1
|
Wu S, Pan J, Song M, Zhao YC, Chen W, Huang H, Zhu Y, Chen F. Performance of Magnetic Resonance Imaging and Ultrasound for Identifying the Different Degrees of Hepatic Steatosis: A Systematic Review and Meta-analysis. Acad Radiol 2025:S1076-6332(25)00204-1. [PMID: 40164534 DOI: 10.1016/j.acra.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND MRI proton density fat fraction (MRI-PDFF), controlled attenuation parameters (CAP), and attenuation coefficients (AC) are capable of steatosis characterization and may be useful as noninvasive alternatives for diagnosing hepatic steatosis. PURPOSE This meta-analysis aimed to evaluate the performance of MRI-PDFF, CAP, and AC in grading hepatic steatosis, using histology as the reference standard. METHODS We conducted a comprehensive search of the PubMed, Cochrane Library, Embase, and Web of Science databases until June 2024. The quality of eligible studies was assessed. Pooled sensitivity, specificity, and area under receiver operating characteristic (AUC) curves were calculated using a bivariate random-effects model. Meta-regression analysis, subgroup analysis, and Deeks' test were performed to explore heterogeneity and assess publication bias. RESULTS This meta-analysis included 38 studies with 5056 patients with metabolic dysfunction-associated steatotic liver disease. The AUC values for grading steatosis ≥S1, ≥S2, and ≥S3 were 0.99, 0.89, and 0.90 for MRI-PDFF, 0.95, 0.84, and 0.77 for CAP, and 0.97, 0.90, and 0.89 for AC, respectively. CAP demonstrated lower accuracy for detecting steatosis grades ≥S2 and ≥S3 compared to MRI-PDFF (0.89 vs. 0.84, p<0.001; 0.90 vs. 0.77, p<0.001) and AC (0.90 vs. 0.84, p<0.001; 0.89 vs. 0.77, p<0.001). Subgroup analyses revealed that MRI-PDFF and CAP exhibited superior diagnostic performance in diagnosing ≥S2 and ≥S3 steatosis among individuals in Asia, with a body mass index ≤30 kg/m2, and age <51 years. CONCLUSION A direct comparison with CAP showed greater accuracy for MRI-PDFF and AC in diagnosing moderate and severe steatosis, and similar diagnostic performance for MRI-PDFF and AC. For patients with steatosis, AC should be incorporated into routine ultrasound screening.
Collapse
Affiliation(s)
- Shuzhen Wu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou 310003, China (S.W., J.P., M.S., Y.C.Z., W.C., H.H., Y.Z., F.C.)
| | - Junhan Pan
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou 310003, China (S.W., J.P., M.S., Y.C.Z., W.C., H.H., Y.Z., F.C.)
| | - Mengchen Song
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou 310003, China (S.W., J.P., M.S., Y.C.Z., W.C., H.H., Y.Z., F.C.); Department of Radiology, Shulan (Hang Zhou) Hospital, No. 848 Dongxin Road, Hangzhou 310003, China (M.S.)
| | - Yan-Ci Zhao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou 310003, China (S.W., J.P., M.S., Y.C.Z., W.C., H.H., Y.Z., F.C.)
| | - Wuyue Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou 310003, China (S.W., J.P., M.S., Y.C.Z., W.C., H.H., Y.Z., F.C.)
| | - Huizhen Huang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou 310003, China (S.W., J.P., M.S., Y.C.Z., W.C., H.H., Y.Z., F.C.)
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou 310003, China (S.W., J.P., M.S., Y.C.Z., W.C., H.H., Y.Z., F.C.)
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou 310003, China (S.W., J.P., M.S., Y.C.Z., W.C., H.H., Y.Z., F.C.).
| |
Collapse
|
2
|
Isshiki A, Fujiwara K, Kondo T, Yoshida K, Yamaguchi T, Hirata S. Convolutional neural network classification of ultrasound parametric images based on echo-envelope statistics for the quantitative diagnosis of liver steatosis. J Med Ultrason (2001) 2025; 52:5-15. [PMID: 39579195 PMCID: PMC11799055 DOI: 10.1007/s10396-024-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/06/2024] [Indexed: 11/25/2024]
Abstract
PURPOSE Early detection and quantitative evaluation of liver steatosis are crucial. Therefore, this study investigated a method for classifying ultrasound images to fatty liver grades based on echo-envelope statistics (ES) and convolutional neural network (CNN) analyses. METHODS Three fatty liver grades, i.e., normal, mild, and moderate-to-severe, were defined using the thresholds of the magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF). There were 10 cases of each grade, totaling 30 cases. To visualize the texture information affected by the deposition of fat droplets within the liver, the maps of first- and fourth-order moments and the heat maps formed from both moments were employed as parametric images derived from the ES. Several dozen to hundreds of regions of interest (ROIs) were extracted from the liver region in each parametric image. A total of 7680 ROIs were utilized for the transfer learning of a pretrained VGG-16 and classified using the transfer-learned VGG-16. RESULTS The classification accuracies of the ROIs in all types of the parametric images were approximately 46%. The fatty liver grade for each case was determined by hard voting on the classified ROIs within the case. In the case of the fourth-order moment maps, the classification accuracy of the cases through hard voting mostly increased to approximately 63%. CONCLUSIONS The formation of parametric images derived from the ES and the CNN classification of the parametric images were proposed for the quantitative diagnosis of liver steatosis. In more than 60% of the cases, the fatty liver grade could be estimated solely using ultrasound images.
Collapse
Affiliation(s)
- Akiho Isshiki
- Department of Medical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Kisako Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan
| | - Takayuki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, 260-8677, Japan
- Ultrasound Center, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Kenji Yoshida
- Ultrasound Center, Chiba University Hospital, Chiba, 260-8677, Japan
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Tadashi Yamaguchi
- Ultrasound Center, Chiba University Hospital, Chiba, 260-8677, Japan
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Shinnosuke Hirata
- Ultrasound Center, Chiba University Hospital, Chiba, 260-8677, Japan.
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan.
| |
Collapse
|
3
|
López-Mendez I, Romero-Flores JL, Castro-Narro G, Uribe M, Juárez-Hernández E. Factors associated with obtaining lower IQR-CAP values in the detection of hepatic steatosis by transient elastography. Ann Hepatol 2024; 30:101762. [PMID: 39638039 DOI: 10.1016/j.aohep.2024.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION AND OBJECTIVES Controlled attenuation parameter (CAP) has been developed as a non-invasive method for detecting liver steatosis. The aim of the study was to determine factors associated with non-obtaining lower IQR-CAP values. MATERIALS AND METHODS Retrospective revision of medical records of CAP studies for steatosis screening. Anthropometrical, biochemical, and quality variables were collected. A logistic regression analysis was performed to determine independent associations with non-obtaining IQR-CAP <30, <20, and <10 in all patients and then adjusted for obesity/overweight and severity of steatosis. RESULTS 5061 studies were analyzed. Median IQR-CAP was 26 [IQR 20-33] dB/m. Steatosis prevalence was 39.4 % (n = 1996). In overweight patients, significant alcohol consumption was an independent factor for non-obtaining IQR-CAP <30; meanwhile, in obese patients glucose impairment, AST, skPa>8 and steatosis severity were independent factors for non-obtaining lower IQR-CAP values. According to steatosis severity, the presence of anthropometric characteristics of obesity and significant alcohol consumption were independent factors for non-obtaining lower IQR-CAP values. CONCLUSIONS In steatosis detection by CAP, obesity, significant alcohol consumption, glucose impairments, and minimal liver function test alterations were independent factors associated with non-obtaining lower values of IQR-CAP.
Collapse
Affiliation(s)
- Iván López-Mendez
- Transplant and Hepatology Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico.
| | | | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico.
| |
Collapse
|
4
|
Stroes ASR, Vos M, Benninga MA, Koot BGP. Pediatric MASLD: current understanding and practical approach. Eur J Pediatr 2024; 184:29. [PMID: 39560782 DOI: 10.1007/s00431-024-05848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is now the most prevalent chronic liver disease in children in industrialized countries mainly due to the rise in obesity and overweight. Besides risk of progressive liver damage, MASLD also carries an increased risk of extra-hepatic morbidity, most importantly type 2 diabetes mellitus and cardiovascular disease. Important challenges remain in the prevention, detection, and treatment of this prevalent disorder. This review outlines the epidemiology and risk factors of MASLD and provides an approach to screening, diagnosis, and treatment based on current best available evidence and expert opinion. What is known: • NAFLD/MASLD is a common disorder in children strongly related to obesity/overweight and insulin resistance. • This silent disorder is underdiagnosed due to lack of awareness and lack of simple diagnostic criteria. What is new: • New diagnostic criteria have transformed NAFLD/MASLD from a diagnosis of exclusion to a positive diagnosis with simple criteria. • Effective treatments are emerging for adults and will likely become available for children. • Identifying children with NAFLD/MASLD has become even more important due to this new treatment perspective.
Collapse
Affiliation(s)
- Anne-Sophie R Stroes
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Miriam Vos
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Marc A Benninga
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart G P Koot
- Department of Pediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Espina S, Casas-Deza D, Bernal-Monterde V, Royo-Esteban A, García-Sobreviela MP, Calmarza P, Martinez-Martinez AB, Osada J, Arbones-Mainar JM. Unraveling the Association of Liver Steatosis and Fibrosis with Vitamin B12: A Cross-Sectional Study. Metabolites 2024; 14:618. [PMID: 39590854 PMCID: PMC11597091 DOI: 10.3390/metabo14110618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND There are conflicting studies reporting both an increase and a decrease in vitamin B12 (VB12) levels in non-alcoholic fatty liver disease (NAFLD). In this study, we aimed to dissect the effects of steatosis and fibrosis on VB12. METHODS This is a cross-sectional study including all patients with a vibration-controlled transient elastography (VCTE) performed at the Hospital Miguel Servet (Zaragoza, Spain) between 2019 and 2022 for a chronic liver disease and having a recent blood test for VB12 levels. Liver fibrosis was assessed by VCTE and hepatic steatosis by ultrasonography and/or through controlled attenuation parameter (CAP). RESULTS 1195 patients (NAFLD n = 441, other chronic liver disease n = 754) were included. Median age was 57 years, 53% female. Patients with NAFLD had lower levels of VB12 compared to the rest of chronic liver diseases (289 vs. 313 pg/mL, p < 0.001). A significant negative correlation was observed between VB12 levels and hepatic steatosis measured by CAP (r = -0.13, p < 0.001). A significant positive correlation was observed between VB12 levels and liver stiffness in patients with NAFLD in both sexes (men r = 0.31, p < 0.001 and women r = 0.15, p = 0.016). A significant association between VB12 levels and liver fibrosis in cirrhosis stage was observed in patients with NAFLD (OR 1.06, 95% CI, 1.025-1.098, p = 0.001). CONCLUSION VB12 levels were lower with greater hepatic steatosis. In NAFLD, VB12 levels were lower compared to other chronic liver diseases but their levels increased with higher liver stiffness and in cirrhosis stage.
Collapse
Affiliation(s)
- Silvia Espina
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (S.E.); (D.C.-D.); (V.B.-M.); (A.R.-E.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.P.G.-S.); (A.B.M.-M.)
- Instituto de Investigacion Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
| | - Diego Casas-Deza
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (S.E.); (D.C.-D.); (V.B.-M.); (A.R.-E.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.P.G.-S.); (A.B.M.-M.)
- Instituto de Investigacion Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
| | - Vanesa Bernal-Monterde
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (S.E.); (D.C.-D.); (V.B.-M.); (A.R.-E.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.P.G.-S.); (A.B.M.-M.)
- Instituto de Investigacion Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
| | - Ana Royo-Esteban
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (S.E.); (D.C.-D.); (V.B.-M.); (A.R.-E.)
| | - Maria Pilar García-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.P.G.-S.); (A.B.M.-M.)
- Instituto de Investigacion Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
| | - Pilar Calmarza
- Clinical Biochemistry Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain;
- Centro de Investigacion Biomedica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Ana B. Martinez-Martinez
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.P.G.-S.); (A.B.M.-M.)
- Instituto de Investigacion Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
- Facultad de Ciencias de la Salud, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jesús Osada
- Instituto de Investigacion Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutricion (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Jose M. Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.P.G.-S.); (A.B.M.-M.)
- Instituto de Investigacion Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
- CIBER Fisiopatología Obesidad y Nutricion (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| |
Collapse
|
6
|
Sarkar Das T, Meng X, Abdallah M, Bilal M, Sarwar R, Shaukat A. An Assessment of the Feasibility, Patient Acceptance, and Performance of Point-of-Care Transient Elastography for Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2024; 14:2478. [PMID: 39594144 PMCID: PMC11592655 DOI: 10.3390/diagnostics14222478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Vibration-Controlled Transient Elastography (VCTE) with FibroScan is a non-invasive, reliable diagnostic tool for Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD), enabling early detection and management to prevent severe liver diseases. VCTE's ease and portability suit primary care, streamlining referrals, promoting lifestyle changes, reducing costs, and benefiting underserved communities. Methods: Studies on point-of-care VCTE were systematically reviewed, followed by meta-analysis using a random-effects model. Pooled proportions with 95% confidence intervals were reported, and heterogeneity was assessed using I2%. Results: A total of twenty studies from 14 countries, including 6159 patients, were analyzed, with three studies from France, two from the U.S., and four from China. The population had a slight male preponderance, with a mean age range of 35-73 years and a BMI range of 24.4-41.1%. The diagnostic accuracy for detecting any fibrosis (≥F1) was reported in four studies (n = 210) with an AUC of 0.74, sensitivity of 69.5%, and specificity of 70.6%. For significant fibrosis (≥F2), eight studies (n = 650) reported an AUC of 0.69, sensitivity of 81.7%, and specificity of 64.6%. Advanced fibrosis (≥F3) was evaluated in 10 studies (n = 619), with an AUC of 0.84, sensitivity of 88.1%, and specificity of 63.8%. Cirrhosis (F4) was assessed in nine studies (n = 533), with an AUC of 0.65, sensitivity of 87.5%, and specificity of 62.6%. Steatosis diagnoses across stages S1 to S3 showed increasing diagnostic accuracies, with AUCs of 0.85, 0.76, and 0.80, respectively. Probe type and BMI were significant covariates influencing diagnostic performance for both fibrosis and steatosis, while the percentage of male participants also showed significant associations. Conclusions: VCTE shows high diagnostic accuracy for fibrosis and steatosis in MASLD patients at the point of care. Future research should assess its implementation in fibroscan settings.
