1
|
Advedissian T, Frémont S, Echard A. Cytokinetic abscission requires actin-dependent microtubule severing. Nat Commun 2024; 15:1949. [PMID: 38431632 PMCID: PMC10908825 DOI: 10.1038/s41467-024-46062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Cell division is completed by the abscission of the intercellular bridge connecting the daughter cells. Abscission requires the polymerization of an ESCRT-III cone close to the midbody to both recruit the microtubule severing enzyme spastin and scission the plasma membrane. Here, we found that the microtubule and the membrane cuts are two separate events that are regulated differently. Using HeLa cells, we uncovered that the F-actin disassembling protein Cofilin-1 controls the disappearance of a transient pool of branched F-actin which is precisely assembled at the tip of the ESCRT-III cone shortly before the microtubule cut. Functionally, Cofilin-1 and Arp2/3-mediated branched F-actin favor abscission by promoting local severing of the microtubules but do not participate later in the membrane scission event. Mechanistically, we propose that branched F-actin functions as a physical barrier that limits ESCRT-III cone elongation and thereby favors stable spastin recruitment. Our work thus reveals that F-actin controls the timely and local disassembly of microtubules required for cytokinetic abscission.
Collapse
Affiliation(s)
- Tamara Advedissian
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Stéphane Frémont
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015, Paris, France.
| |
Collapse
|
2
|
Iqbal A, Van Hul N, Belicova L, Corbat AA, Hankeova S, Andersson ER. Spatially segregated defects and IGF1-responsiveness of hilar and peripheral biliary organoids from a model of Alagille syndrome. Liver Int 2024; 44:541-558. [PMID: 38014627 DOI: 10.1111/liv.15789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND & AIMS Alagille syndrome (ALGS) manifests with peripheral intrahepatic bile duct (IHBD) paucity, which can spontaneously resolve. In a model for ALGS, Jag1Ndr/Ndr mice, this occurs with distinct architectural mechanisms in hilar and peripheral IHBDs. Here, we investigated region-specific IHBD characteristics and addressed whether IGF1, a cholangiocyte mitogen that is downregulated in ALGS and in Jag1Ndr/Ndr mice, can improve biliary outcomes. METHODS Intrahepatic cholangiocyte organoids (ICOs) were derived from hilar and peripheral adult Jag1+/+ and Jag1Ndr/Ndr livers (hICOs and pICOs, respectively). ICOs were grown in Matrigel or microwell arrays, and characterized using bulk RNA sequencing, immunofluorescence, and high throughput analyses of nuclear sizes. ICOs were treated with IGF1, followed by analyses of growth, proliferation, and death. CellProfiler and Python scripts were custom written for image analyses. Key results were validated in vivo by immunostaining. RESULTS Cell growth assays and transcriptomics demonstrated that Jag1Ndr/Ndr ICOs were less proliferative than Jag1+/+ ICOs. IGF1 specifically rescued survival and growth of Jag1Ndr/Ndr pICOs. Jag1Ndr/Ndr hICOs were the least proliferative, with lower Notch signalling and an enrichment of hepatocyte signatures and IGF uptake/transport pathways. In vitro (Jag1Ndr/Ndr hICOs) and in vivo (Jag1Ndr/Ndr hilar portal tracts) analyses revealed ectopic HNF4a+ hepatocytes. CONCLUSIONS Hilar and peripheral Jag1Ndr/Ndr ICOs exhibit differences in Notch signalling status, proliferation, and cholangiocyte commitment which may result in cholangiocyte-to-hepatocyte transdifferentiation. While Jag1Ndr/Ndr pICOs can be rescued by IGF1, hICOs are unresponsive, perhaps due to their hepatocyte-like state and/or expression of IGF transport components. IGF1 represents a potential therapeutic for peripheral bile ducts.
Collapse
Affiliation(s)
- Afshan Iqbal
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lenka Belicova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Agustin A Corbat
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Simona Hankeova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Lee SH, So J, Shin D. Hepatocyte-to-cholangiocyte conversion occurs through transdifferentiation independently of proliferation in zebrafish. Hepatology 2023; 77:1198-1210. [PMID: 36626626 PMCID: PMC10023500 DOI: 10.1097/hep.0000000000000016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Injury to biliary epithelial cells (BECs) lining the hepatic bile ducts leads to cholestatic liver diseases. Upon severe biliary damage, hepatocytes can convert to BECs, thereby contributing to liver recovery. Given a potential of augmenting this hepatocyte-to-BEC conversion as a therapeutic option for cholestatic liver diseases, it will be important to thoroughly understand the cellular and molecular mechanisms of the conversion process. APPROACH AND RESULTS Towards this aim, we have established a zebrafish model for hepatocyte-to-BEC conversion by employing Tg(fabp10a:CFP-NTR) zebrafish with a temporal inhibition of Notch signaling during regeneration. Cre/loxP-mediated permanent and H2B-mCherry-mediated short-term lineage tracing revealed that in the model, all BECs originate from hepatocytes. During the conversion, BEC markers are sequentially induced in the order of Sox9b, Yap/Taz, Notch activity/ epcam , and Alcama/ krt18 ; the expression of the hepatocyte marker Bhmt disappears between the Sox9b and Yap/Taz induction. Importantly, live time-lapse imaging unambiguously revealed transdifferentiation of hepatocytes into BECs: hepatocytes convert to BECs without transitioning through a proliferative intermediate state. In addition, using compounds and transgenic and mutant lines that modulate Notch and Yap signaling, we found that both Notch and Yap signaling are required for the conversion even in Notch- and Yap-overactivating settings. CONCLUSIONS Hepatocyte-to-BEC conversion occurs through transdifferentiation independently of proliferation, and Notch and Yap signaling control the process in parallel with a mutually positive interaction. The new zebrafish model will further contribute to a thorough understanding of the mechanisms of the conversion process.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Laface C, Ranieri G, Maselli FM, Ambrogio F, Foti C, Ammendola M, Laterza M, Cazzato G, Memeo R, Mastrandrea G, Lioce M, Fedele P. Immunotherapy and the Combination with Targeted Therapies for Advanced Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:654. [PMID: 36765612 PMCID: PMC9913568 DOI: 10.3390/cancers15030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
