDS+SDC-combinatorial method), and triton X-100 followed by SDS. Combinatorial detergent decellularization effectively removed cellular components and retained intact collagenous structure with minimal residual DNA and protein. It also preserved significantly higher amounts of GAG, HGF, and bFGF. TX100 decellularization was highly destructive with the least preservation of GAG and GFs. The SDS method showed an intermediate level of preservation of biomolecules. The correlation obtained between GAG and GFs revealed quantification of GAG to be an indirect way of estimating the bound GFs preserved within the ECM. In vitro experiments revealed the non-cytotoxic nature of the scaffolds. The study revealed that, among the three methods of decellularization, the ECM scaffold fabricated by combinatorial detergent decellularization is extremely promising to be used as a soft tissue repair patch with inherent bioactive molecules for scaffold-based regenerative therapies.
Collapse
Affiliation(s)
- Jesna Puthiya Veettil
- Division of In-Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Devika Sasikumar Lolitha
- Division of In-Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Umashankar Payanam Ramachandra
- Division of In-Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| |
Collapse
|
4
|
van Hengel EVA, van der Laan LJW, de Jonge J, Verstegen MMA. Towards Safety and Regulation Criteria for Clinical Applications of Decellularized Organ-Derived Matrices. Bioengineering (Basel) 2025; 12:136. [PMID: 40001655 PMCID: PMC11851377 DOI: 10.3390/bioengineering12020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Whole-organ decellularization generates scaffolds containing native extracellular matrix (ECM) components with preserved tissue microarchitecture, providing a promising advancement in tissue engineering and regenerative medicine. Decellularization retains the ECM integrity which is important for supporting cell attachment, growth, differentiation, and biological function. Although there are consensus guidelines to standardize decellularization processes and ECM characterization, no specific criteria or standards regarding matrix sterility and biosafety have been established so far. This regulatory gap in safety, sterilization, and regulation criteria has hampered the clinical translation of decellularized scaffolds. In this review, we identify essential criteria for the safe clinical use of decellularized products from both human and animal sources. These include the decellularization efficacy, levels of chemical residue, preservation of ECM composition and physical characteristics, and criteria for the aseptic processing of decellularization to assure sterility. Furthermore, we explore key considerations for advancing decellularized scaffolds into clinical practice, focusing on regulatory frameworks and safety requirements. Addressing these challenges is crucial for minimizing risks of adverse reactions or infection transmission, thereby accelerating the adoption of tissue-engineered products. This review aims to provide a foundation for establishing robust guidelines, supporting the safe and effective integration of decellularized scaffolds into regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | - Monique M. A. Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (E.V.A.v.H.); (L.J.W.v.d.L.); (J.d.J.)
| |
Collapse
|
5
|
Morawski M, Krasnodębski M, Rochoń J, Kubiszewski H, Marzęcki M, Topyła D, Murat K, Staszewski M, Szczytko J, Maleszewski M, Grąt M. Decellularized Liver Matrices for Expanding the Donor Pool-An Evaluation of Existing Protocols and Future Trends. Biomolecules 2025; 15:98. [PMID: 39858491 PMCID: PMC11762870 DOI: 10.3390/biom15010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Liver transplantation is the only curative option for end-stage liver disease and is necessary for an increasing number of patients with advanced primary or secondary liver cancer. Many patient groups can benefit from this treatment, however the shortage of liver grafts remains an unsolved problem. Liver bioengineering offers a promising method for expanding the donor pool through the production of acellular scaffolds that can be seeded with recipient cells. Decellularization protocols involve the removal of cells using various chemical, physical, and enzymatic steps to create a collagenous network that provides support for introduced cells and future vascular and biliary beds. However, the removal of the cells causes varying degrees of matrix damage, that can affect cell seeding and future organ performance. The main objective of this review is to present the existing techniques of producing decellularized livers, with an emphasis on the assessment and definition of acellularity. Decellularization agents are discussed, and the standard process of acellular matrix production is evaluated. We also introduce the concept of the stepwise assessment of the matrix during decellularization through decellularization cycles. This method may lead to shorter detergent exposure times and less scaffold damage. The introduction of apoptosis induction in the field of organ engineering may provide a valuable alternative to existing long perfusion protocols, which lead to significant matrix damage. A thorough understanding of the decellularization process and the action of the various factors influencing the final composition of the scaffold is essential to produce a biocompatible matrix, which can be the basis for further studies regarding recellularization and retransplantation.
Collapse
Affiliation(s)
- Marcin Morawski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (J.R.); (H.K.); (M.S.); (M.G.)
| | - Maciej Krasnodębski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (J.R.); (H.K.); (M.S.); (M.G.)
| | - Jakub Rochoń
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (J.R.); (H.K.); (M.S.); (M.G.)
| | - Hubert Kubiszewski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (J.R.); (H.K.); (M.S.); (M.G.)
| | - Michał Marzęcki
- Institute of Telecommunications, Warsaw University of Technology, 00-665 Warsaw, Poland; (M.M.); (D.T.); (K.M.)
| | - Dominik Topyła
- Institute of Telecommunications, Warsaw University of Technology, 00-665 Warsaw, Poland; (M.M.); (D.T.); (K.M.)
| | - Kacper Murat
- Institute of Telecommunications, Warsaw University of Technology, 00-665 Warsaw, Poland; (M.M.); (D.T.); (K.M.)
| | - Mikołaj Staszewski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (J.R.); (H.K.); (M.S.); (M.G.)
| | - Jacek Szczytko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland;
| | - Marek Maleszewski
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Michał Grąt
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (J.R.); (H.K.); (M.S.); (M.G.)
| |
Collapse
|
6
|
Puthiya Veettil J, Sasikumar Lolitha D, Payanam Ramachandra U. Combinatorial Decellularization as a Better Approach to Porcine Liver Extracellular Matrix Scaffold Fabrication With Preserved Bioactivity: A Comparative Evaluation. Xenotransplantation 2025; 32:e70025. [PMID: 39960357 DOI: 10.1111/xen.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Soft tissue repair patches of decellularized extracellular matrices (ECM) with inherently preserved structural components and biomacromolecules are desirable in regenerative applications. This study characterizes three detergent-based decellularization methods to fabricate acellular porcine liver matrices to remove antigenic determinants without compromising the structural integrity, glycosaminoglycans (GAG) content, and bound growth factors within the resulting ECM. Three detergents chosen for decellularization were sodium dodecyl sulfate (SDS), SDS with sodium deoxycholate (SDS + SDC-combinatorial method), and Triton X-100 followed by SDS. Combinatorial detergent decellularization effectively removed cellular components and retained intact collagenous structure with minimal residual DNA and protein. It also preserved significantly higher amounts of GAG, HGF, and bFGF. TX100 decellularization was highly destructive with the least preservation of GAG and GFs. The SDS method showed an intermediate level of preservation of biomolecules. The correlation obtained between GAG and GFs revealed quantification of GAG to be an indirect way of estimating the bound GFs preserved within the ECM. In vitro experiments revealed the noncytotoxic nature of the scaffolds. The study revealed that, among the three methods of decellularization, ECM scaffold fabricated by combinatorial detergent decellularization is extremely promising for use as a soft tissue repair patch with inherent bioactive molecules for scaffold-based regenerative therapy.
Collapse
Affiliation(s)
- Jesna Puthiya Veettil
- Division of In-Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Devika Sasikumar Lolitha
- Division of In-Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Umashankar Payanam Ramachandra
- Division of In-Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| |
Collapse
|
7
|
Tabatabai TS, Salehi M, Rezakhani L, Arabpour Z, Djalilian AR, Alizadeh M. Decellularization of various tissues and organs through chemical methods. Tissue Cell 2024; 91:102573. [PMID: 39393204 PMCID: PMC11993266 DOI: 10.1016/j.tice.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
Collapse
Affiliation(s)
- Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
8
|
Hussein KH, Ahmadzada B, Correa JC, Sultan A, Wilken S, Amiot B, Nyberg SL. Liver tissue engineering using decellularized scaffolds: Current progress, challenges, and opportunities. Bioact Mater 2024; 40:280-305. [PMID: 38973992 PMCID: PMC11226731 DOI: 10.1016/j.bioactmat.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Liver transplantation represents the only definitive treatment for patients with end-stage liver disease. However, the shortage of liver donors provokes a dramatic gap between available grafts and patients on the waiting list. Whole liver bioengineering, an emerging field of tissue engineering, holds great potential to overcome this gap. This approach involves two main steps; the first is liver decellularization and the second is recellularization. Liver decellularization aims to remove cellular and nuclear materials from the organ, leaving behind extracellular matrices containing different structural proteins and growth factors while retaining both the vascular and biliary networks. Recellularization involves repopulating the decellularized liver with appropriate cells, theoretically from the recipient patient, to reconstruct the parenchyma, vascular tree, and biliary network. The aim of this review is to identify the major advances in decellularization and recellularization strategies and investigate obstacles for the clinical application of bioengineered liver, including immunogenicity of the designed liver extracellular matrices, the need for standardization of scaffold fabrication techniques, selection of suitable cell sources for parenchymal repopulation, vascular, and biliary tree reconstruction. In vivo transplantation models are also summarized for evaluating the functionality of bioengineered livers. Finally, the regulatory measures and future directions for confirming the safety and efficacy of bioengineered liver are also discussed. Addressing these challenges in whole liver bioengineering may offer new solutions to meet the demand for liver transplantation and improve patient outcomes.