Collapse
Affiliation(s)
- Taranika Sarkar Das
- Department of Gastroenterology and Hepatology, New York University, New York, NY 10012, USA; (X.M.)
| | - Xucong Meng
- Department of Gastroenterology and Hepatology, New York University, New York, NY 10012, USA; (X.M.)
| | - Mohamed Abdallah
- Department of Gastroenterology and Hepatology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mohammad Bilal
- Department of Gastroenterology and Hepatology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Raiya Sarwar
- Department of Gastroenterology and Hepatology, New York University, New York, NY 10012, USA; (X.M.)
| | - Aasma Shaukat
- Department of Gastroenterology and Hepatology, New York University, New York, NY 10012, USA; (X.M.)
| |
Collapse
|
7
|
Kim MN, Han JW, An J, Kim BK, Jin YJ, Kim SS, Lee M, Lee HA, Cho Y, Kim HY, Shin YR, Yu JH, Kim MY, Choi Y, Chon YE, Cho EJ, Lee EJ, Kim SG, Kim W, Jun DW, Kim SU. KASL clinical practice guidelines for noninvasive tests to assess liver fibrosis in chronic liver disease. Clin Mol Hepatol 2024; 30:S5-S105. [PMID: 39159947 PMCID: PMC11493350 DOI: 10.3350/cmh.2024.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Ji Won Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Seung-seob Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Hee Yeon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Rim Shin
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Eun Chon
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - on behalf of The Korean Association for the Study of the Liver (KASL)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Kaya S, Boydak M, Aydin M, Aras İ. Association between serum cytokeratin 18 and N-terminal procollagen III propeptide in patients with biopsy-proven nonalcoholic fatty liver disease. Biotech Histochem 2024; 99:313-319. [PMID: 39092622 DOI: 10.1080/10520295.2024.2385011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Liver biopsy is still the gold standard in the staging of nonalcoholic fatty liver disease (NAFLD), which is the most common chronic liver disease worldwide. However, being an invasive method, liver biopsy has limited use in clinical practice. The aim of this study was to determine the relationship between serum levels of cytokeratin 18 (CK-M30) and N-terminal procollagen III propeptide (PIIINP) in patients with biopsy-proven NAFLD. The study was carried out on volunteers, including both healthy individuals and patients pre-diagnosed with NAFLD. The liver biopsies were re-assessed by applying the Steatosis, Activity, Fibrosis/Fatty Liver Inhibition of Progression (SAF/FLIP) algorithm. At the end of the study, frozen serum samples (-80 °C) were analyzed using commercial kits. CK18-M30 and PIIINP levels significantly differed in all study groups. There was no significant correlation between serum levels of CK18-M30 and PIIINP in healthy individuals but there was a significant positive correlation between CK18-M30 and PIIINP levels in NAFLD (NAFL-nonalcoholic steatohepatitis (NASH)) groups. CK18-M30 was better than PIIINP at distinguishing between NAFL and NASH. The results obtained for biopsy-proven NAFLD demonstrated that both PIIINP and CK18-M30 were partly associated with histological parameters and could aid in distinguishing between NASH and NAFL.
Collapse
Affiliation(s)
- Sercan Kaya
- Health Services Vocational School, Medical Laboratory Program, Batman University, Batman, Turkey
| | - Murat Boydak
- Faculty of Veterinary Medicine Faculty, Department of Histology and Embryology, Selçuk University, Konya, Turkey
| | - Mesut Aydin
- School of Medicine, Department of Gastroenterology, Van Yuzuncu Yil University, Van, Turkey
| | - İbrahim Aras
- School of Medicine, Department of Pathology, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
9
|
Pyo JH, Cho SJ, Choi SC, Jee JH, Yun J, Hwang JA, Park G, Kim K, Kang W, Kang M, Byun YH. Diagnostic performance of quantitative ultrasonography for hepatic steatosis in a health screening program: a prospective single-center study. Ultrasonography 2024; 43:250-262. [PMID: 38898634 PMCID: PMC11222130 DOI: 10.14366/usg.24040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
PURPOSE This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) as the reference standard. METHODS This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses. RESULTS TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (β=7.134), hepatic fibrosis (β=4.808), alanine aminotransferase (β=0.202), triglyceride levels (β=0.027), and diabetes mellitus (β=3.710). CONCLUSION QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.
Collapse
Affiliation(s)
- Jeung Hui Pyo
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Cho
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Chul Choi
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hwan Jee
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyeong Yun
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Ah Hwang
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Goeun Park
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Kyunga Kim
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Wonseok Kang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mira Kang
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Digital Transformation Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young hye Byun
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Yin H, Fan Y, Yu J, Xiong B, Zhou B, Sun Y, Wang L, Zhu Y, Xu H. Quantitative US fat fraction for noninvasive assessment of hepatic steatosis in suspected metabolic-associated fatty liver disease. Insights Imaging 2024; 15:159. [PMID: 38902550 PMCID: PMC11190099 DOI: 10.1186/s13244-024-01728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/19/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVES To evaluate the agreement between quantitative ultrasound system fat fraction (USFF) and proton magnetic resonance spectroscopy (1H-MRS) and the diagnostic value of USFF in assessing metabolic-associated fatty liver disease (MAFLD). METHODS The participants with or suspected of MAFLD were prospectively recruited and underwent 1H-MRS, USFF, and controlled attenuation parameter (CAP) measurements. The correlation between USFF and 1H-MRS was assessed using Pearson correlation coefficients. The USFF diagnostic performance for different grades of steatosis was evaluated using receiver operating characteristic curve analysis (ROC) and was compared with CAP, visual hepatic steatosis grade (VHSG). RESULTS A total of 113 participants (mean age 44.79 years ± 13.56 (SD); 71 males) were enrolled, of whom 98 (86.73%) had hepatic steatosis (1H-MRS ≥ 5.56%). USFF showed a good correlation (Pearson r = 0.76) with 1H-MRS and showed a linear relationship, which was superior to the correlation between CAP and 1H-MRS (Pearson r = 0.61). The USFF provided high diagnostic performance for different grades of hepatic steatosis, with ROC from 0.84 to 0.98, and the diagnostic performance was better than that of the CAP and the VHSG. The cut-off values of the USFF were different for various grades of steatosis, and the cut-off values for S1, S2, and S3 were 12.01%, 19.98%, and 22.22%, respectively. CONCLUSIONS There was a good correlation between USFF and 1H-MRS. Meanwhile, USFF had good diagnostic performance for hepatic steatosis and was superior to CAP and VHSG. USFF represents a superior method for noninvasive quantitative assessment of MAFLD. CRITICAL RELEVANCE STATEMENT Quantitative ultrasound system fat fraction (USFF) accurately assesses liver fat content and has a good correlation with magnetic resonance spectroscopy (1H-MRS) for the assessment of metabolic-associated fatty liver disease (MAFLD), as well as for providing an accurate quantitative assessment of hepatic steatosis. KEY POINTS Current diagnostic and monitoring modalities for metabolic-associated fatty liver disease have limitations. USFF correlated well with 1H-MRS and was superior to the CAP. USFF has good diagnostic performance for steatosis, superior to CAP and VHSG.
Collapse
Affiliation(s)
- Haohao Yin
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Yunling Fan
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Jifeng Yu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Bing Xiong
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China
| | - Boyang Zhou
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Yikang Sun
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Lifan Wang
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Yuli Zhu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China.
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Tamura K, Ito K, Kishimoto R, Yoshida K, Kishimoto T, Obata T, Yamaguchi T. The Effect of Steatosis on Shear-Wave Velocity and Viscoelastic Properties Related to Liver Fibrosis Progression in Rat Models. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:592-599. [PMID: 38238201 DOI: 10.1016/j.ultrasmedbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVE Hepatic fibrosis has recently been evaluated using ultrasonography or magnetic resonance elastography. Although the shear wave velocity (SWV) obtained using point shear wave elastography (pSWE) provides a valuable measure of fibrosis, underlying steatosis may affect its measurement. METHODS Using hepatic fibrosis samples, this study evaluated the effect of steatosis on the shear wave velocity of pSWE (Vs) and viscoelastic properties (assessed by dynamic mechanical analysis) of rat liver. Fifty rats with various grades of steatosis and fibrosis underwent open abdominal in vivo Vs measurements using a commercial ultrasound scanner. The mechanical properties of hepatic tissue were also characterized under ex vivo conditions using dynamic mechanical analysis and the Zener model of viscoelasticity. RESULTS Fibrosis and steatosis progression influenced Vs and elasticity. The SWV computed using the Zener model and Vs showed a substantial correlation (r > 0.8). Fibrosis progression increased SWV. Steatosis was also related to SWV. Steatosis progression obscured the SWV change associated with fibrosis progression. CONCLUSION We conclude that steatosis progression affects the evaluation of fibrosis progression. This finding could aid discrimination of non-alcoholic steatohepatitis from non-alcoholic fatty liver disease using SWV.
Collapse
Affiliation(s)
- Kazuki Tamura
- Preeminent Medical Photonics Education & Research, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Kazuyo Ito
- Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588 Japan
| | - Riwa Kishimoto
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-0024, Japan
| | - Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Kishimoto
- Department of Molecular Pathology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Takayuki Obata
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-0024, Japan
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
12
|
Goncharov AA, Sasunova AN, Isakov VA. Comparative value of controlled attenuation (CAPc) and continuous controlled attenuation (CAP) parameters for different stages of non-alcoholic fatty liver disease. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2024:55-63. [DOI: 10.31146/1682-8658-ecg-222-2-55-63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Affiliation(s)
- A. A. Goncharov
- Federal Research Center for Nutrition, Biotechnology and Food Safety
| | - A. N. Sasunova
- Federal Research Center for Nutrition, Biotechnology and Food Safety
| | - V. A. Isakov
- Federal Research Center for Nutrition, Biotechnology and Food Safety
| |
Collapse
|
13
|
Wang JL, Jiang SW, Hu AR, Zhou AW, Hu T, Li HS, Fan Y, Lin K. Non-invasive diagnosis of non-alcoholic fatty liver disease: Current status and future perspective. Heliyon 2024; 10:e27325. [PMID: 38449611 PMCID: PMC10915413 DOI: 10.1016/j.heliyon.2024.e27325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease throughout the world. Hepatocellular carcinoma (HCC) and liver cirrhosis can result from nonalcoholic steatohepatitis (NASH), the severe stage of NAFLD progression. By some estimates, NAFLD affects almost one-third of the world's population, which is completely new and serious public health issue. Unfortunately, NAFLD is diagnosed by exclusion, and the gold standard for identifying NAFLD/NASH and reliably measuring liver fibrosis remains liver biopsy, which is an invasive, costly, time-consuming procedure and involves variable inter-observer diagnosis. With the progress of omics and imaging techniques, numerous non-invasive serological assays have been generated and developed. On the basis of these developments, non-invasive biomarkers and imaging techniques have been combined to increase diagnostic accuracy. This review provides information for the diagnosis and assessment of NAFLD/NASH in clinical practice going forward and may assist the clinician in making an early and accurate diagnosis and in proposing a cost-effective patient surveillance. We discuss newly identified and validated non-invasive diagnostic methods from biopsy-confirmed NAFLD patient studies and their implementation in clinical practice, encompassing NAFLD/NASH diagnosis and differentiation, fibrosis assessment, and disease progression monitoring. A series of tests, including 20-carboxy arachidonic acid (20-COOH AA) and 13,14-dihydro-15-keto prostaglandin D2 (dhk PGD2), were found to be potentially the most accurate non-invasive tests for diagnosing NAFLD. Additionally, the Three-dimensional magnetic resonance imaging (3D-MRE), combination of the FM-fibro index and Liver stiffness measurement (FM-fibro LSM index) and the machine learning algorithm (MLA) tests are more accurate than other tests in assessing liver fibrosis. However, it is essential to use bigger cohort studies to corroborate a number of non-invasive diagnostic tests with extremely elevated diagnostic values.
Collapse
Affiliation(s)
- Jia-Lan Wang
- Graduate School of Wenzhou Medical University, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Su-Wen Jiang
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Ai-Rong Hu
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Ai-Wu Zhou
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Ting Hu
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Hong-Shan Li
- Precision Diagnosis and Treatment Center of Liver Diseases, Ningbo No. 2 Hospital, Ningbo, 315020, Zhejiang Province, China
| | - Ying Fan
- School of Medicine, Shaoxing University, Shaoxing, 31200, Zhejiang Province, China
| | - Ken Lin
- School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang Province, China
| |
Collapse
|
14
|
Hooshmand Gharabagh L, Shargh A, Mohammad Hosseini Azar MR, Esmaeili A. Comparison between the effect of Empagliflozin and Pioglitazone added to metformin in patients with type 2 diabetes and nonalcoholic fatty liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102279. [PMID: 38159676 DOI: 10.1016/j.clinre.2023.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND/AIMS Non-alcoholic fatty liver disease (NAFLD), defined as the accumulation of >5% fat in the liver, is the most frequently co-exist disease with diabetics up to 70%. Current study was conducted to compare efficacy of combination therapy of empagliflozin (EMPA) or pioglitazone (PGZ) with metformin (MET) in patients with T2DM and NAFLD. METHODS In this open label, prospective clinical trial, sixty patients were randomly assigned to receive EMPA 10 mg/day or PGZ 30 mg/day in combination Metformin (at least 1500 mg) for six months. NAFLD grade and liver stiffness were defined and measured at the beginning and after 6 months. As the secondary outcomes, anthropometric characteristics, lipid profile, plasma glucose test, and liver enzymes test were measured at the baseline and endpoint. RESULTS The results showed that both combination therapy with EMPA+ MET or PGZ+MET significantly reversed fibrosis stage of NAFLD (P<0.05). Significant reduction in lipid profile test, and liver enzymes test were seen in both groups (P<0.05). However, the greater reduction in waist circumference was observed in EMPA groups compared to PGZ (-4.4 ± 2.39 vs -2.05±1.28, p<0.001), meanwhile weight and BMI decreased significantly only in the patients receiving EMPA (-5.78 ± 3.6 kg vs 0.93 ± 0.33 kg and -2.01± 3.19 kg/m2 vs 0.33 ± 0.12 kg/m2, respectively, P<0.001). CONCLUSION combination of EMPA or PGZ with metformin equally improved liver fibrosis stage and stiffness in T2DM patients with NAFLD. The improvements of laboratory tests were observed in the both groups, while, regarding weight reduction, only the regimen containing EMPA was effective.
