1
|
Hieromnimon M, Regan DP, Lokken RP, Schook LB, Gaba RC, Schachtschneider KM. Single and multi-omic characterization of a porcine model of ethanol-induced hepatic fibrosis. Epigenetics 2025; 20:2471127. [PMID: 40040391 PMCID: PMC11901410 DOI: 10.1080/15592294.2025.2471127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
Cirrhosis is a form of end-stage liver disease characterized by extensive hepatic fibrosis and loss of liver parenchyma. It is most commonly the result of long-term alcohol abuse in the United States. Large animal models of cirrhosis, as well as of one of its common long-term sequelae, HCC, are needed to study novel and emerging therapeutic interventions. In the present study, liver fibrosis was induced in the Oncopig cancer model, a large animal HCC model, via intrahepatic, intra-arterial ethanol infusion. Liver sections from five fibrosis induced and five age-matched controls were harvested for RNA-seq (mRNA and lncRNA), small RNA-seq (miRNA), and reduced representation bisulfite sequencing (RRBS; DNA methylation). Single- and multi-omic analysis was performed to investigate the transcriptomic and epigenomic mechanisms associated with fibrosis deposition in this model. A total of 3,439 genes, 70 miRNAs, 452 lncRNAs, and 7,715 methylation regions were found to be differentially regulated through individual single-omic analysis. Pathway analysis indicated differentially expressed genes were associated with collagen synthesis and turnover, hepatic metabolic functions such as ethanol and lipid metabolism, and proliferative and anti-proliferative pathways including PI3K and BAX/BCL signaling pathways. Multi-omic latent variable analysis demonstrated significant concordance with the single-omic analysis. lncRNA's associated with UHRF1BP1L and S1PR1 genes were found to reliably discriminate the two arms of the study. These genes were previously implicated in human cancer development and vasculogenesis, respectively. These findings support the validity and translatability of this model as a useful preclinical tool in the study of alcoholic liver disease and its treatment.
Collapse
Affiliation(s)
- Mark Hieromnimon
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel P. Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
| | - R. Peter Lokken
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Sus Clinicals Inc, Chicago, IL, USA
| | - Ron C. Gaba
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Sus Clinicals Inc, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Floor E, Su J, Chatterjee M, Kuipers ES, IJssennagger N, Heidari F, Giordano L, Wubbolts RW, Mihăilă SM, Stapels DAC, Vercoulen Y, Strijbis K. Development of a Caco-2-based intestinal mucosal model to study intestinal barrier properties and bacteria-mucus interactions. Gut Microbes 2025; 17:2434685. [PMID: 39714032 DOI: 10.1080/19490976.2024.2434685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
The intestinal mucosal barrier is a dynamic system that allows nutrient uptake, stimulates healthy microbe-host interactions, and prevents invasion by pathogens. The mucosa consists of epithelial cells connected by cellular junctions that regulate the passage of nutrients covered by a mucus layer that plays an important role in host-microbiome interactions. Mimicking the intestinal mucosa for in vitro assays, particularly the generation of a mucus layer, has proven to be challenging. The intestinal cell-line Caco-2 is widely used in academic and industrial laboratories due to its capacity to polarize, form an apical brush border, and reproducibly grow into confluent cell layers in different culture systems. However, under normal culture conditions, Caco-2 cultures lack a mucus layer. Here, we demonstrate for the first time that Caco-2 cultures can form a robust mucus layer when cultured under air-liquid interface (ALI) conditions on Transwell inserts with addition of vasointestinal peptide (VIP) in the basolateral compartment. We demonstrate that unique gene clusters are regulated in response to ALI and VIP single stimuli, but the ALI-VIP combination treatment resulted in a significant upregulation of multiple mucin genes and proteins, including secreted MUC2 and transmembrane mucins MUC13 and MUC17. Expression of tight junction proteins was significantly altered in the ALI-VIP condition, leading to increased permeability to small molecules. Commensal Lactiplantibacillus plantarum bacteria closely associated with the Caco-2 mucus layer and differentially colonized the surface of the ALI cultures. Pathogenic Salmonella enterica were capable of invading beyond the mucus layer and brush border. In conclusion, Caco-2 ALI-VIP cultures provide an accessible and straightforward way to culture an in vitro intestinal mucosal model with improved biomimetic features. This novel in vitro intestinal model can facilitate studies into mucus and epithelial barrier functions and in-depth molecular characterization of pathogenic and commensal microbe-mucus interactions.
Collapse
Affiliation(s)
- Evelien Floor
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jinyi Su
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maitrayee Chatterjee
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- The TIM Company, Delft, the Netherlands
| | - Elise S Kuipers
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Noortje IJssennagger
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Danone Research and Innovation Center, Utrecht, The Netherlands
| | - Faranak Heidari
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Laura Giordano
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Richard W Wubbolts
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Silvia M Mihăilă
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daphne A C Stapels
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Yvonne Vercoulen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Chowdhury SR, Shilpi A, Felsenfeld G. RNA Pol-II transcripts in nucleolar associated domains of cancer cell nucleoli. Nucleus 2025; 16:2468597. [PMID: 39987497 PMCID: PMC11849958 DOI: 10.1080/19491034.2025.2468597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
We performed a comparative study of the non-ribosomal gene content of nucleoli from seven cancer cell lines, using identical methods of purification and analysis. We identified unique chromosomal domains associated with the nucleolus (NADs) and genes within these domains (NAGs). Four cell lines have relatively few NAGs, which appears mostly transcriptionally inactive, consistent with literature. The remaining three lines formed a separate group with nucleoli with unique features and NADS. They constitute larger number of common NAGs, marked by ATAC-seq and having accessible promoters, with histone markers for transcriptional activity and detectable RNA Pol II bound at their promoters. The transcripts of these genes are almost entirely exported from the nucleolus. These results indicate that RNA Pol II dependent transcription in NADs can vary widely in different cell types, presumably dependent on the cell's developmental stage. Nucleolus-associated genes are likely to be distinguished marks reflecting the cell's metabolism.
Collapse
Affiliation(s)
- Soumya Roy Chowdhury
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Arunima Shilpi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | | |
Collapse
|
4
|
Wiecken M, Machiraju D, Chakraborty S, Mayr EM, Lenoir B, Eurich R, Richter J, Pfarr N, Halama N, Hassel JC. The immune checkpoint LAG-3 is expressed by melanoma cells and correlates with clinical progression of the melanoma. Oncoimmunology 2025; 14:2430066. [PMID: 39716918 DOI: 10.1080/2162402x.2024.2430066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
Immune checkpoint blockers have substantially improved prognosis of melanoma patients, nevertheless, resistance remains a significant problem. Here, intrinsic and extrinsic factors in the tumor microenvironment are discussed, including the expression of alternative immune checkpoints such as lymphocyte activation gene 3 (LAG-3) and T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3). While most studies focus on immune cell expression of these proteins, we investigated their melanoma cell intrinsic expression by immunohistochemistry in melanoma metastases of 60 patients treated with anti-programmed cell death protein 1 (PD-1) and/or anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) therapy, and correlated it with the expression of potential ligands, RNA sequencing data and clinical outcome. LAG-3 and TIM-3 were commonly expressed in melanoma cells. In the stage IV cohort, expression of LAG-3 was associated with M1 stage (p < 0.001) and previous exposure to immune checkpoint inhibitors (p = 0.029). Moreover, in the anti-PD-1 monotherapy treatment group patients with high LAG-3 expression by tumor cells tended to have a shorter progression-free survival (p = 0.088), whereas high expression of TIM-3 was associated with a significantly longer overall survival (p = 0.007). In conclusion, we provide a systematic analysis of melanoma cell intrinsic LAG-3 and TIM-3 expression, highlighting potential implications of their expression on patient survival.
Collapse
Affiliation(s)
- Melanie Wiecken
- Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Devayani Machiraju
- Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Shounak Chakraborty
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Eva-Maria Mayr
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Bénédicte Lenoir
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit "Applied Tumor Immunity"(TME unit), Heidelberg, Germany
| | - Rosa Eurich
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit "Applied Tumor Immunity"(TME unit), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Translational Immunotherapy, Heidelberg, Germany
| | - Jasmin Richter
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Niels Halama
- German Cancer Research Center (DKFZ) Heidelberg, Division of Translational Immunotherapy, Heidelberg, Germany
- Department of Medical Oncology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Naidovski N, Chong SKT, Liu F, Riordan SM, Wehrhahn MC, Yuwono C, Zhang L. Human macrophage response to the emerging enteric pathogen Aeromonas veronii: Inflammation, apoptosis, and downregulation of histones. Virulence 2025; 16:2440554. [PMID: 39663607 DOI: 10.1080/21505594.2024.2440554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/11/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
This study investigated the pathogenic mechanisms of Aeromonas veronii in macrophages. THP-1 derived macrophages were used as a human macrophage model and were treated with A. veronii strain AS1 isolated from intestinal biopsies of an IBD patient, or Escherichia coli strain K-12. RNA was extracted and subjected to RNA sequencing and comparative transcriptomic analyses. Protein levels of IL-8, IL-1β, IL-18, and TNFα were measured using ELISA, and apoptosis was assessed using caspase 3/7 assays. Both A. veronii AS1 and E. coli K-12 significantly upregulated the expression of many genes involving inflammation. At the protein level, A. veronii AS1 induced significantly higher levels of IL-8, TNFα, mature IL-18 and IL-1β than E. coli K-12, and led to greater elevation of caspase 3/7 activities. Both A. veronii AS1 and E. coli K-12 upregulated the expression of CASP5, but not other caspase genes. A. veronii AS1 significantly downregulated the expression of 20 genes encoding histone proteins that E. coli K-12 did not. The more profound pathogenic effects of A. veronii in inducing inflammation and apoptosis in macrophages than E. coli K-12 are consistent with its role as a human enteric pathogen. The upregulated expression of CASP5 and increased release of IL-1β and IL-18 support the role of CASP5 in activation of non-canonical inflammasome. The downregulation of histone genes by A. veronii suggests a unique impact on host cell gene expression, which may represent a novel virulence strategy. These findings advance the understanding of pathogenic mechanisms of the emerging human enteric pathogen A. veronii.
Collapse
Affiliation(s)
- Nicholas Naidovski
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sarah K T Chong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Michael C Wehrhahn
- Douglass Hanly Moir Pathology, a Sonic Healthcare Practice, Macquarie Park, NSW, Australia
| | - Christopher Yuwono
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
6
|
Hamo CE, Muller M, Rosenfeld E, Xia Y, Akinlonu A, Luttrell-Williams E, Barrett TJ, Berger JS. Cardiometabolic risk factor burden associates with an immature platelet profile. Platelets 2025; 36:2459800. [PMID: 39882733 PMCID: PMC11801799 DOI: 10.1080/09537104.2025.2459800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Cardiometabolic risk factors, obesity, diabetes and hyperlipidemia contribute to cardiovascular disease (CVD). While platelets are involved in CVD pathogenesis, the relationship between risk factor burden on platelet indices and the platelet transcriptome remains uncertain. Blood was collected from CVD-free adults, measuring platelet count, mean platelet volume (MPV), immature platelet fraction (IPF), and absolute immature platelet fraction (AIPF) by hemogram. Platelets were isolated and analyzed via RNA sequencing. Participants were stratified by number of cardiometabolic risk factors (diabetes, obesity, hyperlipidemia). We calculated median (IQR) values of platelet indices and p-for-trend via linear regression across risk factor burden. To evaluate the association between risk factor burden and platelet transcripts, we performed multivariable linear regression adjusting for age, sex, and race/ethnicity. Among 141 participants, (50.5 ± 14.8 years, 42% male, 26% Black) risk factor burden was associated with increasing platelet size, IPF, and AIPF but not platelet count. Platelet RNA sequencing identified 100 differentially expressed transcripts (p < .01; 66 upregulated, 34 downregulated). Gene ontology enrichment analysis demonstrated upregulated pathways of secondary metabolic processes (NES = 1.96, p < .01), and hematopoietic stem cell proliferation (NES = 1.95, p < .01). Greater cardiometabolic risk factor burden is associated with increased platelet size and immaturity and suggesting novel platelet-mediated mechanisms linking risk factor burden with CVD.
Collapse
Affiliation(s)
- Carine E. Hamo
- Department of Medicine, Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York City, New York, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Matthew Muller
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Emily Rosenfeld
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Yuhe Xia
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Adedoyin Akinlonu
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Elliot Luttrell-Williams
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Tessa J. Barrett
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| | - Jeffrey S. Berger
- Department of Medicine, Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York City, New York, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, Cardiovascular Research Center, New York University School of Medicine, New York City, New York, USA
| |
Collapse
|
7
|
Uusi-Mäkelä M, Harjula SKE, Junno M, Sillanpää A, Nätkin R, Niskanen MT, Saralahti AK, Nykter M, Rämet M. The inflammasome adaptor pycard is essential for immunity against Mycobacterium marinum infection in adult zebrafish. Dis Model Mech 2025; 18:dmm052061. [PMID: 39916610 DOI: 10.1242/dmm.052061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/03/2025] [Indexed: 03/25/2025] Open
Abstract
Inflammasomes regulate the host response to intracellular pathogens including mycobacteria. We have previously shown that the course of Mycobacterium marinum infection in adult zebrafish (Danio rerio) mimics the course of tuberculosis in human. To investigate the role of the inflammasome adaptor pycard in zebrafish M. marinum infection, we produced two zebrafish knockout mutant lines for the pycard gene with CRISPR/Cas9 mutagenesis. Although the zebrafish larvae lacking pycard developed normally and had unaltered resistance against M. marinum, the loss of pycard led to impaired survival and increased bacterial burden in the adult zebrafish. Based on histology, immune cell aggregates, granulomas, were larger in pycard-deficient fish than in wild-type controls. Transcriptome analysis with RNA sequencing of a zebrafish haematopoietic tissue, kidney, suggested a role for pycard in neutrophil-mediated defence, haematopoiesis and myelopoiesis during infection. Transcriptome analysis of fluorescently labelled, pycard-deficient kidney neutrophils identified genes that are associated with compromised resistance, supporting the importance of pycard for neutrophil-mediated immunity against M. marinum. Our results indicate that pycard is essential for resistance against mycobacteria in adult zebrafish.