Collapse
Affiliation(s)
- Kamal H. Hussein
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
- Department of Surgery, Anesthesiology, and Radiology, College of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Boyukkhanim Ahmadzada
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Julio Cisneros Correa
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Ahmer Sultan
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Silvana Wilken
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Aron J, Bual R, Alimasag J, Arellano F, Baclayon L, Bantilan ZC, Lumancas G, Nisperos MJ, Labares M, Valle KDD, Bacosa H. Effects of Various Decellularization Methods for the Development of Decellularized Extracellular Matrix from Tilapia ( Oreochromis niloticus) Viscera. Int J Biomater 2024; 2024:6148496. [PMID: 39376509 PMCID: PMC11458291 DOI: 10.1155/2024/6148496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 10/09/2024] Open
Abstract
Tilapia, a widely farmed aquaculture fish, produces substantial waste, including viscera that contain extracellular matrix (ECM) utilized as a biomaterial for tissue regeneration applications. Extracting ECM from viscera requires a specific decellularization method, as no standardized protocol exists. This study performed three decellularization methods: sonication, orbital shaking at room temperature, and agitation at 4°C, using SDS and TX100 at concentrations of 0.1% and 0.3%. The effectiveness of each method was assessed through H&E staining, dsDNA quantification, and SEM imaging to verify cellular content removal and ECM structure preservation. Additional analyses, including ATR-FTIR, SDS-PAGE, protein quantification, HPLC, and detergent residue tests, were performed to examine functional groups, collagen composition, protein content, amino acid profiles, and detergent residues in the decellularized samples. The results of H&E staining showed a significant reduction in cellular components in all samples, which was confirmed through DNA quantification. Sonication with 0.3% SDS achieved the highest DNA removal rate (96.5 ± 1.1%), while SEM images revealed that agitation at 4°C with 0.3% TX100 better preserved ECM structure. Collagen was present in all samples, as confirmed by ATR-FTIR analysis, which revealed pronounced spectral peaks in the amide I, II, III, A, and B regions. Samples treated with agitation at 4°C using 0.1% SDS exhibited the highest protein content (875 ± 15 µg/mg), whereas those treated with TX100 had lower detergent residue. Overall, the decellularization methods effectively reduced DNA content while preserving ECM structure and components, highlighting the potential of tilapia viscera as bioscaffolds and offering insights into utilizing fish waste for high-value products.
Collapse
Affiliation(s)
- Jemwel Aron
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
- Chemical Engineering Department, University of San Agustin, Iloilo City 5000, Philippines
| | - Ronald Bual
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
- Department of Chemical Engineering and Technology, College of Engineering, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Johnel Alimasag
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Fernan Arellano
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Lean Baclayon
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Zesreal Cain Bantilan
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Gladine Lumancas
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Michael John Nisperos
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Marionilo Labares
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Kit Dominick Don Valle
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Hernando Bacosa
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| |
Collapse
|
10
|
Dehghani S, Aghaee Z, Soleymani S, Tafazoli M, Ghabool Y, Tavassoli A. An overview of the production of tissue extracellular matrix and decellularization process. Cell Tissue Bank 2024; 25:369-387. [PMID: 37812368 DOI: 10.1007/s10561-023-10112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023]
Abstract
Thousands of patients need an organ transplant yearly, while only a tiny percentage have this chance to receive a tissue/organ transplant. Nowadays, decellularized animal tissue is one of the most widely used methods to produce engineered scaffolds for transplantation. Decellularization is defined as physically or chemically removing cellular components from tissues while retaining structural and functional extracellular matrix (ECM) components and creating an ECM-derived scaffold. Then, decellularized scaffolds could be reseeded with different cells to fabricate an autologous graft. Effective decellularization methods preserve ECM structure and bioactivity through the application of the agents and techniques used throughout the process. The most valuable agents for the decellularization process depend on biological properties, cellular density, and the thickness of the desired tissue. ECM-derived scaffolds from various mammalian tissues have been recently used in research and preclinical applications in tissue engineering. Many studies have shown that decellularized ECM-derived scaffolds could be obtained from tissues and organs such as the liver, cartilage, bone, kidney, lung, and skin. This review addresses the significance of ECM in organisms and various decellularization agents utilized to prepare the ECM. Also, we describe the current knowledge of the decellularization of different tissues and their applications.
Collapse
Affiliation(s)
- Shima Dehghani
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Zahra Aghaee
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Safoura Soleymani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Maryam Tafazoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Yasin Ghabool
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran.
| |
Collapse
|
11
|
Hao L, Khajouei F, Rodriguez J, Kim S, Lee EJA. Unlocking the Promise of Decellularized Pancreatic Tissue: A Novel Approach to Support Angiogenesis in Engineered Tissue. Bioengineering (Basel) 2024; 11:183. [PMID: 38391669 PMCID: PMC10886056 DOI: 10.3390/bioengineering11020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Advancements in regenerative medicine have highlighted the potential of decellularized extracellular matrix (ECM) as a scaffold for organ bioengineering. Although the potential of ECM in major organ systems is well-recognized, studies focusing on the angiogenic effects of pancreatic ECM are limited. This study investigates the capabilities of pancreatic ECM, particularly its role in promoting angiogenesis. Using a Triton-X-100 solution, porcine pancreas was successfully decellularized, resulting in a significant reduction in DNA content (97.1% removal) while preserving key pancreatic ECM components. A three-dimensional ECM hydrogel was then created from this decellularized tissue and used for cell culture. Biocompatibility tests demonstrated enhanced adhesion and proliferation of mouse embryonic stem cell-derived endothelial cells (mES-ECs) and human umbilical vein endothelial cells (HUVECs) in this hydrogel compared to conventional scaffolds. The angiogenic potential was evaluated through tube formation assays, wherein the cells showed superior tube formation capabilities in ECM hydrogel compared to rat tail collagen. The RT-PCR analysis further confirmed the upregulation of pro-angiogenic genes in HUVECs cultured within the ECM hydrogel. Specifically, HUVECs cultured in the ECM hydrogel exhibited a significant upregulation in the expression of MMP2, VEGF and PAR-1, compared to those cultured in collagen hydrogel or in a monolayer condition. The identification of ECM proteins, specifically PRSS2 and Decorin, further supports the efficacy of pancreatic ECM hydrogel as an angiogenic scaffold. These findings highlight the therapeutic promise of pancreatic ECM hydrogel as a candidate for vascularized tissue engineering application.
Collapse
Affiliation(s)
- Lei Hao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Fariba Khajouei
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Jaselin Rodriguez
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Soojin Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Eun Jung A Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
12
|
Zhang JS, Wang ZB, Lai ZZ, Yang JW, Song WJ, Wei YB, Mei J, Wang JG. Polyethylene glycol crosslinked decellularized single liver lobe scaffolds with vascular endothelial growth factor promotes angiogenesis in vivo. Hepatobiliary Pancreat Dis Int 2023; 22:622-631. [PMID: 36335030 DOI: 10.1016/j.hbpd.2022.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Improving the mechanical properties and angiogenesis of acellular scaffolds before transplantation is an important challenge facing the development of acellular liver grafts. The present study aimed to evaluate the cytotoxicity and angiogenesis of polyethylene glycol (PEG) crosslinked decellularized single liver lobe scaffolds (DLSs), and establish its suitability as a graft for long-term liver tissue engineering. METHODS Using mercaptoacrylate produced by the Michael addition reaction, DLSs were first modified using N-succinimidyl S-acetylthioacetate (SATA), followed by cross-linking with PEG as well as vascular endothelial growth factor (VEGF). The optimal concentration of agents and time of the individual steps were identified in this procedure through biomechanical testing and morphological analysis. Subsequently, human umbilical vein endothelial cells (HUVECs) were seeded on the PEG crosslinked scaffolds to detect the proliferation and viability of cells. The scaffolds were then transplanted into the subcutaneous tissue of Sprague-Dawley rats to evaluate angiogenesis. In addition, the average number of blood vessels was evaluated in the grafts with or without PEG at days 7, 14, and 21 after implantation. RESULTS The PEG crosslinked DLS maintained their three-dimensional structure and were more translucent after decellularization than native DLS, which presented a denser and more porous network structure. The results for Young's modulus proved that the mechanical properties of 0.5 PEG crosslinked DLS were the best and close to that of native livers. The PEG-VEGF-DLS could better promote cell proliferation and differentiation of HUVECs compared with the groups without PEG cross-linking. Importantly, the average density of blood vessels was higher in the PEG-VEGF-DLS than that in other groups at days 7, 14, and 21 after implantation in vivo. CONCLUSIONS The PEG crosslinked DLS with VEGF could improve the biomechanical properties of native DLS, and most importantly, their lack of cytotoxicity provides a new route to promote the proliferation of cells in vitro and angiogenesis in vivo in liver tissue engineering.
Collapse
Affiliation(s)
- Jian-Se Zhang
- Anatomy Department, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China; Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou 325000, China; Institute of Hypoxic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhi-Bin Wang
- Anatomy Department, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China; Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou 325000, China; Institute of Hypoxic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhi-Zhen Lai
- Intensive Care Unit, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Jing-Wen Yang
- Department of Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Wen-Jing Song
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou 325000, China
| | - Yu-Bing Wei
- Anatomy Department, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Jin Mei
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou 325000, China; Medical Research Center, Ningbo City First Hospital, Ningbo 315000, China
| | - Jian-Guang Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
13
|
Mir TA, Alzhrani A, Nakamura M, Iwanaga S, Wani SI, Altuhami A, Kazmi S, Arai K, Shamma T, Obeid DA, Assiri AM, Broering DC. Whole Liver Derived Acellular Extracellular Matrix for Bioengineering of Liver Constructs: An Updated Review. Bioengineering (Basel) 2023; 10:1126. [PMID: 37892856 PMCID: PMC10604736 DOI: 10.3390/bioengineering10101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
Biomaterial templates play a critical role in establishing and bioinstructing three-dimensional cellular growth, proliferation and spatial morphogenetic processes that culminate in the development of physiologically relevant in vitro liver models. Various natural and synthetic polymeric biomaterials are currently available to construct biomimetic cell culture environments to investigate hepatic cell-matrix interactions, drug response assessment, toxicity, and disease mechanisms. One specific class of natural biomaterials consists of the decellularized liver extracellular matrix (dECM) derived from xenogeneic or allogeneic sources, which is rich in bioconstituents essential for the ultrastructural stability, function, repair, and regeneration of tissues/organs. Considering the significance of the key design blueprints of organ-specific acellular substrates for physiologically active graft reconstruction, herein we showcased the latest updates in the field of liver decellularization-recellularization technologies. Overall, this review highlights the potential of acellular matrix as a promising biomaterial in light of recent advances in the preparation of liver-specific whole organ scaffolds. The review concludes with a discussion of the challenges and future prospects of liver-specific decellularized materials in the direction of translational research.