Collapse
Affiliation(s)
- Laya Hooshmand Gharabagh
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Imam Khomeini Hospital, Urmia, Iran.
| | - Ali Shargh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Ayda Esmaeili
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran; Experimentaland Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
15
|
Kuroda H, Oguri T, Kamiyama N, Toyoda H, Yasuda S, Imajo K, Suzuki Y, Sugimoto K, Akita T, Tanaka J, Yasui Y, Kurosaki M, Izumi N, Nakajima A, Fujiwara Y, Abe T, Kakisaka K, Matsumoto T, Kumada T. Multivariable Quantitative US Parameters for Assessing Hepatic Steatosis. Radiology 2023; 309:e230341. [PMID: 37787670 DOI: 10.1148/radiol.230341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Because of the global increase in the incidence of nonalcoholic fatty liver disease, the development of noninvasive, widely available, and highly accurate methods for assessing hepatic steatosis is necessary. Purpose To evaluate the performance of models with different combinations of quantitative US parameters for their ability to predict at least 5% steatosis in patients with chronic liver disease (CLD) as defined using MRI proton density fat fraction (PDFF). Materials and Methods Patients with CLD were enrolled in this prospective multicenter study between February 2020 and April 2021. Integrated backscatter coefficient (IBSC), signal-to-noise ratio (SNR), and US-guided attenuation parameter (UGAP) were measured in all participants. Participant MRI PDFF value was used to define at least 5% steatosis. Four models based on different combinations of US parameters were created: model 1 (UGAP alone), model 2 (UGAP with IBSC), model 3 (UGAP with SNR), and model 4 (UGAP with IBSC and SNR). Diagnostic performance of all models was assessed using area under the receiver operating characteristic curve (AUC). The model was internally validated using 1000 bootstrap samples. Results A total of 582 participants were included in this study (median age, 64 years; IQR, 52-72 years; 274 female participants). There were 364 participants in the steatosis group and 218 in the nonsteatosis group. The AUC values for steatosis diagnosis in models 1-4 were 0.92, 0.93, 0.95, and 0.96, respectively. The C-indexes of models adjusted by the bootstrap method were 0.92, 0.93, 0.95, and 0.96, respectively. Compared with other models, models 3 and 4 demonstrated improved discrimination of at least 5% steatosis (P < .01). Conclusion A model built using the quantitative US parameters UGAP, IBSC, and SNR could accurately discriminate at least 5% steatosis in patients with CLD. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Han in this issue.
Collapse
Affiliation(s)
- Hidekatsu Kuroda
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Takuma Oguri
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Naohisa Kamiyama
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Hidenori Toyoda
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Satoshi Yasuda
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Kento Imajo
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Yasuaki Suzuki
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Katsutoshi Sugimoto
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Tomoyuki Akita
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Junko Tanaka
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Yutaka Yasui
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Masayuki Kurosaki
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Namiki Izumi
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Atsushi Nakajima
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Yudai Fujiwara
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Tamami Abe
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Keisuke Kakisaka
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Takayuki Matsumoto
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| | - Takashi Kumada
- From the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Nishitokuta 2-1-1, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan (H.K., Y.F., T. Abe, K.K., T.M.); Ultrasound General Imaging, GE HealthCare, Hino, Japan (T.O., N.K.); Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan (H.T., S.Y.); Department of Gastroenterology, Shin-Yurigaoka General Hospital, Kawasaki, Japan (K.I.); Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan (Y.S.); Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan (K.S.); Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan (T. Akita, J.T.); Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan (Y.Y., M.K., N.I.); Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan (A.N.); and Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan (T.K.)
| |
Collapse
|
16
|
Carroll AM, Rotman Y. Nutrition Literacy Is Not Sufficient to Induce Needed Dietary Changes in Nonalcoholic Fatty Liver Disease. Am J Gastroenterol 2023; 118:1381-1387. [PMID: 36719072 PMCID: PMC10338638 DOI: 10.14309/ajg.0000000000002182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Dietary and lifestyle changes are the first line of therapy for nonalcoholic fatty liver disease (NAFLD), the most prevalent liver disease in the western world. Nutrition literacy is the ability to understand nutrition information and implement that knowledge. We aimed to compare indicators of nutrition literacy in subjects with and without NAFLD in a representative US cohort. METHODS In a cross-sectional study using data from the National Health and Nutrition Examination Survey 2017-2018 cycle, we included 2,938 adult subjects with complete dietary and vibration-controlled transient elastography data and no alternative reason for hepatic steatosis. Nutrition literacy was assessed using questionnaires. Diet perception accuracy was assessed by comparing self-reported diet quality with objective diet quality scores-the Healthy Eating Index and alternative Mediterranean diet score-to assess real-world application of nutrition knowledge. RESULTS Nutrition literacy was not different between subjects with or without NAFLD ( P = 0.17): more than 90% of subjects reported using nutrition labels, and most of them correctly identified the meaning of daily value. Subjects with NAFLD had a lower-quality diet (Healthy Eating Index, P = 0.018; alternative Mediterranean diet, P = 0.013) and rated their diet as poorer ( P < 0.001). On self-assessment, only 27.8% of subjects overestimated their diet quality, while 37.5% consumed more calories than their self-assessed needs. Both accuracy measures were similar between subjects with NAFLD and those without ( P = 0.71 and 0.63, respectively). Subjects with NAFLD were more likely to report being advised to lose weight (42.1% vs 16.5%, P < 0.001) or to attempt losing weight (71.9% vs 60.9%, P < 0.001). Diet quality was not better in subjects with NAFLD who received dietary recommendations. DISCUSSION Subjects with NAFLD have poor diet quality despite receiving medical recommendations to lose weight and having nutrition literacy and perception that are comparable with subjects without NAFLD. Educational approaches may not be sufficient to promote weight loss and improve diet quality in NAFLD.
Collapse
Affiliation(s)
- Allison M Carroll
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Sourianarayanane A, McCullough AJ. Accuracy of ultrasonographic fatty liver index using point-of-care ultrasound in stratifying non-alcoholic fatty liver disease patients. Eur J Gastroenterol Hepatol 2023; 35:654-661. [PMID: 37115988 DOI: 10.1097/meg.0000000000002544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
BACKGROUND The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing in the USA. Some of these patients develop non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis. Ultrasound imaging is one of the most used modalities for diagnosing hepatic steatosis. Primary care providers are increasingly using point-of-care ultrasound (POCUS), which could increase the number of subjects diagnosed with NAFLD. This study evaluates the accuracy of POCUS in identifying patients with NASH. METHODS Patients with hepatic steatosis without excess alcohol intake or other liver diseases undergoing liver biopsy were included in this study. These patients underwent POCUS and vibration-controlled transient elastography (VCTE) evaluations within 3 months of a liver biopsy. A comparison of POCUS data with liver histology and VCTE were made to assess the validity of POCUS evaluation in diagnosing NAFLD and NASH. RESULTS The steatosis score from the liver histology had a low correlation with the controlled attenuation parameter score from VCTE ( r = 0.27) and a moderate correlation with the grade of steatosis detected by the POCUS exam ( r = 0.57). The NAFLD activity score on histology was found to correlate with the ultrasonographic fatty liver index (USFLI) from the POCUS exam ( r = 0.59). A USFLI ≥ 6 diagnosed NASH with a sensitivity of 81%, and a value of ≤3 ruled out the diagnosis of NASH with a sensitivity of 100%. CONCLUSION The provider can use the POCUS exam in clinical practice to diagnose NAFLD and reliably stratify patients who have NASH.
Collapse
Affiliation(s)
| | - Arthur J McCullough
- Department of Medicine, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Wiafe YA, Anyitey-Kokor IC, Nmai RA, Afihene M, Roberts LR. Diagnostic Performance of Greyscale Ultrasound in Detecting Fatty Liver Disease in a Type 2 Diabetes Population Using FibroScan as the Reference Standard. Cureus 2023; 15:e40756. [PMID: 37350981 PMCID: PMC10284594 DOI: 10.7759/cureus.40756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Brightness mode ultrasound (B-mode US) and FibroScan (Echosens, Paris, France) are the two ultrasound methods often recommended for screening non-alcoholic fatty liver disease (NAFLD) in persons with type 2 diabetes mellitus (T2DM). This study assessed the diagnostic performance of B-mode US using FibroScan as the reference standard. Methods Persons with a known history of T2DM were invited to screen for NAFLD using B-mode US and FibroScan on separate days within a one-month period. Assessors of B-mode US and FibroScan were blinded to each other's findings. Both B-mode US and FibroScan independently assessed and graded each participant for the presence of NAFLD. Using the diagnostic test findings of FibroScan as a reference standard, the sensitivity and specificity of B-mode US were analyzed. The area under the receiver operating characteristic curve (AUROC) was analyzed using Jamovi (version 2.3.21). A multinomial logistic regression of the B-mode US and FibroScan in predicting NAFLD grade was also analyzed. Results A total of 171 participants were assessed. B-mode US detected NAFLD in T2DM patients with 63.6% sensitivity, 65.6% specificity, and 0.646 AUROC. Sensitivity and specificity in overweight and obese participants were 36-43% and 76-85%, respectively. Multinomial logistic regression demonstrated an insignificant statistical relationship between FibroScan and B-mode US in predicting grade 1 steatosis (p-value = 0.397), which was significantly affected by a higher BMI (p-value = 0.034) rather than a higher liver fibrosis level (p-value = 0.941). The logistic regression further showed a significant relationship between B-mode US and FibroScan in predicting steatosis grade 2 (p-value = 0.045) and grade 3 (p-value < 0.001), which was not significantly affected by BMI (p-value = 0.091). Conclusion B-mode US can replace FibroScan for severe steatosis; however, it cannot be used to screen for NAFLD in T2DM patients due to lower sensitivity for early detection in the overweight.
Collapse
Affiliation(s)
- Yaw A Wiafe
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, GHA
| | - Ijeoma C Anyitey-Kokor
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, GHA
| | - Richmond A Nmai
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, GHA
| | - Mary Afihene
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, GHA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, USA
| |
Collapse
|
19
|
Dybbro E, Vos MB, Kohli R. Special Population: Pediatric Nonalcoholic Fatty Liver Disease. Clin Liver Dis 2023; 27:471-482. [PMID: 37024219 DOI: 10.1016/j.cld.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Pediatric nonalcoholic fatty liver disease represents the most common liver disease in children and has been shown to carry significant morbidity. Widespread heterogeneity of disease, as well as the limitation of indirect screening modalities, has made true prevalence of disease difficult to estimate as well as hindered ability to identify optimal prognostic factors in the pediatric population. Current therapeutic options are limited in pediatric patients with current mainstay of therapy, lifestyle modifications, has proven to have a limited efficacy in current clinical application. Current research remains needed in improved screening modalities, prognosticating techniques, and therapeutic options in the pediatric population.
Collapse
Affiliation(s)
- Eric Dybbro
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Miriam B Vos
- Division of Gastroenterology, Hepatology, and Nutrition, Emory School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Bischoff SC, Ockenga J, Eshraghian A, Barazzoni R, Busetto L, Campmans-Kuijpers M, Cardinale V, Chermesh I, Kani HT, Khannoussi W, Lacaze L, Léon-Sanz M, Mendive JM, Müller MW, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. Practical guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline. Clin Nutr 2023; 42:987-1024. [PMID: 37146466 DOI: 10.1016/j.clnu.2023.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Patients with chronic gastrointestinal disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean gastrointestinal patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The present practical guideline is intended for clinicians and practitioners in general medicine, gastroenterology, surgery and other obesity management, including dietitians and focuses on obesity care in patients with chronic gastrointestinal diseases. METHODS The present practical guideline is the shortened version of a previously published scientific guideline developed according to the standard operating procedure for ESPEN guidelines. The content has been re-structured and transformed into flow-charts that allow a quick navigation through the text. RESULTS In 100 recommendations (3× A, 33× B, 24 × 0, 40× GPP, all with a consensus grade of 90% or more) care of gastrointestinal patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially metabolic associated liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present practical guideline offers in a condensed way evidence-based advice how to care for patients with chronic gastrointestinal diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen FRG, Bremen, Germany.
| | - Ahad Eshraghian
- Department of Gastroenterology and Hepatology, Avicenna Hospital, Shiraz, Iran.
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational Sciences, University of Trieste, Ospedale di Cattinara, Trieste, Italy.
| | - Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy.
| | - Marjo Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, the Netherlands.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated with Technion-Israel Institute of Technology, Haifa, Israel.
| | - Haluk Tarik Kani
- Department of Gastroenterology, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Wafaa Khannoussi
- Hepato-Gastroenterology Department, Mohammed VI University Hospital, Oujda, Morocco; and Laboratoire de Recherche des Maladies Digestives (LARMAD), Mohammed the First University, Oujda, Morocco.
| | - Laurence Lacaze
- Department of General Surgery, Mantes-la-Jolie Hospital, Mantes-la-Jolie, France.
| | - Miguel Léon-Sanz
- Department of Endocrinology and Nutrition, University Hospital Doce de Octubre, Medical School, University Complutense, Madrid, Spain.
| | - Juan M Mendive
- La Mina Primary Care Academic Health Centre, Catalan Institute of Health (ICS), University of Barcelona, Barcelona, Spain.
| | - Michael W Müller
- Department of General and Visceral Surgery, Regionale Kliniken Holding, Kliniken Ludwigsburg-Bietigheim gGmbH, Krankenhaus Bietigheim, Bietigheim-Bissingen, Germany.