Collapse
Affiliation(s)
- Meri Uusi-Mäkelä
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | | | - Maiju Junno
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Alina Sillanpää
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Reetta Nätkin
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, FI-33521 Tampere, Finland
| | | | | | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, FI-33521 Tampere, Finland
| | - Mika Rämet
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| |
Collapse
|
8
|
Bauman BM, Stinson JR, Kallarakal MA, Huang LH, Frank AM, Sukumar G, Saucier N, Dalgard CL, Chan AY, Milner JD, Cooper MA, Snow AL. Dominant interfering CARD11 variants disrupt JNK signaling to promote GATA3 expression in T cells. J Exp Med 2025; 222:e20240272. [PMID: 40111223 PMCID: PMC11924952 DOI: 10.1084/jem.20240272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 03/22/2025] Open
Abstract
Several "primary atopic disorders" are linked to monogenic defects that attenuate TCR signaling, favoring T helper type 2 (TH2) cell differentiation. Patients with CARD11-associated atopy with dominant interference of NF-κB signaling (CADINS) disease suffer from severe atopy, caused by germline loss-of-function/dominant interfering (LOF/DI) CARD11 variants. The CARD11 scaffold enables TCR-induced activation of NF-κB, mTORC1, and JNK signaling, yet the function of CARD11-dependent JNK signaling in T cells remains nebulous. Here we show that CARD11 is critical for TCR-induced activation of JNK1 and JNK2, as well as canonical JUN/FOS AP-1 family members. Patient-derived CARD11 DI variants attenuated WT CARD11 JNK signaling, mirroring effects on NF-κB. Transcriptome profiling revealed JNK inhibition upregulated TCR-induced expression of GATA3 and NFATC1, key transcription factors for TH2 cell development. Further, impaired CARD11-JNK signaling was linked to enhanced GATA3 expression in CADINS patient T cells. Our findings reveal a novel intrinsic mechanism connecting impaired CARD11-dependent JNK signaling to enhanced GATA3/NFAT2 induction and TH2 cell differentiation in CADINS patients.
Collapse
Affiliation(s)
- Bradly M Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine , Bethesda, MD, USA
| | - Jeffrey R Stinson
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine , Bethesda, MD, USA
| | - Melissa A Kallarakal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lei Haley Huang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew M Frank
- Henry M. Jackson Foundation for the Advancement of Military Medicine , Bethesda, MD, USA
- Student Bioinformatics Initiative, Center for Military Precision Health, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Gauthaman Sukumar
- Henry M. Jackson Foundation for the Advancement of Military Medicine , Bethesda, MD, USA
- Student Bioinformatics Initiative, Center for Military Precision Health, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
- The American Genome Center, Center for Military Precision Health, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Nermina Saucier
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Clifton L Dalgard
- The American Genome Center, Center for Military Precision Health, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alice Y Chan
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Megan A Cooper
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
9
|
Sudakov K, Rana A, Faigenboim-Doron A, Gordin A, Carmeli S, Shimshoni JA, Cytryn E, Minz D. Diverse effects of Bacillus sp. NYG5-emitted volatile organic compounds on plant growth, rhizosphere microbiome, and soil chemistry. Microbiol Res 2025; 295:128089. [PMID: 39978144 DOI: 10.1016/j.micres.2025.128089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Bacterial strains in the rhizosphere secrete volatile organic compounds (VOCs) that play critical roles in inter- and intra-kingdom signaling, influencing both microbe-microbe and microbe-plant interactions. In this study we evaluated the plant growth-promoting effects of VOCs emitted by Bacillus sp. NYG5 on Arabidopsis thaliana, Nicotiana tabacum, and Cucumis sativus, focusing on VOC-induced alterations in plant metabolic pathways, rhizosphere microbial communities, and soil chemical properties. NYG5 VOCs enhanced plant biomass across all tested species and induced significant shifts in rhizosphere microbial community composition, specifically increasing relative abundance of Gammaproteobacteria and reducing Deltaproteobacteria (Linear discriminant analysis Effect Size, p < 0.05). Soil analysis revealed a considerable reduction in humic substance concentrations following VOCs exposure, as detected by fluorescent spectral analysis. Using SPME-GC-MS, several novel VOCs were identified, some of which directly promoted plant growth. Transcriptomic analysis of N. tabacum exposed to NYG5 VOCs demonstrated activation of pathways related to phenylpropanoid biosynthesis, sugar metabolism, and hormone signal transduction. Within the phenylpropanoid biosynthesis pathway, a significant upregulation (p adj = 1.16e-14) of caffeic acid 3-O-methyltransferase was observed, a key enzyme leading to lignin and suberin monomer biosynthesis. These results highlight the complex mechanisms through which bacterial VOCs influence plant growth, including metabolic modulation, rhizosphere microbiome restructuring, and soil chemical changes. Collectively, this study highlights the pivotal role of bacterial VOCs in shaping plant-microbe-soil interactions.
Collapse
Affiliation(s)
- Kobi Sudakov
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel; Department of Agroecology and Plant Health, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Israel
| | - Anuj Rana
- Department of Microbiology, College of Basic Science and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Adi Faigenboim-Doron
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel
| | - Alexander Gordin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Carmeli
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jakob A Shimshoni
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel
| | - Dror Minz
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel.
| |
Collapse
|
10
|
Wang A. Noncoding RNAs evolutionarily extend animal lifespan. Glob Med Genet 2025; 12:100034. [PMID: 40093332 PMCID: PMC11910084 DOI: 10.1016/j.gmg.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 03/19/2025] Open
Abstract
The mechanisms underlying the evolution of lifespan across organisms remain mysterious. This study computes multiple large datasets and reveals that noncoding RNAs (ncRNAs), rather than proteins, drive animal lifespan evolution. Species in the animal kingdom evolutionarily increase their ncRNA length in their genomes, coinciding with trimming of the mitochondrial genome length. This leads to a low energy consumption and longevity. Notably, as species evolve and extend their lifespans, they tend to acquire long-lived ncRNA motifs while simultaneously losing short-lived ones, in contrast to the conservative patterns observed in protein evolution. These longevity-associated ncRNA motifs, such as GGTGCG, are particularly active in crucial tissues including the endometrium, ovaries, testes, and cerebral cortex. The ovary and endometrium carry more activating ncRNAs than the testis, offering insight into why women generally outlive men. Taken together, ncRNAs drive the evolution of the two most important traits of organisms: longevity and reproduction, and they execute many more fundamental functions than those conventionally thought. This discovery provides the foundation for combating longevity and aging.
Collapse
Affiliation(s)
- Anyou Wang
- Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
11
|
Pluvy I, Randrianaridera E, Tahmaz I, Melin M, Gindraux F, Keime C, Ponche A, Petithory T, Pieuchot L, Anselme K, Brigaud I. Breast implant silicone exposure induces immunogenic response and autoimmune markers in human periprosthetic tissue. Biomaterials 2025; 317:123025. [PMID: 39719745 DOI: 10.1016/j.biomaterials.2024.123025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/18/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Silicone-based breast implants are commonly used, but there are concerns about their long-term safety. While implantation results in the formation of a periprosthetic tissue that isolates the implant from the rest of the host body, silicone can leak and reach surrounding tissues. We combined histological analysis and gene expression profiling (RNA sequencing) of samples from human patients with silicone breast implants with different fillers (silicone or serum), surface topographies and/or shell rupture, and performed systematic cross-comparisons. Our study shows that exposure to silicone gel filler, even in clinically asymptomatic cases, induces an immune response. This response includes the expression of markers associated with various autoimmune diseases. This study provides the first biological evidence of an association between silicone implants and autoimmune markers, highlighting the need for further research and stricter implant safety regulations. We suggest that implant design factors, such as filler type and surface texture, may influence the inflammatory response. Re-evaluation of existing clinical trials is warranted to investigate the association between implant characteristics and potential health risks.
Collapse
Affiliation(s)
- Isabelle Pluvy
- Université de Franche-Comté, CHU Besançon, Laboratoire SINERGIES, Service d'orthopédie, traumatologie et chirurgie plastique, F-25000, Besançon, France
| | - Eve Randrianaridera
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/, Université de Haute Alsace (UHA), 15 rue Jean Starcky, 68057, Mulhouse Cedex, France
| | - Ismail Tahmaz
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/, Université de Haute Alsace (UHA), 15 rue Jean Starcky, 68057, Mulhouse Cedex, France
| | - Martine Melin
- Novotec, ZAC du Chêne, Europarc, 11 rue Edison, 69500, Bron, France
| | - Florelle Gindraux
- Université de Franche-Comté, CHU Besançon, Laboratoire SINERGIES, Service d'orthopédie, traumatologie et chirurgie plastique, F-25000, Besançon, France; Orthopaedic, Traumatology and Plastic Surgery Department, University Hospital of Besançon, 25000, Besançon, France
| | - Céline Keime
- GenomEast platform, IGBMC, CNRS UMR 7104, INSERM U1258, Université de Strasbourg, F-67400, Illkirch, France
| | - Arnaud Ponche
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/, Université de Haute Alsace (UHA), 15 rue Jean Starcky, 68057, Mulhouse Cedex, France
| | - Tatiana Petithory
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/, Université de Haute Alsace (UHA), 15 rue Jean Starcky, 68057, Mulhouse Cedex, France
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/, Université de Haute Alsace (UHA), 15 rue Jean Starcky, 68057, Mulhouse Cedex, France
| | - Karine Anselme
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/, Université de Haute Alsace (UHA), 15 rue Jean Starcky, 68057, Mulhouse Cedex, France
| | - Isabelle Brigaud
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/, Université de Haute Alsace (UHA), 15 rue Jean Starcky, 68057, Mulhouse Cedex, France.
| |
Collapse
|
12
|
Forghani P, Liu W, Wang Z, Ling Z, Takaesu F, Yang E, Tharp GK, Nielsen S, Doraisingam S, Countryman S, Davis ME, Wu R, Jia S, Xu C. Spaceflight alters protein levels and gene expression associated with stress response and metabolic characteristics in human cardiac spheroids. Biomaterials 2025; 317:123080. [PMID: 39809079 PMCID: PMC11788069 DOI: 10.1016/j.biomaterials.2024.123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) possess tremendous advantage for cardiac regeneration. However, cell survival is challenging upon cell transplantation. Since microgravity can profoundly affect cellular properties, we investigated the effect of spaceflight on hiPSC-CMs. Cardiac spheroids derived from hiPSCs were transported to the International Space Station (ISS) via the SpaceX Crew-8 mission and cultured under space microgravity for 8 days. Beating cardiac spheroids were observed on the ISS and upon successful experimentation by the astronauts in space, the live cultures were returned to Earth. These cells had normal displacement (an indicator of contraction) and Ca2+ transient parameters in 3D live cell imaging. Proteomic analysis revealed that spaceflight upregulated many proteins involved in metabolism (n = 90), cellular component of mitochondrion (n = 62) and regulation of proliferation (n = 10). Specific metabolic pathways enriched by spaceflight included glutathione metabolism, biosynthesis of amino acids, and pyruvate metabolism. In addition, the top upregulated proteins in spaceflight samples included those involved in cellular stress response, cell survival, and metabolism. Transcriptomic profiles indicated that spaceflight upregulated genes associated with cardiomyocyte development, and cellular components of cardiac structure and mitochondrion. Furthermore, spaceflight upregulated genes in metabolic pathways associated with cell survival such as glycerophospholipid metabolism and glycerolipid metabolism. These findings indicate that short-term exposure of 3D hiPSC-CMs to the space environment led to significant changes in protein levels and gene expression involved in cell survival and metabolism.
Collapse
Affiliation(s)
- Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zeyu Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhi Ling
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felipe Takaesu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Evan Yang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | | | | - Michael E Davis
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Maurice De Sousa D, Perkey E, Le Corre L, Boulet S, Gómez Atria D, Allman A, Duval F, Daudelin JF, Brandstadter JD, Lederer K, Mezrag S, Odagiu L, Ennajimi M, Sarrias M, Decaluwe H, Koch U, Radtke F, Ludewig B, Siebel CW, Maillard I, Labrecque N. Early Notch signals from fibroblastic reticular cells program effector CD8+ T cell differentiation. J Exp Med 2025; 222:e20231758. [PMID: 40111253 PMCID: PMC11925062 DOI: 10.1084/jem.20231758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/06/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
A better understanding of the mechanisms regulating CD8+ T cell differentiation is essential to develop new strategies to fight infections and cancer. Using genetic mouse models and blocking antibodies, we uncovered cellular and molecular mechanisms by which Notch signaling favors the efficient generation of effector CD8+ T cells. Fibroblastic reticular cells from secondary lymphoid organs, but not dendritic cells, were the dominant source of Notch signals in T cells via Delta-like1/4 ligands within the first 3 days of immune responses to vaccination or infection. Using transcriptional and epigenetic studies, we identified a unique Notch-driven T cell-specific signature. Early Notch signals were associated with chromatin opening in regions occupied by bZIP transcription factors, specifically BATF, known to be important for CD8+ T cell differentiation. Overall, we show that fibroblastic reticular cell niches control the ultimate molecular and functional fate of CD8+ T cells after vaccination or infection through the delivery of early Notch signals.
