1
|
Ritter M, Canus L, Gautam A, Vallet T, Zhong L, Lalande A, Boson B, Gandhi A, Bodoirat S, Burlaud-Gaillard J, Freitas N, Roingeard P, Barr JN, Lotteau V, Legros V, Mathieu C, Cosset FL, Denolly S. The low-density lipoprotein receptor and apolipoprotein E associated with CCHFV particles mediate CCHFV entry into cells. Nat Commun 2024; 15:4542. [PMID: 38806525 PMCID: PMC11133370 DOI: 10.1038/s41467-024-48989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
The Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging pathogen of the Orthonairovirus genus that can cause severe and often lethal hemorrhagic diseases in humans. CCHFV has a broad tropism and can infect a variety of species and tissues. Here, by using gene silencing, blocking antibodies or soluble receptor fragments, we identify the low-density lipoprotein receptor (LDL-R) as a CCHFV entry factor. The LDL-R facilitates binding of CCHFV particles but does not allow entry of Hazara virus (HAZV), another member of the genus. In addition, we show that apolipoprotein E (apoE), an exchangeable protein that mediates LDL/LDL-R interaction, is incorporated on CCHFV particles, though not on HAZV particles, and enhances their specific infectivity by promoting an LDL-R dependent entry. Finally, we show that molecules that decrease LDL-R from the surface of target cells could inhibit CCHFV infection. Our study highlights that CCHFV takes advantage of a lipoprotein receptor and recruits its natural ligand to promote entry into cells.
Collapse
Affiliation(s)
- Maureen Ritter
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Lola Canus
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Anupriya Gautam
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Thomas Vallet
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Li Zhong
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Alexandre Lalande
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Bertrand Boson
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Apoorv Gandhi
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Sergueï Bodoirat
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Julien Burlaud-Gaillard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032, Tours, France
- Université de Tours and CHRU de Tours, Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - Natalia Freitas
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Philippe Roingeard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032, Tours, France
- Université de Tours and CHRU de Tours, Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - John N Barr
- Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Vincent Legros
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Campus vétérinaire de Lyon, VetAgro Sup, Université de Lyon, Lyon, Marcy-l'Etoile, France
| | - Cyrille Mathieu
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| | - Solène Denolly
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| |
Collapse
|
2
|
Tariq M, Shoukat AB, Akbar S, Hameed S, Naqvi MZ, Azher A, Saad M, Rizwan M, Nadeem M, Javed A, Ali A, Aziz S. Epidemiology, risk factors, and pathogenesis associated with a superbug: A comprehensive literature review on hepatitis C virus infection. SAGE Open Med 2022; 10:20503121221105957. [PMID: 35795865 PMCID: PMC9252020 DOI: 10.1177/20503121221105957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/20/2022] [Indexed: 12/20/2022] Open
Abstract
Viral hepatitis is a major public health concern. It is associated with life threatening conditions including liver cirrhosis and hepatocellular carcinoma. Hepatitis C virus infects around 71 million people annually, resultantly 700,000 deaths worldwide. Extrahepatic associated chronic hepatitis C virus accounts for one fourth of total healthcare load. This review included a total of 150 studies that revealed almost 19 million people are infected with hepatitis C virus and 240,000 new cases are being reported each year. This trend is continually rising in developing countries like Pakistan where intravenous drug abuse, street barbers, unsafe blood transfusions, use of unsterilized surgical instruments and recycled syringes plays a major role in virus transmission. Almost 123–180 million people are found to be hepatitis C virus infected or carrier that accounts for 2%–3% of world’s population. The general symptoms of hepatitis C virus infection include fatigue, jaundice, dark urine, anorexia, fever malaise, nausea and constipation varying on severity and chronicity of infection. More than 90% of hepatitis C virus infected patients are treated with direct-acting antiviral agents that prevent progression of liver disease, decreasing the elevation of hepatocellular carcinoma. Standardizing the healthcare techniques, minimizing the street practices, and screening for viral hepatitis on mass levels for early diagnosis and prompt treatment may help in decreasing the burden on already fragmented healthcare system. However, more advanced studies on larger populations focusing on mode of transmission and treatment protocols are warranted to understand and minimize the overall infection and death stigma among masses.