One of the most important abilities of a tumor is to establish a state of immunosuppression inside the tumor microenvironment. This is made possible through numerous mechanisms of tumor immune escape that have been identified in experimental studies during the last decades. In addition, the hepatic microenvironment is commonly oriented towards a state of immune tolerance because the liver receives blood from the hepatic arteries and portal veins containing a variety of endogenous antigens. Therefore, the hepatic microenvironment establishes an autoimmune tolerance, preventing an autoimmune reaction in the liver. On this basis, hepatic tumor cells may escape the immune system, avoiding being recognized and destroyed by immune cells. Moreover, since the etiology of Hepatocellular Carcinoma (HCC) is often related to cirrhosis, and hepatitis B or C, this tumor develops in the context of chronic inflammation. Thus, the HCC microenvironment is characterized by important immune cell infiltration. Given these data and the poor prognosis of advanced HCC, different immunotherapeutic strategies have been developed and evaluated for these patients. In this review, we describe all the clinical applications of immunotherapy for advanced HCC, from the drugs that have already been approved to the ongoing clinical trials.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | | | | | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Caterina Foti
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Michele Ammendola
- Department of Health Science, General Surgery, Medicine School of Germaneto, Magna Graecia University, 88100 Catanzaro, Italy
| | - Marigia Laterza
- Division of Cardiac Surgery, University of Bari, 70124 Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, “F. Miulli” General Regional Hospital, 70021 Acquaviva Delle Fonti, Italy
| | | | - Marco Lioce
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
5
|
Qian Y, Shang Z, Gao Y, Wu H, Kong X. Liver Regeneration in Chronic Liver Injuries: Basic and Clinical Applications Focusing on Macrophages and Natural Killer Cells. Cell Mol Gastroenterol Hepatol 2022; 14:971-981. [PMID: 35738473 PMCID: PMC9489753 DOI: 10.1016/j.jcmgh.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Liver regeneration is a necessary but complex process involving multiple cell types besides hepatocytes. Mechanisms underlying liver regeneration after partial hepatectomy and acute liver injury have been well-described. However, in patients with chronic and severe liver injury, the remnant liver cannot completely restore the liver mass and function, thereby involving liver progenitor-like cells (LPLCs) and various immune cells. RESULTS Macrophages are beneficial to LPLCs proliferation and the differentiation of LPLCs to hepatocytes. Also, cells expressing natural killer (NK) cell markers have been studied in promoting both liver injury and liver regeneration. NK cells can promote LPLC-induced liver regeneration, but the excessive activation of hepatic NK cells may lead to high serum levels of interferon-γ, thus inhibiting liver regeneration. CONCLUSIONS This review summarizes the recent research on 2 important innate immune cells, macrophages and NK cells, in LPLC-induced liver regeneration and the mechanisms of liver regeneration during chronic liver injury, as well as the latest macrophage- and NK cell-based therapies for chronic liver injury. These novel findings can further help identify new treatments for chronic liver injury, saving patients from the pain of liver transplantations.
Collapse
Affiliation(s)
- Yihan Qian
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi Shang
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
Jain CK, Bhargava S, Jain I, Varshney S. Targeting Notch Pathway in Cancer Diagnostics and Therapeutics: An Emerging Approach. Recent Pat Anticancer Drug Discov 2021; 17:244-252. [PMID: 34109915 DOI: 10.2174/1574892816666210607092350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/28/2020] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway usually present in multicellular organisms, which plays a pivotal role in cell fate determination and proliferation. Due to this property, it is highly oncogenic, especially in the dysregulated version of the Notch pathway, where apoptosis is inhibited, and abnormal cell growth is supported. Notch receptors and ligand proteins play an essential role in cancers, for instance, myeloid leukemia, T-cell lymphoblastic leukemia, and organ-specific, i.e., breast, colon, pancreas, and skin cancers. Any type of cancer generates as a result of genetic defects, including epigenetic alterations as well as mutations. These alterations can be used by the researchers to find a promising diagnostic as well as therapeutic tool for cancer. The successful inhibition of the Notch pathway with the help of specific biomarkers or suppression of gene expression represents a new remedy in the field of cancer research. This article focuses on the various remedies hidden within the Notch pathway's mechanism, primarily based on different patents published in recent years for assisting cancer diagnosis and succeeding treatment.
Collapse
Affiliation(s)
- Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector -62 NOIDA Uttar Pradesh, India
| | - Shreya Bhargava
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector -62 NOIDA Uttar Pradesh, India
| | - Isha Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector -62 NOIDA Uttar Pradesh, India
| | - Srishti Varshney
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector -62 NOIDA Uttar Pradesh, India
| |
Collapse
|
7
|
Li Y, Xu Y, Wang R, Li W, He W, Luo X, Ye Y. Expression of Notch-Hif-1α signaling pathway in liver regeneration of rats. J Int Med Res 2021; 48:300060520943790. [PMID: 32967512 PMCID: PMC7521060 DOI: 10.1177/0300060520943790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To investigate whether the Notch–Hif-1α signaling pathway is involved in liver regeneration. Methods Rats were divided into two groups and treated with daily intraperitoneal injections of saline (control) or the gamma-secretase inhibitor, Fli-06, for 2 days. Two-thirds of the rat livers were resected and rats were later euthanized at specific time points post-resection to analyze the remnant livers. Each group's liver/body weight ratio was calculated, and immunostaining and western blotting were used to determine the cell proliferation marker, PCNA and Ki-67 expression. Real-time PCR and western blotting were used to compare the mRNA expression of Notch homolog-1 (Notch1), hairy and enhancer of split-1 (Hes1), and vascular endothelial growth factor (Vegf), and the protein expression of NICD and HIF-1α, respectively. Results The liver/body weight ratios and number of Ki-67- and PCNA-positive cells were significantly lower in the experimental group than the control group, indicating lower levels of liver regeneration following the disruption of Notch signaling by Fli-06. The Hes1 and Vegf mRNA levels and NICD and HIF-1α protein expression levels were all down-regulated by Fli-06 treatment. Conclusion Notch–Hif-α signaling pathway activation plays an important role in liver regeneration, where it may contribute toward liver cell proliferation.