Collapse
Affiliation(s)
- Dave Maurice De Sousa
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Laure Le Corre
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Salix Boulet
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
| | - Daniela Gómez Atria
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anneka Allman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frédéric Duval
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
| | | | | | - Katlyn Lederer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Mezrag
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Livia Odagiu
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Myriam Ennajimi
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Marion Sarrias
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Canada
| | - Ute Koch
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Ivan Maillard
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
- Département de Médecine, Université de Montréal, Montreal, Canada
| |
Collapse
|
14
|
Carvalho LML, Rzasa J, Kerkhof J, McConkey H, Fishman V, Koksharova G, de Lima Jorge AA, Branco EV, de Oliveira DF, Martinez-Delgado B, Barrero MJ, Kleefstra T, Sadikovic B, Haddad LA, Bertola DR, Rosenberg C, Krepischi ACV. EHMT2 as a Candidate Gene for an Autosomal Recessive Neurodevelopmental Syndrome. Mol Neurobiol 2025; 62:5977-5989. [PMID: 39674972 DOI: 10.1007/s12035-024-04655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Neurodevelopmental disorders (NDD) comprise clinical conditions with high genetic heterogeneity and a notable enrichment of genes involved in regulating chromatin structure and function. The EHMT1/2 epigenetic complex plays a crucial role in repression of gene transcription in a highly tissue- and temporal-specific manner. Mutations resulting in heterozygous loss-of-function (LoF) of EHMT1 are implicated in Kleefstra syndrome 1 (KS1). EHMT2 is a gene acting in epigenetic regulation; however, the involvement of mutations in this gene in the etiology of NDDs has not been established thus far. A homozygous EHMT2 LoF variant [(NM_006709.5):c.328 + 2 T > G] was identified by exome sequencing in an adult female patient with a phenotype resembling KS1, presenting with intellectual disability, aggressive behavior, facial dysmorphisms, fused C2-C3 vertebrae, ventricular septal defect, supernumerary nipple, umbilical hernia, and fingers and toes abnormalities. The absence of homozygous LoF EHMT2 variants in population databases underscores the significant negative selection pressure exerted on these variants. In silico evaluation of the effect of the EHMT2(NM_006709.5):c.328 + 2 T > G variant predicted the abolishment of intron 3 splice donor site. However, manual inspection revealed potential cryptic donor splice sites at this EHMT2 region. To directly access the impact of this splice site variant, RNAseq analysis was employed and disclosed the usage of two cryptic donor sites within exon 3 in the patient's blood, which are predicted to result in either an out-of-frame or in-frame effect on the protein. Methylation analysis was conducted on DNA from blood samples using the clinically validated EpiSign assay, which revealed that the patient with the homozygous EHMT2(NM_006709.5):c.328 + 2 T > G splice site variant is conclusively positive for the KS1 episignature. Taken together, clinical, genetic, and epigenetic data pointed to a LoF mechanism for the EHMT2 splice variant and support this gene as a novel candidate for an autosomal recessive Kleefstra-like syndrome. The identification of additional cases with deleterious EHMT2 variants, alongside further functional validation studies, is required to substantiate EHMT2 as a novel NDD gene.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Veniamin Fishman
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Artificial Intelligence Research Institute, AIRI, Moscow, Russia
| | - Galina Koksharova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Augusto de Lima Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory (LIM/25), Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Elisa Varella Branco
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Danyllo Felipe de Oliveira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Beatriz Martinez-Delgado
- Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria J Barrero
- Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | | | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Luciana Amaral Haddad
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
- Genetics Unit of Instituto da Criança, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.
| |
Collapse
|
15
|
Yuen NKY, Eng M, Hudson NJ, Sole-Guitart A, Coyle MP, Bielefeldt-Ohmann H. Distinct cellular and molecular responses to infection in three target cell types from horses, a species naturally susceptible to Ross River virus. Microb Pathog 2025; 202:107408. [PMID: 40010657 DOI: 10.1016/j.micpath.2025.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Our current understanding of the pathogenesis of Ross River virus (RRV) infection has been derived from murine models, which do not reproduce clinical disease as experienced by infected humans and horses. This prompted us to establish more relevant host model systems to study host-virus interactions using ex vivo peripheral blood mononuclear cells (PBMCs) and in vitro primary synovial fibroblast and epidermal keratinocyte cultures. Transcriptomic analysis revealed that the expression of the transmembrane protein matrix remodelling associated 8 (mxra8), recently found to be responsible for RRV cell entry, was downregulated in all cell types when infected with RRV, compared to mock-infected controls. Potent antiviral and inflammatory responses were generated by both synovial fibroblasts and epidermal keratinocytes upon RRV infection. Upregulation of multiple genes, inducible by double-stranded RNA, together with upregulation of toll-like receptor (TLR) tlr-3, but not tlr-7, 8 and 9, suggests possible abortive replication of RRV in these cell types and potent antiviral mechanisms. This was corroborated by virus growth kinetic studies which indicated inefficient RRV replication in synovial fibroblasts and epidermal keratinocytes. Cellular metabolic flux studies on PBMCs and synovial fibroblasts showed that RRV infected cells had reduced mitochondrial function. In addition, compared to PBMCs of seronegative horses, an enhanced antiviral state and reduced inflammation related gene expression was seen in PBMCs of seropositive horses infected with RRV. Thus, despite potent antiviral and inflammatory responses via the interferon pathway exhibited in all cell types, restricting virus growth, mitochondria capacity and function of infected cells remained negatively impacted.
Collapse
Affiliation(s)
- Nicholas K Y Yuen
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, Queensland, Australia.
| | - Melodie Eng
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | - Nicholas J Hudson
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | - Albert Sole-Guitart
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | - Mitchell P Coyle
- Equine Unit, Office of the Director Gatton Campus, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, St Lucia, Queensland, Australia; Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
16
|
Li X, Wang Y, Liu J, Gao T, Cao L, Yan M, Li N. Dysregulation of the SREBP pathway is associated with poor prognosis and serves as a potential biomarker for the diagnosis of hepatocellular carcinoma. Mol Med Rep 2025; 31:112. [PMID: 40017126 PMCID: PMC11894594 DOI: 10.3892/mmr.2025.13477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/20/2024] [Indexed: 03/01/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe disease associated with a poor prognosis. The role of aberrant lipid metabolism in the development and progression of HCC necessitates detailed characterization. Sterol regulatory element‑binding proteins (SREBPs), pivotal transcription factors governing lipogenesis, are central to this process. The present study aimed to assess the regulation of HCC by the SREBP signaling pathway, examining the expression levels of genes in this pathway, the clinical implications and its prognostic value using the Kaplan‑Meier method. Pearson's correlation coefficient was used to identify the co‑expression of SREBP pathway genes in HCC. Genomic analysis examined the frequency of TP53 mutations in groups with and without SREBP pathway alterations. In addition, small interfering RNAs targeting genes of the SREBP pathway were transfected into Huh‑7 and HCC‑LM3 cell lines. Subsequently, Cell Counting Kit‑8 and Transwell assays were carried out to evaluate the viability and invasion of these cells. Reverse transcription‑quantitative PCR and western blotting were performed to investigate the expression of TP53 in response to silencing of SREBP pathway genes. Dysregulation of SREBP pathway genes was detected in HCC tissues compared with in normal liver tissues, and predicted a poor prognosis. Silencing these genes reduced the viability and invasion of HCC cells. Furthermore, abnormal SREBP pathway gene expression was associated with poor survival rates, vascular invasion, advanced tumor stage and an increased incidence of TP53 mutations. By contrast, knockdown of SREBP pathway genes decreased mutant TP53 expression at both the mRNA and protein levels in HCC cells. The findings of the present study suggested that SREBP pathway genes could serve as promising prognostic biomarkers for HCC. The combined analysis of individual gene expression levels offers offer novel insights into the pathogenesis and progression of HCC.
Collapse
Affiliation(s)
- Xiaodan Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Scientific Research Department, Shanghai University of Medicine amd Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Yuhan Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Junchi Liu
- Scientific Research Department, Shanghai University of Medicine amd Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Tianmiao Gao
- Scientific Research Department, Shanghai University of Medicine amd Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Lizhi Cao
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Meng Yan
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Na Li
- Scientific Research Department, Shanghai University of Medicine amd Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
17
|
Osburn SC, Smith ME, Wahl D, LaRocca TJ. Novel effects of reverse transcriptase inhibitor supplementation in skeletal muscle of old mice. Physiol Genomics 2025; 57:308-320. [PMID: 40062980 DOI: 10.1152/physiolgenomics.00115.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 02/15/2025] [Indexed: 04/01/2025] Open
Abstract
Aging is the primary risk factor for the development of many chronic diseases, including dementias, cardiovascular disease, and diabetes. There is significant interest in identifying novel "geroprotective" agents, including by repurposing existing drugs, but such treatments may affect organ systems differently. One current example is the nucleoside reverse transcriptase inhibitor 3TC, which has been increasingly studied as a potential gerotherapeutic. Recent data suggest that 3TC may reduce inflammation and improve cognitive function in older mice; however, the effects of 3TC on other tissues in aged animals are less well characterized. Here, we use transcriptomics (RNA-seq) and targeted metabolomics to investigate the influence of 3TC supplementation on skeletal muscle in older mice. We show that 3TC 1) does not overtly affect muscle mass or functional/health markers, 2) largely reverses age-related changes in gene expression and metabolite signatures, and 3) is potentially beneficial for mitochondrial function in old animals via increases in antioxidant enzymes and decreases in mitochondrial reactive oxygen species. Collectively, our results suggest that, in addition to its protective effects in other tissues, 3TC supplementation does not have adverse effects in aged muscle and may even protect muscle/mitochondrial health in this context.NEW & NOTEWORTHY Recent studies suggest that the nucleoside reverse transcriptase inhibitor 3TC may improve brain health and cognitive function in old mice, but its effects on other aging tissues have not been comprehensively studied. This is the first study to use a multiomics approach to investigate the effects of 3TC treatment on skeletal muscle of old mice. The results suggest that 3TC reverses age-related transcriptomic and metabolite signatures and is potentially beneficial for mitochondrial function in aged muscle.
Collapse
Affiliation(s)
- Shelby C Osburn
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
18
|
Bouwens D, Kabgani N, Bergerbit C, Kim H, Ziegler S, Ijaz S, Abdallah A, Haraszti T, Maryam S, Omidinia-Anarkoli A, De Laporte L, Hayat S, Jansen J, Kramann R. A bioprinted and scalable model of human tubulo-interstitial kidney fibrosis. Biomaterials 2025; 316:123009. [PMID: 39705928 DOI: 10.1016/j.biomaterials.2024.123009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Chronic kidney disease (CKD) affects more than 10% of the global population. As kidney function negatively correlates with the presence of interstitial fibrosis, the development of new anti-fibrotic therapies holds promise to stabilize functional decline in CKD patients. The goal of the study was to generate a scalable bioprinted 3-dimensional kidney tubulo-interstitial disease model of kidney fibrosis. We have generated novel human PDGFRβ+ pericytes, CD10+ epithelial and CD31+ endothelial cell lines and compared their transcriptomic signature to their in vivo counterpart using bulk RNA sequencing in comparison to human kidney single cell RNA-sequencing datasets. This comparison indicated that the novel cell lines still expressed kidney cell specific genes and shared many features with their native cell-state. PDGFRβ+ pericytes showed three-lineage differentiation capacity and differentiated towards myofibroblasts following TGFβ treatment. We utilized a fibrinogen/gelatin-based hydrogel as bioink and confirmed a good survival rate of all cell types within the bioink after printing. We then combined all three cells in a bioprinted model using separately printed compartments for tubule epithelium, and interstitial endothelium and pericytes. We confirmed that this 3D printed model allows to recapitulate key disease driving epithelial-mesenchymal crosstalk mechanisms of kidney fibrosis since injury of epithelial cells prior to bioprinting resulted in myofibroblast differentiation and fibrosis driven by pericytes after bioprinting. The bioprinted model was also scalable up to a 96-well format.
Collapse
Affiliation(s)
- Daphne Bouwens
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Nazanin Kabgani
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Cédric Bergerbit
- DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany
| | - Hyojin Kim
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Susanne Ziegler
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Sadaf Ijaz
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Ali Abdallah
- Interdisciplinary Center for Clinical Research, RWTH University Aachen, Germany
| | - Tamás Haraszti
- ITMC-Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany
| | - Sidrah Maryam
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Abdolrahman Omidinia-Anarkoli
- DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany
| | - Laura De Laporte
- ITMC-Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany
| | - Sikander Hayat
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Jitske Jansen
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
19
|
Tao T, Liu S, He M, Zhao M, Chen C, Peng J, Wang Y, Cai J, Xiong J, Lai C, Gu W, Ying M, Mao J, Li L, Jia X, Wu X, Peng W, Zhang X, Li Y, Li T, Wang J, Shu Q. Synchronous bilateral Wilms tumors are prone to develop independently and respond differently to preoperative chemotherapy. Int J Cancer 2025; 156:1746-1755. [PMID: 39723643 DOI: 10.1002/ijc.35297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Wilms tumor (WT) is the most common kidney cancer in infants and young children. The determination of the clonality of bilateral WTs is critical to the treatment, because lineage-independent and metastatic tumors may require different treatment strategies. Here we found synchronous bilateral WT (n = 24 tumors from 12 patients) responded differently to preoperative chemotherapy. Transcriptome, whole-exome and whole-genome analysis (n = 12 tumors from 6 patients) demonstrated that each side of bilateral WT was clonally independent in terms of somatic driver mutations, copy number variations and transcriptomic profile. Molecular timing analysis revealed distinct timing and patterns of chromosomal evolution and mutational processes between the two sides of WT. Mutations in WT1, CTNNB1 and copy-neutral loss of heterozygosity of 11p15.5 provide possible genetic predisposition for the early initiation of bilateral WT. Our results provide comprehensive evidence and new insights regarding the separate initiation and early embryonic development of bilateral WT, which may benefit clinical practices in treating metastatic or refractory bilateral WT.