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet & Department of Surgery, Ersta Hospital, Stockholm, Sweden.
| | - Darija Vranesic Bender
- Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
21
|
Bertot LC, Jeffrey GP, de Boer B, Wang Z, Huang Y, Garas G, MacQuillan G, Wallace M, Smith BW, Adams LA. Comparative Accuracy of Clinical Fibrosis Markers, Hepascore and Fibroscan® to Detect Advanced Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2023; 68:2757-2767. [PMID: 36947289 DOI: 10.1007/s10620-023-07896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Non-invasive tests are widely used to diagnose fibrosis in patients with non-alcoholic fatty liver disease (NAFLD), however, the optimal method remains unclear. We compared the accuracy of simple serum models, a serum model incorporating direct measures of fibrogenesis (Hepascore), and Fibroscan®, for detecting fibrosis in NAFLD. METHODS NAFLD patients undergoing liver biopsy were evaluated with Hepascore, NAFLD Fibrosis Score (NFS), FIB-4 and AST-platelet ratio index (APRI), with a subset (n = 131) undergoing Fibroscan®. Fibrosis on liver biopsy was categorized as advanced (F3-4) or cirrhosis (F4). Accuracy was determined by area under receiving operating characteristic curves (AUC). Indeterminate ranges were calculated using published cut-offs. RESULTS In 271 NAFLD patients, 83 (31%) had F3-4 and 47 (17%) cirrhosis. 6/131 (4%) had an unreliable Fibroscan®. For the detection of advanced fibrosis, the accuracy of Hepascore (AUC 0.88) was higher than FIB-4 (0.73), NFS (0.72) and APRI (0.69) (p < 0.001 for all). Hepascore had similar accuracy to Fibroscan® (0.80) overall, but higher accuracy in obese individuals (0.91 vs 0.80, p = 0.001). Hepascore more accurately identified patients with cirrhosis than APRI (AUC 0.85 vs 0.71, p = 0.01) and NFS (AUC 0.73, p = 0.01) but performed similar to FIB-4 and Fibroscan®. For the determination of F3-4, the proportion of patients in indeterminate area was lower for Hepascore (4.8%), compared to FIB-4 (42%), NFS (36%) and APRI (44%) (p < 0.001 for all). CONCLUSIONS Hepascore has greater accuracy and a lower indeterminate range than simple serum fibrosis tests for advanced fibrosis in NAFLD, and greater accuracy than Fibroscan® in obese individuals.
Collapse
Affiliation(s)
- Luis C Bertot
- Medical School, University of Western Australia, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia
| | - Gary P Jeffrey
- Medical School, University of Western Australia, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia
| | - Bastiaan de Boer
- Department of Anatomical Pathology, Pathwest, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia
| | - Zhengyi Wang
- Medical School, University of Western Australia, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia
| | - Yi Huang
- Medical School, University of Western Australia, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia
| | - George Garas
- Department of Hepatology, Sir Charles Gairdner Hospital, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia
| | - Gerry MacQuillan
- Department of Hepatology, Sir Charles Gairdner Hospital, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia
| | - Michael Wallace
- Medical School, University of Western Australia, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia
| | - Briohny W Smith
- Department of Hepatology, Sir Charles Gairdner Hospital, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia
| | - Leon A Adams
- Medical School, University of Western Australia, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia.
- Department of Hepatology, Sir Charles Gairdner Hospital, QEII Medical Campus, Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
22
|
Duseja A, Singh S, De A, Madan K, Rao PN, Shukla A, Choudhuri G, Saigal S, Shalimar, Arora A, Anand AC, Das A, Kumar A, Eapen CE, Devadas K, Shenoy KT, Panigrahi M, Wadhawan M, Rathi M, Kumar M, Choudhary NS, Saraf N, Nath P, Kar S, Alam S, Shah S, Nijhawan S, Acharya SK, Aggarwal V, Saraswat VA, Chawla YK. Indian National Association for Study of the Liver (INASL) Guidance Paper on Nomenclature, Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease (NAFLD). J Clin Exp Hepatol 2023; 13:273-302. [PMID: 36950481 PMCID: PMC10025685 DOI: 10.1016/j.jceh.2022.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 03/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease globally and in India. The already high burden of NAFLD in India is expected to further increase in the future in parallel with the ongoing epidemics of obesity and type 2 diabetes mellitus. Given the high prevalence of NAFLD in the community, it is crucial to identify those at risk of progressive liver disease to streamline referral and guide proper management. Existing guidelines on NAFLD by various international societies fail to capture the entire landscape of NAFLD in India and are often difficult to incorporate in clinical practice due to fundamental differences in sociocultural aspects and health infrastructure available in India. A lot of progress has been made in the field of NAFLD in the 7 years since the initial position paper by the Indian National Association for the Study of Liver on NAFLD in 2015. Further, the ongoing debate on the nomenclature of NAFLD is creating undue confusion among clinical practitioners. The ensuing comprehensive review provides consensus-based, guidance statements on the nomenclature, diagnosis, and treatment of NAFLD that are practically implementable in the Indian setting.
Collapse
Key Words
- AASLD, American Association for the Study of Liver Diseases
- ALD, alcohol-associated liver disease
- ALT, alanine aminotransferase
- APRI, AST-platelet ratio index
- AST, aspartate aminotransferase
- BMI, body mass index
- CAP, controlled attenuation parameter
- CHB, chronic Hepatitis B
- CHC, chronic Hepatitis C
- CK-18, Cytokeratin-18
- CKD, chronic kidney disease
- CRN, Clinical Research Network
- CVD, cardiovascular disease
- DAFLD/DASH, dual etiology fatty liver disease or steatohepatitis
- EBMT, endoscopic bariatric metabolic therapy
- ELF, enhanced liver fibrosis
- FAST, FibroScan-AST
- FIB-4, fibrosis-4
- FLIP, fatty liver inhibition of progression
- FXR, farnesoid X receptor
- GLP-1, glucagon-like peptide-1
- HCC, hepatocellular carcinoma
- INASL, Indian National Association for Study of the Liver
- LAI, liver attenuation index
- LSM, liver stiffness measurement
- MAFLD
- MAFLD, metabolic dysfunction-associated fatty liver disease
- MR-PDFF, magnetic resonance – proton density fat fraction
- MRE, magnetic resonance elastography
- MetS, metabolic syndrome
- NAFL:, nonalcoholic fatty liver
- NAFLD, nonalcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, nonalcoholic steatohepatitis
- NCD, noncommunicable diseases
- NCPF, noncirrhotic portal fibrosis
- NFS, NAFLD fibrosis score
- NHL, non-Hodgkin's lymphoma
- NPCDCS, National Programme for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke
- OCA, obeticholic acid
- PPAR, peroxisome proliferator activated receptor
- PTMS, post-transplant metabolic syndrome
- SAF, steatosis, activity, and fibrosis
- SGLT-2, sodium-glucose cotransporter-2
- SWE, shear wave elastography
- T2DM, DM: type 2 diabetes mellitus
- USG, ultrasound
- VAT, visceral adipose tissue
- VCTE, vibration controlled transient elastography
- fatty liver
- hepatic steatosis
- nonalcoholic steatohepatitis
Collapse
Affiliation(s)
- Ajay Duseja
- Departmentof Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - S.P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, India
| | - Arka De
- Departmentof Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Madan
- Max Centre for Gastroenterology, Hepatology and Endoscopy, Max Hospitals, Saket, New Delhi, India
| | - Padaki Nagaraja Rao
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Akash Shukla
- Department of Gastroenterology, Seth GSMC & KEM Hospital, Mumbai, India
| | - Gourdas Choudhuri
- Department of Gastroenterology and Hepato-Biliary Sciences, Fortis Memorial Research Institute, Gurugram, India
| | - Sanjiv Saigal
- Max Centre for Gastroenterology, Hepatology and Endoscopy, Max Hospitals, Saket, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Arora
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil C. Anand
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Ashim Das
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Kumar
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Trivandrum, India
| | | | - Manas Panigrahi
- Department of Gastroenterology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases, BLK Super Speciality Hospital, Delhi, India
| | - Manish Rathi
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - Neeraj Saraf
- Department of Hepatology, Medanta, The Medicity, Gurugram, India
| | - Preetam Nath
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Sanjib Kar
- Department of Gastroenterology and Hepatology, Gastro Liver Care, Cuttack, India
| | - Seema Alam
- Department of PediatricHepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Samir Shah
- Department of Hepatology, Institute of Liver Disease, HPB Surgery and Transplant, Global Hospitals, Mumbai, India
| | - Sandeep Nijhawan
- Department of Gastroenterology, Sawai Man Singh Medical College, Jaipur, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Vinayak Aggarwal
- Department of Cardiology, Fortis Memorial Research Institute, Gurugram, India
| | - Vivek A. Saraswat
- Department of Hepatology, Pancreatobiliary Sciences and Liver Transplantation, Mahatma Gandhi University of Medical Sciences and Technology, Jaipur, India
| | - Yogesh K. Chawla
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
23
|
Duarte M, Tien P, Ma Y, Noworolski SM, Korn N, Price JC. Controlled attenuation parameter accurately detects liver steatosis in people with HIV. AIDS 2022; 36:2147-2152. [PMID: 35950941 PMCID: PMC9671842 DOI: 10.1097/qad.0000000000003351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Hepatic steatosis is a leading cause of cirrhosis and hepatocellular carcinoma and is highly prevalent in persons with HIV (PWH). However, most studies of hepatic steatosis diagnosis in PWH have focused on those at high risk. We determined the accuracy of vibration-controlled transient elastography (VCTE) with controlled attenuation parameter (CAP) in detecting mild or greater hepatic steatosis as compared with the noninvasive gold standard magnetic resonance spectroscopy (MRS) in PWH. METHODS Among 149 participants with and without HIV, we evaluated test characteristics of CAP and calculated serum indices Hepatic Steatosis Index (HSI) and STEATO-ELSA in identifying 3T MRS-measured hepatic steatosis (defined as a liver fat fraction ≥5%). RESULTS Most participants were women and over half were African American. Median BMI was 27 kg/m 2 . Hepatic steatosis prevalence by MRS and CAP (cutoff 248 dB/m) was 36% and 47%, respectively. CAP had an AUROC of 0.82, and the at least 248 dB/m cutoff yielded a sensitivity, specificity, positive-predictive value, and negative-predictive value of 83%, 72%, 61%, and 88%, respectively. These test characteristics were not statistically different from the optimal cutoff of at least 252 dB/m. Higher waist circumference, greater visceral adipose tissue, heavy alcohol use, and VCTE scans flagged as having the probe positioned too low were associated with CAP and MRS discordance. Serum indices of hepatic steatosis had slightly worse performance characteristics than CAP. CONCLUSION CAP may be an effective alternative to MRS for noninvasive hepatic steatosis assessment in PWH. The commonly used CAP cutoff of at least 248 dB/m to diagnose hepatic steatosis can be used in PWH.
Collapse
Affiliation(s)
| | - Phyllis Tien
- Department of Medicine
- Department of Veteran Affairs Medical Center, San Francisco, CA, USA
| | | | - Susan M Noworolski
- Department of Radiology and Biomedical Imaging, University of California
| | - Natalie Korn
- Department of Radiology and Biomedical Imaging, University of California
| | | |
Collapse
|
24
|
Hari A. Ultrasound-Based Diagnostic Methods: Possible Use in Fatty Liver Disease Area. Diagnostics (Basel) 2022; 12:diagnostics12112822. [PMID: 36428882 PMCID: PMC9689357 DOI: 10.3390/diagnostics12112822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Liver steatosis is a chronic liver disease that is becoming one of the most important global health problems, due to its direct connection with metabolic syndrome, its significant impact on patients' socioeconomic status and frailty, and the occurrence of advanced chronic liver disease. In recent years, there has been rapid technological progress in the ultrasound-based diagnostics field that can help us to quantitatively assess liver steatosis, including continuous attenuation parameters in A and B ultrasound modes, backscatter coefficients (e.g., speed of sound) and ultrasound envelope statistic parametric imaging. The methods used in this field are widely available, have favorable time and financial profiles, and are well accepted by patients. Less is known about their reliability in defining the presence and degree of liver steatosis. Numerous study reports have shown the methods' favorable negative and positive predictive values in comparison with reference investigations (liver biopsy and MRI). Important research has also evaluated the role of these methods in diagnosing and monitoring non-alcoholic fatty liver disease (NAFLD). Since NAFLD is becoming the dominant global cause of liver cirrhosis, and due to the close but complex interplay of liver steatosis with the coexistence of liver fibrosis, knowledge regarding NAFLD's influence on the progression of liver fibrosis is of crucial importance. Study findings, therefore, indicate the possibility of using these same diagnostic methods to evaluate the impact of NAFLD on the patient's liver fibrosis progression risk, metabolic risk factors, cardiovascular complications, and the occurrence of hepatocellular carcinoma. The mentioned areas are particularly important in light of the fact that most of the known chronic liver disease etiologies are increasingly intertwined with the simultaneous presence of NAFLD.