Collapse
Affiliation(s)
- Mehlayl Tariq
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abu Bakar Shoukat
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sedrah Akbar
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samaia Hameed
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muniba Zainab Naqvi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Azher
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Saad
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,BreathMAT Lab, IAD, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, Pakistan
| | - Muhammad Rizwan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Nadeem
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Anum Javed
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asad Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Punjab, Pakistan
| | - Shahid Aziz
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,BreathMAT Lab, IAD, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, Pakistan
| |
Collapse
|
3
|
Pérez-Vargas J, Teppa E, Amirache F, Boson B, Pereira de Oliveira R, Combet C, Böckmann A, Fusil F, Freitas N, Carbone A, Cosset FL. A fusion peptide in preS1 and the human protein disulfide isomerase ERp57 are involved in hepatitis B virus membrane fusion process. eLife 2021; 10:64507. [PMID: 34190687 PMCID: PMC8282342 DOI: 10.7554/elife.64507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cell entry of enveloped viruses relies on the fusion between the viral and plasma or endosomal membranes, through a mechanism that is triggered by a cellular signal. Here we used a combination of computational and experimental approaches to unravel the main determinants of hepatitis B virus (HBV) membrane fusion process. We discovered that ERp57 is a host factor critically involved in triggering HBV fusion and infection. Then, through modeling approaches, we uncovered a putative allosteric cross-strand disulfide (CSD) bond in the HBV S glycoprotein and we demonstrate that its stabilization could prevent membrane fusion. Finally, we identified and characterized a potential fusion peptide in the preS1 domain of the HBV L glycoprotein. These results underscore a membrane fusion mechanism that could be triggered by ERp57, allowing a thiol/disulfide exchange reaction to occur and regulate isomerization of a critical CSD, which ultimately leads to the exposition of the fusion peptide.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Elin Teppa
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, Paris, France.,Sorbonne Université, Institut des Sciences du Calcul et des Données (ISCD), Paris, France
| | - Fouzia Amirache
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Bertrand Boson
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Rémi Pereira de Oliveira
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Christophe Combet
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 - CNRS 5286 - Université Lyon 1 - Centre Léon Bérard, Lyon, France
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS-Université Lyon 1, Lyon, France
| | - Floriane Fusil
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Natalia Freitas
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, Paris, France
| | - François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| |
Collapse
|
4
|
Shimotohno K. HCV Assembly and Egress via Modifications in Host Lipid Metabolic Systems. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036814. [PMID: 32122916 PMCID: PMC7778218 DOI: 10.1101/cshperspect.a036814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) proliferates by hijacking the host lipid machinery. In vitro replication systems revealed many aspects of the virus life cycle; in particular, viral utilization of host lipid metabolism during HCV proliferation. HCV interacts with lipid droplets (LDs) before starting the process of virus capsid formation at the lipid-rich endoplasmic reticulum (ER) membrane compartment. HCV buds into the ER via lipoprotein assembly and secretion. Exchangeable apolipoproteins, represented by apolipoprotein E (apoE), play pivotal roles in enhancing HCV-specific infectivity. HCV virions are likely to interact with other lipoproteins circulating in blood vessels and incorporate apolipoproteins as well as lipids. This review focuses on virus assembly and egress by briefly describing the recent advances in this area.
Collapse
|
5
|
Abo-Zeid Y, Williams GR, Touabi L, McLean GR. An investigation of rhinovirus infection on cellular uptake of poly (glycerol-adipate) nanoparticles. Int J Pharm 2020; 589:119826. [PMID: 32871219 PMCID: PMC7836899 DOI: 10.1016/j.ijpharm.2020.119826] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/24/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Viral infections represent 44% of newly emerging infections, and as is shown by the COVID-19 outbreak constitute a major risk to human health and wellbeing. Although there are many efficient antiviral agents, they still have drawbacks such as development of virus resistance and accumulation within off-target organs. Encapsulation of antiviral agents into nanoparticles (NPs) has been shown to improve bioavailability, control release, and reduce side effects. However, there is little quantitative understanding of how the uptake of NPs into virally infected cells compares to uninfected cells. In this work, the uptake of fluorescently labeled polymer NPs was investigated in several models of rhinovirus (RV) infected cells. Different multiplicities of RV infections (MOI) and timings of NPs uptake were also investigated. In some cases, RV infection resulted in a significant increase of NPs uptake, but this was not universally noted. For HeLa cells, RV-A16 and RV-A01 infection elevated NPs uptake upon increasing the incubation time, whereas at later timepoints (6 h) a reduced uptake was noted with RV-A01 infection (owing to decreased cell viability). Beas-2B cells exhibited more complex trends: decreases in NPs uptake (cf. uninfected cells) were observed at short incubation times following RV-A01 and RV-A16 infection. At later incubation times (4 h), we found a marked decrease of NPs uptake for RV-A01 infected cells but an increase in uptake with RV-A16 infected cells. Where increases in NPs uptake were found, they were very modest compared to results previously reported for a hepatitis C/ Huh7.5 cell line model. An increase in RV dose (MOI) was not associated with any notable change of NPs uptake. We argue that the diverse endocytic pathways among the different cell lines, together with changes in virus nature, size, and entry mechanism are responsible for these differences. These findings suggest that NPs entry into virally infected cells is a complex process, and further work is required to unravel the different factors which govern this. Undertaking this additional research will be crucial to develop potent nanomedicines for the delivery of antiviral agents.