Collapse
Affiliation(s)
- Tanveer Ahmed Mir
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Alaa Alzhrani
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21423, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Makoto Nakamura
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (M.N.); (S.I.)
| | - Shintaroh Iwanaga
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (M.N.); (S.I.)
| | - Shadil Ibrahim Wani
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (M.N.); (S.I.)
| | - Abdullah Altuhami
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Shadab Kazmi
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Kenchi Arai
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Talal Shamma
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Dalia A. Obeid
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Abdullah M. Assiri
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Dieter C. Broering
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
14
|
Zhu L, Yuhan J, Yu H, Zhang B, Huang K, Zhu L. Decellularized Extracellular Matrix for Remodeling Bioengineering Organoid's Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207752. [PMID: 36929582 DOI: 10.1002/smll.202207752] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, stem cell- and tumor-derived organoids are the most promising models in developmental biology and disease modeling, respectively. The matrix is one of three main elements in the construction of an organoid and the most important module of its extracellular microenvironment. However, the source of the currently available commercial matrix, Matrigel, limits the application of organoids in clinical medicine. It is worth investigating whether the original decellularized extracellular matrix (dECM) can be exploited as the matrix of organoids and improving organoid construction are very important. In this review, tissue decellularization protocols and the characteristics of decellularization methods, the mechanical support and biological cues of extraccellular matrix (ECM), methods for construction of multifunctional dECM and responsive dECM hydrogel, and the potential applications of functional dECM are summarized. In addition, some expectations are provided for dECM as the matrix of organoids in clinical applications.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, P. R. China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| |
Collapse
|
15
|
Tumor decellularization reveals proteomic and mechanical characteristics of the extracellular matrix of primary liver cancer. BIOMATERIALS ADVANCES 2023; 146:213289. [PMID: 36724550 DOI: 10.1016/j.bioadv.2023.213289] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Tumor initiation and progression are critically dependent on interaction of cancer cells with their cellular and extracellular microenvironment. Alterations in the composition, integrity, and mechanical properties of the extracellular matrix (ECM) dictate tumor processes including cell proliferation, migration, and invasion. Also in primary liver cancer, consisting of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the dysregulation of the extracellular environment by liver fibrosis and tumor desmoplasia is pertinent. Yet, the exact changes occurring in liver cancer ECM remain uncharacterized and underlying tumor-promoting mechanisms remain largely unknown. Herein, an integrative molecular and mechanical approach is used to extensively characterize the ECM of HCC and CCA tumors by utilizing an optimized decellularization technique. We identified a myriad of proteins in both tumor and adjacent liver tissue, uncovering distinct malignancy-related ECM signatures. The resolution of this approach unveiled additional ECM-related proteins compared to large liver cancer transcriptomic datasets. The differences in ECM protein composition resulted in divergent mechanical properties on a macro- and micro-scale that are tumor-type specific. Furthermore, the decellularized tumor ECM was employed to create a tumor-specific hydrogel that supports patient-derived tumor organoids, which provides a new avenue for personalized medicine applications. Taken together, this study contributes to a better understanding of alterations to composition, stiffness, and collagen alignment of the tumor ECM that occur during liver cancer development.
Collapse
|
16
|
Afzal Z, Huguet EL. Bioengineering liver tissue by repopulation of decellularised scaffolds. World J Hepatol 2023; 15:151-179. [PMID: 36926238 PMCID: PMC10011915 DOI: 10.4254/wjh.v15.i2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Liver transplantation is the only curative therapy for end stage liver disease, but is limited by the organ shortage, and is associated with the adverse consequences of immunosuppression. Repopulation of decellularised whole organ scaffolds with appropriate cells of recipient origin offers a theoretically attractive solution, allowing reliable and timely organ sourcing without the need for immunosuppression. Decellularisation methodologies vary widely but seek to address the conflicting objectives of removing the cellular component of tissues whilst keeping the 3D structure of the extra-cellular matrix intact, as well as retaining the instructive cell fate determining biochemicals contained therein. Liver scaffold recellularisation has progressed from small rodent in vitro studies to large animal in vivo perfusion models, using a wide range of cell types including primary cells, cell lines, foetal stem cells, and induced pluripotent stem cells. Within these models, a limited but measurable degree of physiologically significant hepatocyte function has been reported with demonstrable ammonia metabolism in vivo. Biliary repopulation and function have been restricted by challenges relating to the culture and propagations of cholangiocytes, though advances in organoid culture may help address this. Hepatic vasculature repopulation has enabled sustainable blood perfusion in vivo, but with cell types that would limit clinical applications, and which have not been shown to have the specific functions of liver sinusoidal endothelial cells. Minority cell groups such as Kupffer cells and stellate cells have not been repopulated. Bioengineering by repopulation of decellularised scaffolds has significantly progressed, but there remain significant experimental challenges to be addressed before therapeutic applications may be envisaged.
Collapse
Affiliation(s)
- Zeeshan Afzal
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Laurent Huguet
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
17
|
Goulart E. A Review of Stem Cell Technology Targeting Hepatocyte Growth as an Alternative to Organ Transplantation. Methods Mol Biol 2023; 2575:181-193. [PMID: 36301476 DOI: 10.1007/978-1-0716-2716-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Currently, the only feasible option for patients with progressive and/or end-stage organ degeneration is to undergo transplantation. Due to the growing unmatched demand of available organ donors and, as a consequence, the continuous growth of patients' waiting lists, the development of new tissue engineering technologies is a relevant need. In this chapter, we will focus on the liver as a model organ to discuss contemporary tissue engineering strategies. Induced pluripotent cells are an attractive alternative to serve as a cell source for tissue engineering applications due to their pluripotency, the potentiality to generate autologous transplantation, and for their high proliferation rate. Among the main liver tissue engineering technologies, 3D bioprinting, hepatic organoids, and decellularization/recellularization of biological matrixes have grown much attention as alternatives to derive functional liver grafts. Thus, this chapter will discuss how recent publications have demonstrated the use of induced pluripotent cells in the development of the aforementioned technologies. Bioprinting is an additive manufacturing biofabrication process where cells are dispersed within a matrix formulation (i.e., bioink) and extruded in a modified 3D-printer. Polymers within bioink can be cross-linked to increase stiffness. Hepatic spheroids showed greater viability and liver function, due to preserved epithelial phenotype over time. Organoid is multi-lineage tissue constructs derived from a stem cell that recapitulates the early stages of organogenesis. The influence of cellular composition of non-parenchymal cells using induced pluripotent-derived cells or primary adult cells for hepatic organoid formation was recently tested. Decellularization is a process where harvested tissues or organs are washed with a detergent-based solution, to lyse and remove all cellular components. The final product is an extracellular scaffold with preserved tissue vasculature and ultra-structure, which can be used for subsequent recellularization with recipient cells. This chapter sheds light on recent works on the use of induced pluripotent-derived cells for liver tissue engineering approaches and on how such technologies could potentially generate therapeutic alternatives for patients on waiting lists for liver transplantation.
Collapse
Affiliation(s)
- Ernesto Goulart
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Bate TSR, Shanahan W, Casillo JP, Grant R, Forbes SJ, Callanan A. Rat liver ECM incorporated into electrospun polycaprolactone scaffolds as a platform for hepatocyte culture. J Biomed Mater Res B Appl Biomater 2022; 110:2612-2623. [PMID: 35734943 PMCID: PMC9796056 DOI: 10.1002/jbm.b.35115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022]
Abstract
Liver disease is expanding across the globe; however, health-care systems still lack approved pharmaceutical treatment strategies to mitigate potential liver failures. Organ transplantation is the only treatment for liver failure and with increasing cases of liver disease, transplant programs increasingly cannot provide timely transplant availability for all patients. The development of pharmaceutical mitigation strategies is clearly necessary and methods to improve drug development processes are considered vital for this purpose. Herein, we present a methodology for incorporating whole organ decellularised rat liver ECM (rLECM) into polycaprolactone (PCL) electrospun scaffolds with the aim of producing biologically relevant liver tissue models. rLECM PCL scaffolds have been produced with 5 w/w% and 10 w/w% rLECM:PCL and were analyzed by SEM imaging, tensile mechanical analyses and FTIR spectroscopy. The hepatocellular carcinoma cell line, HepG2, was cultured upon the scaffolds for 14 days and were analyzed through cell viability assay, DNA quantification, albumin quantification, immunohistochemistry, and RT-qPCR gene expression analysis. Results showed significant increases in proliferative activity of HepG2 on rLECM containing scaffolds alongside maintained key gene expression. This study confirms that rLECM can be utilized to modulate the bioactivity of electrospun PCL scaffolds and has the potential to produce electrospun scaffolds suitable for enhanced hepatocyte cultures and in-vitro liver tissue models.