Collapse
Affiliation(s)
- Andrej Hari
- Oddelek za Bolezni Prebavil, Splošna Bolnišnica Celje, Oblakova Cesta 3, 3000 Celje, Slovenia
| |
Collapse
|
25
|
Bischoff SC, Barazzoni R, Busetto L, Campmans‐Kuijpers M, Cardinale V, Chermesh I, Eshraghian A, Kani HT, Khannoussi W, Lacaze L, Léon‐Sanz M, Mendive JM, Müller MW, Ockenga J, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint European Society for Clinical Nutrition and Metabolism / United European Gastroenterology guideline. United European Gastroenterol J 2022; 10:663-720. [PMID: 35959597 PMCID: PMC9486502 DOI: 10.1002/ueg2.12280] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Patients with chronic gastrointestinal (GI) disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean GI patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The objective of the guideline is to give advice to all professionals working in the field of gastroenterology care including physicians, surgeons, dietitians and others how to handle patients with GI disease and obesity. METHODS The present guideline was developed according to the standard operating procedure for European Society for Clinical Nutrition and Metabolism guidelines, following the Scottish Intercollegiate Guidelines Network grading system (A, B, 0, and good practice point [GPP]). The procedure included an online voting (Delphi) and a final consensus conference. RESULTS In 100 recommendations (3x A, 33x B, 24x 0, 40x GPP, all with a consensus grade of 90% or more) care of GI patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially fatty liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present guideline offers for the first time evidence-based advice how to care for patients with chronic GI diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational SciencesUniversity of TriesteTriesteItaly
| | - Luca Busetto
- Department of MedicineUniversity of PadovaPadovaItaly
| | - Marjo Campmans‐Kuijpers
- Department of Gastroenterology and HepatologyUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Vincenzo Cardinale
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Irit Chermesh
- Department of GastroenterologyRambam Health Care CampusAffiliated with Technion‐Israel Institute of TechnologyHaifaIsrael
| | - Ahad Eshraghian
- Department of Gastroenterology and HepatologyAvicenna HospitalShirazIran
| | - Haluk Tarik Kani
- Department of GastroenterologyMarmara UniversitySchool of MedicineIstanbulTurkey
| | - Wafaa Khannoussi
- Hepato‐Gastroenterology DepartmentMohammed VI University HospitalOujdaMorocco
- Laboratoire de Recherche des Maladies Digestives (LARMAD)Mohammed the First UniversityOujdaMorocco
| | - Laurence Lacaze
- Department of NutritionRennes HospitalRennesFrance
- Department of general surgeryMantes‐la‐Jolie HospitalFrance
- Department of clinical nutritionPaul Brousse‐Hospital, VillejuifFrance
| | - Miguel Léon‐Sanz
- Department of Endocrinology and NutritionUniversity Hospital Doce de OctubreMedical SchoolUniversity ComplutenseMadridSpain
| | - Juan M. Mendive
- La Mina Primary Care Academic Health Centre. Catalan Institute of Health (ICS)University of BarcelonaBarcelonaSpain
| | - Michael W. Müller
- Department of General and Visceral SurgeryRegionale Kliniken HoldingKliniken Ludwigsburg‐Bietigheim gGmbHBietigheim‐BissingenGermany
| | - Johann Ockenga
- Medizinische Klinik IIKlinikum Bremen‐MitteBremenGermany
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCharité Universitätsmedizin BerlinCampus Virchow‐Klinikum and Campus Charité MitteBerlinGermany
| | - Anders Thorell
- Department of Clinical ScienceDanderyds HospitalKarolinska InstitutetStockholmSweden
- Department of SurgeryErsta HospitalStockholmSweden
| | - Darija Vranesic Bender
- Department of Internal MedicineUnit of Clinical NutritionUniversity Hospital Centre ZagrebZagrebCroatia
| | - Arved Weimann
- Department of General, Visceral and Oncological SurgerySt. George HospitalLeipzigGermany
| | - Cristina Cuerda
- Departamento de MedicinaUniversidad Complutense de MadridNutrition UnitHospital General Universitario Gregorio MarañónMadridSpain
| |
Collapse
|
26
|
Cao YT, Xiang LL, Qi F, Zhang YJ, Chen Y, Zhou XQ. Accuracy of controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) for assessing steatosis and fibrosis in non-alcoholic fatty liver disease: A systematic review and meta-analysis. EClinicalMedicine 2022; 51:101547. [PMID: 35844772 PMCID: PMC9284399 DOI: 10.1016/j.eclinm.2022.101547] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease, and among the non-invasive tests, controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) have shown better diagnostic performance in NAFLD. This meta-analysis aimed to evaluate the performance of CAP and LSM for assessing steatosis and fibrosis in NAFLD. METHODS We searched the PubMed, Web of Science, Cochrane Library, and Embase databases for relevant articles published up to February 13th, 2022, and selected studies that met the inclusion and exclusion criteria, and evaluated the quality of evidence. Then we pooled sensitivity (SE), specificity (SP), and area under receiver operating characteristic (AUROC) curves. A random effect model was applied regardless of heterogeneity. Meta-regression analysis and subgroup analysis were performed to explore heterogeneity, and Fagan plot analysis was used to evaluate clinical utility. This meta-analysis was completed in Nanjing, Jiangsu and registered on PROSPERO (CRD42022309965). FINDINGS A total of 10537 patients from 61 studies were included in our meta-analysis. The AUROC of CAP were 0·924, 0·794 and 0·778 for steatosis grades ≥ S1, ≥ S2 and = S3, respectively, and the AUROC of LSM for detecting fibrosis stages ≥ F1, ≥ F2, ≥ F3, and = F4 were 0·851, 0·830, 0·897 and 0·925, respectively. Subgroup analysis revealed that BMI ≥ 30 kg/m² had lower accuracy for diagnosing S ≥ S1, ≥ S2 than BMI<30 kg/m². For the mean cut-off values, significant differences were found in CAP values among different body mass index (BMI) populations and LSM values among different regions. For diagnosing S ≥ S1, ≥ S2 and = S3, the mean CAP cut-off values for BMI ≥ 30 kg/m² were 30·7, 28·2, and 27·9 dB/m higher than for BMI < 30 kg/m² (P = 0·001, 0·001 and 0·018, respectively). For diagnosing F ≥ F2 and = F4, the mean cut-off values of Europe and America were 0·96 and 2·03 kPa higher than Asia (P = 0·027, P = 0·034), respectively. In addition, the results did not change significantly after sensitivity analysis and the trim and fill method to correct for publication bias, proving that the conclusions are robust. INTERPRETATION The good performance of CAP and LSM for the diagnosis of mild steatosis (S ≥ S1), advanced liver fibrosis (F ≥ F3), and cirrhosis (F = F4) can be used to screen for NAFLD in high-risk populations. Of note, the accuracy of CAP for the detection of steatosis in patients with obesity is reduced and requires specific diagnostic values. For LSM, the same diagnostic values can be used when the appropriate probes are selected based on BMI and the automated probe selection tool. The performance of CAP and LSM in assessing steatosis in patients with obesity, moderate to severe steatosis, and low-grade fibrosis should be further validated and improved in the future. FUNDING The study was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Collapse
Affiliation(s)
- Yu-tian Cao
- The first clinical medical college of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Liu-lan Xiang
- The first clinical medical college of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Fang Qi
- The first clinical medical college of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yu-juan Zhang
- The first clinical medical college of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi-qiao Zhou
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Corresponding author at: Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
27
|
Accuracy of steatosis and fibrosis NAFLD scores in relation to vibration controlled transient elastography: An NHANES analysis. Clin Res Hepatol Gastroenterol 2022; 46:101997. [PMID: 35842111 DOI: 10.1016/j.clinre.2022.101997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and increasing in the United States. Based on patient characteristics and biochemical profiles, predictive indices have been formulated to evaluate the presence and severity of NAFLD. This study evaluates the accuracy of these indices versus vibration-controlled transient elastography (VCTE™) to screen at-risk populations for NAFLD. METHODS Subjects from the NHANES datasets (2017-2018) without other liver diseases with completed VCTE™ data were studied (n = 5062). Hepatic steatosis and fibrosis scores were calculated and compared with controlled attenuation parameter (CAP) and elastography measurements of VCTE™, respectively. RESULTS The prevalence of NAFLD was 58.5%. Against a CAP cut-off value of ≥238 dB/m for diagnosing fatty liver, the US fatty liver index [US-FLI] had the highest positive predictive value (90%) and specificity (63.7%). The coefficient of correlation against CAP was strong for fatty liver index [FLI] (r = 0.645) and US-FLI (r = 0.608). The hepatic steatosis index [HSI] had the highest negative predictive value (82.1%) and sensitivity (75%) for ruling out steatosis. HSI and FLI, which use commonly obtained clinical parameters, had a high diagnostic odds ratios (21.2 and 18.6, respectively) compared to US-FLI (4.97), which requires insulin levels in the calculation. These findings were similar across all ethnicities studied. CONCLUSION US-FLI is a reliable scoring system to diagnose patients with fatty liver. HSI and FLI are more easily calculated and can be used in clinical practices to diagnose NAFLD in at-risk populations.
Collapse
|
28
|
Le MH, Henry L, Cheung R, Nguyen MH. Transient Elastography and Serum-Based Tests for Diagnosis of Fatty Liver and Advanced Fibrosis in a Community Cohort: A Cross-Sectional Analysis. Dig Dis 2022; 41:767-779. [PMID: 35973400 PMCID: PMC10614275 DOI: 10.1159/000526503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Noninvasive tests (NITs) are necessary for knowing the true prevalence of fatty liver (FL) and advanced fibrosis. NITs for diagnosis of FL and fibrosis were compared. METHODS Data were obtained from the National Health and Examination Survey (2017-2018). Participants were excluded with other liver diseases, missing data for NIT calculation, and/or excessive alcohol use. Area under the receiver operating characteristic (AUROC) compared the accuracy of 4 FL NITs (CAP, HSI, FLI, USFLI) among themselves and to CAP value of 285 dB/m and 5 fibrosis NITs (transient elastography, APRI, NFS, FIB-4, HEPAmet) among themselves and to LSM ≥8.7 kPa. RESULTS Among 2,051 participants (average age 47 (±17.7), 48% males, 62% white, 73% overweight/obese, 39% metabolic syndrome), demographics were similar among NIT groups (CAP = 812; HSI = 1,234; FLI = 935; USFLI-824). FL prevalence by NIT: 39% CAP, 58% HSI, 47% FLI, 37% USFLI. Advanced fibrosis prevalence by test: LSM (≥8.7 kPa) 10-14%; FIB-4 (≥2.67) and APRI (≥0.7) 1.3-2.7%; HEPAmet (>0.47) 14-21%. Compared to CAP ≥285, FLI (AUROC = 0.823) and USFLI (AUROC = 0.833) performed better than HSI (AUROC: 0.798). Compared to LSM ≥8.7 kPa, only NFS (AUROC = 0.722) performed well (FIB-4 AUROC = 0.606; APRI = 0.647; HEPAmet = 0.629). Among the CAP cohort, the strongest FL predictor was obesity (OR: 15.2, 95% CI: 7.97-28.9, p < 0.001); the only fibrosis predictor was elevated AST (OR: 1.06, 95% CI: 1.00-1.12, p = 0.04). The addition of CAP or LSM as a second NIT reduced the number of indeterminate patients especially for FL. CONCLUSIONS Regardless of diagnostic method in 2017-2018, the prevalence of NAFLD was >35%. NITs for FL performed well but not for advanced fibrosis. CAP and LSM as a second NIT reduced those considered indeterminate.
Collapse
Affiliation(s)
- Michael H. Le
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- The Robert Larner, M.D. College of Medicine, The University of Vermont, Burlington, VT, USA
| | - Linda Henry
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Ramsey Cheung
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA, USA
| | - Mindie H. Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
29
|
Bischoff SC, Barazzoni R, Busetto L, Campmans-Kuijpers M, Cardinale V, Chermesh I, Eshraghian A, Kani HT, Khannoussi W, Lacaze L, Léon-Sanz M, Mendive JM, Müller MW, Ockenga J, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline. Clin Nutr 2022; 41:2364-2405. [PMID: 35970666 DOI: 10.1016/j.clnu.2022.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with chronic gastrointestinal (GI) disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean GI patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The objective of the guideline is to give advice to all professionals working in the field of gastroenterology care including physicians, surgeons, dietitians and others how to handle patients with GI disease and obesity. METHODS The present guideline was developed according to the standard operating procedure for ESPEN guidelines, following the Scottish Intercollegiate Guidelines Network (SIGN) grading system (A, B, 0, and good practice point (GPP)). The procedure included an online voting (Delphi) and a final consensus conference. RESULTS In 100 recommendations (3x A, 33x B, 24x 0, 40x GPP, all with a consensus grade of 90% or more) care of GI patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially fatty liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present guideline offers for the first time evidence-based advice how to care for patients with chronic GI diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational Sciences, University of Trieste, Ospedale di Cattinara, Trieste, Italy.
| | - Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy.
| | - Marjo Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, the Netherlands.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated with Technion-Israel Institute of Technology, Haifa, Israel.
| | - Ahad Eshraghian
- Department of Gastroenterology and Hepatology, Avicenna Hospital, Shiraz, Iran.
| | - Haluk Tarik Kani
- Department of Gastroenterology, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Wafaa Khannoussi
- Hepato-Gastroenterology Department, Mohammed VI University Hospital, Oujda, Morocco; Laboratoire de Recherche des Maladies Digestives (LARMAD), Mohammed the First University, Oujda, Morocco.
| | - Laurence Lacaze
- Department of General Surgery, Mantes-la-Jolie Hospital, Mantes-la-Jolie, France; Department of Clinical Nutrition, Paul-Brousse-Hospital, Villejuif, France.
| | - Miguel Léon-Sanz
- Department of Endocrinology and Nutrition, University Hospital Doce de Octubre, Medical School, University Complutense, Madrid, Spain.
| | - Juan M Mendive
- La Mina Primary Care Academic Health Centre, Catalan Institute of Health (ICS), University of Barcelona, Barcelona, Spain.
| | - Michael W Müller
- Department of General and Visceral Surgery, Regionale Kliniken Holding, Kliniken Ludwigsburg-Bietigheim GGmbH, Krankenhaus Bietigheim, Bietigheim-Bissingen, Germany.
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen FRG, Bremen, Germany.
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet & Department of Surgery, Ersta Hospital, Stockholm, Sweden.
| | - Darija Vranesic Bender
- Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
30
|
Sato S, Kamata Y, Kessoku T, Shimizu T, Kobayashi T, Kurihashi T, Takashiba S, Hatanaka K, Hamada N, Kodama T, Higurashi T, Taguri M, Yoneda M, Usuda H, Wada K, Nakajima A, Morozumi T, Minabe M. A cross-sectional study assessing the relationship between non-alcoholic fatty liver disease and periodontal disease. Sci Rep 2022; 12:13621. [PMID: 35948584 PMCID: PMC9365789 DOI: 10.1038/s41598-022-17917-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
The risk factors for non-alcoholic fatty liver disease (NAFLD) progression are not completely known. Porphyromonas gingivalis infection is a risk factor for systemic diseases. We investigated the association of P. gingivalis infection with the risk of non-alcoholic steatohepatitis progression. Here, hematological tests, periodontal examination, and saliva collection were performed for 164 patients with NAFLD. P. gingivalis was identified in saliva using polymerase chain reaction. Hepatic steatosis and stiffness were evaluated using vibration-controlled transient elastography (VCTE) and magnetic resonance imaging. In patients with NAFLD, P. gingivalis positivity (P. gingivalis ratio ≥ 0.01%) in saliva correlated with liver stiffness determined using magnetic resonance elastography (MRE; p < 0.0001). A P. gingivalis ratio of 0.01% corresponds to 100,000 cells/mL and indicates the proportion of P. gingivalis in the total number of bacteria in the oral cavity. Patients with NAFLD and advanced fibrosis on MRE showed significantly elevated endotoxin activity; those who had > 10 periodontal pockets with depths ≥ 4 mm had significantly increased hepatic stiffness on both VCTE and MRE.
Collapse
Affiliation(s)
- Satsuki Sato
- Department of Highly Advanced Oral Stomatology, Yokohama Clinic, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa, Yokohama, Kanagawa, 221-0835, Japan
| | - Yohei Kamata
- Department of Highly Advanced Oral Stomatology, Yokohama Clinic, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa, Yokohama, Kanagawa, 221-0835, Japan.