Collapse
Affiliation(s)
- Yasmin Abo-Zeid
- Department of Pharmaceutics, Faculty of Pharmacy, Helwan University, Cairo, Egypt; UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK; Cellular and Molecular Immunology Research Centre, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK.
| | - Lila Touabi
- Cellular and Molecular Immunology Research Centre, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| | - Gary R McLean
- Cellular and Molecular Immunology Research Centre, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK; National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
6
|
Hepatitis B virus Core protein nuclear interactome identifies SRSF10 as a host RNA-binding protein restricting HBV RNA production. PLoS Pathog 2020; 16:e1008593. [PMID: 33180834 PMCID: PMC7707522 DOI: 10.1371/journal.ppat.1008593] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/01/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the existence of a preventive vaccine, chronic infection with Hepatitis B virus (HBV) affects more than 250 million people and represents a major global cause of hepatocellular carcinoma (HCC) worldwide. Current clinical treatments, in most of cases, do not eliminate viral genome that persists as a DNA episome in the nucleus of hepatocytes and constitutes a stable template for the continuous expression of viral genes. Several studies suggest that, among viral factors, the HBV core protein (HBc), well-known for its structural role in the cytoplasm, could have critical regulatory functions in the nucleus of infected hepatocytes. To elucidate these functions, we performed a proteomic analysis of HBc-interacting host-factors in the nucleus of differentiated HepaRG, a surrogate model of human hepatocytes. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs), which are involved in various aspects of mRNA metabolism. Among them, we focused our studies on SRSF10, a RBP that was previously shown to regulate alternative splicing (AS) in a phosphorylation-dependent manner and to control stress and DNA damage responses, as well as viral replication. Functional studies combining SRSF10 knockdown and a pharmacological inhibitor of SRSF10 phosphorylation (1C8) showed that SRSF10 behaves as a restriction factor that regulates HBV RNAs levels and that its dephosphorylated form is likely responsible for the anti-viral effect. Surprisingly, neither SRSF10 knock-down nor 1C8 treatment modified the splicing of HBV RNAs but rather modulated the level of nascent HBV RNA. Altogether, our work suggests that in the nucleus of infected cells HBc interacts with multiple RBPs that regulate viral RNA metabolism. Our identification of SRSF10 as a new anti-HBV restriction factor offers new perspectives for the development of new host-targeted antiviral strategies. Chronic infection with Hepatitis B virus (HBV) affects more than 250 million of people world-wide and is a major global cause of liver cancer. Current treatments lead to a significant reduction of viremia in patients. However, viral clearance is rarely obtained and the persistence of the HBV genome in the hepatocyte’s nucleus generates a stable source of viral RNAs and subsequently proteins which play important roles in immune escape mechanisms and liver disease progression. Therapies aiming at efficiently and durably eliminating viral gene expression are still required. In this study, we identified the nuclear partners of the HBV Core protein (HBc) to understand how this structural protein, responsible for capsid assembly in the cytoplasm, could also regulate viral gene expression. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs). One of these RBPs, SRSF10, was demonstrated to restrict HBV RNA levels and a drug, able to alter its phosphorylation, behaved as an antiviral compound capable of reducing viral gene expression. Altogether, this study sheds new light on novel regulatory functions of HBc and provides information relevant for the development of antiviral strategies aiming at preventing viral gene expression.
Collapse
|
7
|
Cosset FL, Mialon C, Boson B, Granier C, Denolly S. HCV Interplay with Lipoproteins: Inside or Outside the Cells? Viruses 2020; 12:v12040434. [PMID: 32290553 PMCID: PMC7232430 DOI: 10.3390/v12040434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major public health issue leading to chronic liver diseases. HCV particles are unique owing to their particular lipid composition, namely the incorporation of neutral lipids and apolipoproteins. The mechanism of association between HCV virion components and these lipoproteins factors remains poorly understood as well as its impact in subsequent steps of the viral life cycle, such as entry into cells. It was proposed that the lipoprotein biogenesis pathway is involved in HCV morphogenesis; yet, recent evidence indicated that HCV particles can mature and evolve biochemically in the extracellular medium after egress. In addition, several viral, cellular and blood components have been shown to influence and regulate this specific association. Finally, this specific structure and composition of HCV particles was found to influence entry into cells as well as their stability and sensitivity to neutralizing antibodies. Due to its specific particle composition, studying the association of HCV particles with lipoproteins remains an important goal towards the rational design of a protective vaccine.