Collapse
Affiliation(s)
- Yanshan Li
- Department of Blood Transfusion, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunxiuxiu Xu
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruomei Wang
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenxin Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenguang He
- Department of General Surgery, Zengcheng People's Hospital, Zengcheng, China
| | - Xinxi Luo
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yibiao Ye
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Kiseleva YV, Antonyan SZ, Zharikova TS, Tupikin KA, Kalinin DV, Zharikov YO. Molecular pathways of liver regeneration: A comprehensive review. World J Hepatol 2021; 13:270-290. [PMID: 33815672 PMCID: PMC8006075 DOI: 10.4254/wjh.v13.i3.270] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is a unique parenchymal organ with a regenerative capacity allowing it to restore up to 70% of its volume. Although knowledge of this phenomenon dates back to Greek mythology (the story of Prometheus), many aspects of liver regeneration are still not understood. A variety of different factors, including inflammatory cytokines, growth factors, and bile acids, promote liver regeneration and control the final size of the organ during typical regeneration, which is performed by mature hepatocytes, and during alternative regeneration, which is performed by recently identified resident stem cells called "hepatic progenitor cells". Hepatic progenitor cells drive liver regeneration when hepatocytes are unable to restore the liver mass, such as in cases of chronic injury or excessive acute injury. In liver maintenance, the body mass ratio is essential for homeostasis because the liver has numerous functions; therefore, a greater understanding of this process will lead to better control of liver injuries, improved transplantation of small grafts and the discovery of new methods for the treatment of liver diseases. The current review sheds light on the key molecular pathways and cells involved in typical and progenitor-dependent liver mass regeneration after various acute or chronic injuries. Subsequent studies and a better understanding of liver regeneration will lead to the development of new therapeutic methods for liver diseases.
Collapse
Affiliation(s)
- Yana V Kiseleva
- International School "Medicine of the Future", I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Sevak Z Antonyan
- Department of Emergency Surgical Gastroenterology, N. V. Sklifosovsky Research Institute for Emergency Medicine, Moscow 129010, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | - Kirill A Tupikin
- Laboratory of Minimally Invasive Surgery, A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Dmitry V Kalinin
- Pathology Department, A.V. Vishnevsky National Medical Research Center of Surgery of the Russian Ministry of Healthcare, Moscow 117997, Russia
| | - Yuri O Zharikov
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia.
| |
Collapse
|
9
|
Li H, Chang C, Li X, Zhang R. The roles and activation of endocardial Notch signaling in heart regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:3. [PMID: 33521843 PMCID: PMC7847831 DOI: 10.1186/s13619-020-00060-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
As a highly conserved signaling pathway in metazoans, the Notch pathway plays important roles in embryonic development and tissue regeneration. Recently, cardiac injury and regeneration have become an increasingly popular topic for biomedical research, and Notch signaling has been shown to exert crucial functions during heart regeneration as well. In this review, we briefly summarize the molecular functions of the endocardial Notch pathway in several cardiac injury and stress models. Although there is an increase in appreciating the importance of endocardial Notch signaling in heart regeneration, the mechanism of its activation is not fully understood. This review highlights recent findings on the activation of the endocardial Notch pathway by hemodynamic blood flow change in larval zebrafish ventricle after partial ablation, a process involving primary cilia, mechanosensitive ion channel Trpv4 and mechanosensitive transcription factor Klf2.
Collapse
Affiliation(s)
- Huicong Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Cheng Chang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xueyu Li
- School of Life Sciences, Fudan University, Shanghai, China.
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Kawaguchi K, Kaneko S. Notch Signaling and Liver Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:69-80. [PMID: 33034027 DOI: 10.1007/978-3-030-55031-8_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interactions between liver cells are closely regulated by Notch signaling. Notch signaling has been reported clinically related to bile duct hypogenesis in Alagille syndrome, which is caused by mutations in the Jagged1 gene. Notch activation and hepatocarcinogenesis are closely associated since cancer signaling is affected by the development of liver cells and cancer stem cells. Gene expression and genomic analysis using a microarray revealed that abnormalities in Notch-related genes were associated with the aggressiveness of liver cancer. This pattern was also accompanied with α-fetoprotein- and EpCAM-expressing phenotypes in vitro, in vivo, and in clinical tissues. Hepatitis B or C virus chronic infection or alcohol- or steatosis-related liver fibrosis induces liver cancer. Previous reports demonstrated that HBx, a hepatitis B virus protein, was associated with Jagged1 expression. We found that the Jagged1 and Notch1 signaling pathways were closely associated with the transcription of covalently closed circular hepatitis B virus DNA, which regulated cAMP response element-binding protein, thereby affecting Notch1 regulation by the E3 ubiquitin ligase ITCH. This viral pathogenesis in hepatocytes induces liver cancer. In conclusion, Notch signaling exerts various actions and is a clinical signature associated with hepatocarcinogenesis and liver context-related developmental function.
Collapse
Affiliation(s)
- Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| |
Collapse
|
11
|
Complement C1q mediates the expansion of periportal hepatic progenitor cells in senescence-associated inflammatory liver. Proc Natl Acad Sci U S A 2020; 117:6717-6725. [PMID: 32139604 DOI: 10.1073/pnas.1918028117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most hepatocellular carcinomas (HCCs) develop in patients with chronic hepatitis, which creates a microenvironment for the growth of hepatic progenitor cells (HPCs) at the periportal area and subsequent development of HCCs. We investigated the signal from the inflammatory liver for this pathogenic process in the hepatic conditional β-catenin knockout mouse model. Senescent β-catenin-depleted hepatocytes in aged mice create an inflammatory microenvironment that stimulates periportal HPC expansion but arrests differentiation, which predisposes mice to the development of liver tumors. The release of complement C1q from macrophages in the inflammatory niche was identified as the unorthodox signal that activated the β-catenin pathway in periportal HPCs and was responsible for their expansion and de-differentiation. C1q inhibitors blocked the β-catenin pathway in both the expanding HPCs and the liver tumors but spared its orthodox pathway in pericentral normal hepatocytes. This mechanism has been validated in human liver specimens from patients with chronic hepatitis. Taken together, these results demonstrate that C1q- mediated activation of β-catenin pathway in periportal HPCs is a previously unrecognized mechanism for replenishing hepatocytes in the inflammatory liver and, if unchecked, for promoting hepatocarcinogenesis. C1q may become a new target for blocking carcinogenesis in patients with chronic hepatitis.