Collapse
Affiliation(s)
- Thomas S. R. Bate
- School of EngineeringInstitute for Bioengineering, University of EdinburghEdinburghUK
| | - William Shanahan
- School of EngineeringInstitute for Bioengineering, University of EdinburghEdinburghUK
| | - Joseph P. Casillo
- School of GeoSciencesUniversity of Edinburgh, Grant InstituteEdinburghUK
| | - Rhiannon Grant
- MERLN InstituteMaastricht UniversityMaastrichtThe Netherlands
| | - Stuart J. Forbes
- Centre for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | - Anthony Callanan
- School of EngineeringInstitute for Bioengineering, University of EdinburghEdinburghUK
| |
Collapse
|
19
|
Singh G, Senapati S, Satpathi S, Behera PK, Das B, Nayak B. Establishment of decellularized extracellular matrix scaffold derived from caprine pancreas as a novel alternative template over porcine pancreatic scaffold for prospective biomedical application. FASEB J 2022; 36:e22574. [PMID: 36165227 DOI: 10.1096/fj.202200807r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
In this study, the caprine pancreas has been presented as an alternative to the porcine organ for pancreatic xenotransplantation with lesser risk factors. The obtained caprine pancreas underwent a systematic cycle of detergent perfusion for decellularization. It was perfused using anionic (0.5% w/v sodium dodecyl sulfate) as well as non-ionic (0.1% v/v triton X-100, t-octyl phenoxy polyethoxy ethanol) detergents and washed intermittently with 1XPBS supplemented with 0.1% v/v antibiotic and nucleases in a gravitation-driven set-up. After 48 h, a white decellularized pancreas was obtained, and its extracellular matrix (ECM) content was examined for scaffold-like properties. The ECM content was assessed for removal of cellular content, and nuclear material was evaluated with temporal H&E staining. Quantified DNA was found to be present in a negligible amount in the resultant decellularized pancreas tissue (DPT), thus prohibiting it from triggering any immunogenicity. Collagen and fibronectin were confirmed to be preserved upon trichrome and immunohistochemical staining, respectively. SEM and AFM images reveal interconnected collagen fibril networks in the DPT, confirming that collagen was unaffected. sGAG was visualized using Prussian blue staining and quantified with DMMB assay, where DPT has effectively retained this ECM component. Uniaxial tensile analysis revealed that DPT possesses better elasticity than NPT (native pancreatic tissue). Physical parameters like tensile strength, stiffness, biodegradation, and swelling index were retained in the DPT with negligible loss. The cytocompatibility analysis of DPT has shown no cytotoxic effect for up to 72 h on normal insulin-producing cells (MIN-6) and cancerous glioblastoma (LN229) cells in vitro. The scaffold was recellularized using isolated mouse islets, which have established in vitro cell proliferation for up to 9 days. The scaffold received at the end of the decellularization cycle was found to be non-toxic to the cells, retained biological and physical properties of the native ECM, suitable for recellularization, and can be used as a safer and better alternative as a transplantable organ from a xenogeneic source.
Collapse
Affiliation(s)
- Garima Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | | | | | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
20
|
Krüger M, Samsom RA, Oosterhoff LA, van Wolferen ME, Kooistra HS, Geijsen N, Penning LC, Kock LM, Sainz-Arnal P, Baptista PM, Spee B. High level of polarized engraftment of porcine intrahepatic cholangiocyte organoids in decellularized liver scaffolds. J Cell Mol Med 2022; 26:4949-4958. [PMID: 36017767 PMCID: PMC9549510 DOI: 10.1111/jcmm.17510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/30/2022] [Accepted: 07/23/2022] [Indexed: 12/01/2022] Open
Abstract
In Europe alone, each year 5500 people require a life-saving liver transplantation, but 18% die before receiving one due to the shortage of donor organs. Whole organ engineering, utilizing decellularized liver scaffolds repopulated with autologous cells, is an attractive alternative to increase the pool of available organs for transplantation. The development of this technology is hampered by a lack of a suitable large-animal model representative of the human physiology and a reliable and continuous cell source. We have generated porcine intrahepatic cholangiocyte organoids from adult stem cells and demonstrate that these cultures remained stable over multiple passages whilst retaining the ability to differentiate into hepatocyte- and cholangiocyte-like cells. Recellularization onto porcine scaffolds was efficient and the organoids homogeneously differentiated, even showing polarization. Our porcine intrahepatic cholangiocyte system, combined with porcine liver scaffold paves the way for developing whole liver engineering in a relevant large-animal model.
Collapse
Affiliation(s)
- Melanie Krüger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Loes A Oosterhoff
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Monique E van Wolferen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hans S Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Linda M Kock
- LifeTec Group BV, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Pilar Sainz-Arnal
- Laboratory of Organ Bioengineering and Regenerative Medicine, Health Research Institute of Aragon (IIS Aragon), Zaragoza, Spain
| | - Pedro M Baptista
- Laboratory of Organ Bioengineering and Regenerative Medicine, Health Research Institute of Aragon (IIS Aragon), Zaragoza, Spain
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Narciso M, Ulldemolins A, Júnior C, Otero J, Navajas D, Farré R, Gavara N, Almendros I. Novel Decellularization Method for Tissue Slices. Front Bioeng Biotechnol 2022; 10:832178. [PMID: 35356779 PMCID: PMC8959585 DOI: 10.3389/fbioe.2022.832178] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Decellularization procedures have been developed and optimized for the entire organ or tissue blocks, by either perfusion of decellularizing agents through the tissue’s vasculature or submerging large sections in decellularizing solutions. However, some research aims require the analysis of native as well as decellularized tissue slices side by side, but an optimal protocol has not yet been established to address this need. Thus, the main goal of this work was to develop a fast and efficient decellularization method for tissue slices—with an emphasis on lung—while attached to a glass slide. To this end, different decellularizing agents were compared for their effectiveness in cellular removal while preserving the extracellular matrix. The intensity of DNA staining was taken as an indicator of remaining cells and compared to untreated sections. The presence of collagen, elastin and laminin were quantified using immunostaining and signal quantification. Scaffolds resulting from the optimized protocol were mechanically characterized using atomic force microscopy. Lung scaffolds were recellularized with mesenchymal stromal cells to assess their biocompatibility. Some decellularization agents (CHAPS, triton, and ammonia hydroxide) did not achieve sufficient cell removal. Sodium dodecyl sulfate (SDS) was effective in cell removal (1% remaining DNA signal), but its sharp reduction of elastin signal (only 6% remained) plus lower attachment ratio (32%) singled out sodium deoxycholate (SD) as the optimal treatment for this application (6.5% remaining DNA signal), due to its higher elastin retention (34%) and higher attachment ratio (60%). Laminin and collagen were fully preserved in all treatments. The SD decellularization protocol was also successful for porcine and murine (mice and rat) lungs as well as for other tissues such as the heart, kidney, and bladder. No significant mechanical differences were found before and after sample decellularization. The resulting acellular lung scaffolds were shown to be biocompatible (98% cell survival after 72 h of culture). This novel method to decellularize tissue slices opens up new methodological possibilities to better understand the role of the extracellular matrix in the context of several diseases as well as tissue engineering research and can be easily adapted for scarce samples like clinical biopsies.
Collapse
Affiliation(s)
- Maria Narciso
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Constança Júnior
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- *Correspondence: Isaac Almendros,
| |
Collapse
|
22
|
Demko P, Hillebrandt KH, Napierala H, Haep N, Tang P, Gassner JMGV, Kluge M, Everwien H, Polenz D, Reutzel-Selke A, Raschzok N, Pratschke J, Sauer IM, Struecker B, Dobrindt EM. Perfusion-Based Recellularization of Rat Livers with Islets of Langerhans. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00697-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Purpose
Artificial organs might serve as alternative solutions for whole organ transplantation. Decellularization of a liver provides a non-immunogenic matrix with the advantage of three afferent systems, the portal vein, the hepatic artery and the bile duct. This study aims to evaluate the recellularization of rat livers with islets of Langerhans via the bile duct and the portal vein for the comparison of different perfusion routes.
Methods
Rat livers were decellularized in a pressure-controlled perfusion manner and repopulated with intact isolated islets of Langerhans via either the portal vein or the bile duct.
Results
Repopulation via the portal vein showed islet clusters stuck within the vascular system demonstrated by ellipsoid borders of thick reticular tissue around the islet cluster in Azan staining. After recellularization via the bile duct, islets were distributed close to the vessels within the parenchymal space and without a surrounding reticular layer. Large clusters of islets had a diameter of up to 1000 µm without clear shapes.
Conclusion
We demonstrated the bile duct to be superior to the portal vein for repopulation of a decellularized rat liver with islets of Langerhans. This technique may serve as a bioengineering platform to generate an implantable and functional endocrine neo-pancreas and provide scaffolds with the anatomic benefit of three afferent systems to facilitate co-population of cells.
Collapse
|
23
|
Design by Nature: Emerging Applications of Native Liver Extracellular Matrix for Cholangiocyte Organoid-Based Regenerative Medicine. Bioengineering (Basel) 2022; 9:bioengineering9030110. [PMID: 35324799 PMCID: PMC8945468 DOI: 10.3390/bioengineering9030110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Organoid technology holds great promise for regenerative medicine. Recent studies show feasibility for bile duct tissue repair in humans by successfully transplanting cholangiocyte organoids in liver grafts during perfusion. Large-scale expansion of cholangiocytes is essential for extending these regenerative medicine applications. Human cholangiocyte organoids have a high and stable proliferation capacity, making them an attractive source of cholangiocytes. Commercially available basement membrane extract (BME) is used to expand the organoids. BME allows the cells to self-organize into 3D structures and stimulates cell proliferation. However, the use of BME is limiting the clinical applications of the organoids. There is a need for alternative tissue-specific and clinically relevant culture substrates capable of supporting organoid proliferation. Hydrogels prepared from decellularized and solubilized native livers are an attractive alternative for BME. These hydrogels can be used for the culture and expansion of cholangiocyte organoids in a clinically relevant manner. Moreover, the liver-derived hydrogels retain tissue-specific aspects of the extracellular microenvironment. They are composed of a complex mixture of bioactive and biodegradable extracellular matrix (ECM) components and can support the growth of various hepatobiliary cells. In this review, we provide an overview of the clinical potential of native liver ECM-based hydrogels for applications with human cholangiocyte organoids. We discuss the current limitations of BME for the clinical applications of organoids and how native ECM hydrogels can potentially overcome these problems in an effort to unlock the full regenerative clinical potential of the organoids.
Collapse
|
24
|
Zhou L, Wang Z, Wang Z, Zhu J, Feng Y, Zhang D, Shen C, Ye X, Zhu J, Wei P, Mei J, Zhang J. Effect of heparinization on promoting angiogenesis of decellularized kidney scaffolds. J Biomed Mater Res A 2021; 109:1979-1989. [PMID: 33822474 DOI: 10.1002/jbm.a.37190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/26/2020] [Accepted: 03/24/2021] [Indexed: 12/30/2022]
Abstract
Native decellularized extracellular matrix provides an adequate platform for tissues and organs and promotes the development of organogenesis and tissue remodeling. However, thrombosis poses a great challenge that hinders the transplantation for a substantial organ in vivo. Therefore, anticoagulation and re-reendothelialization of organ biological scaffolds are the primary concerns to be addressed before orthotopic transplantation. Herein, a heparinized decellularized kidney scaffold (HEP-DKSs) was prepared using end-point attachment technology, followed by binding the vascular endothelial growth factor (VEGF) to greatly improve the hemocompatibility and angiogenesis of DKSs. Based on the anticoagulant, co-culture of human umbilical vein endothelial cells, and subcapsular transplantation of kidney experiments, HEP-VEGF-DKSs are shown to reduce platelet adhesion, which is crucial for subsequent vascularization and slow release of heparin and VEGF, suggesting its ability of improve neovascularization. Taken together, these data indicated an optimal anticoagulation function of HEP-VEGF-DKSs and the potential of vascularization for regeneration of whole decellularized kidney.