Collapse
|
8
|
Chanut M, Granier C, Cosset FL, Denolly S. Maturation extracellulaire du virus de l’hépatite C. Med Sci (Paris) 2019; 35:616-618. [DOI: 10.1051/medsci/2019120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Perez-Vargas J, Amirache F, Boson B, Mialon C, Freitas N, Sureau C, Fusil F, Cosset FL. Enveloped viruses distinct from HBV induce dissemination of hepatitis D virus in vivo. Nat Commun 2019; 10:2098. [PMID: 31068585 PMCID: PMC6506506 DOI: 10.1038/s41467-019-10117-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) doesn't encode envelope proteins for packaging of its ribonucleoprotein (RNP) and typically relies on the surface glycoproteins (GPs) from hepatitis B virus (HBV) for virion assembly, envelopment and cellular transmission. HDV RNA genome can efficiently replicate in different tissues and species, raising the possibility that it evolved, and/or is still able to transmit, independently of HBV. Here we show that alternative, HBV-unrelated viruses can act as helper viruses for HDV. In vitro, envelope GPs from several virus genera, including vesiculovirus, flavivirus and hepacivirus, can package HDV RNPs, allowing efficient egress of HDV particles in the extracellular milieu of co-infected cells and subsequent entry into cells expressing the relevant receptors. Furthermore, HCV can propagate HDV infection in the liver of co-infected humanized mice for several months. Further work is necessary to evaluate whether HDV is currently transmitted by HBV-unrelated viruses in humans.
Collapse
Affiliation(s)
- Jimena Perez-Vargas
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Fouzia Amirache
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Chloé Mialon
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Natalia Freitas
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS Inserm U1134, 6 rue Alexandre Cabanel, F-75739, Paris, France
| | - Floriane Fusil
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France.
| |
Collapse
|
10
|
A serum protein factor mediates maturation and apoB-association of HCV particles in the extracellular milieu. J Hepatol 2019; 70:626-638. [PMID: 30553840 DOI: 10.1016/j.jhep.2018.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/15/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS In the sera of infected patients, hepatitis C virus (HCV) particles display heterogeneous forms with low-buoyant densities (<1.08), underscoring their lipidation via association with apoB-containing lipoproteins, which was proposed to occur during assembly or secretion from infected hepatocytes. However, the mechanisms inducing this association remain poorly-defined and most cell culture grown HCV (HCVcc) particles exhibit higher density (>1.08) and poor/no association with apoB. We aimed to elucidate the mechanisms of lipidation and to produce HCVcc particles resembling those in infected sera. METHODS We produced HCVcc particles of Jc1 or H77 strains from Huh-7.5 hepatoma cells cultured in standard conditions (10%-fetal calf serum) vs. in serum-free or human serum conditions before comparing their density profiles to patient-derived virus. We also characterized wild-type and Jc1/H77 hypervariable region 1 (HVR1)-swapped mutant HCVcc particles produced in serum-free media and incubated with different serum types or with purified lipoproteins. RESULTS Compared to serum-free or fetal calf serum conditions, production with human serum redistributed most HCVcc infectious particles to low density (<1.08) or very-low density (<1.04) ranges. In addition, short-time incubation with human serum was sufficient to shift HCVcc physical particles to low-density fractions, in time- and dose-dependent manners, which increased their specific infectivity, promoted apoB-association and induced neutralization-resistance. Moreover, compared to Jc1, we detected higher levels of H77 HCVcc infectious particles in very-low-density fractions, which could unambiguously be attributed to strain-specific features of the HVR1 sequence. Finally, all 3 lipoprotein classes, i.e., very-low-density, low-density and high-density lipoproteins, could synergistically induce low-density shift of HCV particles; yet, this required additional non-lipid serum factor(s) that include albumin. CONCLUSIONS The association of HCV particles with lipids may occur in the extracellular milieu. The lipidation level depends on serum composition as well as on HVR1-specific properties. These simple culture conditions allow production of infectious HCV particles resembling those of chronically-infected patients. LAY SUMMARY Hepatitis C virus (HCV) particles may associate with apoB and acquire neutral lipids after exiting cells, giving them low-buoyant density. The hypervariable region 1 (HVR1) is a majorviral determinant of E2 that controls this process. Besides lipoproteins, specific serum factors including albumin promote extracellular maturation of HCV virions. HCV particle production in vitro, with media of defined serum conditions, enables production of infectious particles resembling those of chronically infected patients.