Collapse
|
12
|
Lu E, Feng F, Wen W, Tong X, Li X, Xiao L, Li G, Wang J, Zhang C. Notch signaling inhibition induces G0/G1 arrest in murine Leydig cells. Andrologia 2019; 51:e13413. [PMID: 31523838 DOI: 10.1111/and.13413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
As a highly evolutionarily conserved signaling pathway, Notch widely participates in cell-fate decisions and the development of various tissues and organs. In male reproduction, research on the Notch signaling pathway has mainly concentrated on germ cells and Sertoli cells. Leydig cells are the primary producers of testosterone and play important roles in spermatogenesis and maintaining secondary sexual characteristics. In this study, we used TM3 cells, a murine adult Leydig cell line, to investigate the expression profiles of Notch receptors and ligands and observe the effect of Notch signaling on the proliferation of TM3 cells. We found that Notch 1-3 and the ligands Dll-1 and Dll-4 were expressed in TM3 cells, Notch 1-3 and the ligand Dll-1 were expressed in testis interstitial Leydig cells, and Notch signaling inhibition suppressed the proliferation of TM3 cells and induced G0/G1 arrest. Inhibition of Notch signaling increased the expression of p21Waf1/Cip1 and p27. Overall, our results suggest that Notch inhibition suppresses the proliferation of TM3 cells and P21Waf1/Cip1 , and p27 may contribute to this process.
Collapse
Affiliation(s)
- Enhang Lu
- Joint Programme of Nanchang University and Queen Mary University of London, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Fen Feng
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Weihui Wen
- Department of Microbiology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Xiating Tong
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Xiang Li
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Li Xiao
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Gang Li
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Jing Wang
- Department of Microbiology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| | - Chunping Zhang
- Department of Cell Biology, Jiangxi Medicine School, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Huang Q, Li J, Zheng J, Wei A. The Carcinogenic Role of the Notch Signaling Pathway in the Development of Hepatocellular Carcinoma. J Cancer 2019; 10:1570-1579. [PMID: 31031867 PMCID: PMC6485212 DOI: 10.7150/jca.26847] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/12/2019] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway, known to be a highly conserved signaling pathway in embryonic development and adult tissue homeostasis, participates in cell fate decisions that include cellular differentiation, cell survival and cell death. However, other studies have shown that aberrant in Notch signaling is pro-tumorigenic, particularly in hepatocellular carcinoma (HCC). HCC is one of the most common malignant tumors in the world and has a high mortality rate. Growing evidence supports that Notch signaling plays a critical role in the development of HCC by regulating the tumor microenvironment, tumorigenesis, progression, angiogenesis, invasion and metastasis. Accordingly, overexpression of Notch is closely associated with poor prognosis in HCC. In this review, we focus on the pro-tumorigenic role of Notch signaling in HCC, summarize the current knowledge of Notch signaling and its role in HCC development, and outline the therapeutic potential of targeting Notch signaling in HCC.
Collapse
Affiliation(s)
- Qinfeng Huang
- Graduate School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Junhong Li
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Jinghui Zheng
- Discipline Construction Office, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Ailing Wei
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| |
Collapse
|
14
|
M1-Polarized Macrophages Promote Self-Renewing Phenotype of Hepatic Progenitor Cells with Jagged1-Notch Signalling Involved: Relevance in Primary Sclerosing Cholangitis. J Immunol Res 2018; 2018:4807145. [PMID: 30671485 PMCID: PMC6323443 DOI: 10.1155/2018/4807145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/28/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
The immunologic interaction between parenchyma cells and encircling inflammatory cells is thought to be the most important mechanism of biliary damage and repair in primary sclerosing cholangitis (PSC). Monocytes/macrophages as master regulators of hepatic inflammation have been demonstrated to contribute to PSC pathogenesis. Macrophages coordinate with liver regeneration, and multiple phenotypes have been identified with diverse expressions of surface proteins and cytokine productions. We analyzed the expression of Notch ligand Jagged1 in polarized macrophages and investigated the relevance of Notch signalling activation in liver regeneration. M1 or M2 macrophages were generated from mouse bone marrow-derived macrophages (BMDMs) by classical or alternative activation, respectively. Then, the expression levels of Jagged1 (Jag1) of each phenotype were measured. The effects of polarized BMDMs on the expression of hepatic progenitor cell- (HPC-) specific markers and hairy and enhancer of split-1 (HES1) in HPCs in coculture were also analyzed. Monocyte-macrophage and Notch signalling-associated gene signatures were evaluated in the GEO database (access ID: GSE61260) by gene set enrichment analysis (GSEA). M1 macrophages were found associated with elevated Jag1 expression, which increased the fraction of HPC with self-renewing phenotypes (CD326+CD44+ or CD324+CD44+) and HES1 expression level in cocultured HPC. Blocking Jagged1 by siRNA or antibody in the coculture system attenuates HPC self-renewing phenotypes as well as HES1 expression in HPC. GSEA data show that macrophage activation and Notch signalling-associated gene signatures are enriched in PSC patients. These findings suggest that M1 macrophages promote an HPC self-renewing phenotype which is associated with Notch signalling activation within HPC. In the liver of PSC patients, the prevalence of activated macrophages, with M1 polarized accounting for the main part, is associated with increment of Notch signalling and enhancement of HPC self-renewal.
Collapse
|
15
|
Graffmann N, Ncube A, Wruck W, Adjaye J. Cell fate decisions of human iPSC-derived bipotential hepatoblasts depend on cell density. PLoS One 2018; 13:e0200416. [PMID: 29990377 PMCID: PMC6039024 DOI: 10.1371/journal.pone.0200416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022] Open
Abstract
During embryonic development bipotential hepatoblasts differentiate into hepatocytes and cholangiocytes- the two main cell types within the liver. Cell fate decision depends on elaborate interactions between distinct signalling pathways, namely Notch, WNT, TGFβ, and Hedgehog. Several in vitro protocols have been established to differentiate human pluripotent stem cells into either hepatocyte or cholangiocyte like cells (HLC/CLC) to enable disease modelling or drug screening. During HLC differentiation we observed the occurrence of epithelial cells with a phenotype divergent from the typical hepatic polygonal shape- we refer to these as endoderm derived epithelial cells (EDECs). These cells do not express the mature hepatocyte marker ALB or the progenitor marker AFP. However they express the cholangiocyte markers SOX9, OPN, CFTR as well as HNF4α, CK18 and CK19. Interestingly, they express both E Cadherin and Vimentin, two markers that are mutually exclusive, except for cancer cells. EDECs grow spontaneously under low density cell culture conditions and their occurrence was unaffected by interfering with the above mentioned signalling pathways.