Collapse
Affiliation(s)
- Ting Tao
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Shuangai Liu
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Min He
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Manli Zhao
- Department of Pathology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chen Chen
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jinkai Peng
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yilong Wang
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiabin Cai
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jieni Xiong
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Can Lai
- Department of Radiology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weizhong Gu
- Department of Pathology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Meidan Ying
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Junqing Mao
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Linjie Li
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuan Jia
- Department of Radiology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuan Wu
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wanxin Peng
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiang Zhang
- The Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong Li
- Hunan Children's Hospital, Changsha, China
| | - Tao Li
- Department of Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhu Wang
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Qiang Shu
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgical Oncology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Wei Y, Zhao L, Wei J, Yu X, Wei L, Ni R, Li T. Hippocampal transcriptome analysis in ClockΔ19 mice identifies pathways associated with glial cell differentiation and myelination. J Affect Disord 2025; 376:280-293. [PMID: 39855567 DOI: 10.1016/j.jad.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND ClockΔ19 mice demonstrate behavioral characteristics and neurobiological changes that closely resemble those observed in bipolar disorder (BD). Notably, abnormalities in the hippocampus have been observed in patients with BD, yet direct molecular investigation of human hippocampal tissue remains challenging due to its limited accessibility. METHODS To model BD, ClockΔ19 mice were employed. Weighted gene co-expression network analysis (WGCNA) was utilized to identify mutation-related modules, and changes in cell populations were determined using the computational deconvolution CIBERSORTx. Furthermore, GeneMANIA and protein-protein interactions (PPIs) were leveraged to construct a comprehensive interaction network. RESULTS 174 differentially expressed genes (DEGs) were identified, revealing abnormalities in rhythmic processes, mitochondrial metabolism, and various cell functions including morphology, differentiation, and receptor activity. Analysis identified 5 modules correlated with the mutation, with functional enrichment highlighting disturbances in rhythmic processes and neural cell differentiation due to the mutation. Furthermore, a decrease in neural stem cells (NSC), and an increase in astrocyte-restricted precursors (ARP), ependymocytes (EPC), and hemoglobin-expressing vascular cells (Hb-VC) in the mutant mice were observed. A network comprising 12 genes that link rhythmic processes to neural cell differentiation in the hippocampus was also identified. LIMITATIONS This study focused on the hippocampus of mice, hence the applicability of these findings to human patients warrants further exploration. CONCLUSION The ClockΔ19 mutation may disrupt circadian rhythm, myelination, and the differentiation of neural stem cells (NSCs) into glial cells. These abnormalities are linked to altered expression of key genes, including DPB, CIART, NR1D1, GFAP, SLC20A2, and KL. Furthermore, interactions between SLC20A2 and KL might provide a connection between circadian rhythm regulation and cell type transitions.
Collapse
Affiliation(s)
- Yingying Wei
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liansheng Zhao
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinxue Wei
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueli Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Long Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rongjun Ni
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Liu C, Shao FH, He XC, Du HZ, Liu CM, Zhou B, Teng ZQ. Single-Cell RNA Sequencing Uncovers Molecular Features Underlying the Disrupted Neurogenesis Following Traumatic Brain Injury. Glia 2025; 73:1036-1050. [PMID: 39760225 DOI: 10.1002/glia.24671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with limited effective treatment strategies. Endogenous neural stem cells (NSCs) give rise to neurons and glial cells throughout life. However, NSCs are more likely to differentiate into glial cells rather than neurons at the lesion site after TBI and the underlying molecular mechanism remains largely unknown. Here, we performed large-scale single-cell transcriptome sequencing of subventricular zone (SVZ) NSCs and NSCs-derived cells in the mouse brain, and provide molecular evidence for previous observations that glial differentiation of NSCs prevails after TBI. In addition, we show that the disrupted neurogenesis following TBI is caused by the reduction of a NSC subcluster (NSC-4) expressing the neuronal gene Tubb3. Finally, we demonstrate that the transcriptional factor Dlx2 is significantly downregulated in NSC-4, and Dlx2 overexpression is sufficient to drive NSCs towards neuronal lineage differentiation at the expense of astrocytic lineage differentiation under pro-inflammatory conditions.
Collapse
Affiliation(s)
- Cong Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Mental Health, Wenzhou Medical University, Zhejiang, China
| | - Fang-Hong Shao
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuan-Cheng He
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Li L, Cho KH, Yu X, Cheng S. Systematic multi-omics investigation of androgen receptor driven gene expression and epigenetics changes in prostate cancer. Comput Biol Med 2025; 189:110000. [PMID: 40056843 DOI: 10.1016/j.compbiomed.2025.110000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/07/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Prostate cancer, a common malignancy, is driven by androgen receptor (AR) signaling. Understanding the function of AR signaling is critical for prostate cancer research. METHODS We performed multi-omics data analysis for the AR+, androgen-sensitive LNCaP cell line, focusing on gene expression (RNAseq), chromatin accessibility (ATACseq), and transcription factor binding (ChIPseq). High-quality datasets were curated from public repositories and processed using state-of-the-art bioinformatics tools. RESULTS Our analysis identified 1004 up-regulated and 707 down-regulated genes in response to androgen deprivation therapy (ADT) which diminished AR signaling activity. Gene-set enrichment analysis revealed that AR signaling influences pathways related to neuron differentiation, cell adhesion, P53 signaling, and inflammation. ATACseq and ChIPseq data demonstrated that as a transcription factor, AR primarily binds to distal enhancers, influencing chromatin modifications without affecting proximal promoter regions. In addition, the AR-induced genes maintained higher active chromatin states than AR-inhibited genes, even under ADT conditions. Furthermore, ADT did not directly induce neuroendocrine differentiation in LNCaP cells, suggesting a complex mechanism behind neuroendocrine prostate cancer development. In addition, a publicly available online application LNCaP-ADT (https://pcatools.shinyapps.io/shinyADT/) was launched for users to visualize and browse data generated by this study. CONCLUSION This study provides a comprehensive multi-omics dataset, elucidating the role of AR signaling in prostate cancer at the transcriptomic and epigenomic levels. The reprocessed data is publicly available, offering a valuable resource for future prostate cancer research.
Collapse
Affiliation(s)
- Lin Li
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Kyung Hyun Cho
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Urology, LSU Health Shreveport, Shreveport, LA, USA
| | - Siyuan Cheng
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA.
| |
Collapse
|
23
|
Lavin KM, O'Bryan SM, Pathak KV, Garcia-Mansfield K, Graham ZA, McAdam JS, Drummer DJ, Bell MB, Kelley CJ, Lixandrão ME, Peoples B, Seay RS, Torres AR, Reiman R, Alsop E, Hutchins E, Bonfitto A, Antone J, Palade J, Van Keuren-Jensen K, Huentelman MJ, Pirrotte P, Broderick T, Bamman MM. Divergent multiomic acute exercise responses reveal the impact of sex as a biological variable. Physiol Genomics 2025; 57:321-342. [PMID: 40014011 DOI: 10.1152/physiolgenomics.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
The majority of exercise physiology research has been conducted in males, resulting in a skewed biological representation of how exercise impacts the physiological system. Extrapolating male-centric physiological findings to females is not universally appropriate and may even be detrimental. Thus, addressing this imbalance and taking into consideration sex as a biological variable is mandatory for optimization of precision exercise interventions and/or regimens. Our present analysis focused on establishing multiomic profiles in young, exercise-naïve males (n = 23) and females (n = 17) at rest and following acute exercise. Sex differences were characterized at baseline and following exercise using skeletal muscle and extracellular vesicle transcriptomics, whole blood methylomics, and serum metabolomics. Sex-by-time analysis of the acute exercise response revealed notable overlap, and divergent molecular responses between males and females. An exploratory comparison of two combined exercise regimens [high-intensity tactical training (HITT) and traditional (TRAD)] was then performed using singular value decomposition, revealing latent data structures that suggest a complex dose-by-sex interaction response to exercise. These findings lay the groundwork for an understanding of key differences in responses to acute exercise exposure between sexes. This may be leveraged in designing optimal training strategies, understanding common and divergent molecular interplay guiding exercise responses, and elucidating the role of sex hormones and/or other sex-specific attributes in responses to acute and chronic exercise.NEW & NOTEWORTHY This study examined methylomics, transcriptomics, and metabolomics in circulation and/or skeletal muscle of young, healthy, exercise-naïve males and females before and after exposure to either traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found an overlapping yet considerably sex-divergent response in the molecular mechanisms activated by exercise. These findings may provide insight into optimal training strategies for adaptation when considering sex as a biological variable.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Samia M O'Bryan
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Khyatiben V Pathak
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Krystine Garcia-Mansfield
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Zachary A Graham
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
- Birmingham VA Health Care System, Birmingham, Alabama, United States
| | - Jeremy S McAdam
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Devin J Drummer
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Margaret B Bell
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Christian J Kelley
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Manoel E Lixandrão
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Brandon Peoples
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
| | - Regina S Seay
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Anakaren R Torres
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Rebecca Reiman
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Eric Alsop
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Elizabeth Hutchins
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Anna Bonfitto
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Jerry Antone
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Joanna Palade
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | | | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Patrick Pirrotte
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Timothy Broderick
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | - Marcas M Bamman
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| |
Collapse
|
24
|
Wang Y, Bian Z, Xu L, Du G, Qi Z, Zhang Y, Long J, Li W. The scRNA-sequencing landscape of pancreatic ductal adenocarcinoma revealed distinct cell populations associated with tumor initiation and progression. Genes Dis 2025; 12:101323. [PMID: 40092486 PMCID: PMC11907457 DOI: 10.1016/j.gendis.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 03/19/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands as a formidable malignancy characterized by its profound lethality. The comprehensive analysis of the transcriptional landscape holds immense significance in understanding PDAC development and exploring novel treatment strategies. However, due to the firm consistency of pancreatic cancer samples, the dissociation of single cells and subsequent sequencing can be challenging. Here, we performed single-cell RNA sequencing (scRNA-seq) on 8 PDAC patients with different lymph node metastasis status. We first identified the crucial role of MMP1 in the transition from normal pancreatic cells to cancer cells. The knockdown of MMP1 in pancreatic cancer cell lines decreased the expression of ductal markers such as SOX9 while the overexpression of MMP1 in hTERT-HPNE increased the expression of ductal markers, suggesting its function of maintaining ductal identity. Secondly, we found a S100A2 + tumor subset which fueled lymph node metastasis in PDAC. The knockdown of S100A2 significantly reduced the motility of pancreatic cancer cell lines in both wound healing and transwell migration assays. While overexpression of S100A2 led to increased migratory capability. Moreover, overexpression of S100A2 in KPC1199, a mouse pancreatic cancer cell line, caused a larger tumor burden in a hemi-spleen injection model of liver metastasis. In addition, epithelial-mesenchymal transition-related genes were decreased by S100A2 knockdown revealed by bulk RNA sequencing. We also identified several pivotal contributors to the pro-tumor microenvironment, notably OMD + fibroblast and CCL2 + macrophage. As a result, our study provides valuable insights for early detection of PDAC and promising therapeutic targets for combatting lymph node metastasis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Interventional Radiology, Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhouliang Bian
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Lichao Xu
- Department of Interventional Radiology, Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Guangye Du
- Department of Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Zihao Qi
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jiang Long
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wentao Li
- Department of Interventional Radiology, Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
25
|
Gheller JM, Silva WALD, Souza-Cáceres MB, Silva AFD, Ribeiro Ferreira MGC, Santana TDS, Dos Santos AC, Pereira-Junior SA, Nogueira É, Alencar SAD, Macedo GG, Seneda MM, Chiaratti MR, Melo-Sterza FDA. Transcriptomic analysis of heifers according to antral follicle count. Theriogenology 2025; 237:178-187. [PMID: 40024020 DOI: 10.1016/j.theriogenology.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
While antral follicle count (AFC) has been associated with higher pregnancy rates, at present, our understanding of it as a reproductive parameter remains incomplete. This study aimed to characterize gene expression profile of oocytes from crossbred Bos taurus x Bos indicus heifers with high and low AFCs. Crossbred Nelore-Angus heifers (n = 50) with a mean (SD) age of 9.6 ± 0.55 months, a weight of 295.4 ± 32.6 kg, and a BCS of 3.44 ± 0.41 were studied in a feedlot system. The heifers received a hormonal protocol based on injectable progesterone and estradiol cypionate administered 12 days apart, and ovarian ultrasonography (US) was performed 12 days after to assess the AFC. Based on AFC, heifers were divided into low (≤14 follicles) and high (≥31 follicles) AFC, groups.Forty-five days after US, 14 heifers were slaughtered, and their ovaries were collected for morphological analysis and follicle aspiration. Cumulus-oocyte complexes (COCs) from the high and low AFC groups were graded according to their quality. Only best-quality COCs were stored for RNA-seq analysis. No differences were found in the presence or diameter of the dominant follicle and corpus luteum in the US, nor in the volume of the dominant follicle postmortem. The quantity of COCs recovered from high-AFC heifers was higher than that from low-AFC heifers (P < 0.05), and a tendency (P = 0.07) toward a higher amount of grade II COCs was observed. Thirty-two genes were differentially expressed between the groups, of which 30 were up-regulated and two down-regulated in the low AFC group. Among these, 22 % (7/32) were associated with fertility (CAB39, SLC2A6, CITED2, FDX1, HSD11B2, CD81, and PLA2G12B). Moreover, 9 and 2 exclusive genes were identified in the high and low AFC groups, respectively. Enrichment analyses showed that genes exclusive to oocytes from low-AFC heifers were associated with fundamental cellular processes, such as biosynthesis/biogenesis of ribosomes, peptides, amides, and nucleotides, and also with autophagy, mitophagy and mTOR signalling pathways.On the other hand, only one pathway was enriched in the high AFC group, but this cannot be related to the events studied No differences were observed in the ovarian structures after pre-synchronization of the estrus cycle of young Crossbred Nelore-Angus heifers. However, a tendency of a higher amount of grade II COCs was observed in heifers with high AFC than in those with low AFC. RNA sequencing results indicated that the main differences between high and low AFC heifers were not reflected in the genes directly related to fertility.