Collapse
|
11
|
Alazard-Dany N, Denolly S, Boson B, Cosset FL. Overview of HCV Life Cycle with a Special Focus on Current and Possible Future Antiviral Targets. Viruses 2019; 11:v11010030. [PMID: 30621318 PMCID: PMC6356578 DOI: 10.3390/v11010030] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C infection is the leading cause of liver diseases worldwide and a major health concern that affects an estimated 3% of the global population. Novel therapies available since 2014 and 2017 are very efficient and the WHO considers HCV eradication possible by the year 2030. These treatments are based on the so-called direct acting antivirals (DAAs) that have been developed through research efforts by academia and industry since the 1990s. After a brief overview of the HCV life cycle, we describe here the functions of the different targets of current DAAs, the mode of action of these DAAs and potential future inhibitors.
Collapse
Affiliation(s)
- Nathalie Alazard-Dany
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - Solène Denolly
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| |
Collapse
|
12
|
Boyer A, Park SB, de Boer Y, Li Q, Liang TJ. TM6SF2 Promotes Lipidation and Secretion of Hepatitis C Virus in Infected Hepatocytes. Gastroenterology 2018; 155:1923-1935.e8. [PMID: 30144428 PMCID: PMC6279583 DOI: 10.1053/j.gastro.2018.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/17/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) co-opts the very-low-density lipoprotein pathway for morphogenesis, maturation, and secretion, and circulates as lipoviroparticles (LVPs). We investigated the functions and underlying mechanisms of the lipid-associated TM6SF2 protein in modulating LVP formation and the HCV life cycle. METHODS We knocked down or overexpressed TM6SF2 in hepatic cells and examined HCV infection, measuring viral RNA and protein levels and infectious LVP titers. The density of secreted LVPs was evaluated by iodixanol gradient assay. We measured levels and patterns of TM6SF2 in liver biopsies from 73 patients with chronic hepatitis C, livers of HCV-infected humanized Alb-uPA/SCID/beige mice, and HCV-infected Huh7.5.1 cells. RESULTS TM6SF2 knockdown in hepatocytes reduced viral RNA and infectious viral particle secretion without affecting HCV genome replication, translation, or assembly. Overexpression of TM6SF2 reduced intracellular levels of HCV RNA and infectious LVPs, and conversely increased their levels in the culture supernatants. In HCV-infected cells, TM6SF2 overexpression resulted in production of more infectious LVPs in the lower-density fractions of supernatant. HCV infection increased TM6SF2 expression in cultured cells, humanized livers of mice, and liver tissues of HCV patients. TM6SF2 messenger RNA levels correlated positively with HCV RNA levels in liver biopsies from patients. SREBF2 appears to mediate the ability of HCV to increase the expression of TM6SF2 in hepatic cells. CONCLUSIONS In studies of cells, mice and human liver tissues, we found TM6SF2 is required for maturation, lipidation, and secretion of infectious LVPs. HCV, in turn, up-regulates expression of TM6SF2 to facilitate productive infection.
Collapse
|
13
|
Burm R, Collignon L, Mesalam AA, Meuleman P. Animal Models to Study Hepatitis C Virus Infection. Front Immunol 2018; 9:1032. [PMID: 29867998 PMCID: PMC5960670 DOI: 10.3389/fimmu.2018.01032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
With more than 71 million chronically infected people, the hepatitis C virus (HCV) is a major global health concern. Although new direct acting antivirals have significantly improved the rate of HCV cure, high therapy cost, potential emergence of drug-resistant viral variants, and unavailability of a protective vaccine represent challenges for complete HCV eradication. Relevant animal models are required, and additional development remains necessary, to effectively study HCV biology, virus–host interactions and for the evaluation of new antiviral approaches and prophylactic vaccines. The chimpanzee, the only non-human primate susceptible to experimental HCV infection, has been used extensively to study HCV infection, particularly to analyze the innate and adaptive immune response upon infection. However, financial, practical, and especially ethical constraints have urged the exploration of alternative small animal models. These include different types of transgenic mice, immunodeficient mice of which the liver is engrafted with human hepatocytes (humanized mice) and, more recently, immunocompetent rodents that are susceptible to infection with viruses that are closely related to HCV. In this review, we provide an overview of the currently available animal models that have proven valuable for the study of HCV, and discuss their main benefits and weaknesses.