Collapse
Affiliation(s)
- Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Medical faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Audrey Ncube
- Institute for Stem Cell Research and Regenerative Medicine, Medical faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical faculty, Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
16
|
Taming the Notch Transcriptional Regulator for Cancer Therapy. Molecules 2018; 23:molecules23020431. [PMID: 29462871 PMCID: PMC6017063 DOI: 10.3390/molecules23020431] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
Abstract Notch signaling is a highly conserved pathway in all metazoans, which is deeply involved in the regulation of cell fate and differentiation, proliferation and migration during development. Research in the last decades has shown that the various components of the Notch signaling cascade are either upregulated or activated in human cancers. Therefore, its downregulation stands as a promising and powerful strategy for cancer therapy. Here, we discuss the recent advances in the development of small molecule inhibitors, blocking antibodies and oligonucleotides that hinder Notch activity, and their outcome in clinical trials. Although Notch was initially identified as an oncogene, later studies showed that it can also act as a tumor suppressor in certain contexts. Further complexity is added by the existence of numerous Notch family members, which exert different activities and can be differentially targeted by inhibitors, potentially accounting for contradictory data on their therapeutic efficacy. Notably, recent evidence supports the rationale for combinatorial treatments including Notch inhibitors, which appear to be more effective than single agents in fighting cancer.
Collapse
|
17
|
Schumacher EC, Götze S, Kordes C, Benes V, Häussinger D. Combined Methylome and Transcriptome Analysis During Rat Hepatic Stellate Cell Activation. Stem Cells Dev 2017; 26:1759-1770. [DOI: 10.1089/scd.2017.0128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Eva Christine Schumacher
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Silke Götze
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vladimir Benes
- Genomic Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 667] [Impact Index Per Article: 83.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
19
|
Zhu JN, Jiang L, Jiang JH, Yang X, Li XY, Zeng JX, Shi RY, Shi Y, Pan XR, Han ZP, Wei LX. Hepatocyte nuclear factor-1beta enhances the stemness of hepatocellular carcinoma cells through activation of the Notch pathway. Sci Rep 2017; 7:4793. [PMID: 28684878 PMCID: PMC5500528 DOI: 10.1038/s41598-017-04116-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte nuclear factor-1beta plays an important role in the development and progression of liver cancer. In recent years, the expression of HNF-1β has been reported to be associated with risk for a variety of cancers. The purpose of this study is to investigate whether the expression of HNF-1β promotes the malignancy of HCC and its mechanism. We retrospectively investigated the expression of HNF-1β in 90 patients with hepatocellular carcinoma and found that the high expression of HNF-1β indicated poor prognosis. We overexpressed HNF-1β in liver cancer cell lines and found the expression of liver progenitor cell markers and stemness were upregulated. The invasion ability and epithelial-mesenchymal transition (EMT)-associated genes were also significantly higher in liver cancer cells overexpressing HNF-1β than in the control group. A mechanistic study suggested the activation of the Notch signalling pathway probably plays a key role downstream of HNF-1β. More importantly, HNF-1β promoted tumourigenesis of HCC cells in vivo. In conclusion, high expression of HNF-1β not only promoted the de-differentiation of HCC cells into liver cancer stem cells through activating the Notch pathway but also enhanced the invasive potential of HCC cells and EMT occurrence, which would contribute to the enhancement of cell migration and invasion.
Collapse
Affiliation(s)
- Jing-Ni Zhu
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Lu Jiang
- Center of Digestive Endoscopy, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Jing-Hua Jiang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Xiao-Yong Li
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | | | | | - Yang Shi
- Department of general surgery, Chinese PLA 82nd Hospital, Jiangsu, China
| | | | - Zhi-Peng Han
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.
| | - Li-Xin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
20
|
Frank SB, Berger PL, Ljungman M, Miranti CK. Human prostate luminal cell differentiation requires NOTCH3 induction by p38-MAPK and MYC. J Cell Sci 2017; 130:1952-1964. [PMID: 28446540 DOI: 10.1242/jcs.197152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/17/2017] [Indexed: 12/14/2022] Open
Abstract
Many pathways dysregulated in prostate cancer are also involved in epithelial differentiation. To better understand prostate tumor initiation, we sought to investigate specific genes and mechanisms required for normal basal to luminal cell differentiation. Utilizing human prostate basal epithelial cells and an in vitro differentiation model, we tested the hypothesis that regulation of NOTCH3 by the p38 MAPK family (hereafter p38-MAPK), via MYC, is required for luminal differentiation. Inhibition (SB202190 and BIRB796) or knockdown of p38α (also known as MAPK14) and/or p38δ (also known as MAPK13) prevented proper differentiation. Additionally, treatment with a γ-secretase inhibitor (RO4929097) or knockdown of NOTCH1 and/or NOTCH3 greatly impaired differentiation and caused luminal cell death. Constitutive p38-MAPK activation through MKK6(CA) increased NOTCH3 (but not NOTCH1) mRNA and protein levels, which was diminished upon MYC inhibition (10058-F4 and JQ1) or knockdown. Furthermore, we validated two NOTCH3 enhancer elements through a combination of enhancer (e)RNA detection (BruUV-seq) and luciferase reporter assays. Finally, we found that the NOTCH3 mRNA half-life increased during differentiation or upon acute p38-MAPK activation. These results reveal a new connection between p38-MAPK, MYC and NOTCH signaling, demonstrate two mechanisms of NOTCH3 regulation and provide evidence for NOTCH3 involvement in prostate luminal cell differentiation.