Collapse
Affiliation(s)
- Janaina Menegazzo Gheller
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil
| | - Wilian Aparecido Leite da Silva
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil
| | - Mirela Brochado Souza-Cáceres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Aldair Félix da Silva
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil
| | - Mariane Gabriela Cesar Ribeiro Ferreira
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil
| | - Taynara Dos Santos Santana
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil
| | - Angélica Camargo Dos Santos
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Sérgio Antonio Pereira-Junior
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Ériklis Nogueira
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Gado de Corte, Av. Rádio Maia, 830 - Vila Popular, Campo Grande, MS, Brazil
| | - Sérgio Amorim de Alencar
- Universidade Católica de Brasília, QS 07, Lote 01, Taguatinga Sul - Taguatinga, Brasília, DF, Brazil
| | - Gustavo Guerino Macedo
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil
| | - Marcelo Marcondes Seneda
- Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380, Londrina, PR, Brazil
| | - Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Fabiana de Andrade Melo-Sterza
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil; Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil.
| |
Collapse
|
26
|
Peters F, Höfs W, Lee H, Brodesser S, Kruse K, Drexler HC, Hu J, Raker VK, Lukas D, von Stebut E, Krönke M, Niessen CM, Wickström SA. Sphingolipid metabolism orchestrates establishment of the hair follicle stem cell compartment. J Cell Biol 2025; 224:e202403083. [PMID: 39879198 PMCID: PMC11778283 DOI: 10.1083/jcb.202403083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis. Deletion of CerS4 prevents the proper development of the adult hair follicle bulge stem cell (HFSC) compartment due to altered differentiation trajectories. Mechanistically, HFSC differentiation defects arise from an imbalance of key ceramides and their derivate sphingolipids, resulting in hyperactivation of noncanonical Wnt signaling. This impaired HFSC compartment establishment leads to disruption of hair follicle architecture and skin barrier function, ultimately triggering a T helper cell 2-dominated immune infiltration resembling human atopic dermatitis. This work uncovers a fundamental role for a cell state-specific sphingolipid profile in stem cell homeostasis and in maintaining an intact skin barrier.
Collapse
Affiliation(s)
- Franziska Peters
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Windie Höfs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hunki Lee
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Susanne Brodesser
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Kai Kruse
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Jiali Hu
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Verena K. Raker
- Department of Dermatology, University of Münster, Münster, Germany
| | - Dominika Lukas
- Department of Dermatology, University of Cologne, Cologne, Germany
| | | | - Martin Krönke
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sara A. Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Tan SN, Hao J, Ge J, Yang Y, Liu L, Huang J, Lin M, Zhao X, Wang G, Yang Z, Ni L, Dong C. Regulatory T cells converted from Th1 cells in tumors suppress cancer immunity via CD39. J Exp Med 2025; 222:e20240445. [PMID: 39907686 DOI: 10.1084/jem.20240445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/17/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Regulatory T (Treg) cells are known to impede antitumor immunity, yet the regulatory mechanisms and functional roles of these cells remain poorly understood. In this study, through the characterization of multiple cancer models, we identified a substantial presence of peripherally induced Treg cells in the tumor microenvironment (TME). Depletion of these cells triggered antitumor responses and provided potent therapeutic effects by increasing functional CD8+ T cells. Fate-mapping and transfer experiments revealed that IFN-γ-expressing T helper (Th) 1 cells differentiated into Treg cells in response to TGF-β signaling in tumors. Pseudotime trajectory analysis further revealed the terminal differentiation of Th1-like Treg cells from Th1 cells in the TME. Tumor-resident Treg cells highly expressed T-bet, which was essential for their functions in the TME. Additionally, CD39 was highly expressed by T-bet+ Treg cells in both mouse and human tumors, and was necessary for Treg cell-mediated suppression of CD8+ T cell responses. Our study elucidated the developmental pathway of intratumoral Treg cells and highlighted novel strategies for targeting them in cancer patients.
Collapse
Affiliation(s)
- Sang-Nee Tan
- School of Medicine, Westlake University , Hangzhou, China
- Institute for Immunology and School of Medicine, Tsinghua University , Beijing, China
| | - Jing Hao
- Institute for Immunology and School of Medicine, Tsinghua University , Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital , Shanghai, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital , Shanghai, China
| | - Yazheng Yang
- Institute for Immunology and School of Medicine, Tsinghua University , Beijing, China
| | - Liguo Liu
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Meng Lin
- School of Medicine, Westlake University , Hangzhou, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University , Beijing, China
| | - Genyu Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University , Shanghai, China
| | - Zhiying Yang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University , Beijing, China
| | - Chen Dong
- School of Medicine, Westlake University , Hangzhou, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital , Shanghai, China
| |
Collapse
|
28
|
Peckham H, Radziszewska A, Sikora J, de Gruijter NM, Restuadi R, Kartawinata M, Martin-Gutierrez L, Robinson GA, Deakin CT, Wedderburn LR, Jury EC, Butler G, Chambers ES, Rosser EC, Ciurtin C. Estrogen influences class-switched memory B cell frequency only in humans with two X chromosomes. J Exp Med 2025; 222:e20241253. [PMID: 40049222 PMCID: PMC11893172 DOI: 10.1084/jem.20241253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 03/12/2025] Open
Abstract
Sex differences in immunity are well-documented, though mechanisms underpinning these differences remain ill-defined. Here, in a human-only ex vivo study, we demonstrate that postpubertal cisgender females have higher levels of CD19+CD27+IgD- class-switched memory B cells compared with age-matched cisgender males. This increase is only observed after puberty and before menopause, suggesting a strong influence for sex hormones. Accordingly, B cells express high levels of estrogen receptor 2 (ESR2), and class-switch-regulating genes are enriched for ESR2-binding sites. In a gender-diverse cohort, blockade of natal estrogen in transgender males (XX karyotype) reduced class-switched memory B cell frequency, while gender-affirming estradiol treatment in transgender females (XY karyotype) did not increase these levels. In postmenopausal cis-females, class-switched memory B cells were increased in those taking hormone replacement therapy (HRT) compared with those who were not. These data demonstrate that sex hormones and chromosomes work in tandem to impact immune responses, with estrogen only influencing the frequency of class-switched memory B cells in individuals with an XX chromosomal background.
Collapse
Affiliation(s)
- Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Justyna Sikora
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Nina M. de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Restuadi Restuadi
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
| | - Melissa Kartawinata
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lucia Martin-Gutierrez
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - George A. Robinson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Claire T. Deakin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
- School of Population Health, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Lucy R. Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Elizabeth C. Jury
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Gary Butler
- Infection, Immunity and Inflammation Research and Teaching Department – UCL Great Ormond Street Institute of Child Health, London, UK
- University College London Hospital, London, UK
| | - Emma S. Chambers
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Elizabeth C. Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH and GOSH, London, UK
- Centre for Rheumatology, University College London, London, UK
- University College London Hospital, London, UK
| |
Collapse
|
29
|
Lee JJ, Yang L, Kotzin JJ, Ahimovic D, Bale MJ, Nigrovic PA, Josefowicz SZ, Mathis D, Benoist C. Early transcriptional effects of inflammatory cytokines reveal highly redundant cytokine networks. J Exp Med 2025; 222:e20241207. [PMID: 39873673 DOI: 10.1084/jem.20241207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Inflammatory cytokines are fundamental mediators of the organismal response to injury, infection, or other harmful stimuli. To elucidate the early and mostly direct transcriptional signatures of inflammatory cytokines, we profiled all immunologic cell types by RNAseq after systemic exposure to IL1β, IL6, and TNFα. Our results revealed a significant overlap in the responses, with broad divergence between myeloid and lymphoid cells, but with very few cell-type-specific responses. Pathway and motif analysis identified several main controllers (NF-κB, IRF8, and PU.1), but the largest portion of the response appears to be mediated by MYC, which was also implicated in the response to γc cytokines. Indeed, inflammatory and γc cytokines elicited surprisingly similar responses (∼50% overlap in NK cells). Significant overlap with interferon-induced responses was observed, paradoxically in lymphoid but not myeloid cell types. These results point to a highly redundant cytokine network, with intertwined effects between disparate cytokines and cell types.
Collapse
Affiliation(s)
- Juliana J Lee
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Liang Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Jonathan J Kotzin
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dughan Ahimovic
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences , New York, NY, USA
| | - Michael J Bale
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences , New York, NY, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven Z Josefowicz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences , New York, NY, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard , Cambridge, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard , Cambridge, MA, USA
| |
Collapse
|
30
|
Zheng JY, Jiang G, Gao FH, Ren SN, Zhu CY, Xie J, Li Z, Yin W, Xia X, Li Y, Wang HL. MCTASmRNA: A deep learning framework for alternative splicing events classification. Int J Biol Macromol 2025; 300:139941. [PMID: 39842565 DOI: 10.1016/j.ijbiomac.2025.139941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Alternative splicing (AS) plays crucial post-transcriptional gene function regulation roles in eukaryotic. Despite progress in studying AS at the RNA level, existing methods for AS event identification face challenges such as inefficiency, lengthy processing times, and limitations in capturing the complexity of RNA sequences. To overcome these challenges, we evaluated 10 AS detection tools and selected rMATS for dataset construction. We then developed a multi-scale convolutional and Transformer-based model (MCTASmRNA) to classify AS events in mRNA sequences without relying on a reference genome. To handle the problem of large intra-class and small inter-class difference in AS event sequences, we incorporated an efficient channel attention mechanism and designed a new joint loss function to optimize MCTASmRNA training. MCTASmRNA outperformed baseline models, with an accuracy improvement and exhibited enhanced cross-species generalizability. This model provides valuable support for AS research across different organisms. Future work will focus on optimizing and expanding the model to further explore the complex mechanisms underlying AS.
Collapse
Affiliation(s)
- Juan-Yu Zheng
- School of Information Science and Technology, School of Artificial Intelligence, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Gao Jiang
- School of Information Science and Technology, School of Artificial Intelligence, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Fu-Hai Gao
- School of Information Science and Technology, School of Artificial Intelligence, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Shu-Ning Ren
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Chen-Yu Zhu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Yun Li
- School of Information Science and Technology, School of Artificial Intelligence, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| |
Collapse
|
31
|
Gelgie AE, Gelalcha BD, Freeman T, Ault-Seay TB, Beever J, Kerro Dego O. Whole transcriptome analysis of Mycoplasma bovis-host interactions under in vitro and in vivo conditions. Vet Microbiol 2025; 303:110426. [PMID: 39951862 DOI: 10.1016/j.vetmic.2025.110426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Mycoplasma bovis mastitis is becoming increasingly problematic for dairy cattle farming. M. bovis is inherently resistant to beta-lactam antimicrobials and no effective vaccine is available. The major constraints to developing effective control tools are limited knowledge of M. bovis virulence factors and the underlying pathogenic mechanisms. The objective of this study was to determine virulence-associated genes of M. bovis and host immune response genes expressed during the early stages of host-pathogen interactions. We conducted in vitro infection of mammary epithelial cell (MAC-T) lines and in vivo intramammary infection of dairy cows with M. bovis strain PG45 and evaluated whole transcriptome differential gene expression. A total of 614 and 7161 genes of M. bovis and bovine host cells were differentially expressed, respectively. Insertion sequence (IS) genes that are involved in transposase activity such as ISMbov1, ISMbov2, ISMbov3, and ISMbov9 were significantly upregulated, whereas protein translation-associated genes were significantly downregulated. In MAC-T cells, genes involved in apoptosis pathways and proinflammatory cytokines were significantly upregulated, whereas genes involved in cell cycle, ribosome biogenesis, and steroid biosynthesis were significantly downregulated. Genes encoding formation of neutrophil extracellular traps and proinflammatory cytokines, were significantly upregulated in the mammary gland of M. bovis challenged cows, whereas genes involved in steroid biosynthesis and metabolism were significantly downregulated. Altogether, while our findings shed light on the simultaneous transcriptional changes in M. bovis and the host during infection, further studies are required to understand a complete picture of these interactions that lead to mastitis.
Collapse
Affiliation(s)
- Aga E Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA; Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | - Benti D Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA; Department of Biomedical and Diagnostic Sciences College of Veterinary Medicine, The University of Tennessee, 2406 River Drive, Knoxville, TN 37996-4574, USA
| | - Trevor Freeman
- Genomics Center for the Advancement of Agriculture, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Taylor B Ault-Seay
- Genomics Center for the Advancement of Agriculture, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Jonathan Beever
- Genomics Center for the Advancement of Agriculture, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
32
|
Smith-Davidson P, Altartoor K, Kabongo MM, Claussen H, Arthur RA, Johnston HR, DelGaudio JM, Wise SK, Solares CA, Barrow EM, Magliocca KR, Koval M, Levy JM. Prostaglandin E Receptor 2 (EP2) Dysregulation in Allergic Fungal Rhinosinusitis Nasal Polyp Epithelium. Laryngoscope 2025; 135 Suppl 1:S1-S8. [PMID: 39487665 PMCID: PMC11903372 DOI: 10.1002/lary.31868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/14/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES Allergic fungal rhinosinusitis (AFRS) is an eosinophilic subtype of chronic rhinosinusitis with nasal polyposis (CRSwNP). This study aimed to investigate the transcriptome of AFRS nasal polyp epithelium. METHODS Sinonasal epithelial cells were harvested from healthy nasal mucosa and polyp tissue collected from participants undergoing elective sinonasal surgery. Primary epithelial cells were subsequently grown in air/liquid interface and subjected to RNA-seq analysis, RT-qPCR, immunoblotting, and immunostaining. RESULTS A total of 19 genes were differentially expressed between healthy and AFRS sample epithelium. The second top candidate gene, ranked by adjusted p-value, was prostaglandin E receptor 2 (PTGER2). The upregulation of PTGER2 was confirmed by RT-qPCR and immunoblot. The presence of the EP2 receptor, encoded by the PTGER2 gene, was confirmed by immunocytochemistry. CONCLUSION PTGER2 is a potential novel therapeutic target for AFRS. EP2 dysregulation is associated with aspirin-exacerbated respiratory disease, potentially giving insight into common mechanisms of disease in severe CRSwNP. LEVEL OF EVIDENCE NA Laryngoscope, 135:S1-S8, 2025.