Collapse
Affiliation(s)
- Lebin Zhou
- Anatomy Department, Wenzhou Medical University, Wenzhou, China
- Department of Emergency, People's Hospital of Yueqing, Wenzhou, China
| | - Zhiyi Wang
- Department of General Practice, The Second Affliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhibin Wang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Junyi Zhu
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yulu Feng
- Department of Emergency, People's Hospital of Yueqing, Wenzhou, China
| | - Deming Zhang
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Chenfang Shen
- Department of General Practice, The Second Affliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoting Ye
- Department of General Practice, The Second Affliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieyang Zhu
- Department of General Practice, The Second Affliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Wei
- Department of Hand and Repair Reconstruction Surgical, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Jin Mei
- Anatomy Department, Wenzhou Medical University, Wenzhou, China
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Jianse Zhang
- Anatomy Department, Wenzhou Medical University, Wenzhou, China
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW While liver transplantation is an established treatment for liver failure, the number of patients with liver failure amenable to such intervention far outnumbers the donor supply of livers. Technologies serving to bridge this gap are required. Artificial livers may serve as an alternative. In this review, we discuss the development of artificial liver technologies. RECENT FINDINGS The accrued clinical data suggest that current liver assist devices may serve a role in specific liver diseases, but for the most part no survival benefit has been demonstrated. More clinical trials are expected to elucidate their utilization. Simultaneously, recent advances in materials and tissue engineering are allowing for exciting developments for novel artificial livers. SUMMARY As there continues to be more clinical data regarding the use of current liver devices, new intricate artificial liver technologies, with the use of sophisticated three-dimensional materials, are being developed that may help improve outcomes of liver failure patients.
Collapse
Affiliation(s)
- Asish C Misra
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
26
|
Khajavi M, Hashemi M, Kalalinia F. Recent advances in optimization of liver decellularization procedures used for liver regeneration. Life Sci 2021; 281:119801. [PMID: 34229008 DOI: 10.1016/j.lfs.2021.119801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Severe liver diseases have been considered the most common causes of adult deaths worldwide. Until now, liver transplantation is known as the only effective treatment for end stage liver disease. However, it is associated with several problems, most importantly, the side effects of immunosuppressive drugs that should be used after transplantation, and the shortage of tissue donors compared to the increasing number of patients requiring liver transplantation. Currently, tissue/organ decellularization as a new approach in tissue engineering is becoming a valid substitute for managing these kinds of problems. Decellularization of a whole liver is an attractive procedure to create three-dimensional (3D) scaffolds that micro-architecturally and structurally are similar to the native one and could support the repair or replacement of damaged or injured tissue. In this review, the different methods used for decellularization of liver tissue have been reviewed. In addition, the current approaches to overcome the challenges in these techniques are discussed.
Collapse
Affiliation(s)
- Mohaddeseh Khajavi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Bobrova MM, Safonova LA, Efimov AE, Iljinsky IM, Agapova OI, Agapov II. Relation between micro- and nanostructure features and biological properties of the decellularized rat liver. Biomed Mater 2021; 16. [PMID: 34100773 DOI: 10.1088/1748-605x/ac058b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
Organ decellularization is one of the promising technologies of regenerative medicine, which allows obtaining cell-free extracellular matrix (ECM), which provide preservation of the composition, architecture, vascular network and biological activity of the ECM. The method of decellularization opens up wide prospects for its practical application not only in the field of creating full-scale bioengineered structures, but also in the manufacture of vessels, microcarriers, hydrogels, and coatings. The main goal of our work was the investigation of structure and biological properties of lyophilized decellularized Wistar rat liver fragments (LDLFs), as well as we assessed the regenerative potential of the obtained ECM. We obtained decellularized liver of a Wistar rat, the vascular network and the main components of the ECM of tissue were preserved. H&E staining of histological sections confirmed the removal of cells. DNA content of ECM is equal to 0.7% of native tissue DNA content. Utilizing scanning probe nanotomogrphy method, we showed sinuous, rough topography and highly nanoporous structure of ECM, which provide high level of mouse 3T3 fibroblast and Hep-G2cells biocompatibility. Obtained LDLF had a high regenerative potential, which we studied in an experimental model of a full-thickness rat skin wound healing: we observed the acceleration of wound healing by 2.2 times in comparison with the control.
Collapse
Affiliation(s)
- Maria M Bobrova
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Liubov A Safonova
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Anton E Efimov
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia.,SNOTRA LLC., 121205 Moscow, Russia
| | - Igor M Iljinsky
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Olga I Agapova
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Igor I Agapov
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| |
Collapse
|
28
|
Asadi M, Khalili M, Lotfi H, Vaghefi Moghaddam S, Zarghami N, André H, Alizadeh E. Liver bioengineering: Recent trends/advances in decellularization and cell sheet technologies towards translation into the clinic. Life Sci 2021; 276:119373. [PMID: 33744324 DOI: 10.1016/j.lfs.2021.119373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Development of novel technologies provides the best tissue constructs engineering and maximizes their therapeutic effects in regenerative therapy, especially for liver dysfunctions. Among the currently investigated approaches of tissue engineering, scaffold-based and scaffold-free tissues are widely suggested for liver regeneration. Analogs of liver acellular extracellular matrix (ECM) are utilized in native scaffolds to increase the self-repair and healing ability of organs. Native ECM analog could improve liver repairing through providing the supportive framework for cells and signaling molecules, exerting normal biomechanical, biochemical, and physiological signal complexes. Recently, innovative cell sheet technology is introduced as an alternative for conventional tissue engineering with the advantage of fewer scaffold restrictions and cell culture on a Thermo-Responsive Polymer Surface. These sheets release the layered cells through a temperature-controlled procedure without enzymatic digestion, while preserving the cell-ECM contacts and adhesive molecules on cell-cell junctions. In addition, several novelties have been introduced into the cell sheet and decellularization technologies to aid cell growth, instruct differentiation/angiogenesis, and promote cell migration. In this review, recent trends, advancements, and issues linked to translation into clinical practice are dissected and compared regarding the decellularization and cell sheet technologies for liver tissue engineering.
Collapse
Affiliation(s)
- Maryam Asadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institute, 11282 Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Capella-Monsonís H, Zeugolis DI. Decellularized xenografts in regenerative medicine: From processing to clinical application. Xenotransplantation 2021; 28:e12683. [PMID: 33709410 DOI: 10.1111/xen.12683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Decellularized xenografts are an inherent component of regenerative medicine. Their preserved structure, mechanical integrity and biofunctional composition have well established them in reparative medicine for a diverse range of clinical indications. Nonetheless, their performance is highly influenced by their source (ie species, age, tissue) and processing (ie decellularization, crosslinking, sterilization and preservation), which govern their final characteristics and determine their success or failure for a specific clinical target. In this review, we provide an overview of the different sources and processing methods used in decellularized xenografts fabrication and discuss their effect on the clinical performance of commercially available decellularized xenografts.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
30
|
Nouri Barkestani M, Naserian S, Uzan G, Shamdani S. Post-decellularization techniques ameliorate cartilage decellularization process for tissue engineering applications. J Tissue Eng 2021; 12:2041731420983562. [PMID: 33738088 PMCID: PMC7934046 DOI: 10.1177/2041731420983562] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Due to the current lack of innovative and effective therapeutic approaches, tissue engineering (TE) has attracted much attention during the last decades providing new hopes for the treatment of several degenerative disorders. Tissue engineering is a complex procedure, which includes processes of decellularization and recellularization of biological tissues or functionalization of artificial scaffolds by active cells. In this review, we have first discussed those conventional steps, which have led to great advancements during the last several years. Moreover, we have paid special attention to the new methods of post-decellularization that can significantly ameliorate the efficiency of decellularized cartilage extracellular matrix (ECM) for the treatment of osteoarthritis (OA). We propose a series of post-decellularization procedures to overcome the current shortcomings such as low mechanical strength and poor bioactivity to improve decellularized ECM scaffold towards much more efficient and higher integration.
Collapse
Affiliation(s)
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Université Paris-Saclay, CNRS, Centre de Nanosciences et Nanotechnologies C2N, UMR9001, Palaiseau, France.,CellMedEx, Saint Maur Des Fossés, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Sara Shamdani
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,CellMedEx, Saint Maur Des Fossés, France
| |
Collapse
|
31
|
Felgendreff P, Schindler C, Mussbach F, Xie C, Gremse F, Settmacher U, Dahmen U. Identification of tissue sections from decellularized liver scaffolds for repopulation experiments. Heliyon 2021; 7:e06129. [PMID: 33644446 PMCID: PMC7895725 DOI: 10.1016/j.heliyon.2021.e06129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Biological organ engineering is a novel experimental approach to generate functional liver grafts by decellularization and repopulation. Currently, healthy organs of small or large animals and human organs with preexisting liver diseases are used to optimize decellularization and repopulation.However, the effects of morphological changes on allo- and xenogeneic cell-scaffold interactions during repopulation procedure, e.g., using scaffold-sections, are unknown. We present a sequential morphological workflow to identify murine liver scaffold-sections with well-preserved microarchitecture. METHODS Native livers (CONT, n = 9) and livers with experimentally induced pathologies (hepatics steatosis: STEA, n = 7; hepatic fibrosis induced by bile duct ligation: BDL, n = 9; nodular regenerative hyperplasia induced by 90% partial hepatectomy: PH, n = 8) were decellularized using SDS and Triton X-100 to generate cell-free scaffolds. Scaffold-sections were assessed using a sequential morphological workflow consisting of macroscopic, microscopic and morphological evaluation: (1) The scaffold was evaluated by a macroscopic decellularization score. (2) Regions without visible tissue remnants were localized for sampling and histological processing. Subsequent microscopical examination served to identify tissue samples without cell remnants. (3) Only cell-free tissue sections were subjected to detailed liver-specific morphological assessment using a histological and immunohistochemical decellularization score. RESULTS Decellularization was feasible in 33 livers, which were subjected to the sequential morphological workflow. In 11 of 33 scaffolds we achieved a good macroscopic decellularization result (CONT: 3 scaffolds; STEA: 3 scaffolds; BDL: 3 scaffolds; PH: 2 scaffolds). The microscopic assessment resulted in the selection of 88 cell-free tissue sections (CONT: 15 sections; STEA: 38 sections; BDL: 30 sections; PH: 5 sections). In 27 of those sections we obtained a good histological decellularization result (CONT: 3 sections; STEA: 6 sections; BDL: 17 sections; PH: 1 section). All experimental groups contained sections with a good immunohistochemical decellularization result (CONT: 6 sections; STEA: 5 sections; BDL: 4 sections; PH: 1 section). DISCUSSION Decellularization was possible in all experimental groups, irrespectively of the underlying morphological alteration. Furthermore, our proposed sequential morphological workflow was suitable to detect tissue sections with well-preserved hepatic microarchitecture, as needed for further repopulation experiments.