Collapse
Affiliation(s)
- Sander B Frank
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503, USA.,Genetics Program, Michigan State University, East Lansing, MI 48824, USA.,Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Penny L Berger
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mats Ljungman
- Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cindy K Miranti
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503, USA .,Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| |
Collapse
|
21
|
Targeting Notch3 in Hepatocellular Carcinoma: Molecular Mechanisms and Therapeutic Perspectives. Int J Mol Sci 2016; 18:ijms18010056. [PMID: 28036048 PMCID: PMC5297691 DOI: 10.3390/ijms18010056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway is a very conserved system that controls embryonic cell fate decisions and the maintenance of adult stem cells through cell to cell communication. Accumulating evidence support the relevance of Notch signaling in different human diseases and it is one of the most commonly activated signaling pathways in cancer. This review focuses mainly on the role of Notch3 signaling in hepatocellular carcinoma and its potential therapeutic applications against this malignancy. In this regard, the crosstalk between Notch and p53 may play an important role.
Collapse
|
22
|
Fiore E, Malvicini M, Bayo J, Peixoto E, Atorrasagasti C, Sierra R, Rodríguez M, Gómez Bustillo S, García MG, Aquino JB, Mazzolini G. Involvement of hepatic macrophages in the antifibrotic effect of IGF-I-overexpressing mesenchymal stromal cells. Stem Cell Res Ther 2016; 7:172. [PMID: 27876093 PMCID: PMC5120504 DOI: 10.1186/s13287-016-0424-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/07/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cirrhosis is a major health problem worldwide and new therapies are needed. Hepatic macrophages (hMø) have a pivotal role in liver fibrosis, being able to act in both its promotion and its resolution. It is well-known that mesenchymal stromal cells (MSCs) can modulate the immune/inflammatory cells. However, the effects of MSCs over hMø in the context of liver fibrosis remain unclear. We previously described evidence of the antifibrotic effects of in vivo applying MSCs, which were enhanced by forced overexpression of insulin-like growth factor 1 (AdIGF-I-MSCs). The aim of this work was to analyze the effect of MSCs on hMø behavior in the context of liver fibrosis resolution. METHODS Fibrosis was induced in BALB/c mice by chronic administration of thioacetamide (8 weeks). In vivo gene expression analyses, in vitro experiments using hMø isolated from the nonparenchymal liver cells fraction, and in vivo experiments with depletion of Mø were performed. RESULTS One day after treatment, hMø from fibrotic livers of MSCs-treated animals showed reduced pro-inflammatory and pro-fibrogenic gene expression profiles. These shifts were more pronounced in AdIGF-I-MSCs condition. This group showed a significant upregulation in the expression of arginase-1 and a higher downregulation of iNOS expression thus suggesting decreased levels of oxidative stress. An upregulation in IGF-I and HGF expression was observed in hMø from AdIGF-I-MSCs-treated mice suggesting a restorative phenotype in these cells. Factors secreted by hMø, preconditioned with MSCs supernatant, caused a reduction in the expression levels of hepatic stellate cells pro-fibrogenic and activation markers. Interestingly, hMø depletion abrogated the therapeutic effect achieved with AdIGF-I-MSCs therapy. Expression profile analyses for cell cycle markers were performed on fibrotic livers after treatment with AdIGF-I-MSCs and showed a significant regulation in genes related to DNA synthesis and repair quality control, cell cycle progression, and DNA damage/cellular stress compatible with early induction of pro-regenerative and hepatoprotective mechanisms. Moreover, depletion of hMø abrogated such effects on the expression of the most highly regulated genes. CONCLUSIONS Our results indicate that AdIGF-I-MSCs are able to induce a pro-fibrotic to resolutive phenotype shift on hepatic macrophages, which is a key early event driving liver fibrosis amelioration.
Collapse
Affiliation(s)
- Esteban Fiore
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Peron 1500, Derqui-Pilar, Buenos Aires B1629AHJ Argentina
| | - Mariana Malvicini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Peron 1500, Derqui-Pilar, Buenos Aires B1629AHJ Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) Godoy Cruz 2290, Buenos Aires, Argentina
| | - Juan Bayo
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Peron 1500, Derqui-Pilar, Buenos Aires B1629AHJ Argentina
| | - Estanislao Peixoto
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Peron 1500, Derqui-Pilar, Buenos Aires B1629AHJ Argentina
| | - Catalina Atorrasagasti
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Peron 1500, Derqui-Pilar, Buenos Aires B1629AHJ Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) Godoy Cruz 2290, Buenos Aires, Argentina
| | - Romina Sierra
- Developmental Biology and Regenerative Medicine Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Peron 1500, Derqui-Pilar, Buenos Aires B1629AHJ Argentina
| | - Marcelo Rodríguez
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Peron 1500, Derqui-Pilar, Buenos Aires B1629AHJ Argentina
| | - Sofia Gómez Bustillo
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Peron 1500, Derqui-Pilar, Buenos Aires B1629AHJ Argentina
| | - Mariana G. García
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Peron 1500, Derqui-Pilar, Buenos Aires B1629AHJ Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) Godoy Cruz 2290, Buenos Aires, Argentina
| | - Jorge B. Aquino
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) Godoy Cruz 2290, Buenos Aires, Argentina
- Developmental Biology and Regenerative Medicine Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Peron 1500, Derqui-Pilar, Buenos Aires B1629AHJ Argentina
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Pte. Peron 1500, Derqui-Pilar, Buenos Aires B1629AHJ Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) Godoy Cruz 2290, Buenos Aires, Argentina
| |
Collapse
|
23
|
Guest RV, Boulter L, Dwyer BJ, Kendall TJ, Man TY, Minnis-Lyons SE, Lu WY, Robson AJ, Gonzalez SF, Raven A, Wojtacha D, Morton JP, Komuta M, Roskams T, Wigmore SJ, Sansom OJ, Forbes SJ. Notch3 drives development and progression of cholangiocarcinoma. Proc Natl Acad Sci U S A 2016; 113:12250-12255. [PMID: 27791012 PMCID: PMC5086988 DOI: 10.1073/pnas.1600067113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prognosis of cholangiocarcinoma (CC) is dismal. Notch has been identified as a potential driver; forced exogenous overexpression of Notch1 in hepatocytes results in the formation of biliary tumors. In human disease, however, it is unknown which components of the endogenously signaling pathway are required for tumorigenesis, how these orchestrate cancer, and how they can be targeted for therapy. Here we characterize Notch in human-resected CC, a toxin-driven model in rats, and a transgenic mouse model in which p53 deletion is targeted to biliary epithelia and CC induced using the hepatocarcinogen thioacetamide. We find that across species, the atypical receptor NOTCH3 is differentially overexpressed; it is progressively up-regulated with disease development and promotes tumor cell survival via activation of PI3k-Akt. We use genetic KO studies to show that tumor growth significantly attenuates after Notch3 deletion and demonstrate signaling occurs via a noncanonical pathway independent of the mediator of classical Notch, Recombinant Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ). These data present an opportunity in this aggressive cancer to selectively target Notch, bypassing toxicities known to be RBPJ dependent.