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Tomoko Shimizu
- Department of Highly Advanced Oral Stomatology, Yokohama Clinic, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa, Yokohama, Kanagawa, 221-0835, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takeo Kurihashi
- Department of Internal Medicine, Yokohama Clinic, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa, Yokohama, Kanagawa, 221-0835, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Kazu Hatanaka
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| | - Toshiro Kodama
- Department of Implantology and Periodontology, Graduate School of Dentistry, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa, Yokohama, Kanagawa, 221-0835, Japan
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masataka Taguri
- Department of Biostatistics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University School of Medicine, 89-1 Enya-cho Izumo, Shimane, 693-0581, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University School of Medicine, 89-1 Enya-cho Izumo, Shimane, 693-0581, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Toshiya Morozumi
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| | - Masato Minabe
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| |
Collapse
|
31
|
Padole P, Arora A, Sharma P, Chand P, Verma N, Kumar A. Saroglitazar for Nonalcoholic Fatty Liver Disease: A Single Centre Experience in 91 Patients. J Clin Exp Hepatol 2022; 12:435-439. [PMID: 35535066 PMCID: PMC9077151 DOI: 10.1016/j.jceh.2021.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background Saroglitazar is a novel, dual peroxisome proliferator-activated receptors-α/γ agonist and is being investigated for the treatment of nonalcoholic fatty liver disease (NAFLD). Patients and methods Consecutive overweight (body mass index [BMI] >23 kg/m2) patients of NAFLD, diagnosed based on controlled attenuation parameter (CAP) >248 dB/m, and attending the outpatient department of a tertiary care centre in New Delhi, were enrolled. Patients with cirrhosis (liver stiffness measurement [LSM] >13.5 kPa) and those with concomitant liver disease due to other aetiologies (alcohol, viral, etc.) were excluded. All patients received saroglitazar 4 mg/day; in addition, they were advised to reduce weight and were counselled regarding diet and exercise. At 3-month follow-up, patients were categorized into those who were able to reduce ≥5% body weight and those who could n'ot, and both these groups were compared. Results A total of 91 patients (median age 45 years [range 18-66 years]; 81% men) were included in the study. The median BMI was 29.3 kg/m2 (range 23.6-42.2 kg/m2). The baseline median (range) aspartate transaminase, alanine transaminase, gamma glutamyl transferase, LSM and CAP values were 40 IU/dL (range 22-144 IU/dL), 48 IU/dL (range 13-164 IU/dL), 42 IU/dL (range 4-171 IU/dL), 6.7 kPa (range 3.6-13.1 kPa), and 308 dB/m (range 249-400 dB/m). All patients tolerated saroglitazar well. At 3-month, 57 patients (63%) were able to reduce ≥5% weight, whereas in the remaining 34 patients (37%), the weight reduction was <5% from baseline. Transaminases values improved in both the groups; however, LSM and CAP values improved only in patients who reduced weight. Conclusion In overweight patients with NAFLD, a 3-month therapy with saroglitazar is able to improve transaminases but not LSM and CAP values unless accompanied by weight reduction of at least 5%. Larger randomized controlled trials are needed to document the independent effect of saroglitazar in these patients.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine transaminase
- AST, aspartate transaminase
- BMI, body mass index
- CAP, controlled attenuation parameter
- DCGI, Drug Controller General of India
- FDA, Food and Drug Administration
- GGT, gamma glutamyl transferase
- HCV, hepatitis C virus
- IQR, interquartile range
- IU, international units
- LSM, liver stiffness measurement
- MAFLD, metabolic (dysfunction) associated fatty liver disease
- NAFLD
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- PPAR, peroxisome proliferator-activated receptor
- controlled attenuation parameter
- dB, decibels
- kPa, kilopascal
- obesity
- pPAR agonist
- saroglitazar
Collapse
Affiliation(s)
- Prateek Padole
- Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil Arora
- Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Sharma
- Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Prakash Chand
- Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Nishant Verma
- Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Ashish Kumar
- Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
32
|
Reproducibility of ultrasound-guided attenuation parameter (UGAP) to the noninvasive evaluation of hepatic steatosis. Sci Rep 2022; 12:2876. [PMID: 35190618 PMCID: PMC8861045 DOI: 10.1038/s41598-022-06879-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to identify the applicability of an ultrasound-guided attenuation parameter (UGAP) for the noninvasive assessment of hepatic steatosis in clinical practice and to compare its correlation with B-mode ultrasound (US). From May to July 2021, 63 subjects with different body mass index (BMI) grades were included in the prospective study. All of them performed UGAP measurements, under different breathing manipulations, positions, diet statuses, and operators. After that, the UGAP values were compared with the visual grades of hepatic steatosis on B-mode US using a 4-point scale method. The intraclass correlation (ICC) of the UGAP values between the two radiologists was 0.862 (p < 0.001), and the ICCs of the UGAP values on the same day and different days by radiologist A were 0.899 (p < 0.001) and 0.910 (p < 0.001), respectively. There were no significant differences in UGAP values under different breathing manipulations (p > 0.05), positions (p > 0.05), or diet statuses (p = 0.300). The UGAP values in the fasting (supine position, segment V, 1) condition among the lean (BMI < 24 kg/m2), overweight (24 kg/m2 ≤ BMI < 28 kg/m2) and obese groups (BMI ≥ 28 kg/m2) were 0.60 ± 0.12, 0.66 ± 0.14, and 0.71 ± 0.11 dB/cm/MHz, respectively, with a significant difference (p = 0.006). The correlation coefficients (Rho) between the UGAP values and the visual grades of hepatic steatosis by the two reviewers were 0.845 (p < 0.001) and 0.850 (p < 0.001), corresponding to a strong relationship. Steatosis grades by reviewer 1 (p = 0.036) and reviewer 2 (p = 0.003) were significant factors determining the UGAP values according to the multivariate linear regression analysis. UGAP demonstrated excellent intraobserver and interobserver reproducibility in the assessment of hepatic steatosis. UGAP may be a promising tool in clinical practice to predict hepatic steatosis.
Collapse
|
33
|
Park J, Lee JM, Lee G, Jeon SK, Joo I. Quantitative Evaluation of Hepatic Steatosis Using Advanced Imaging Techniques: Focusing on New Quantitative Ultrasound Techniques. Korean J Radiol 2022; 23:13-29. [PMID: 34983091 PMCID: PMC8743150 DOI: 10.3348/kjr.2021.0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease, characterized by excessive accumulation of fat in the liver, is the most common chronic liver disease worldwide. The current standard for the detection of hepatic steatosis is liver biopsy; however, it is limited by invasiveness and sampling errors. Accordingly, MR spectroscopy and proton density fat fraction obtained with MRI have been accepted as non-invasive modalities for quantifying hepatic steatosis. Recently, various quantitative ultrasonography techniques have been developed and validated for the quantification of hepatic steatosis. These techniques measure various acoustic parameters, including attenuation coefficient, backscatter coefficient and speckle statistics, speed of sound, and shear wave elastography metrics. In this article, we introduce several representative quantitative ultrasonography techniques and their diagnostic value for the detection of hepatic steatosis.
Collapse
Affiliation(s)
- Junghoan Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| | - Gunwoo Lee
- Ultrasound R&D 2 Group, Health & Medical Equipment Business, Samsung Electronics Co., Ltd., Seoul, Korea
| | - Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Chandra Kumar CV, Skantha R, Chan WK. Non-invasive assessment of metabolic dysfunction-associated fatty liver disease. Ther Adv Endocrinol Metab 2022; 13:20420188221139614. [PMID: 36533184 PMCID: PMC9747884 DOI: 10.1177/20420188221139614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects an estimated one-quarter of the global adult population and has become one of the leading causes of end-stage liver disease and hepatocellular carcinoma with increased liver-related and overall morbidity and mortality. The new term, metabolic dysfunction-associated fatty liver disease (MAFLD), has a set of positive diagnostic criteria and has been shown to have better clinical utility, but it has yet to be universally adopted. This review addresses the non-invasive tests for MAFLD and is based mostly on studies on NAFLD patients, as the MAFLD term is relatively new and there are limited studies on non-invasive tests based on this new term, while a large body of research work on non-invasive tests has accumulated in the literature for NAFLD. This review focuses on blood-based biomarkers and scores for the assessment of hepatic steatosis, non-alcoholic steatohepatitis (NASH), and fibrosis, and two of the most widely studied imaging biomarkers, namely vibration-controlled transient elastography and magnetic resonance imaging. Fibrotic NASH has become a diagnostic target of interest and novel serum biomarkers and scores incorporating imaging biomarker for diagnosis of fibrotic NASH are emerging. Nonetheless, the degree of liver fibrosis remains the key predictor of liver-related morbidity and mortality in patients with MAFLD. A multitude of non-invasive biomarkers and scores have been studied for the detection of liver fibrosis, including use of sequential non-invasive tests for risk stratification of advanced liver fibrosis. In addition, this review will explore the utility of the non-invasive tests for prognostication and for monitoring of treatment response.
Collapse
Affiliation(s)
- C. Vikneshwaran Chandra Kumar
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ruben Skantha
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
35
|
Kuchay MS, Choudhary NS, Sharma D, Krishan S, Mishra SK, Wasir JS, Singh MK, Saraf N, Dhampalwar S, Sud R. Diagnostic Accuracy and Optimal Cut-off of Controlled Attenuation Parameter for the Detection of Hepatic Steatosis in Indian Population. J Clin Exp Hepatol 2022; 12:893-898. [PMID: 35677514 PMCID: PMC9168736 DOI: 10.1016/j.jceh.2021.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Ultrasound of the liver is not good to pick up mild steatosis. Controlled attenuation parameter (CAP) evaluated in transient elastography (FibroScan) is widely available in India. However, data regarding the diagnostic accuracy and optimal cut-off values of CAP for diagnosing hepatic steatosis are scarce in Indian population. MRI-PDFF is an accurate technique for quantifying hepatic steatosis. Thus, this study examined the diagnostic accuracy and optimal cut-off values of CAP for diagnosing steatosis with MRI-PDFF as reference standard. METHODS A total of 137 adults underwent CAP and MRI-PDFF measurements prospectively. A subset of participants (n = 23) underwent liver biopsy as part of liver transplantation evaluation. The optimal cut-off values, area under the receiver operating characteristic (AUROC) curves, sensitivity, and specificity for CAP in detecting MRI-PDFF ≥5% and ≥10% were assessed. RESULTS The mean age and body mass index (BMI) were 44.2 ±10.4 years and 28.3 ±3.9 kg/m2, respectively. The mean hepatic steatosis was 13.0 ±7.7% by MRI-PDFF and 303 ±54 dB/m by CAP. The AUROC of CAP for detecting hepatic steatosis (MRI-PDFF ≥5%) was 0.93 (95% CI, 0.88-0.98) at the cut-off of 262 dB/m, and of MRI-PDFF ≥10% was 0.89 (95% CI, 0.84-0.94) at the cut-off of 295 dB/m. The CAP of 262 dB/m had 90% sensitivity and 91% specificity for detecting MRI-PDFF ≥5%, while the CAP of 295 dB/m had 86% sensitivity and 77% specificity for detecting MRI-PDFF ≥10%. CONCLUSIONS The optimal cut-off of CAP for the presence of liver steatosis (MRI-PDFF ≥5%) was 262 dB/m in Indian individuals. This CAP cut-off was associated with good sensitivity and specificity to pick up mild steatosis.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUROC, area under receiver operating characteristics
- BMI, body mass index
- CAP, controlled attenuation parameter
- India
- LSM, liver stiffness measurement
- MRI-PDFF
- MRI-PDFF, magnetic resonance imaging-proton density fat fraction
- MRS, magnetic resonance spectroscopy
- NAFLD, non-alcoholic fatty liver disease
- NPV, negative predictive value
- PPV, positive predictive value
- TE, transient elastography
- biopsy
- liver steatosis
- non-alcoholic fatty liver disease
Collapse
Affiliation(s)
- Mohammad S. Kuchay
- Division of Endocrinology and Diabetes, Medanta The Medicity Hospital, Gurugram, Haryana, 122001, India
| | - Narendra S. Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta The Medicity hospital, Gurugram, Haryana, 122001, India,Address for correspondence: Dr Narendra Singh Choudhary, Senior consultant, Hepatology, Medanta The Medicity Hospital, Sector 38, Gurugram, Haryana, 122001, India.
| | - Deepak Sharma
- Institute of Digestive and Hepatobiliary Sciences, Medanta The Medicity hospital, Gurugram, Haryana, 122001, India
| | - Sonal Krishan
- Department of Radiology, Medanta The Medicity Hospital, Gurugram, Haryana, 122001, India
| | - Sunil K. Mishra
- Division of Endocrinology and Diabetes, Medanta The Medicity Hospital, Gurugram, Haryana, 122001, India
| | - Jasjeet S. Wasir
- Division of Endocrinology and Diabetes, Medanta The Medicity Hospital, Gurugram, Haryana, 122001, India
| | - Manish K. Singh
- Department of Clinical Research and Studies, Medanta The Medicity Hospital, Gurugram, Haryana, 122001, India
| | - Neeraj Saraf
- Institute of Digestive and Hepatobiliary Sciences, Medanta The Medicity hospital, Gurugram, Haryana, 122001, India
| | - Swapnil Dhampalwar
- Institute of Digestive and Hepatobiliary Sciences, Medanta The Medicity hospital, Gurugram, Haryana, 122001, India
| | - Randhir Sud
- Institute of Digestive and Hepatobiliary Sciences, Medanta The Medicity hospital, Gurugram, Haryana, 122001, India
| |
Collapse
|
36
|
Jamal O, Kasmy Z, Chala S, Sekkach Y, Ennibi K. Le CAP (Controlled attenuation parameter), un indicateur de risque et de sévérité du syndrome métabolique ? NUTR CLIN METAB 2021. [DOI: 10.1016/j.nupar.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Liver shear wave elastography and attenuation imaging coefficient measures: prospective evaluation in healthy children. Abdom Radiol (NY) 2021; 46:4629-4636. [PMID: 34100966 DOI: 10.1007/s00261-021-02960-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Ultrasonographic quantitative measurements enable characterizing the stiffness and viscosity of liver parenchyma. Normal Shear Wave Elastography (SWE) values have been reported in adults and children. The Attenuation Imaging (ATI) coefficient is a measure of local sound energy loss thought to reflect steatosis in adults. The aim of our study was to provide normal SWE and ATI liver values in healthy children. METHODS A prospective monocentric study was conducted recruiting 86 children (45 boys and 41 girls) from a single University Hospital between January 2019 and June 2020, having a clinically indicated ultrasound examination, without a known or documented history of liver disease. Examinations were performed using an Aplio i800 (Canon Medical Systems) ultrasound system with an i8CX1 transducer. SWE measurements were obtained using a color map showing an automated measurement area grid overlay. ATI coefficients were generated automatically for each region of interest in the right liver. RESULTS Overall median age for the pediatric population was 106 months (1-180 months; SD 49 months). Children were normal weighted. Liver SWE was available for all children. The median liver SWE was 4.6 kPa [3.3-6.6]. ATI yielded valid measurements in 77 patients. The median ATI coefficient was 0.65 [0.5-0.81] dB/cm/MHz. No impact of age, sex, weight and Body Mass Index was observed. CONCLUSION SWE and ATI liver values were provided in healthy children. The normative quantitative data might be useful to characterize liver parenchyma in children better.