Collapse
Affiliation(s)
- Philipp Felgendreff
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
- Research Program “Else Kröner-Forschungskolleg AntiAge”, Jena University Hospital, Jena, Germany
| | - Claudia Schindler
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Franziska Mussbach
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Chichi Xie
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| |
Collapse
|
32
|
Wang Y, Brodin E, Nishii K, Frieboes HB, Mumenthaler SM, Sparks JL, Macklin P. Impact of tumor-parenchyma biomechanics on liver metastatic progression: a multi-model approach. Sci Rep 2021; 11:1710. [PMID: 33462259 PMCID: PMC7813881 DOI: 10.1038/s41598-020-78780-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer and other cancers often metastasize to the liver in later stages of the disease, contributing significantly to patient death. While the biomechanical properties of the liver parenchyma (normal liver tissue) are known to affect tumor cell behavior in primary and metastatic tumors, the role of these properties in driving or inhibiting metastatic inception remains poorly understood, as are the longer-term multicellular dynamics. This study adopts a multi-model approach to study the dynamics of tumor-parenchyma biomechanical interactions during metastatic seeding and growth. We employ a detailed poroviscoelastic model of a liver lobule to study how micrometastases disrupt flow and pressure on short time scales. Results from short-time simulations in detailed single hepatic lobules motivate constitutive relations and biological hypotheses for a minimal agent-based model of metastatic growth in centimeter-scale tissue over months-long time scales. After a parameter space investigation, we find that the balance of basic tumor-parenchyma biomechanical interactions on shorter time scales (adhesion, repulsion, and elastic tissue deformation over minutes) and longer time scales (plastic tissue relaxation over hours) can explain a broad range of behaviors of micrometastases, without the need for complex molecular-scale signaling. These interactions may arrest the growth of micrometastases in a dormant state and prevent newly arriving cancer cells from establishing successful metastatic foci. Moreover, the simulations indicate ways in which dormant tumors could "reawaken" after changes in parenchymal tissue mechanical properties, as may arise during aging or following acute liver illness or injury. We conclude that the proposed modeling approach yields insight into the role of tumor-parenchyma biomechanics in promoting liver metastatic growth, and advances the longer term goal of identifying conditions to clinically arrest and reverse the course of late-stage cancer.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Erik Brodin
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Kenichiro Nishii
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica L Sparks
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA.
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
33
|
Zaminy A, Sayad-Fathi S, Kasmaie FM, Jahromi Z, Zendedel A. Decellularized peripheral nerve grafts by a modified protocol for repair of rat sciatic nerve injury. Neural Regen Res 2021; 16:1086-1092. [PMID: 33269754 PMCID: PMC8224104 DOI: 10.4103/1673-5374.300449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Studies have shown that acellular nerve xenografts do not require immunosuppression and use of acellular nerve xenografts for repair of peripheral nerve injury is safe and effective. However, there is currently no widely accepted standard chemical decellularization method. The purpose of this study is to investigate the efficiency of bovine-derived nerves decellularized by the modified Hudson’s protocol in the repair of rat sciatic nerve injury. In the modified Hudson’s protocol, Triton X-200 was replaced by Triton X-100, and DNase and RNase were used to prepare accelular nerve xenografts. The efficiency of bovine-derived nerves decellularized by the modified Hudson’s protocol was tested in vitro by hematoxylin & eosin, Alcian blue, Masson’s trichrome, and Luxol fast blue staining, immunohistochemistry, and biochemical assays. The decellularization approach excluded cells, myelin, and axons of nerve xenografts, without affecting the organization of nerve xenografts. The decellularized nerve xenograft was used to bridge a 7 mm-long sciatic nerve defect to evaluate its efficiency in the repair of peripheral nerve injury. At 8 weeks after transplantation, sciatic function index in rats subjected to transplantation of acellular nerve xenograft was similar to that in rats undergoing transplantation of nerve allograft. Morphological analysis revealed that there were a large amount of regenerated myelinated axons in acellular nerve xenograft; the number of Schwann cells in the acellular nerve xenograft was similar to that in the nerve allograft. These findings suggest that acellular nerve xenografts prepared by the modified Hudson’s protocol can be used for repair of peripheral nerve injury. This study was approved by the Research Ethics Committee, Research and Technology Chancellor of Guilan University of Medical Sciences, Iran (approval No. IR.GUMS.REC.1395.332) on February 11, 2017.
Collapse
Affiliation(s)
- Arash Zaminy
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Sayad-Fathi
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zohreh Jahromi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
34
|
Taghavi H, Soleimani Rad J, Mehdipour A, Ferdosi Khosroshahi A, Kheirjou R, Hasanpour M, Roshangar L. Effect of Mineral Pitch on the Proliferation of Human Adipose Derived Stem Cells on Acellular Scaffold. Adv Pharm Bull 2020; 10:623-629. [PMID: 33072541 PMCID: PMC7539320 DOI: 10.34172/apb.2020.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/01/2022] Open
Abstract
Purpose: Acellular scaffold extracted from extracellular matrix (ECM) have been used for constructive and regenerative medicine. Adipose derived stem cells (ADSCs) can enhance the vascularization capacity of scaffolds. High mobility group box 1 (HMGB1) and stromal derived factor1 (SDF1) are considered as two important factors in vascularization and immunologic system. In this study, the effect of mineral pitch on the proliferation of human ADSCs was evaluated. In addition to HMGB1 and SDF1, factors expression in acellular scaffold was also assessed. Methods: To determine acellular scaffold morphology and the degree of decellularization, hematoxylin & eosin (H&E), 6-diamidino-2-phenylindole (DAPI), and Masson’s trichrome staining were applied. The scaffolds were treated with mineral pitch. Also, ADSCs were seeded on the scaffolds, and adhesion of the cells to the scaffolds were assessed using field emission scanning electron microscopy (FE-SEM). In addition, the efficiency of mineral pitch to induce the proliferation of ADSCs on the scaffolds was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. To measure HMGB1 and SDF1 mRNA expression, real-time polymerase chain reactions (RT-PCR) was used. Results: FE-SEM showed that decellularized matrix possesses similar matrix morphology with a randomly oriented fibrillar structure and interconnecting pores. No toxicity was observed in all treatments, and cell proliferation were supported in scaffolds. The important point is that, the proliferation capacity of ADSCs on Mineral pitch loaded scaffolds significantly increased after 48 h incubation time compared to the unloaded scaffold (P<0.001). Conclusion: The results of this study suggest that mineral pitch has potentials to accelerate proliferation of ADSCs on the acellular scaffolds.
Collapse
Affiliation(s)
- Hossein Taghavi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Ferdosi Khosroshahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Hasanpour
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Comparison of Extracellular Matrix (ECM) of Normal and D-Galactosamine-Induced Mice Model of Liver Injury Before and After Liver Decellularization. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Wang A, Kuriata O, Xu F, Nietzsche S, Gremse F, Dirsch O, Settmacher U, Dahmen U. A Survival Model of In Vivo Partial Liver Lobe Decellularization Towards In Vivo Liver Engineering. Tissue Eng Part C Methods 2019; 26:402-417. [PMID: 31668131 DOI: 10.1089/ten.tec.2019.0194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In vivo liver decellularization has become a promising strategy to study in vivo liver engineering. However, long-term survival after in vivo liver decellularization has not yet been achieved due to anatomical and technical challenges. This study aimed at establishing a survival model of in vivo partial liver lobe perfusion-decellularization in rats. We compared three decellularization protocols (1% Triton X100 followed by 1% sodium dodecyl sulfate [SDS], 1% SDS vs. 1% Triton X100, n = 6/group). Using the optimal one as judged by macroscopy, histology and DNA content, we characterized the structural integrity and matrix proteins by using histology, scanning electron microscopy, computed tomography scanning, and immunohistochemistry (IHC). We prevented contamination of the abdominal cavity with the corrosive detergents by using polyvinylidene chloride (PVDC) film + dry gauze in comparison to PVDC film + dry gauze + aspiration tube (n = 6/group). Physiological reperfusion was assessed by histology. Survival rate was determined after a 7-day observation period. Only perfusion with 1% SDS resulted in an acellular scaffold (fully translucent without histologically detectable tissue remnants, DNA concentration is <2% of that in native lobe) with remarkable structural and ultrastructural integrity as well as preservation of main matrix proteins (IHC positive for collagen IV, laminin, and elastin). Contamination of abdominal organs with the potentially toxic SDS solution was achieved by placing a suction tube in addition to the PVDC film + dry gauze and allowed a 7-day survival of all animals without severe postoperative complications. On reperfusion, the liver turned red within seconds without any leakage from the surface of the liver. About 12 h after reperfusion, not only blood cells but also some clots were visible in the portal vein, sinusoidal matrix network, and central vein, suggesting physiological perfusion. In conclusion, our results of this study show the first available data on generation of a survival model of in vivo parenchymal organ decellularization, creating a critical step toward in vivo organ engineering. Impact Statement Recently, in vivo liver decellularization has been considered a promising approach to study in vivo liver repopulation of a scaffold compared with ex vivo liver repopulation. However, long-term survival of in vivo liver decellularization has not yet been achieved. Here, despite anatomical and technical challenges, we successfully created a survival model of in vivo selected liver lobe decellularization in rats, providing a major step toward in vivo organ engineering.