Collapse
Affiliation(s)
- Rachel V Guest
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom; Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, United Kingdom;
| | - Luke Boulter
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom; Medical Research Council Human Genetics Unit, Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Benjamin J Dwyer
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Timothy J Kendall
- Medical Research Council Human Genetics Unit, Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom; Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Tak-Yung Man
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Sarah E Minnis-Lyons
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Wei-Yu Lu
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Andrew J Robson
- Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, United Kingdom; Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Sofia Ferreira Gonzalez
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Alexander Raven
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Davina Wojtacha
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Mina Komuta
- Translational Cell & Tissue Research Unit, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Tania Roskams
- Translational Cell & Tissue Research Unit, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Stephen J Wigmore
- Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, United Kingdom; Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Stuart J Forbes
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom; The Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, United Kingdom
| |
Collapse
|
24
|
Liu J, Shen JX, Wen XF, Guo YX, Zhang GJ. Targeting Notch degradation system provides promise for breast cancer therapeutics. Crit Rev Oncol Hematol 2016; 104:21-29. [PMID: 27263934 DOI: 10.1016/j.critrevonc.2016.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/18/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023] Open
Abstract
Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs.
Collapse
Affiliation(s)
- Jing Liu
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Jia-Xin Shen
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Xiao-Fen Wen
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Yu-Xian Guo
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Guo-Jun Zhang
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| |
Collapse
|
25
|
Combinatorial microenvironmental regulation of liver progenitor differentiation by Notch ligands, TGFβ, and extracellular matrix. Sci Rep 2016; 6:23490. [PMID: 27025873 PMCID: PMC4812246 DOI: 10.1038/srep23490] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/08/2016] [Indexed: 12/21/2022] Open
Abstract
The bipotential differentiation of liver progenitor cells underlies liver development and bile duct formation as well as liver regeneration and disease. TGFβ and Notch signaling are known to play important roles in the liver progenitor specification process and tissue morphogenesis. However, the complexity of these signaling pathways and their currently undefined interactions with other microenvironmental factors, including extracellular matrix (ECM), remain barriers to complete mechanistic understanding. Utilizing a series of strategies, including co-cultures and cellular microarrays, we identified distinct contributions of different Notch ligands and ECM proteins in the fate decisions of bipotential mouse embryonic liver (BMEL) progenitor cells. In particular, we demonstrated a cooperative influence of Jagged-1 and TGFβ1 on cholangiocytic differentiation. We established ECM-specific effects using cellular microarrays consisting of 32 distinct combinations of collagen I, collagen III, collagen IV, fibronectin, and laminin. In addition, we demonstrated that exogenous Jagged-1, Delta-like 1, and Delta-like 4 within the cellular microarray format was sufficient for enhancing cholangiocytic differentiation. Further, by combining Notch ligand microarrays with shRNA-based knockdown of Notch ligands, we systematically examined the effects of both cell-extrinsic and cell-intrinsic ligand. Our results highlight the importance of divergent Notch ligand function and combinatorial microenvironmental regulation in liver progenitor fate specification.
Collapse
|
26
|
Lu J, Zhou Y, Hu T, Zhang H, Shen M, Cheng P, Dai W, Wang F, Chen K, Zhang Y, Wang C, Li J, Zheng Y, Yang J, Zhu R, Wang J, Lu W, Zhang H, Wang J, Xia Y, De Assuncao TM, Jalan-Sakrikar N, Huebert RC, Bin Zhou, Guo C. Notch Signaling Coordinates Progenitor Cell-Mediated Biliary Regeneration Following Partial Hepatectomy. Sci Rep 2016; 6:22754. [PMID: 26951801 PMCID: PMC4782135 DOI: 10.1038/srep22754] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/19/2016] [Indexed: 02/08/2023] Open
Abstract
Aberrant transcriptional regulation contributes to the pathogenesis of both congenital and adult forms of liver disease. Although the transcription factor RBPJ is essential for liver morphogenesis and biliary development, its specific function in the differentiation of hepatic progenitor cells (HPC) has not been investigated, and little is known about its role in adult liver regeneration. HPCs are bipotent liver stem cells that can self-replicate and differentiate into hepatocytes or cholangiocytes in vitro. HPCs are thought to play an important role in liver regeneration and repair responses. While the coordinated repopulation of both hepatocyte and cholangiocyte compartment is pivotal to the structure and function of the liver after regeneration, the mechanisms coordinating biliary regeneration remain vastly understudied. Here, we utilized complex genetic manipulations to drive liver-specific deletion of the Rbpj gene in conjunction with lineage tracing techniques to delineate the precise functions of RBPJ during biliary development and HPC-associated biliary regeneration after hepatectomy. Furthermore, we demonstrate that RBPJ promotes HPC differentiation toward cholangiocytes in vitro and blocks hepatocyte differentiation through mechanisms involving Hippo-Notch crosstalk. Overall, this study demonstrates that the Notch-RBPJ signaling axis critically regulates biliary regeneration by coordinating the fate decision of HPC and clarifies the molecular mechanisms involved.