Collapse
|
38
|
Ferraioli G, Berzigotti A, Barr RG, Choi BI, Cui XW, Dong Y, Gilja OH, Lee JY, Lee DH, Moriyasu F, Piscaglia F, Sugimoto K, Wong GLH, Wong VWS, Dietrich CF. Quantification of Liver Fat Content with Ultrasound: A WFUMB Position Paper. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2803-2820. [PMID: 34284932 DOI: 10.1016/j.ultrasmedbio.2021.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
New ultrasound methods that can be used to quantitatively assess liver fat content have recently been developed. These quantitative ultrasound (QUS) methods are based on the analysis of radiofrequency echoes detected by the transducer, allowing calculation of parameters for quantifying the fat in the liver. In this position paper, after a section dedicated to the importance of quantifying liver steatosis in patients with non-alcoholic fatty liver disease and another section dedicated to the assessment of liver fat with magnetic resonance, the current clinical studies performed using QUS are summarized. These new methods include spectral-based techniques and techniques based on envelope statistics. The spectral-based techniques that have been used in clinical studies are those estimating the attenuation coefficient and those estimating the backscatter coefficient. Clinical studies that have used tools based on the envelope statistics of the backscattered ultrasound are those performed by using the acoustic structure quantification or other parameters derived from it, such as the normalized local variance, and that performed by estimating the speed of sound. Experts' opinions are reported.
Collapse
Affiliation(s)
- Giovanna Ferraioli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Medical School University of Pavia, Pavia, Italy
| | - Annalisa Berzigotti
- Hepatology Dept., University Clinic for Visceral Surgery and Medicine, Inselspital, University Hospital of Bern, University of Bern, Switzerland
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, Ohio, USA
| | - Byung I Choi
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Xin Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, and Department of Clinical Medicine, University of Bergen, Norway
| | - Jae Young Lee
- Departments of Health and Science and Technology and Medical Device Management and Research, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Fuminori Moriyasu
- Department of Gastroenterology and Hepatology, International University of Health and Welfare, Sanno Hospital, Tokyo, Japan
| | - Fabio Piscaglia
- Unit of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, Department of Medical and Surgical Sciences, University of Bologna S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Japan
| | - Grace Lai-Hung Wong
- Medical Data Analytic Centre and Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permancence, Bern, Switzerland.
| |
Collapse
|
39
|
Mohamad Nor MH, Ayob N, Mokhtar NM, Raja Ali RA, Tan GC, Wong Z, Shafiee NH, Wong YP, Mustangin M, Nawawi KNM. The Effect of Probiotics (MCP ® BCMC ® Strains) on Hepatic Steatosis, Small Intestinal Mucosal Immune Function, and Intestinal Barrier in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients 2021; 13:nu13093192. [PMID: 34579068 PMCID: PMC8468225 DOI: 10.3390/nu13093192] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Treatment for non-alcoholic fatty liver disease (NAFLD) currently consists of lifestyle modifications such as a low-fat diet, weight loss, and exercise. The gut microbiota forms part of the gut–liver axis and serves as a potential target for NAFLD treatment. We investigated the effect of probiotics on hepatic steatosis, fibrosis, and biochemical blood tests in patients with NAFLD. At the small intestinal mucosal level, we examined the effect of probiotics on the expression of CD4+ and CD8+ T lymphocytes, as well as the tight junction protein zona occluden-1 (ZO-1). This was a randomized, double-blind, placebo-controlled trial involving ultrasound-diagnosed NAFLD patients (n = 39) who were supplemented with either a probiotics sachet (MCP® BCMC® strains) or a placebo for a total of 6 months. Multi-strain probiotics (MCP® BCMC® strains) containing six different Lactobacillus and Bifidobacterium species at a concentration of 30 billion CFU were used. There were no significant changes at the end of the study in terms of hepatic steatosis (probiotics: −21.70 ± 42.6 dB/m, p = 0.052 vs. placebo: −10.72 ± 46.6 dB/m, p = 0.29) and fibrosis levels (probiotics: −0.25 ± 1.77 kPa, p = 0.55 vs. placebo: −0.62 ± 2.37 kPa, p = 0.23) as measured by transient elastography. Likewise, no significant changes were found for both groups for the following parameters: LiverFAST analysis (steatosis, fibrosis and inflammation scores), alanine aminotransferase, total cholesterol, triglycerides, and fasting glucose. In the immunohistochemistry (IHC) analysis, no significant expression changes were seen for CD4+ T lymphocytes in either group (probiotics: −0.33 ± 1.67, p = 0.35 vs. placebo: 0.35 ± 3.25, p = 0.63). However, significant reductions in the expression of CD8+ T lymphocytes (−7.0 ± 13.73, p = 0.04) and ZO-1 (Z-score = −2.86, p = 0.04) were found in the placebo group, but no significant changes in the probiotics group. In this pilot study, the use of probiotics did not result in any significant clinical improvement in NAFLD patients. However, at the microenvironment level (i.e., the small intestinal mucosa), probiotics seemed to be able to stabilize the mucosal immune function and to protect NAFLD patients against increased intestinal permeability. Therefore, probiotics might have a complementary role in treating NAFLD. Further studies with larger sample sizes, a longer duration, and different probiotic strains are needed to evaluate the real benefit of probiotics in NAFLD.
Collapse
Affiliation(s)
- Mohamad Hizami Mohamad Nor
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.H.M.N.); (R.A.R.A.); (Z.W.)
| | - Nurainina Ayob
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.); (N.M.M.)
| | - Norfilza M. Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.); (N.M.M.)
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Raja Affendi Raja Ali
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.H.M.N.); (R.A.R.A.); (Z.W.)
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Geok Chin Tan
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (Y.P.W.); (M.M.)
| | - Zhiqin Wong
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.H.M.N.); (R.A.R.A.); (Z.W.)
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Nor Hamizah Shafiee
- Dietetics Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (Y.P.W.); (M.M.)
| | - Muaatamarulain Mustangin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (Y.P.W.); (M.M.)
| | - Khairul Najmi Muhammad Nawawi
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.H.M.N.); (R.A.R.A.); (Z.W.)
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
- Correspondence:
| |
Collapse
|
40
|
Diagnostic accuracy of ultrasound-guided attenuation parameter as a noninvasive test for steatosis in non-alcoholic fatty liver disease. J Med Ultrason (2001) 2021; 48:471-480. [PMID: 34415481 DOI: 10.1007/s10396-021-01123-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to evaluate the diagnostic accuracy of the ultrasound-guided attenuation parameter (UGAP) using the LOGEQ E10 for hepatic steatosis in non-alcoholic fatty liver disease (NAFLD) patients and directly compare UGAP with attenuation imaging (ATI) and controlled attenuation parameter (CAP). We prospectively analyzed 105 consecutive patients with NAFLD who underwent UGAP, ATI, CAP, and liver biopsy on the same day between October 2019 and April 2021. The diagnostic ability of the UGAP-determined attenuation coefficient (AC) was evaluated using receiver operating characteristic (ROC) curve analysis, and its correlation with ATI-determined AC values or CAP values was investigated. The success rate of UGAP was 100%. The median IQR/med obtained by UGAP was 4.0%, which was lower than that of ATI and CAP (P < 0.0001). The median ACs obtained by UGAP for grades S0 (control), S1, S2, and S3 were 0.590, 0.670, 0.750, and 0.845 dB/cm/MHz, respectively, demonstrating a stepwise increase with increasing hepatic steatosis severity (P < 0.0001). The areas under the ROC curve of UGAP for identifying ≥ S1, ≥ S2, and S3 were 0.890, 0.906, and 0.912, respectively, which were significantly better than the results obtained with CAP for identifying S3. Furthermore, the correlation coefficient between UGAP-AC and ATI-AC values was 0.803 (P < 0.0001), indicating a strong relationship. Our results indicate that UGAP has high diagnostic accuracy for detecting and grading hepatic steatosis in patients with NAFLD.
Collapse
|
41
|
Shao CX, Ye J, Dong Z, Li F, Lin Y, Liao B, Feng S, Zhong B. Steatosis grading consistency between controlled attenuation parameter and MRI-PDFF in monitoring metabolic associated fatty liver disease. Ther Adv Chronic Dis 2021; 12:20406223211033119. [PMID: 34408822 PMCID: PMC8366131 DOI: 10.1177/20406223211033119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Background The consistency in steatosis grading between magnetic resonance imaging-based proton density fat fraction (MRI-PDFF) and controlled attenuation parameter (CAP) before and after treatment remains unclear. This study aimed to compare the diagnostic accuracy of steatosis grading between MRI-PDFF and CAP using liver biopsy as standard and to evaluate the value of monitoring changes in steatosis grading with CAP during follow-up utilizing MRI-PDFF as a reference. Methods Consecutive patients from a biopsy cohort and a randomized controlled trial were included in this study and classified into 3 groups (the biopsy, orlistat treatment, and routine treatment subgroups). Hepatic steatosis was measured via MRI-PDFF and CAP at baseline and at the 6th month; the accuracy and cutoffs were assessed in the liver biopsy cohort at baseline. Results A total of 209 consecutive patients were enrolled. MRI-PDFF and CAP showed comparable diagnostic accuracy for detecting pathological steatosis [⩾S1, area under the receiver operating characteristic curve (AUC) = 0.984 and 0.972, respectively]; in contrast, CAP presented significantly lower AUCs in grades S2-3 and S3 (0.820 and 0.815, respectively). The CAP values correlated well with the MRI-PDFF values at baseline and at the 6th month (r = 0.809 and 0.762, respectively, both p < 0.001), whereas a moderate correlation in their changes (r = 0.612 and 0.524 for moderate-severe and mild steatosis, respectively; both p < 0.001) was observed. The AUC of CAP change was obtained to predict MRI-PDFF changes of ⩾5% and ⩾10% (0.685 and 0.704, p < 0.001 and p = 0.001, respectively). The diagnostic agreement of steatosis grade changes between MRI-PDFF and CAP was weak (κ = 0.181, p = 0.001). Conclusions CAP has decreased value for the initial screening of moderate-severe steatosis and is limited in monitoring changes in steatosis during treatment. The confirmation of steatosis grading with MRI-PDFF remains necessary.
Collapse
Affiliation(s)
- Cong Xiang Shao
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Junzhao Ye
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Zhi Dong
- Department of Radiology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Fuxi Li
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Yansong Lin
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Bing Liao
- Department of Pathology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Shiting Feng
- Department of Radiology of the First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Bihui Zhong
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, China
| |
Collapse
|
42
|
Hydes T, Brown E, Hamid A, Bateman AC, Cuthbertson DJ. Current and Emerging Biomarkers and Imaging Modalities for Nonalcoholic Fatty Liver Disease: Clinical and Research Applications. Clin Ther 2021; 43:1505-1522. [PMID: 34400007 DOI: 10.1016/j.clinthera.2021.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is a metabolic disorder that frequently coexists with obesity, metabolic syndrome, and type 2 diabetes. The NAFLD spectrum, ranging from hepatic steatosis to nonalcoholic steatohepatitis, fibrosis, and cirrhosis, can be associated with long-term hepatic (hepatic decompensation and hepatocellular carcinoma) and extrahepatic complications. Diagnosis of NAFLD requires detection of liver steatosis with exclusion of other causes of chronic liver disease. Screening for NAFLD and identification of individuals at risk of end-stage liver disease represent substantial challenges that have yet to be met. NAFLD affects up to 25% of adults, yet only a small proportion will progress beyond steatosis to develop advanced disease (steatohepatitis and fibrosis) associated with increased morbidity and mortality. Identification of this cohort has required the gold standard liver biopsy, which is both invasive and expensive. The use of serum biomarkers and noninvasive imaging techniques is an area of significant clinical relevance. This narrative review outlines current and emerging technologies for the diagnosis of NAFLD, nonalcoholic steatohepatitis, and hepatic fibrosis. METHODS We reviewed the literature using PubMed and reviewed national and international guidelines and conference proceedings to provide a comprehensive overview of the evidence. FINDINGS Significant advances have been made during the past 2 decades that have enhanced noninvasive assessment of NAFLD without the need for liver biopsy. For the detection of steatosis, abdominal ultrasonography remains the first-line investigation, although a controlled attenuation parameter using transient elastography is more sensitive. For detecting fibrosis, noninvasive serum markers of fibrosis and algorithms based on routine biochemistry are available, in addition to transient elastography. These techniques are well validated and have been incorporated into national and international screening guidelines. These approaches have facilitated more judicious use of liver biopsy but are yet to entirely replace it. Although serum biomarkers present a pragmatic and widely available screening approach for NAFLD in large population-based studies, magnetic resonance imaging techniques offer the benefit of achieving high degrees of accuracy in disease grading, tumor staging, and assessing therapeutic response. IMPLICATIONS This diagnostic clinical and research field is rapidly evolving; increasingly combined applications of biomarkers and transient elastography or imaging of selective (intermediate or high risk) cases are being used for clinical and research purposes. Liver biopsy remains the gold standard investigation, particularly in the context of clinical trials, but noninvasive options are emerging, using multimodality assessment, that are quicker, more tolerable, more widely available and have greater patient acceptability.