Collapse
Affiliation(s)
- An Wang
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Olha Kuriata
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Fengming Xu
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Felix Gremse
- Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
37
|
A Hepatic Scaffold from Decellularized Liver Tissue: Food for Thought. Biomolecules 2019; 9:biom9120813. [PMID: 31810291 PMCID: PMC6995515 DOI: 10.3390/biom9120813] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Allogeneic liver transplantation is still deemed the gold standard solution for end-stage organ failure; however, donor organ shortages have led to extended waiting lists for organ transplants. In order to overcome the lack of donors, the development of new therapeutic options is mandatory. In the last several years, organ bioengineering has been extensively explored to provide transplantable tissues or whole organs with the final goal of creating a three-dimensional growth microenvironment mimicking the native structure. It has been frequently reported that an extracellular matrix-based scaffold offers a structural support and important biological molecules that could help cellular proliferation during the recellularization process. The aim of the present review is to underline the recent developments in cell-on-scaffold technology for liver bioengineering, taking into account: (1) biological and synthetic scaffolds; (2) animal and human tissue decellularization; (3) scaffold recellularization; (4) 3D bioprinting; and (5) organoid technology. Future possible clinical applications in regenerative medicine for liver tissue engineering and for drug testing were underlined and dissected.
Collapse
|
38
|
Methods to generate tissue-derived constructs for regenerative medicine applications. Methods 2019; 171:3-10. [PMID: 31606388 DOI: 10.1016/j.ymeth.2019.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/13/2019] [Accepted: 09/22/2019] [Indexed: 01/08/2023] Open
Abstract
The shortage of donor organs for transplantation remains a continued problem for patients with irreversible end-stage organ failure. Tissue engineering and regenerative medicine aims to develop therapies to provide viable solutions for these patients. Use of decellularized tissue scaffolds has emerged as an attractive approach to generate tissue constructs that mimic native tissue architecture and vascular networks. The process of decellularization which involves the removal of resident cellular components from donor tissues has been successfully translated to the clinic for applications in patients. However, transplantation of bioengineered solid organs using this approach remains a challenge as the process requires repopulating target cells to achieve functioning organs. This article presents a comprehensive overview of the methods used to achieve decellularization, the types of decellularizing agents, and the potential cell sources that could be used to achieve tissue function. Understanding the mechanism of action of the decellularizing agent and the processing methods will provide the optimal results for applications.
Collapse
|
39
|
Abazari MF, Soleimanifar F, Enderami SE, Nasiri N, Nejati F, Mousavi SA, Soleimani M, Kiani J, Ghoraeian P, Kehtari M. Decellularized amniotic membrane Scaffolds improve differentiation of iPSCs to functional hepatocyte‐like cells. J Cell Biochem 2019; 121:1169-1181. [DOI: 10.1002/jcb.29351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Mohammad Foad Abazari
- Department of Genetics, Tehran Medical Sciences Branch Islamic Azad University Tehran Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, Dietary Supplements and Probiotic Research Center Alborz University of Medical Sciences Karaj Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnolmicroogy, Faculty of Medicine Mazandaran University of Medical Sciences Sari Iran
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Navid Nasiri
- Department of Biology, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Fatemeh Nejati
- Department of Biology, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Pegah Ghoraeian
- Department of Genetics, Tehran Medical Sciences Branch Islamic Azad University Tehran Iran
| | - Mousa Kehtari
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
- Department of Developmental Biology, School of Biology, College of Science University of Tehran Tehran Iran
| |
Collapse
|
40
|
Capella-Monsonís H, Kelly J, Kearns S, Zeugolis DI. Decellularised porcine peritoneum as a tendon protector sheet. Biomed Mater 2019; 14:044102. [DOI: 10.1088/1748-605x/ab2301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Xin H, Wang Z, Wu S, Wang P, Tao X, Xu C, You L. Calcified decellularized arterial scaffolds impact vascular smooth muscle cell transformation via downregulating α-SMA expression and upregulating OPN expression. Exp Ther Med 2019; 18:705-710. [PMID: 31281450 DOI: 10.3892/etm.2019.7626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
The underlying mechanisms of arterial remodeling (AR) remain unclear. Studies have indicated that decellularized scaffolds stimulate the differentiation of fibroblasts into myofibroblasts and promote the accumulation of the extracellular matrix (ECM). In the present study, the impact of ECM changes following AR on vascular smooth muscle cell (VSMC) phenotypes was investigated. VSMCs were co-cultured with normal or calcified decellularized arterial scaffolds. The expression levels of α-smooth muscle actin (α-SMA) and osteopontin (OPN) were measured at 2, 5, 10, 15 and 21 days following the establishment of the co-culture systems. The expression of α-SMA in the normal co-culture group was significantly increased compared with that in the calcified arterial decellularized scaffold co-culture group (P<0.05 and P<0.001). In addition, the expression of OPN in the AR co-culture group was significantly increased compared with the normal co-culture group (P<0.05 and P<0.001). To conclude, the calcified decellularized arterial scaffolds impact VSMC transformation by downregulating α-SMA expression and upregulating OPN expression (P<0.001). To the best of our knowledge, the present study is the first study that co-cultured VSMCs with normal or calcified decellularized arterial scaffolds.
Collapse
Affiliation(s)
- Huaping Xin
- Department of Geriatrics, The People's Hospital of Yichun City, Yichun, Jiangxi 336000, P.R. China
| | - Zhimin Wang
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Shuwu Wu
- Department of Geriatrics, The People's Hospital of Yichun City, Yichun, Jiangxi 336000, P.R. China
| | - Peng Wang
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Xiaoxiao Tao
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Chenhua Xu
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Liling You
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
42
|
Advances in Hepatic Tissue Bioengineering with Decellularized Liver Bioscaffold. Stem Cells Int 2019; 2019:2693189. [PMID: 31198426 PMCID: PMC6526559 DOI: 10.1155/2019/2693189] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/08/2019] [Accepted: 03/17/2019] [Indexed: 12/28/2022] Open
Abstract
The burden of liver diseases continues to grow worldwide, and liver transplantation is the only option for patients with end-stage liver disease. This procedure is limited by critical issues, including the low availability of donor organs; thus, novel therapeutic strategies are greatly needed. Recently, bioengineering approaches using decellularized liver scaffolds have been proposed as a novel strategy to overcome these challenges. The aim of this systematic literature review was to identify the major advances in the field of bioengineering using decellularized liver scaffolds and to identify obstacles and challenges for clinical application. The main findings of the articles and each contribution for technique optimization were highlighted, including the protocols of perfusion and decellularization, duration, demonstration of quality control—scaffold acellularity, matrix composition, and preservation of growth factors—and tissue functionality after recellularization. In previous years, many advances have been made as this technique has evolved from studies in animal models to human livers. As the field develops and this promising technique has become much more feasible, many challenges remain, including the selection of appropriate cell types for recellularization, route of cell administration, cell-seeding protocol, and scalability that must be standardized prior to clinical application.
Collapse
|
43
|
In vitro and in vivo translational models for rare liver diseases. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1003-1018. [DOI: 10.1016/j.bbadis.2018.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
44
|
Decellularized caprine liver-derived biomimetic and pro-angiogenic scaffolds for liver tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:939-948. [DOI: 10.1016/j.msec.2019.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
|
45
|
Kehtari M, Beiki B, Zeynali B, Hosseini FS, Soleimanifar F, Kaabi M, Soleimani M, Enderami SE, Kabiri M, Mahboudi H. Decellularized Wharton's jelly extracellular matrix as a promising scaffold for promoting hepatic differentiation of human induced pluripotent stem cells. J Cell Biochem 2019; 120:6683-6697. [DOI: 10.1002/jcb.27965] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/02/2018] [Indexed: 08/30/2023]
Abstract
AbstractLiver tissue engineering as a therapeutic option for restoring of damaged liver function has a special focus on using native decellularized liver matrix, but there are limitations such as the shortage of liver donor. Therefore, an appropriate alternative scaffold is needed to circumvent the donor shortage. This study was designed to evaluate hepatic differentiation of human induced pluripotent stem cells (hiPSCs) in decellularized Wharton's jelly (WJ) matrix as an alternative for native liver matrix. WJ matrices were treated with a series of detergents for decellularization. Then hiPSCs were seeded into decellularized WJ scaffold (DWJS) for hepatic differentiation by a defined induction protocol. The DNA quantitative assay and histological evaluation showed that cellular and nuclear materials were efficiently removed and the composition of extracellular matrix was maintained. In DWJS, hiPSCs‐derived hepatocyte‐like cells (hiPSCs‐Heps) efficiently entered into the differentiation phase (G1) and gradually took a polygonal shape, a typical shape of hepatocytes. The expression of hepatic‐associated genes (albumin, TAT, Cytokeratin19, and Cyp7A1), albumin and urea secretion in hiPSCs‐Heps cultured into DWJS was significantly higher than those cultured in the culture plates (2D). Altogether, our results suggest that DWJS could provide a proper microenvironment that efficiently promotes hepatic differentiation of hiPSCs.