Collapse
Affiliation(s)
- Jie Lu
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tianyuan Hu
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Hui Zhang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Miao Shen
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Ping Cheng
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Fan Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Kan Chen
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chengfeng Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jing Yang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Rong Zhu
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jianrong Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wenxia Lu
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Huawei Zhang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Junshan Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Thiago M De Assuncao
- Division of Gastroenterology and Hepatology; Mayo Clinic and Foundation, Rochester, MN, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology; Mayo Clinic and Foundation, Rochester, MN, USA
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology; Mayo Clinic and Foundation, Rochester, MN, USA
| | - Bin Zhou
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Bogaerts E, Paridaens A, Verhelst X, Carmeliet P, Geerts A, Van Vlierberghe H, Devisscher L. Effect of prolyl hydroxylase domain 2 haplodeficiency on liver progenitor cell characteristics in early mouse hepatocarcinogenesis. EXCLI JOURNAL 2016; 15:687-698. [PMID: 28337100 PMCID: PMC5318796 DOI: 10.17179/excli2016-607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022]
Abstract
Activation of the hypoxia-inducible factor (HIF)-pathway in hepatocellular carcinoma (HCC) induces therapy resistant tumours, characterized by increased liver progenitor cell (LPCs) characteristics and poor prognosis. We previously reported corresponding results in mice with HCC in which hypoxia was mimicked by prolyl hydroxylase domain (PHD) inhibition. Here, we aimed at investigating whether induction of LPC characteristics occurs during the onset of hepatocarcinogenesis and if this is associated with activation of Notch signalling. Dietheylnitrosamine (DEN) was used to induce hepatic tumours in PHD2 haplodeficient (PHD2+/-) mice which were euthanized at 5, 10, 15 and 17 weeks following DEN during neoplastic transformation, before tumour formation. Neoplasia and mRNA expression of LPC and Notch markers were evaluated by histology and qPCR on isolated livers. PHD2 haplodeficiency resulted in enhanced expression of HIF target genes after 17 weeks of DEN compared to wild type (WT) littermates but had no effect on the onset of neoplastic transformation. The mRNA expression of Afp and Epcam was increased at all time points following DEN whereas CK19, Prom1 and Notch3 were increased after 17 weeks of DEN, without difference between PHD2+/- and WT mice. MDR1 mRNA expression was increased in all DEN treated mice compared to saline control with increased expression in PHD2+/- compared to WT from 15 weeks. These results indicate that the effects of PHD2 haplodeficiency on the expression of LPC and Notch markers manifest during tumour nodule formation and not early on during neoplastic transformation.
Collapse
Affiliation(s)
- Eliene Bogaerts
- Department of Gastro-Enterology, Ghent University, Ghent, Belgium
| | | | - Xavier Verhelst
- Department of Gastro-Enterology, Ghent University, Ghent, Belgium
| | | | - Anja Geerts
- Department of Gastro-Enterology, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
28
|
Gil-García B, Baladrón V. The complex role of NOTCH receptors and their ligands in the development of hepatoblastoma, cholangiocarcinoma and hepatocellular carcinoma. Biol Cell 2015; 108:29-40. [DOI: 10.1111/boc.201500029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Borja Gil-García
- Laboratory of Biochemistry and Molecular Biology; Department of Inorganic and Organic Chemistry and Biochemistry; Medical School/CRIB/Biomedicine Unit; University of Castilla-La Mancha (UCLM)/CSIC; 02008, Albacete Spain
| | - Victoriano Baladrón
- Laboratory of Biochemistry and Molecular Biology; Department of Inorganic and Organic Chemistry and Biochemistry; Medical School/CRIB/Biomedicine Unit; University of Castilla-La Mancha (UCLM)/CSIC; 02008, Albacete Spain
| |
Collapse
|
29
|
Cvoro A, Devito L, Milton FA, Noli L, Zhang A, Filippi C, Sakai K, Suh JH, H Sieglaff D, Dhawan A, Sakai T, Ilic D, Webb P. A thyroid hormone receptor/KLF9 axis in human hepatocytes and pluripotent stem cells. Stem Cells 2015; 33:416-28. [PMID: 25330987 PMCID: PMC6317531 DOI: 10.1002/stem.1875] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 08/21/2014] [Accepted: 09/13/2014] [Indexed: 12/15/2022]
Abstract
Biological processes require close cooperation of multiple transcription factors that integrate different signals. Thyroid hormone receptors (TRs) induce Krüppel-like factor 9 (KLF9) to regulate neurogenesis. Here, we show that triiodothyronine (T3) also works through TR to induce KLF9 in HepG2 liver cells, mouse liver, and mouse and human primary hepatocytes and sought to understand TR/KLF9 network function in the hepatocyte lineage and stem cells. Knockdown experiments reveal that KLF9 regulates hundreds of HepG2 target genes and modulates T3 response. Together, T3 and KLF9 target genes influence pathways implicated in stem cell self-renewal and differentiation, including Notch signaling, and we verify that T3 and KLF9 cooperate to regulate key Notch pathway genes and work independently to regulate others. T3 also induces KLF9 in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSC) and this effect persists during differentiation to definitive endoderm and hiPSC-derived hepatocytes. Microarray analysis reveals that T3 regulates hundreds of hESC and hiPSC target genes that cluster into many of the same pathways implicated in TR and KLF9 regulation in HepG2 cells. KLF9 knockdown confirms that TR and KLF9 cooperate to regulate Notch pathway genes in hESC and hiPSC, albeit in a partly cell-specific manner. Broader analysis of T3 responsive hESC/hiPSC genes suggests that TRs regulate multiple early steps in ESC differentiation. We propose that TRs cooperate with KLF9 to regulate hepatocyte proliferation and differentiation and early stages of organogenesis and that TRs exert widespread and important influences on ESC biology.
Collapse
Affiliation(s)
- Aleksandra Cvoro
- Genomic Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ntziachristos P, Lim JS, Sage J, Aifantis I. From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell 2014; 25:318-34. [PMID: 24651013 PMCID: PMC4040351 DOI: 10.1016/j.ccr.2014.02.018] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 01/21/2014] [Accepted: 02/21/2014] [Indexed: 12/21/2022]
Abstract
Since Notch phenotypes in Drosophila melanogaster were first identified 100 years ago, Notch signaling has been extensively characterized as a regulator of cell-fate decisions in a variety of organisms and tissues. However, in the past 20 years, accumulating evidence has linked alterations in the Notch pathway to tumorigenesis. In this review, we discuss the protumorigenic and tumor-suppressive functions of Notch signaling, and dissect the molecular mechanisms that underlie these functions in hematopoietic cancers and solid tumors. Finally, we link these mechanisms and observations to possible therapeutic strategies targeting the Notch pathway in human cancers.
Collapse
Affiliation(s)
- Panagiotis Ntziachristos
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Jing Shan Lim
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|