Collapse
Affiliation(s)
- Rani Burm
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Laura Collignon
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Ahmed Atef Mesalam
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium.,Therapeutic Chemistry Department, National Research Centre (NRC), Cairo, Egypt
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| |
Collapse
|
14
|
Lucifora J, Bonnin M, Aillot L, Fusil F, Maadadi S, Dimier L, Michelet M, Floriot O, Ollivier A, Rivoire M, Ait-Goughoulte M, Daffis S, Fletcher SP, Salvetti A, Cosset FL, Zoulim F, Durantel D. Direct antiviral properties of TLR ligands against HBV replication in immune-competent hepatocytes. Sci Rep 2018; 8:5390. [PMID: 29599452 PMCID: PMC5876392 DOI: 10.1038/s41598-018-23525-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Current therapies for chronic hepatitis B virus (HBV) infections are effective at decreasing the viral load in serum, but do not lead to viral eradication. Recent studies highlighted the therapeutic or “adjuvant” potential of immune-modulators. Our aim was to explore the direct anti-HBV effect of Toll-Like-Receptors (TLR) agonists in hepatocytes. HBV-infected primary human hepatocytes (PHH) or differentiated HepaRG cells (dHepaRG) were treated with various TLR agonists. Amongst all TLR ligands tested, Pam3CSK4 (TLR1/2-ligand) and poly(I:C)-(HMW) (TLR3/MDA5-ligand) were the best at reducing all HBV parameters. No or little viral rebound was observed after treatment arrest, implying a long-lasting effect on cccDNA. We also tested Riboxxol that features improved TLR3 specificity compared to poly(I:C)-(HMW). This agonist demonstrated a potent antiviral effect in HBV-infected PHH. Whereas, poly(I:C)-(HMW) and Pam3CSK4 mainly induced the expression of classical genes from the interferon or NF-κB pathway respectively, Riboxxol had a mixed phenotype. Moreover, TLR2 and TLR3 ligands can activate hepatocytes and immune cells, as demonstrated by antiviral cytokines produced by stimulated hepatocytes and peripheral blood mononuclear cells. In conclusion, our data highlight the potential of innate immunity activation in the direct control of HBV replication in hepatocytes, and support the development of TLR-based antiviral strategies.
Collapse
Affiliation(s)
- Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France.
| | - Marc Bonnin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Ludovic Aillot
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Floriane Fusil
- CIRI - International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Sarah Maadadi
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Laura Dimier
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Maud Michelet
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Océane Floriot
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Anaïs Ollivier
- CIRI - International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | | | - Malika Ait-Goughoulte
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070, Basel, Switzerland
| | | | | | - Anna Salvetti
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - François-Loïc Cosset
- CIRI - International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Fabien Zoulim
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France.,Department of Hepatology, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
15
|
Morozov VA, Lagaye S. Hepatitis C virus: Morphogenesis, infection and therapy. World J Hepatol 2018; 10:186-212. [PMID: 29527256 PMCID: PMC5838439 DOI: 10.4254/wjh.v10.i2.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver diseases including liver cirrhosis and hepatocellular carcinoma. Approximately 3% of the world population is infected with HCV. Thus, HCV infection is considered a public healthy challenge. It is worth mentioning, that the HCV prevalence is dependent on the countries with infection rates around 20% in high endemic countries. The review summarizes recent data on HCV molecular biology, the physiopathology of infection (immune-mediated liver damage, liver fibrosis and lipid metabolism), virus diagnostic and treatment. In addition, currently available in vitro, ex vivo and animal models to study the virus life cycle, virus pathogenesis and therapy are described. Understanding of both host and viral factors may in the future lead to creation of new approaches in generation of an efficient therapeutic vaccine.
Collapse
Affiliation(s)
- Vladimir Alexei Morozov
- Center for HIV and Retrovirology, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Sylvie Lagaye
- Department of Immunology, Institut Pasteur, INSERM U1223, Paris 75015, France
| |
Collapse
|
16
|
Denolly S, Mialon C, Bourlet T, Amirache F, Penin F, Lindenbach B, Boson B, Cosset FL. The amino-terminus of the hepatitis C virus (HCV) p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types. PLoS Pathog 2017; 13:e1006774. [PMID: 29253880 PMCID: PMC5749900 DOI: 10.1371/journal.ppat.1006774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/02/2018] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.