Collapse
Affiliation(s)
- Prestina Smith-Davidson
- Sinonasal and Olfaction Program, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, U.S.A
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Emory University, Atlanta, Georgia, U.S.A
| | - Khaled Altartoor
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Emory University, Atlanta, Georgia, U.S.A
| | - M M Kabongo
- Sinonasal and Olfaction Program, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, U.S.A
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Emory University, Atlanta, Georgia, U.S.A
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University, Atlanta, Georgia, U.S.A
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory University, Atlanta, Georgia, U.S.A
| | - H R Johnston
- Emory Integrated Computational Core, Emory University, Atlanta, Georgia, U.S.A
| | - John M DelGaudio
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Emory University, Atlanta, Georgia, U.S.A
| | - Sarah K Wise
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Emory University, Atlanta, Georgia, U.S.A
| | - C A Solares
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Emory University, Atlanta, Georgia, U.S.A
| | - Emily M Barrow
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Emory University, Atlanta, Georgia, U.S.A
| | - Kelly R Magliocca
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia, U.S.A
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Joshua M Levy
- Sinonasal and Olfaction Program, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, U.S.A
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Emory University, Atlanta, Georgia, U.S.A
| |
Collapse
|
33
|
Li J, Zhang X, Wang X, Wang Z, Li X, Zheng J, Li J, Xu G, Sun C, Yi G, Yang N. Single-nucleus transcriptional and chromatin accessible profiles reveal critical cell types and molecular architecture underlying chicken sex determination. J Adv Res 2025; 70:29-43. [PMID: 38734369 DOI: 10.1016/j.jare.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Understanding the sex determination mechanisms in birds has great significance for the biological sciences and production in the poultry industry. Sex determination in chickens is a complex process that involves fate decisions of supporting cells such as granulosa or Sertoli cells. However, a systematic understanding of the genetic regulation and cell commitment process underlying sex determination in chickens is still lacking. OBJECTIVES We aimed to dissect the molecular characteristics associated with sex determination in the gonads of chicken embryos. METHODS Single-nucleus RNA-seq (snRNA-seq) and ATAC-seq (snATAC-seq) analysis were conducted on the gonads of female and male chickens at embryonic day 3.5 (E3.5), E4.5, and E5.5. RESULTS Here, we provided a time-course transcriptional and chromatin accessible profiling of gonads during chicken sex determination at single-cell resolution. We uncovered differences in cell composition and developmental trajectories between female and male gonads and found that the divergence of transcription and accessibility in gonadal cells first emerged at E5.5. Furthermore, we revealed key cell-type-specific transcription factors (TFs) and regulatory networks that drive lineage commitment. Sex determination signaling pathways, dominated by BMP signaling, are preferentially activated in males during gonadal development. Further pseudotime analysis of the supporting cells indicated that granulosa cells were regulated mainly by the TEAD gene family and that Sertoli cells were driven by the DMRT1 regulons. Cross-species analysis suggested high conservation of both cell types and cell-lineage-specific TFs across the six vertebrates. CONCLUSIONS Overall, our study will contribute to accelerating the development of sex manipulation technology in the poultry industry and the application of chickens as a unique model for studying cell fate decisions.
Collapse
Affiliation(s)
- Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Xiqiong Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Zhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Junying Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Wu Y, Liu J, Zou J, Zhang M, Hu Z, Zeng Y, Dai J, Wei L, Liu S, Liu G, Huang G. Time-series analysis reveals metabolic and transcriptional dynamics during mulberry fruit development and ripening. Int J Biol Macromol 2025; 301:140288. [PMID: 39863218 DOI: 10.1016/j.ijbiomac.2025.140288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Understanding the global transcriptomic and metabolic changes during mulberry growth and development is essential for the enhancing fruit quality and optimizing breeding strategies. By integrating phenotypic, metabolomic, and transcriptomic data across 18 developmental and ripening stages of Da10 mulberry fruit, a global map of gene expression and metabolic changes was generated. Analysis revealed a gradual progression of morphological, metabolic, and transcriptional changes throughout the development and ripening phases. In this study, a new transcriptome transition, which was highly related to stress resistance, was observed after the full ripening stage. Moreover, a novel method was devised by integrating metabolome and phenotypic data to assess fruit quality and determine optimal harvest times early in the supply chain. Phase-specific co-expression networks involved in photosynthesis, quality regulation, and plant immunity were also constructed. Notably, eight flavonoids and six hub genes emerged as potential natural edible coatings or gene-editing targets for mulberry fruit to enhance resistance against biotic and abiotic stress. These findings should facilitate further research on stress resistance, post-harvest management, and sustainable agricultural development.
Collapse
Affiliation(s)
- Yilei Wu
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Jiang Liu
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Jian Zou
- College of Life Science, China West Normal University, Nanchong, Sichuan, China.
| | - Minhui Zhang
- College of Life Science, China West Normal University, Nanchong, Sichuan, China.
| | - Zhou Hu
- College of Life Science, China West Normal University, Nanchong, Sichuan, China.
| | - Yichun Zeng
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Jie Dai
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Ling Wei
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Sanmei Liu
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Gang Liu
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Gaiqun Huang
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| |
Collapse
|
35
|
Ismail A, Gajjar P, Darwish AG, Abuslima E, Islam T, Mohamed AG, Tsolova V, Nick P, El Kayal W, El-Sharkawy I. Redox and osmotic homeostasis: Central drivers of drought resilience in grapevine rootstocks. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109618. [PMID: 39954374 DOI: 10.1016/j.plaphy.2025.109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
A comparative study of two grapevine rootstocks with contrasting drought stress responses revealed that the drought-resilient RUG harbors an efficient antioxidant defense system, characterized by increased activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT), along with elevated proline (Pro) levels compared to the drought-sensitive MGT. This robust scavenging machinery enables RUG to maintain redox balance, effectively mitigating oxidative stress and preserving cellular integrity during drought. Anatomical evaluations showed severe xylem disruptions in MGT, including extensive tylosis, leading to leaf necrosis and impaired water transport. Conversely, RUG maintained a structurally intact and functional xylem, crucial for sustaining hydraulic conductivity and water supply during drought. The pronounced rise in Pro underscores its critical role in drought resilience, working synergistically with other cellular components to facilitate osmotic adjustment while detoxifying reactive oxygen species (ROS) and minimizing oxidative damage. Transcriptome profiling suggested that RUG displays sequential gene expression during drought driven by distinct molecular processes for photosynthesis, osmotic adjustment, and structural remodeling, a dynamic notably absent in MGT. These findings emphasize the complex interplay of osmotic and oxidative homeostasis in RUG, illustrating the adaptive mechanisms that contribute to its drought resilience, potentially guiding future rootstock selection and breeding strategies.
Collapse
Affiliation(s)
- Ahmed Ismail
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA; Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA; Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| | - Pranavkumar Gajjar
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA
| | - Ahmed G Darwish
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Eman Abuslima
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Tabibul Islam
- Plant Sciences Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ahmed G Mohamed
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA
| | - Peter Nick
- Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology (KIT), 76131, Germany
| | - Walid El Kayal
- Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, 1107-2020, Lebanon.
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA.
| |
Collapse
|
36
|
Chakraborty S, Anand S, Numan M, Bhandari RK. Ancestral bisphenol A exposure led to non-alcoholic fatty liver disease and sex-specific alterations in proline and bile metabolism pathways in the liver. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:958-972. [PMID: 39953842 PMCID: PMC11933882 DOI: 10.1093/etojnl/vgae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 02/17/2025]
Abstract
Endocrine-disrupting chemicals can induce metabolic alterations, resulting in diseases such as obesity, diabetes, and fatty liver disease, which can be inherited by offspring inhabiting uncontaminated environments. Bisphenol A (BPA), a well-known endocrine disruptor, can induce endocrine disruption, leading to metabolic disorders in subsequent generations without further exposure to BPA via nongenetic transgenerational inheritance. Using medaka as an animal model, we reported that ancestral BPA exposure leads to transgenerational nonalcoholic fatty liver disease (NAFLD) in grandchildren four generations after the initial exposure. It is unclear if transgenerational NAFLD developed because ancestral BPA exposure differs from that developed due to direct and continuous BPA exposure because the transgenerational disease develops in the absence of the stressor. We induced transgenerational NAFLD in medaka with ancestral BPA exposure (10 µg/L) at the F0 generation and examined transcriptional and metabolomic alterations in the liver of the F4 generation fish that continued to develop NAFLD. To understand the etiology of NAFLD in unexposed generations, we performed nontargeted liquid chromatography-mass spectrometry-based metabolomic analysis in combination with bulk RNA sequencing and determined biomarkers, co-expressed gene networks, and sex-specific pathways triggered in the liver. An integrated analysis of metabolomic and transcriptional alterations revealed a positive association with the severity of the NAFLD disease phenotype. Females showed increased NAFLD severity and had metabolic disruption involving proline metabolism, tryptophan metabolism, and bile metabolism pathways. The present results provide the transcriptional and metabolomic underpinning of metabolic disruption caused by ancestral BPA exposure, providing avenues for further research to understand the development and progression of transgenerational NAFLD caused by ancestral bisphenol A exposure.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Santosh Anand
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Muhammad Numan
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, United States
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
37
|
Huang J, Chang Z, Deng X, Cai S, Jiang B, Zeng W, Ke M. Identification of Sequential Molecular Mechanisms and Key Biomarkers in Early Glaucoma by Integrated Bioinformatics Analysis. Mol Neurobiol 2025; 62:4952-4970. [PMID: 39495230 DOI: 10.1007/s12035-024-04563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Glaucoma is a neurodegenerative disease characterized by progressive optic nerve degeneration and retinal ganglion cell (RGC) loss. In early glaucoma, before obvious axon loss, highly organized pathological processes in RGCs occur sequentially, involving axons, dendrites and synaptic terminals. The optic nerve head (ONH) is the critical structure of early glaucomatous neurodegeneration. Taking advantage of high-throughput data from the ONH and the weighted gene coexpression network analysis (WGCNA) method, the current study aims to gain insight into the full scope of pathological events in early glaucoma and define their chronological sequence. The expression profiles of GSE26299, GSE110019, and GSE139605, which measure ONH gene expression in different glaucoma models, were downloaded from the Gene Expression Omnibus (GEO) database. In GSE26299, which uses 10.5-month-old DBA/2 J mice, WGCNA was utilized to construct a gene coexpression network, and the most significant modules of early (NOE), moderate (MOD) and severe (SEV) glaucoma were identified. The differentially expressed genes (DEGs) of GSE110019 and GSE139605 significantly overlapped with the correlated module of the MOD group, so the 3 gene sets were analyzed together. Pathway enrichment analysis via the GO, KEGG, and Reactome pathways was subsequently performed, followed by protein‒protein interaction (PPI) analysis to screen key genes associated with each stage. Several hub gene expression patterns were identified in a glucocorticoid-induced glaucoma (GIG) model via quantitative PCR and immunostaining. The pink module was positively correlated with the NOE group (r = 0.48, p = 4e-04) and negatively correlated with the glaucoma stage (r = -0.88, p = 3e-17). The genes in the pink module were enriched in the synaptic transmission and axonal transport pathways. The tan module was negatively correlated with the NOE group (r = -0.43, p = 0.002) and positively correlated with the glaucoma stage (r = 0.77, p = 7e-11). The genes in the tan module were associated with pathways such as tight junctions, retinol metabolism, and linoleic acid metabolism. The purple module was positively correlated with the MOD group (r = 0.64, p = 5e-07). The common genes among the purple module and the DEGs of the two other datasets were enriched in pathways related to mitotic cell division, cytokine activity, and the extracellular matrix (ECM). The hub genes identified by PPI included Nrn1, Cplx1, Timp1, and Cdk1. Quantitative PCR and immunostaining confirmed that Limk1 expression was increased in the ONH of GIG mice. In early glaucomatous neuropathy, intrinsic changes in RGCs precede the activation of glial cells and ECM remodeling. These latter events are common pathological changes observed in the ONH in both cats and mice. Our study may provide new targets for the early detection and treatment of glaucoma.