Collapse
Affiliation(s)
- Mousa Kehtari
- Department of Developmental Biology, School of Biology, College of Science, University of Tehran Tehran Iran
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Bahareh Beiki
- Department of Developmental Biology, School of Biology, College of Science, University of Tehran Tehran Iran
| | - Bahman Zeynali
- Department of Developmental Biology, School of Biology, College of Science, University of Tehran Tehran Iran
| | | | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences Karaj Iran
| | - Mohammad Kaabi
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Masoud Soleimani
- Department of Hematology Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Seyed Ehsan Enderami
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology College of Science, University of Tehran Tehran Iran
| | - Hossein Mahboudi
- Department of Biotechnology School of Pharmacy, Alborz University of Medical Sciences Karaj Iran
- Dietary Supplements and Probiotic Center Alborz University of Medical Sciences Karaj Iran
| |
Collapse
|
46
|
Ahmed E, Saleh T, Yu L, Kwak HH, Kim BM, Park KM, Lee YS, Kang BJ, Choi KY, Kang KS, Woo HM. Micro and ultrastructural changes monitoring during decellularization for the generation of a biocompatible liver. J Biosci Bioeng 2019; 128:218-225. [PMID: 30904455 DOI: 10.1016/j.jbiosc.2019.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 01/07/2023]
Abstract
Decellularization of a whole organ is an attractive process that has been used to create 3D scaffolds structurally and micro-architecturally similar to the native one. Currently used decellularization protocols exhibit disrupted extracellular matrix (ECM) structure and denatured ECM proteins. Therefore, maintaining a balance between ECM preservation and cellular removal is a major challenge. The aim of this study was to optimize a multistep Triton X-100 based protocol (either using Triton X-100/ammonium hydroxide mixture alone or after its modification with DNase, sodium dodecyl sulfate or trypsin) that could achieve maximum decellularization with minimal liver ECM destruction suitable for subsequent organ implantation without immune rejection. Based on our findings, Triton X-100 multistep protocol was insufficient for whole liver decellularization and needed to be modified with other detergents. Among all Triton X-100 modified protocols, a Triton X-100/DNase-based one was considered the most suitable. It maintains a gradual but sufficient removal of cells to generate decellularized biocompatible liver scaffolds without any significant alteration to ECM micro- and ultra-structure.
Collapse
Affiliation(s)
- Ebtehal Ahmed
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Tarek Saleh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Lina Yu
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Ho-Hyun Kwak
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Byeong-Moo Kim
- Department of Medicine, GI Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yun-Suk Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Byung-Jae Kang
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Ki-Young Choi
- Department of Controlled Agriculture, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Kyung-Sun Kang
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Heung Myong Woo
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea.
| |
Collapse
|
47
|
Bobrova MM, Safonova LA, Agapova OI, Efimov AE, Agapov II. The analysis of the proliferative activity of cells on microparticles obtained from decellularized liver and kidney tissue. ACTA ACUST UNITED AC 2019. [DOI: 10.15825/1995-1191-2018-4-69-75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aim.To develop the protocols for liver and kidney tissue decellularization, and to develop an analysis of the proliferative activity of human Hep-G2hepatocarcinoma cells on various carriers.Materials and methods.Decellularization of the liver and kidneys was performed by perfusion of detergent solutions with gradually increasing concentrations of Triton X-100 (1, 2 and 3%). A histological analysis of the obtained samples was performed, and the method of optical and scanning electron microscopy was used to study the obtained samples. The proliferative activity of human Hep-G2hepatocarcinoma cells was studied on the obtained samples of decellularized liver and kidney tissue.Results.Decellularization of the organ does not lead to changes in the specific structure of the tissue matrix. Microparticles with an average size of 200 μm were made from their decellularized matrix of liver and kidney tissues. The level of proliferative activity of human Hep-G2hepatocarcinoma cells cultured on microparticles from a decellularized liver was significantly higher than on microparticles from a decellularized kidney.Conclusion.The decellularized matrix retains the native three-dimensional structure of the tissue. The level of cell proliferative activity is significantly higher on microparticles from the decellularized liver, which confirms the preservation of the specificity of the extracellular matrix of the tissue after the process of decellularization.
Collapse
Affiliation(s)
- M. M. Bobrova
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation; Lomonosov Moscow State University
| | - L. A. Safonova
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation; Lomonosov Moscow State University
| | - O. I. Agapova
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
| | - A. E. Efimov
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
| | - I. I. Agapov
- V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
| |
Collapse
|
48
|
Coronado RE, Somaraki-Cormier M, Natesan S, Christy RJ, Ong JL, Halff GA. Decellularization and Solubilization of Porcine Liver for Use as a Substrate for Porcine Hepatocyte Culture: Method Optimization and Comparison. Cell Transplant 2018; 26:1840-1854. [PMID: 29390876 PMCID: PMC5802637 DOI: 10.1177/0963689717742157] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biologic substrates, prepared by decellularizing and solubilizing tissues, have been of great interest in the tissue engineering field because of the preservation of complex biochemical constituents found in the native extracellular matrix (ECM). The integrity of the ECM is critical for cell behavior, adhesion, migration, differentiation, and proliferation that in turn affect homeostasis and tissue regeneration. Previous studies have shown that various processing methods have a distinctive way of affecting the composition of the decellularized ECM. In this study, we developed a bioactive substrate for hepatocytes in vitro, made of decellularized and solubilized liver tissue. The present work is a comparative approach of 2 different methods. First, we decellularized porcine liver tissue with ammonium hydroxide versus a sodium deoxycholate method, then characterized the decellularized tissue using various methods including double stranded DNA (dsDNA) content, DNA size, immunogenicity, and mass spectrometry. Second, we solubilized the decellularized porcine liver with hydrochloric acid versus acetic acid (AA) and characterized the resultant solubilized tissues using relevant methodologies including protein yield, immunogenicity, and bioactivity. Finally, we isolated primary porcine hepatocytes, cultured, and evaluated their bioactivity on the optimized decellularized–solubilized liver substrate. The decellularized porcine liver ECM processed by the ammonium hydroxide method and solubilized with AA displayed higher ECM integrity, low dsDNA, no evidence of intact nuclei, low human monocyte chemoattraction, and the presence of key molecules typically found in the native liver, a very important element for normal cell function. In addition, primary porcine hepatocytes showed enhanced functionality including albumin and urea production and bile canaliculi formation when cultured on the developed liver substrate compared to type I collagen.
Collapse
Affiliation(s)
| | | | - Shanmugasundaram Natesan
- 2 Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Sam Houston, TX, USA
| | - Robert J Christy
- 2 Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Sam Houston, TX, USA
| | - Joo L Ong
- 3 Biomedical Engineering San Antonio, University of Texas at San Antonio, San Antonio, TX, USA
| | - Glenn A Halff
- 4 Transplant Center San Antonio, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
49
|
Meng F, Almohanna F, Altuhami A, Assiri AM, Broering D. Vasculature reconstruction of decellularized liver scaffolds via gelatin-based re-endothelialization. J Biomed Mater Res A 2018; 107:392-402. [PMID: 30508280 DOI: 10.1002/jbm.a.36551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Fanwei Meng
- Department of Comparative Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
- Organ Transplantation Center; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
| | - Falah Almohanna
- Department of Comparative Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
| | - Abdullah Altuhami
- Department of Comparative Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
- Organ Transplantation Center; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
| | - Abdallah M. Assiri
- Department of Comparative Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
- College of Medicine, AlFaisal University; Riyadh, 11211 Saudi Arabia
- Institute for Research and Medical Consultations; Imam Abdulrahman Bin Faisal University; Dammam, 34212 Saudi Arabia
| | - Dieter Broering
- Organ Transplantation Center; King Faisal Specialist Hospital and Research Centre; Riyadh, 11211 Saudi Arabia
| |
Collapse
|
50
|
Vishwakarma SK, Lakkireddy C, Bardia A, Paspala SAB, Tripura C, Habeeb MA, Khan AA. Bioengineered functional humanized livers: An emerging supportive modality to bridge the gap of organ transplantation for management of end-stage liver diseases. World J Hepatol 2018; 10:822-836. [PMID: 30533183 PMCID: PMC6280164 DOI: 10.4254/wjh.v10.i11.822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/24/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
End stage liver diseases (ESLD) represent a major, neglected global public health crisis which requires an urgent action towards finding a proper cure. Orthotropic liver transplantation has been the only definitive treatment modality for ESLD. However, shortage of donor organs, timely unavailability, post-surgery related complications and financial burden on the patients limits the number of patients receiving the transplants. Since last two decades cell-based therapies have revolutionized the field of organ/tissue regeneration. However providing an alternative organ source to address the donor liver shortage still poses potential challenges. The developments made in this direction provide useful futuristic approaches, which could be translated into pre-clinical and clinical settings targeting appropriate applications in specific disease conditions. Earlier studies have demonstrated the applicability of this particular approach to generate functional organ in rodent system by connecting them with portal and hepatic circulatory networks. However, such strategy requires very high level of surgical expertise and also poses the technical and financial questions towards its future applicability. Hence, alternative sites for generating secondary organs are being tested in several types of disease conditions. Among different sites, omentum has been proved to be more appropriate site for implanting several kinds of functional tissue constructs without eliciting much immunological response. Hence, omentum may be considered as better site for transplanting humanized bioengineered ex vivo generated livers, thereby creating a secondary organ at intra-omental site. However, the expertise for generating such bioengineered organs are limited and only very few centres are involved for investigating the potential use of such implants in clinical practice due to gap between the clinical transplant surgeons and basic scientists working on the concept evolution. Herein we discuss the recent advances and challenges to create functional secondary organs through intra-omental transplantation of ex vivo generated bioengineered humanized livers and their further application in the management of ESLD as a supportive bridge for organ transplantation.
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India
- Dr Habeebullah Life Sciences, Attapur, Hyderabad 500058, Telangana, India
| | - Chandrakala Lakkireddy
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India
- Dr Habeebullah Life Sciences, Attapur, Hyderabad 500058, Telangana, India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India
- Dr Habeebullah Life Sciences, Attapur, Hyderabad 500058, Telangana, India
| | - Syed Ameer Basha Paspala
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India
- Dr Habeebullah Life Sciences, Attapur, Hyderabad 500058, Telangana, India
| | - Chaturvedula Tripura
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad 500007, Telangana, India
| | - Md Aejaz Habeeb
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India
- Dr Habeebullah Life Sciences, Attapur, Hyderabad 500058, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad 500058, Telangana, India
- Dr Habeebullah Life Sciences, Attapur, Hyderabad 500058, Telangana, India.
| |
Collapse
|