Collapse
Affiliation(s)
- Solène Denolly
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Chloé Mialon
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Thomas Bourlet
- GIMAP, EA 3064, Faculté de Médecine, Université de Saint-Etienne, Univ Lyon, Saint Etienne, France
| | - Fouzia Amirache
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François Penin
- IBCP—Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Univ Lyon, Lyon, France
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America
| | - Bertrand Boson
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François-Loïc Cosset
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
17
|
Gural N, Mancio-Silva L, He J, Bhatia SN. Engineered Livers for Infectious Diseases. Cell Mol Gastroenterol Hepatol 2017; 5:131-144. [PMID: 29322086 PMCID: PMC5756057 DOI: 10.1016/j.jcmgh.2017.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/02/2017] [Indexed: 01/18/2023]
Abstract
Engineered liver systems come in a variety of platform models, from 2-dimensional cocultures of primary human hepatocytes and stem cell-derived progeny, to 3-dimensional organoids and humanized mice. Because of the species-specificity of many human hepatropic pathogens, these engineered systems have been essential tools for biologic discovery and therapeutic agent development in the context of liver-dependent infectious diseases. Although improvement of existing models is always beneficial, and the addition of a robust immune component is a particular need, at present, considerable progress has been made using this combination of research platforms. We highlight advances in the study of hepatitis B and C viruses and malaria-causing Plasmodium falciparum and Plasmodium vivax parasites, and underscore the importance of pairing the most appropriate model system and readout modality with the particular experimental question at hand, without always requiring a platform that recapitulates human physiology in its entirety.
Collapse
Key Words
- 2D, 2-dimensional
- 3D
- 3D, 3-dimensional
- EBOV, Ebola virus
- Falciparum
- HBC, hepatitis C virus
- HBV
- HBV, hepatitis B virus
- HCV
- HLC, hepatocyte-like cells
- Hepatotropic
- LASV, Lassa virus
- Liver
- Liver Models
- MPCC, micropatterned coculture system
- Malaria
- PCR, polymerase chain reaction
- Pathogen
- SACC, self-assembling coculture
- Vivax
- iHLC, induced pluripotent stem cell–derived hepatocyte-like cells
- in vitro
- in vivo
Collapse
Affiliation(s)
- Nil Gural
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, Massachusetts,Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Liliana Mancio-Silva
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jiang He
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sangeeta N. Bhatia
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts,Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts,Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts,Broad Institute, Cambridge, Massachusetts,Howard Hughes Medical Institute, Chevy Chase, Maryland,Correspondence Address correspondence to: Sangeeta N. Bhatia, MD, PhD, Koch Institute for Integrative Cancer, Research at MIT, Building 76, Room 473, 500 Main Street, Cambridge, Massachusetts 02142.
| |
Collapse
|
18
|
Kremsdorf D, Strick-Marchand H. Modeling hepatitis virus infections and treatment strategies in humanized mice. Curr Opin Virol 2017; 25:119-125. [PMID: 28858692 DOI: 10.1016/j.coviro.2017.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022]
Abstract
Hepatitis viruses cause chronic liver diseases such as fibrosis, cirrhosis and hepatocellular carcinomas that are difficult to treat and constitute a global health problem. Species-specific viral tropism has limited the usefulness of small animal models to study the impact of viral hepatitis. Immunodeficient mice grafted with human hepatocytes are susceptible to hepatitis viruses B, C, D and E (HBV, HCV, HDV and HEV), developing full viral life cycles, and delivering a means to investigate virus-host interactions and antiviral treatments. These chimeric humanized mouse models have been further grafted with humanized immune systems to decipher immune responses following hepatotropic viral infections, the ensuing pathophysiology, and to test novel therapeutic strategies.
Collapse
Affiliation(s)
- Dina Kremsdorf
- INSERM U1135, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Helene Strick-Marchand
- Innate Immunity Unit, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France; INSERM U1223, 75724 Paris, France.
| |
Collapse
|
19
|
Andreo U, de Jong YP, Scull MA, Xiao JW, Vercauteren K, Quirk C, Mommersteeg MC, Bergaya S, Menon A, Fisher EA, Rice CM. Analysis of Hepatitis C Virus Particle Heterogeneity in Immunodeficient Human Liver Chimeric fah-/- Mice. Cell Mol Gastroenterol Hepatol 2017; 4:405-417. [PMID: 28936471 PMCID: PMC5602752 DOI: 10.1016/j.jcmgh.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/10/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) is a leading cause of chronic liver diseases and the most common indication for liver transplantation in the United States. HCV particles in the blood of infected patients are characterized by heterogeneous buoyant densities, likely owing to HCV association with lipoproteins. However, clinical isolates are not infectious in vitro and the relative infectivity of the particles with respect to their buoyant density therefore cannot be determined, pointing to the need for better in vivo model systems. METHODS To analyze the evolution of the buoyant density of in vivo-derived infectious HCV particles over time, we infected immunodeficient human liver chimeric fumaryl acetoacetate hydrolase-/- mice with J6/JFH1 and performed ultracentrifugation of infectious mouse sera on isopicnic iodixanol gradients. We also evaluated the impact of a high sucrose diet, which has been shown to increase very-low-density lipoprotein secretion by the liver in rodents, on lipoprotein and HCV particle characteristics. RESULTS Similar to the severe combined immunodeficiency disease/Albumin-urokinase plasminogen activator human liver chimeric mouse model, density fractionation of infectious mouse serum showed higher infectivity in the low-density fractions early after infection. However, over the course of the infection, viral particle heterogeneity increased and the overall in vitro infectivity diminished without loss of the human liver graft over time. In mice provided with a sucrose-rich diet we observed a minor shift in HCV infectivity toward lower density that correlated with a redistribution of triglycerides and cholesterol among lipoproteins. CONCLUSIONS Our work indicates that the heterogeneity in buoyant density of infectious HCV particles evolves over the course of infection and can be influenced by diet.