Collapse
Affiliation(s)
- T Hydes
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom.
| | - E Brown
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - A Hamid
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - A C Bateman
- Department of Cellular Pathology, Southampton General Hospital, Southampton, United Kingdom
| | - D J Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
43
|
Kimura S, Tanaka K, Oeda S, Inoue K, Inadomi C, Kubotsu Y, Yoshioka W, Okada M, Isoda H, Kuwashiro T, Akiyama T, Kurashige A, Oshima A, Oshima M, Matsumoto Y, Kawaguchi A, Anzai K, Sueoka E, Aishima S, Takahashi H. Effect of skin-capsular distance on controlled attenuation parameter for diagnosing liver steatosis in patients with nonalcoholic fatty liver disease. Sci Rep 2021; 11:15641. [PMID: 34341368 PMCID: PMC8329228 DOI: 10.1038/s41598-021-94970-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
The effect of the skin-capsular distance (SCD) on the controlled attenuation parameter (CAP) for diagnosis of liver steatosis in patients with nonalcoholic fatty liver disease (NAFLD) remains unclear. The SCD was measured using B-mode ultrasound, and the CAP was measured using the M probe of FibroScan®. According to the indications of the M probe, 113 patients with an SCD of ≤ 25 mm were included in the present study. The association between the SCD and CAP was investigated, and the diagnostic performance of the SCD-adjusted CAP was tested. The SCD showed the most significant positive correlation with the CAP (ρ = 0.329, p < 0.001). In the multiple regression analysis, the SCD and serum albumin concentration were associated with the CAP, independent of pathological liver steatosis. According to the multivariate analysis, two different formulas were developed to obtain the adjusted CAP using the SCD and serum albumin concentration as follows: adjusted CAP (dB/m) = CAP - (5.26 × SCD) and adjusted CAP (dB/m) = CAP - (5.35 × SCD) - (25.77 × serum albumin concentration). The area under the receiver operating characteristic curve for diagnosis of a steatosis score ≥ 2 of adjusted CAP was 0.678 and 0.684 respectively, which were significantly greater than the original CAP (0.621: p = 0.030 and p = 0.024). The SCD is associated with the CAP independent of liver steatosis. Adjustment of the CAP using the SCD improves the diagnostic performance of the CAP in NAFLD.
Collapse
Affiliation(s)
- Syunichiro Kimura
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Kenichi Tanaka
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Satoshi Oeda
- Liver Center, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
- Department of Laboratory Medicine, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Kaori Inoue
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Chika Inadomi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Yoshihito Kubotsu
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Wataru Yoshioka
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Michiaki Okada
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hiroshi Isoda
- Liver Center, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Takuya Kuwashiro
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Takumi Akiyama
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Aya Kurashige
- Department of Laboratory Medicine, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Ayaka Oshima
- Department of Laboratory Medicine, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Mayumi Oshima
- Department of Laboratory Medicine, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Yasue Matsumoto
- Department of Laboratory Medicine, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Atsushi Kawaguchi
- Education and Research Center for Community Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Eisaburo Sueoka
- Department of Laboratory Medicine, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Shinichi Aishima
- Department of Pathology & Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hirokazu Takahashi
- Liver Center, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
44
|
Wen H, Zheng W, Li M, Li Q, Liu Q, Zhou J, Liu Z, Chen X. Multiparametric Quantitative US Examination of Liver Fibrosis: A Feature-engineering and Machine-learning Based Analysis. IEEE J Biomed Health Inform 2021; 26:715-726. [PMID: 34329172 DOI: 10.1109/jbhi.2021.3100319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantitative ultrasound (QUS), which is commonly used to extract quantitative features from the ultrasound radiofrequency (RF) data or the RF envelope signals for tissue characterization, is becoming a promising technique for noninvasive assessments of liver fibrosis. However, the number of feature variables examined and finally used in the existing QUS methods is typically small, to some extent limiting the diagnostic performance. Therefore, this paper devises a new multiparametric QUS (MP-QUS) method which enables the extraction of a large number of feature variables from US RF signals and allows for the use of feature-engineering and machinelearning based algorithms for liver fibrosis assessment. In the MP-QUS, eighty-four feature variables were extracted from multiple QUS parametric maps derived from the RF signals and the envelope data. Afterwards, feature reduction and selection were performed in turn to remove the feature redundancy and identify the best combination of features in the reduced feature set. Finally, a variety of machine-learning algorithms were tested for classifying liver fibrosis with the selected features, based on the results of which the optimal classifier was established and used for final classification. The performance of the proposed MPQUS method for staging liver fibrosis was evaluated on an animal model, with histologic examination as the reference standard. The mean accuracy, sensitivity, specificity and area under the receiver-operating-characteristic curve achieved by MP-QUS are respectively 83.38%, 86.04%, 80.82% and 0.891 for recognizing significant liver fibrosis, and 85.50%, 88.92%, 85.24% and 0.924 for diagnosing liver cirrhosis. The proposed MP-QUS method paves a way for its future extension to assess liver fibrosis in human subjects.
Collapse
|
45
|
Kang SH, Lee HW, Yoo JJ, Cho Y, Kim SU, Lee TH, Jang BK, Kim SG, Ahn SB, Kim H, Jun DW, Choi JI, Song DS, Kim W, Jeong SW, Kim MY, Koh H, Jeong S, Lee JW, Cho YK. KASL clinical practice guidelines: Management of nonalcoholic fatty liver disease. Clin Mol Hepatol 2021; 27:363-401. [PMID: 34154309 PMCID: PMC8273632 DOI: 10.3350/cmh.2021.0178] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Seong Hee Kang
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine, SoonChunHyang University Bucheon Hospital, Bucheon, Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul Korea
| | - Tae Hee Lee
- Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, SoonChunHyang University Bucheon Hospital, Bucheon, Korea
| | - Sang Bong Ahn
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Joon-Il Choi
- Department of Radiology, Seoul St.Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Do Seon Song
- Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Soung Won Jeong
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hong Koh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Sujin Jeong
- Division of Pediatric Gastroenterology Hepatology and Nutrition, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jin-Woo Lee
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Yong Kyun Cho
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Attenuation parameter and liver stiffness measurement using FibroTouch vs Fibroscan in patients with chronic liver disease. PLoS One 2021; 16:e0250300. [PMID: 33939744 PMCID: PMC8092664 DOI: 10.1371/journal.pone.0250300] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Background & aim We studied FibroTouch (FT) and Fibroscan (FS) examination results and their repeatability when performed by healthcare personnel of different background. Methods FT and FS examinations were performed on patients with chronic liver disease by two operators, a doctor and a nurse, twice on each patient, at two different time points, independent of each other. Results The data for 163 patients with 1304 examinations was analyzed. There was strong correlation between FT and FS for attenuation parameter (Spearman’s rho 0.76, p<0.001) and liver stiffness measurement (LSM) (Spearman’s rho 0.70, p<0.001). However, FT produced higher value at lower attenuation parameter and LSM, and lower value at higher attenuation parameter and LSM. There was substantial agreement when using 15kPa LSM cut-off, but only moderate agreement when using 10kPa and 20kPa LSM cut-offs and 248dB/m, 268dB/m and 280dB/m attenuation parameter cut-offs. The IQR for attenuation parameter and IQR/median for LSM were significantly lower for FT compared with FS (4dB/m vs 27dB/m, p<0.001, and 10 vs 12, p<0.001, respectively). The intra- and inter-observer reliability of attenuation parameter and LSM using FT and FS were good to excellent with intraclass correlation coefficients 0.89–0.99. FT had shorter examination time (33s vs 47s, p<0.001) and less invalid measurements (0 vs 2, p<0.001). Conclusion Measurements obtained with FT and FS strongly correlated, but significant differences in their absolute values, consistency, examination time and number of invalid measurements were observed. Either device can be used by healthcare personnel of different backgrounds when sufficiently trained.
Collapse
|
47
|
Kuroda H, Fujiwara Y, Abe T, Nagasawa T, Oguri T, Noguchi S, Kamiyama N, Takikawa Y. Two-dimensional shear wave elastography and ultrasound-guided attenuation parameter for progressive non-alcoholic steatohepatitis. PLoS One 2021; 16:e0249493. [PMID: 33826669 PMCID: PMC8026049 DOI: 10.1371/journal.pone.0249493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS We investigated the usefulness of combining two-dimensional shear wave elastography and the ultrasound-guided attenuation parameter for assessing the risk of progressive non-alcoholic steatohepatitis, defined as non-alcoholic steatohepatitis with a non-alcoholic fatty liver disease activity score of ≥4 and a fibrosis stage of ≥2. METHODS This prospective study included 202 patients with non-alcoholic fatty liver disease who underwent two-dimensional shear wave elastography, ultrasound-guided attenuation parameter, vibration-controlled transient elastography, the controlled attenuation parameter, and liver biopsy on the same day. Patients were grouped according to liver stiffness measurement using two-dimensional shear wave elastography and the attenuation coefficient, assessed using the ultrasound-guided attenuation parameter: A, low liver stiffness measurement/low attenuation coefficient; B, low liver stiffness measurement/high attenuation coefficient; C, high liver stiffness measurement/low attenuation coefficient; and D, high liver stiffness measurement/high attenuation coefficient. RESULTS Two-dimensional shear wave elastography and vibration-controlled transient elastography had equivalent diagnostic performance for fibrosis. The areas under the curve of the ultrasound-guided attenuation parameter for identifying steatosis grades ≥S1, ≥S2, and S3 were 0.89, 0.91, and 0.92, respectively, which were significantly better than those of the controlled attenuation parameter (P<0.05). The percentages of progressive non-alcoholic steatohepatitis in Groups A, B, C, and D were 0.0%, 7.7%, 35.7%, and 50.0%, respectively (P<0.001). The prediction model was established as logit (p) = 0.5414 × liver stiffness measurement (kPa) + 7.791 × attenuation coefficient (dB/cm/MHz)-8.401, with area under the receiver operating characteristic curve, sensitivity, and specificity values of 0.832, 80.9%, and 74.6%, respectively; there was no significant difference from the FibroScan-aspartate aminotransferase score. CONCLUSION Combined assessment by two-dimensional shear wave elastography and the ultrasound-guided attenuation parameter is useful for risk stratification of progressive non-alcoholic steatohepatitis and may be convenient for evaluating the necessity of specialist referral and liver biopsy.
Collapse
Affiliation(s)
- Hidekatsu Kuroda
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Yudai Fujiwara
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Tamami Abe
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Tomoaki Nagasawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Takuma Oguri
- Ultrasound General Imaging, GE Healthcare, Hino, Tokyo, Japan
| | - Sachiyo Noguchi
- Ultrasound General Imaging, GE Healthcare, Hino, Tokyo, Japan
| | | | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| |
Collapse
|
48
|
Abdelbary M, Marzaban R, Gamal Eldeen H, Khairy M, Menesy M, Fahmy M, Ayad A, Mouheb B, Yosry A. Clinical utility of transient elastography as an imaging tool to assess the short-term impact of laparoscopic sleeve gastrectomy, together with clinical and biochemical parameters and clinico-biochemical indices, on obese patients with nonalcoholic fatty liver disease: An Egyptian pilot study. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2021. [DOI: 10.1016/j.rgmxen.2020.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
49
|
Beyer C, Hutton C, Andersson A, Imajo K, Nakajima A, Kiker D, Banerjee R, Dennis A. Comparison between magnetic resonance and ultrasound-derived indicators of hepatic steatosis in a pooled NAFLD cohort. PLoS One 2021; 16:e0249491. [PMID: 33793651 PMCID: PMC8016312 DOI: 10.1371/journal.pone.0249491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND & AIMS MRI-based proton density fat fraction (PDFF) and the ultrasound-derived controlled attenuation parameter (CAP) are non-invasive techniques for quantifying liver fat, which can be used to assess steatosis in patients with non-alcoholic fatty liver disease (NAFLD). This study compared both of these techniques to histopathological graded steatosis for the assessment of fat levels in a large pooled NAFLD cohort. METHODS This retrospective study pooled N = 581 participants from two suspected NAFLD cohorts (mean age (SD) 56 (12.7), 60% females). Steatosis was graded according to NASH-CRN criteria. Liver fat was measured non-invasively using PDFF (with Liver MultiScan's Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation method, LMS-IDEAL, Perspectum, Oxford) and CAP (FibroScan, Echosens, France), and their diagnostic performances were compared. RESULTS LMS-IDEAL and CAP detected steatosis grade ≥ 1 with AUROCs of 1.00 (95% CI, 0.99-1.0) and 0.95 (95% CI, 0.91-0.99), respectively. LMS-IDEAL was superior to CAP for detecting steatosis grade ≥ 2 with AUROCs of 0.77 (95% CI, 0.73-0.82] and 0.60 (95% CI, 0.55-0.65), respectively. Similarly, LMS-IDEAL outperformed CAP for detecting steatosis grade ≥ 3 with AUROCs of 0.81 (95% CI, 0.76-0.87) and 0.63 (95% CI, 0.56-0.70), respectively. CONCLUSION LMS-IDEAL was able to diagnose individuals accurately across the spectrum of histological steatosis grades. CAP performed well in identifying individuals with lower levels of fat (steatosis grade ≥1); however, its diagnostic performance was inferior to LMS-IDEAL for higher levels of fat (steatosis grades ≥2 and ≥3). TRIAL REGISTRATION ClinicalTrials.gov (NCT03551522); https://clinicaltrials.gov/ct2/show/NCT03551522. UMIN Clinical Trials Registry (UMIN000026145); https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000026145.
Collapse
Affiliation(s)
| | | | | | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Dustin Kiker
- Texas Digestive Disease Consultants, Dallas, Texas, United States of America
| | | | | |
Collapse
|
50
|
Controlled Attenuation Parameter for Quantification of Steatosis: Which Cut-Offs to Use? Can J Gastroenterol Hepatol 2021; 2021:6662760. [PMID: 33834008 PMCID: PMC8018863 DOI: 10.1155/2021/6662760] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic liver diseases (CLDs) are a public health problem, even if frequently they are underdiagnosed. Hepatic steatosis (HS), encountered not only in nonalcoholic fatty liver disease (NAFLD) but also in chronic viral hepatitis, alcoholic liver disease, etc., plays an important role in fibrosis progression, regardless of CLD etiology; thus, detection and quantification of HS are imperative. Controlled attenuation parameter (CAP) feature, implemented in the FibroScan® device, measures the attenuation of the US beam as it passes through the liver. It is a noninvasive technique, feasible and well accepted by patients, with lower costs than other diagnostic techniques, with acceptable accuracy for HS quantification. Multiple studies have been published regarding CAP performance to quantify steatosis, but due to the heterogeneity of CLD etiologies, of steatosis prevalence, etc., it had widely variable calculated cut-off values, which in turn limited the day-to-day utility of CAP measurements in clinical practice. This paper reviews published studies trying to suggest cut-off values usable in clinical practice.
Collapse
|