Collapse
Affiliation(s)
- Jingqiu Huang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhaohui Chang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuncheng Cai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Jiang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
38
|
Yang H, Jiang L, Bao X, Liu H, Xu Q, Yao X, Cai S, Fang Y, Su J, Li J. CeJAZ3 suppresses longifolene accumulation in Casuarina equisetifolia, affecting the host preference of Anoplophora chinensis. PEST MANAGEMENT SCIENCE 2025; 81:2202-2214. [PMID: 39723485 DOI: 10.1002/ps.8618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/27/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Casuarina equisetifolia, a crucial species of coastal windbreaks, is highly susceptible to infestation by Anoplophora chinensis. This stem-boring pest poses a significant threat to the health and sustainability of Casuarina equisetifolia forests. Understanding the molecular mechanisms underlying the host preference of A. chinensis to Casuarina equisetifolia is essential for developing effective pest management strategies. RESULTS Through field surveys, we identified two cultivars of Casuarina equisetifolia that exhibited differing levels of host preference for A. chinensis. Further analysis of multi-omics data (phenomics, transcriptomics, and metabolomics) from these cultivars revealed that longifolene plays a significant role in attracting A. chinensis to Casuarina equisetifolia. Additionally, the jasmonic acid (JA) signaling pathway was found to suppress longifolene accumulation, primarily through the interaction between the jasmonate ZIM-domain (JAZ) proteins and the terpene synthase (TPS) gene. Moreover, we identified a critical JAZ component, CeJAZ3, whose overexpression led to the down-regulation of TPS expression levels and, consequently, a reduced release of longifolene. CONCLUSION We confirmed that the negative regulator of host preference, CeJAZ3, in the JA signaling pathway can suppress the expression of TPSs, thereby down-regulating the accumulation of longifolene in Casuarina equisetifolia and indirectly suppressing the attraction of host plants to A. chinensis, which provides a basis for the integrated management of A. chinensis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hua Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijuan Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaochun Bao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haolan Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qianle Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingliang Yao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shouping Cai
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Yu Fang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jun Su
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
39
|
Cuellar CJ, Ismail EA, Haimon MLJ, Hoorn QA, Yu F, Rabaglino MB, Hansen PJ. Interactions between type of culture medium and addition of serum on development and gene expression of bovine blastocysts produced in vitro. Physiol Genomics 2025; 57:256-265. [PMID: 39998448 DOI: 10.1152/physiolgenomics.00142.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Serum is commonly added to culture medium to improve the production of bovine embryos in vitro. The main goals were to verify the actions of serum to increase blastocyst yield and test the hypothesis that fetal bovine serum alters blastocyst gene expression in a manner that could affect competence to establish pregnancy and dysregulate fetal development. Media used were synthetic oviduct fluid medium bovine embryo 2 (SOF-BE2) and a commercial medium from IVF Biosciences termed here as IVFB. Three experiments were conducted in which either adult or fetal bovine serum (10%, vol/vol) was added at day 1 or 5 of development. Overall, serum increased blastocyst production. Gene expression in blastocysts was measured in the experiment in which fetal bovine serum was added at day 5. Serum resulted in 215 differentially expressed genes for embryos cultured in SOF-BE2 and 194 genes for embryos cultured in IVFB (adjusted P value of <0.05 and a |log2| fold change >1). Only 24 genes were regulated by serum similarly for both media, including several transcription factors, imprinted genes, PSAT1 implicated in fetal growth in mice, and genes dysregulated in cloned embryos. Serum largely eliminated differences in gene expression between media. Expression data on eight biomarker genes were also used to calculate an embryo competence index previously related to embryo survival. Serum lowered the embryo competence index for both media. In conclusion, actions of fetal bovine serum on the preimplantation embryo include changes in gene expression indicative of reduced embryo competence and possible alterations in fetal development.NEW & NOTEWORTHY Serum is commonly added to the culture medium to improve the production of bovine embryos in vitro, but its molecular consequences for the resultant embryo are unclear. Here, we showed that blastocysts produced in serum experienced changes in gene expression, including transcription factors and imprinted genes. An embryo competence index that predicts embryo's ability to establish pregnancy based on gene expression was reduced by serum, suggesting serum can reduce embryo survivability.
Collapse
Affiliation(s)
- Camila J Cuellar
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States
| | - Esraa A Ismail
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - McKenzie L J Haimon
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States
| | - Quinn A Hoorn
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States
| | - Maria Belen Rabaglino
- Department of Population Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter James Hansen
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
40
|
Ito J, Miyake K, Chiba T, Takahashi K, Uchida Y, Blackshear PJ, Asahara H, Karasuyama H. Tristetraprolin-mediated mRNA destabilization regulates basophil inflammatory responses. Allergol Int 2025; 74:263-273. [PMID: 39550253 DOI: 10.1016/j.alit.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Basophils, despite being the least common granulocytes, play crucial roles in type 2 immune responses, such as chronic allergic inflammation and protective immunity against parasites. However, the molecular mechanisms regulating basophil activation and inflammatory molecule production remain poorly understood. Therefore, we investigated the role of RNA-binding proteins, specifically tristetraprolin (TTP), in regulating inflammatory molecule production in basophils. METHODS Using antigen/IgE-stimulated basophils from wild-type (WT) and TTP-knockout (TTP-KO) mice, we performed bulk RNA sequencing, transcriptome-wide mRNA stability assays, and protein analyses. We also examined mRNA expression and protein production of inflammatory molecules in TTP-KO basophils under stimulation with IL-33 or LPS. Furthermore, we evaluated the in vivo significance of TTP in basophils using basophil-specific TTP-deficient mice and a hapten oxazolone-induced atopic dermatitis model. RESULTS TTP expression was upregulated in basophils following stimulation with antigen/IgE, IL-33, or LPS. Under these stimuli, TTP-KO basophils exhibited elevated mRNA expression of inflammatory molecules, such as Il4, Areg, Ccl3, and Cxcl2, compared to WT basophils. Transcriptome-wide mRNA stability assays revealed that TTP deficiency prolonged the mRNA half-life of these inflammatory mediators. Notably, the production of these inflammatory proteins was significantly increased in TTP-KO basophils. Moreover, basophil-specific TTP-deficient mice showed exacerbated oxazolone-induced atopic dermatitis-like skin allergic inflammation. CONCLUSIONS TTP is a key regulator of basophil activation, controlling the production of inflammatory mediators through mRNA destabilization. Our in vivo findings demonstrate that the absence of TTP in basophils significantly aggravates allergic skin inflammation, highlighting its potential as a therapeutic target for allergic diseases.
Collapse
Affiliation(s)
- Junya Ito
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan; Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Kensuke Miyake
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
| | - Tomoki Chiba
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Kazufusa Takahashi
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Yutaro Uchida
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Hajime Karasuyama
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
Laplante P, Rosa R, Nebot-Bral L, Goulas J, Pouvelle C, Nikolaev S, Silvin A, Kannouche PL. Effect of MisMatch repair deficiency on metastasis occurrence in a syngeneic mouse model. Neoplasia 2025; 62:101145. [PMID: 39985912 PMCID: PMC11905862 DOI: 10.1016/j.neo.2025.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Mismatch repair deficiency leads to high mutation rates and microsatellite instability (MSI-H), associated with immune infiltration and responsiveness to immunotherapies. In early stages, MSI-H tumors generally have a better prognosis and lower metastatic potential than microsatellite-stable (MSS) tumors, especially in colorectal cancer. However, in advanced stages, MSI-H tumors lose this survival advantage for reasons that remain unclear. We developed a syngeneic mouse model of MSI cancer by knocking out the MMR gene Msh2 in the metastatic 4T1 breast cancer cell line. This model mirrored genomic features of MSI-H cancers and showed reduction in metastatic incidence compared to their MSS counterparts. In MSI-H tumors, we observed an enrichment of immune gene-signatures that negatively correlated with metastasis incidence. A hybrid epithelial-mesenchymal signature, related to aggressiveness was detected only in metastatic MSI-H tumors. Interestingly, we identified immature myeloid cells at primary and metastatic sites in MSI-H tumor-bearing mice, suggesting that MMR deficiency elicits specific immune responses beyond T-cell activation.
Collapse
Affiliation(s)
- Pierre Laplante
- Paris-Saclay Université, CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Reginaldo Rosa
- Paris-Saclay Université, CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Laetitia Nebot-Bral
- Paris-Saclay Université, CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Jordane Goulas
- Paris-Saclay Université, CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Caroline Pouvelle
- Paris-Saclay Université, CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Sergey Nikolaev
- Paris-Saclay Université, Inserm-U981, Gustave Roussy, Villejuif, France
| | - Aymeric Silvin
- Paris-Saclay Université, Inserm-U1015, Gustave Roussy, Villejuif, France
| | - Patricia L Kannouche
- Paris-Saclay Université, CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France.
| |
Collapse
|
42
|
Trudler D, Ghatak S, Bula M, Parker J, Talantova M, Luevanos M, Labra S, Grabauskas T, Noveral SM, Teranaka M, Schahrer E, Dolatabadi N, Bakker C, Lopez K, Sultan A, Patel P, Chan A, Choi Y, Kawaguchi R, Stankiewicz P, Garcia-Bassets I, Kozbial P, Rosenfeld MG, Nakanishi N, Geschwind DH, Chan SF, Lin W, Schork NJ, Ambasudhan R, Lipton SA. Dysregulation of miRNA expression and excitation in MEF2C autism patient hiPSC-neurons and cerebral organoids. Mol Psychiatry 2025; 30:1479-1496. [PMID: 39349966 PMCID: PMC11919750 DOI: 10.1038/s41380-024-02761-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 03/20/2025]
Abstract
MEF2C is a critical transcription factor in neurodevelopment, whose loss-of-function mutation in humans results in MEF2C haploinsufficiency syndrome (MHS), a severe form of autism spectrum disorder (ASD)/intellectual disability (ID). Despite prior animal studies of MEF2C heterozygosity to mimic MHS, MHS-specific mutations have not been investigated previously, particularly in a human context as hiPSCs afford. Here, for the first time, we use patient hiPSC-derived cerebrocortical neurons and cerebral organoids to characterize MHS deficits. Unexpectedly, we found that decreased neurogenesis was accompanied by activation of a micro-(mi)RNA-mediated gliogenesis pathway. We also demonstrate network-level hyperexcitability in MHS neurons, as evidenced by excessive synaptic and extrasynaptic activity contributing to excitatory/inhibitory (E/I) imbalance. Notably, the predominantly extrasynaptic (e)NMDA receptor antagonist, NitroSynapsin, corrects this aberrant electrical activity associated with abnormal phenotypes. During neurodevelopment, MEF2C regulates many ASD-associated gene networks, suggesting that treatment of MHS deficits may possibly help other forms of ASD as well.
Collapse
Affiliation(s)
- Dorit Trudler
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Swagata Ghatak
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, an Off Campus Center of Homi Bhabha National Institute, Jatani, Odisha, India
| | - Michael Bula
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - James Parker
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Maria Talantova
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Melissa Luevanos
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sergio Labra
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Titas Grabauskas
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sarah Moore Noveral
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Mayu Teranaka
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Emily Schahrer
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Nima Dolatabadi
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Clare Bakker
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Kevin Lopez
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Abdullah Sultan
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Parth Patel
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Agnes Chan
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Yongwook Choi
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ivan Garcia-Bassets
- Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Piotr Kozbial
- Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Nobuki Nakanishi
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Program in Neurobehavioral Genetics, Department of Human Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shing Fai Chan
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Medicine, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Wei Lin
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Nicholas J Schork
- Translational Genomics Research Institute, Phoenix, AZ, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rajesh Ambasudhan
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
43
|
Nakajima S, Saito K, Fukai S, Sakuma M, Matsuishi A, Kanoda R, Maruyama Y, Suzuki H, Okayama H, Saito M, Mimura K, Nirei A, Kikuchi T, Hanayama H, Saze Z, Momma T, Nishiyama K, Suzutani T, Kono K. Activation of the tumor cell-intrinsic STING pathway induced by Fusobacterium nucleatum is associated with poor prognosis in esophageal cancer patients. Esophagus 2025; 22:239-249. [PMID: 39951185 DOI: 10.1007/s10388-025-01112-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/31/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Intratumoral Fusobacterium nucleatum (Fn) infection is closely associated with poor prognosis in esophageal cancer (EC) due to its impact on the tumor microenvironment (TME). The tumor cell-intrinsic cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is critical for regulating immune cell activation in the TME. However, the link between intratumoral Fn infection and the activation of the cGAS-STING pathway in tumor cells, as well as its effects on EC progression, remains largely unknown. METHODS In the present study, we investigated the impact of intratumoral Fn infection on the activation of the tumor cell-intrinsic cGAS-STING pathway and EC progression by analyzing our own EC cohort and performing in vitro experiments using co-cultures of EC-cell lines and Fn. RESULTS The expression of tumor cell-intrinsic STING was significantly associated with worse prognosis in Fn-high EC patients. Exposure to Fn significantly activated the STING pathway in EC cells. RNA-seq analysis revealed that exposure to Fn markedly activated cytokine-chemokine-related signaling pathways and induced the expression of several cytokines and chemokines in STING-expressing EC cells. Among the differentially expressed cytokine and chemokine genes in EC cells co-cultured with Fn, analysis of TCGA datasets demonstrated that the expression of CCL20, CXCL10, and CSF2 may be associated with poor prognosis in EC patients. CONCLUSION We revealed that the activation of the STING signaling pathway and the subsequent expression of cytokines and chemokines in EC cells induced by Fn infection may be closely associated with poor prognosis in EC patients.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan.
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan.
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Satoshi Fukai
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Mei Sakuma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Akira Matsuishi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Ryo Kanoda
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Yuya Maruyama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Hiroya Suzuki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Azuma Nirei
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Tomohiro Kikuchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| | - Kyoko Nishiyama
- Department of Microbiology, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Koji Kono
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan.
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan.
| |
Collapse
|
44
|
Frederick MI, Fyle E, Clouvel A, Abdesselam D, Hassan S. Targeting FEN1/EXO1 to enhance efficacy of PARP inhibition in triple-negative breast cancer. Transl Oncol 2025; 54:102337. [PMID: 40054125 PMCID: PMC11928819 DOI: 10.1016/j.tranon.2025.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. The only targeted therapeutic approach that has emerged for early TNBC patients with BRCA-mutations (BRCAMUT) are PARP inhibitors (PARPi). In combination, PARPi may benefit a larger cohort of TNBC patients. We used our previously identified 63-gene signature that was associated with PARPi response to identify candidate genes that could be therapeutic targets. We selected FEN1 for further investigation since its knockdown was associated with an increase in G2/M arrest, DNA damage, and apoptosis. We first tested LNT1, a FEN1/EXO1 inhibitor, in a panel of 10 TNBC cell lines. LNT1 sensitivity was identified predominantly in BRCA1-mutant/deficient cell lines. However, the combination of PARPi and LNT1 demonstrated a synergistic or additive effect in 7/10 cell lines, mainly in BRCA1/2 wild-type (BRCAWT) and BRCA2-mutant cell lines, with intrinsic and acquired resistance to PARPi. The greatest synergy was observed in a BRCA2-mutant cell line with acquired resistance to olaparib (HCC1395-OlaR), with a combination index value of 0.20. In the synergistic cell lines, BT549 (BRCAWT) and HCC1395-OlaR, the combination was associated with a rapid progression in DNA replication fork speed, an early and sustained increase in DNA damage in comparison to each of the single-agents. However, in the additive BRCA1/2 wild-type cell lines, MDAMB231 and HCC1806, the combination demonstrated a high DNA damage response that was largely driven by either talazoparib or LNT1. Therefore, targeting FEN1/EXO1 with PARPi is a promising targeted combination approach, particularly in the context of PARPi-resistant and BRCAWT TNBC.
Collapse
Affiliation(s)
- Mallory I Frederick
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada; Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), l'Institut de Cancer de Montreal, Montreal, QC H2X0A9, Canada
| | - Elicia Fyle
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada; Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), l'Institut de Cancer de Montreal, Montreal, QC H2X0A9, Canada
| | - Anna Clouvel
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), l'Institut de Cancer de Montreal, Montreal, QC H2X0A9, Canada
| | - Djihane Abdesselam
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada; Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), l'Institut de Cancer de Montreal, Montreal, QC H2X0A9, Canada
| | - Saima Hassan
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada; Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), l'Institut de Cancer de Montreal, Montreal, QC H2X0A9, Canada; Division of Surgical Oncology, Department of Surgery, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC H2X0C1, Canada.
| |
Collapse
|
45
|
Uscategui Calderon M, Spaeth ML, Granitto M, Gonzalez BA, Weirauch MT, Kottyan LC, Yutzey KE. GDF10 promotes rodent cardiomyocyte maturation during the postnatal period. J Mol Cell Cardiol 2025; 201:16-31. [PMID: 39909309 PMCID: PMC11925653 DOI: 10.1016/j.yjmcc.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Cardiomyocytes and cardiac fibroblasts undergo coordinated maturation after birth, and cardiac fibroblasts are required for postnatal cardiomyocyte maturation in mice. Here, we investigate the role of cardiac fibroblast-expressed Growth Differentiation Factor 10 (GDF10) in postnatal heart development. In neonatal mice, Gdf10 is expressed specifically in cardiac fibroblasts, with its highest expression coincident with the onset of cardiomyocyte cell cycle arrest and transition to hypertrophic growth. In neonatal rat ventricular myocyte (NRVM) cultures, GDF10 treatment promotes cardiomyocyte maturation indicated by increased binucleation, downregulation of cell cycle progression genes, and upregulation of cell cycle inhibitor genes. GDF10 treatment leads to an increase in cardiomyocyte cell size, together with increased expression of mature sarcomeric protein isoforms and decreased expression of fetal cardiac genes. RNAsequencing of GDF10-treated NRVM shows an increase in the expression of genes related to myocardial maturation, including upregulation of sodium and potassium channel genes. In vivo, loss of Gdf10 leads to a delay in myocardial maturation indicated by decreased cardiomyocyte cell size and binucleation, as well as increased mitotic activity, at postnatal (P) day 7. Further, induction of mature sarcomeric protein isoform gene expression is delayed, and expression of cell cycle progression genes is prolonged. However, by P10, indicators of cardiomyocyte maturation and mitotic activity are normalized in Gdf10-null hearts relative to controls. Together, these results implicate GDF10 as a novel crosstalk mediator between cardiomyocytes and cardiac fibroblasts, which is required for appropriate timing of cardiomyocyte maturation steps including binucleation, hypertrophy, mature sarcomeric isoform gene expression, and cell cycle arrest in the postnatal period.
Collapse
Affiliation(s)
- Maria Uscategui Calderon
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maria L Spaeth
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marissa Granitto
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brittany A Gonzalez
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leah C Kottyan
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine E Yutzey
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
46
|
Fernandez-Martinez A, Tanioka M, Ahn SG, Zagami P, Pascual T, Rediti M, Tang G, Hoadley KA, Venet D, Rashid NU, Spears PA, Di Cosimo S, de Azambuja E, Choudhury A, Rastogi P, Islam MN, Cortes J, Llombart-Cussac A, Swain SM, Sotiriou C, Prat A, Perou CM, Carey LA. Prognostic value of residual disease (RD) biology and gene expression changes during the neoadjuvant treatment in patients with HER2-positive early breast cancer (EBC). Ann Oncol 2025; 36:403-413. [PMID: 39706338 PMCID: PMC11949722 DOI: 10.1016/j.annonc.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND In human epidermal growth factor receptor 2 (HER2)-positive early breast cancer (EBC), we investigated tumor and immune changes during neoadjuvant treatment and their impact on residual disease (RD) biology and prognostic implications across four neoadjuvant studies of trastuzumab with or without lapatinib, and with or without chemotherapy: CALGB 40601, PAMELA, NeoALTTO, and NSABP B-41. PATIENTS AND METHODS We compared tumor and immune gene expression changes during neoadjuvant treatment and their association with event-free survival (EFS) by uni- and multivariable Cox regression models in different cohorts and timepoints: 452 RD samples at baseline including 169 with a paired RD, and biomarker changes during neoadjuvant therapy, evaluating model performance via the c-index. RESULTS Analysis of 169 paired tumor samples revealed a shift in intrinsic subtype proportions from HER2-enriched at baseline (50.3%) to normal-like (49.1%) followed by luminal A (18.9%) in RD. This luminal phenotypic change was supported by decreased correlation to the HER2-enriched centroid, ERBB2, and HER2 amplicon genes and increased correlation to the luminal A centroid (Wilcoxon test P < 0.001). Additionally, RD showed relative immune activation marked by significant increases in B-cell, CD8 T-cell, and natural killer cell signatures (Wilcoxon test P < 0.05). In multivariable Cox models, intrinsic subtypes at baseline provided more prognostic information, while immune gene expression signatures provided more prognostic information in RD. Notably, the best multivariable EFS model (c-index = 0.77) integrated the immunoglobulin G signature from RD samples (adjusted hazard ratio 0.45, 95% confidence interval 0.30-0.67, adjusted P = 0.002). CONCLUSIONS In patients with HER2-positive EBC and RD, tumor biomarkers provide more prognostic information at baseline. In contrast, immune biomarkers perform better for EFS prognosis in RD.
Collapse
Affiliation(s)
- A Fernandez-Martinez
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA; Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - M Tanioka
- Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Medical AI Project, Okayama, Japan
| | - S G Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - P Zagami
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA; University of Milan, Milan, Italy
| | - T Pascual
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; SOLTI Breast Cancer Cooperative Group, Barcelona, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - M Rediti
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - G Tang
- National Surgical Adjuvant Breast and Bowel Project (NSABP), Pittsburgh, USA; Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - K A Hoadley
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA; Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - D Venet
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - N U Rashid
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, USA
| | - P A Spears
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA
| | - S Di Cosimo
- Integrated Biology Platform, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - E de Azambuja
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Service d'Oncologie Médicale, Brussels, Belgium
| | - A Choudhury
- FTE of Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - P Rastogi
- National Surgical Adjuvant Breast and Bowel Project (NSABP), Pittsburgh, USA; UPMC Hillman Cancer Center, Pittsburgh, USA
| | - M N Islam
- Genomics and Epigenomics Shared Resource (GESR), Georgetown University Medical Center, Washington, USA
| | - J Cortes
- Oncology Department, International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain; IOB Madrid, Institute of Oncology, Hospital Beata Maria Ana, Madrid, Spain; Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Department of Medicine, Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Madrid, Spain
| | - A Llombart-Cussac
- Medical Oncology Department, Hospital Arnau de Vilanova, Valencia, Spain
| | - S M Swain
- National Surgical Adjuvant Breast and Bowel Project (NSABP), Pittsburgh, USA; Lombardi Comprehensive Cancer Center, Georgetown University Medical Center and MedStar Health, Washington, USA
| | - C Sotiriou
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - A Prat
- Department of Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - C M Perou
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA; Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - L A Carey
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, USA; Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
47
|
Giatti S, Cioffi L, Diviccaro S, Chrostek G, Piazza R, Melcangi RC. Transcriptomic Profile of the Male Rat Hypothalamus and Nucleus Accumbens After Paroxetine Treatment and Withdrawal: Possible Causes of Sexual Dysfunction. Mol Neurobiol 2025; 62:4935-4951. [PMID: 39495228 DOI: 10.1007/s12035-024-04592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Paroxetine, a selective serotonin reuptake inhibitor (SSRI), may induce sexual dysfunction during treatment and upon discontinuation. The mechanisms involved have been poorly explored so far. We have analyzed, by RNA sequencing, the whole transcriptomic profile in the hypothalamus and nucleus accumbens (NAc) (two brain regions involved in sexual behavior) of male rats daily treated for 2 weeks with paroxetine (T0) and at 1 month of withdrawal (T1). Data here reported show seven differentially expressed genes (DEGs) at T0 and 1 at T1 in the hypothalamus and 245 at T0 and 6 at T1 in the NAc. In addition, Gene-Set Enrichment, Gene Ontology, and Reactome analyses confirm that inflammatory signature and immune system activation were present at T0 in both brain areas. Considering that inflammation is generally associated with depression and that no paradigms inducing the pathology were here applied, these SSRI pro-depressive effects should be considered in patients without a clear indication of depression. Moreover, DEGs related to neurotransmitters with a role in sexual behavior and the reward system, such as dopamine (e.g., sialyltransferase 8B-ST8SIA3), glutamate (e.g., glutamate receptor ionotropic delta-2-GRID2) and GABA (e.g., glutamate decarboxylase type 2-GAD2) or associated with neurexin and neuroligin pathways and brain-derived neurotrophic factor (BDNF) signaling, were reported to be dysregulated in the NAc, further confirming dysfunction in this brain area. Interestingly, the analysis of DEGs altered at T1 in the NAc confirms the persistence of some of these side effects providing further information for post-SSRI sexual dysfunction (PSSD) etiopathogenesis.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Lucia Cioffi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Gabriela Chrostek
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Rocco Piazza
- Dipartimento Di Medicina E Chirurgia, Università Di Milano-Bicocca, Milan, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
48
|
Eudenbach M, Busam J, Bouchard C, Rossbach O, Zarnack K, Bauer UM. Assessment of PRMT6-dependent alternative splicing in pluripotent and differentiating NT2/D1 cells. Life Sci Alliance 2025; 8:e202402946. [PMID: 39900436 PMCID: PMC11791029 DOI: 10.26508/lsa.202402946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) is a well-characterized epigenetic regulator that methylates histone H3 at arginine 2 (H3R2me2a) in both promoter and enhancer regions, thereby modulating transcriptional initiation. We report here that PRMT6 also regulates gene expression at the post-transcriptional level in the neural pluripotent state and during neuronal differentiation of NT2/D1 cells. PRMT6 knockout causes widespread alternative splicing changes in NT2/D1 cells, most frequently cassette exon alterations. Most of the PRMT6-dependent splicing targets are not transcriptionally affected by the enzyme and regulated in an H3R2me2a-independent manner. However, for a small subset of splicing events, the PRMT6-mediated deposition of H3R2me2a overlaps with the splice site, suggesting a potential dual function in both transcriptional and co-/post-transcriptional regulation. The splicing targets of PRMT6 include ribosomal proteins, splicing factors, and chromatin-modifying enzymes such as PRMT4, DNMT3B, and ASH2L, some of which are associated with differentiation decisions. Taken together, our results in NT2/D1 cells show that PRMT6 exerts predominantly H3R2me2a-independent functions in RNA splicing, which may contribute to pluripotency and neuronal identity.
Collapse
Affiliation(s)
- Matthias Eudenbach
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Jonas Busam
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Faculty of Biology and Chemistry (FB08), Justus-Liebig-University of Giessen, Giessen, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
49
|
Zhao L, Tang P, Luo J, Liu J, Peng X, Shen M, Wang C, Zhao J, Zhou D, Fan Z, Chen Y, Wang R, Tang X, Xu Z, Liu Q. Genomic prediction with NetGP based on gene network and multi-omics data in plants. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1190-1201. [PMID: 39950326 PMCID: PMC11933868 DOI: 10.1111/pbi.14577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 03/26/2025]
Abstract
Genomic selection (GS) is a new breeding strategy. Generally, traditional methods are used for predicting traits based on the whole genome. However, the prediction accuracy of these models remains limited because they cannot fully reflect the intricate nonlinear interactions between genotypes and traits. Here, a novel single nucleotide polymorphism (SNP) feature extraction technique based on the Pearson-Collinearity Selection (PCS) is firstly presented and improves prediction accuracy across several known models. Furthermore, gene network prediction model (NetGP) is a novel deep learning approach designed for phenotypic prediction. It utilizes transcriptomic dataset (Trans), genomic dataset (SNP) and multi-omics dataset (Trans + SNP). The NetGP model demonstrated better performance compared to other models in genomic predictions, transcriptomic predictions and multi-omics predictions. NetGP multi-omics model performed better than independent genomic or transcriptomic prediction models. Prediction performance evaluations using several other plants' data showed good generalizability for NetGP. Taken together, our study not only offers a novel and effective tool for plant genomic selection but also points to new avenues for future plant breeding research.
Collapse
Affiliation(s)
- Longyang Zhao
- Guilin University of Electronic TechnologyGuilinChina
| | - Ping Tang
- Guilin University of Electronic TechnologyGuilinChina
| | - Jinjing Luo
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jianxiang Liu
- Guilin University of Electronic TechnologyGuilinChina
| | - Xin Peng
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural AffairsGuangzhouChina
- Guangdong Key Laboratory of New Technology in Rice BreedingGuangzhouChina
- Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Mengyuan Shen
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural AffairsGuangzhouChina
- Guangdong Key Laboratory of New Technology in Rice BreedingGuangzhouChina
- Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Chengrui Wang
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Junliang Zhao
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural AffairsGuangzhouChina
- Guangdong Key Laboratory of New Technology in Rice BreedingGuangzhouChina
- Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Degui Zhou
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural AffairsGuangzhouChina
- Guangdong Key Laboratory of New Technology in Rice BreedingGuangzhouChina
- Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Zhilan Fan
- Beijing Normal University ‐ Hong Kong Baptist University United International CollegeZhuhaiChina
| | - Yibo Chen
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural AffairsGuangzhouChina
- Guangdong Key Laboratory of New Technology in Rice BreedingGuangzhouChina
- Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Runfeng Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| | - Zhi Xu
- Guilin University of Electronic TechnologyGuilinChina
| | - Qi Liu
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural AffairsGuangzhouChina
- Guangdong Key Laboratory of New Technology in Rice BreedingGuangzhouChina
- Guangdong Rice Engineering LaboratoryGuangzhouChina
| |
Collapse
|
50
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|