Collapse
Key Words
- Alb-uPA, Albumin-urokinase plasminogen activator
- CETP, cholesterol ester transfer protein
- FAH, fumaryl acetoacetate hydrolase
- FNRG, absence of fumaryl acetoacetate hydrolase on a immunodeficient NOD Rag gamma IL2 deficient mouse background
- FPLC, fast-performance liquid chromatography
- HCV
- HCV, hepatitis C virus
- HCVcc, cell culture–derived hepatitis C virus
- HDL, high-density lipoprotein
- Human Liver Chimeric Mice
- LVP, lipoviroparticle
- Lipoprotein
- Mouse Model
- NRG, nod rag γ
- NTBC, nitisinone
- PBS, phosphate-buffered saline
- SCID, severe combined immunodeficiency disease
- VLDL, very low density lipoprotein
- apo, apolipoprotein
Collapse
Affiliation(s)
- Ursula Andreo
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
- Correspondence Address correspondence to: Ursula Andreo, PhD, Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Avenue, Box 64, New York, New York 10065. fax: (212) 327-7048.Center for the Study of Hepatitis CThe Rockefeller University1230 York AvenueBox 64New YorkNew York 10065
| | - Ype P. de Jong
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
- Division of Gastroenterology and Hepatology, Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, New York
| | - Margaret A. Scull
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Jing W. Xiao
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Koen Vercauteren
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Corrine Quirk
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | | | - Sonia Bergaya
- Division of Cardiology, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Arjun Menon
- Division of Cardiology, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Edward A. Fisher
- Division of Cardiology, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Charles M. Rice
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| |
Collapse
|
20
|
Lavie M, Dubuisson J. Interplay between hepatitis C virus and lipid metabolism during virus entry and assembly. Biochimie 2017. [PMID: 28630011 DOI: 10.1016/j.biochi.2017.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is a major public health problem worldwide. In most cases, HCV infection becomes chronic, leading to the development of liver diseases that range from fibrosis to cirrhosis and hepatocellular carcinoma. Due to its medical importance, the HCV life cycle has been deeply characterized, and a unique feature of this virus is its interplay with lipids. Accordingly, all the steps of the virus life cycle are influenced by the host lipid metabolism. Indeed, due to their association with host lipoproteins, HCV particles have a unique lipid composition. Furthermore, the biogenesis pathway of very low density lipoproteins has been shown to be involved in HCV morphogenesis with apolipoprotein E being an essential element for the production of infectious HCV particles. Association of viral components with host cytoplasmic lipid droplets is also central to the HCV morphogenesis process. Finally, due to its close connection with host lipoproteins, HCV particle also uses several lipoprotein receptors to initiate its infectious cycle. In this review, we outline the way host lipoproteins participate to HCV particle composition, entry and assembly.
Collapse
Affiliation(s)
- Muriel Lavie
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection & Immunity of Lille, F-59000, Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection & Immunity of Lille, F-59000, Lille, France.
| |
Collapse
|
21
|
Boson B, Denolly S, Turlure F, Chamot C, Dreux M, Cosset FL. Daclatasvir Prevents Hepatitis C Virus Infectivity by Blocking Transfer of the Viral Genome to Assembly Sites. Gastroenterology 2017; 152:895-907.e14. [PMID: 27932311 DOI: 10.1053/j.gastro.2016.11.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Daclatasvir is a direct-acting antiviral agent and potent inhibitor of NS5A, which is involved in replication of the hepatitis C virus (HCV) genome, presumably via membranous web shaping, and assembly of new virions, likely via transfer of the HCV RNA genome to viral particle assembly sites. Daclatasvir inhibits the formation of new membranous web structures and, ultimately, of replication complex vesicles, but also inhibits an early assembly step. We investigated the relationship between daclatasvir-induced clustering of HCV proteins, intracellular localization of viral RNAs, and inhibition of viral particle assembly. METHODS Cell-culture-derived HCV particles were produced from Huh7.5 hepatocarcinoma cells in presence of daclatasvir for short time periods. Infectivity and production of physical particles were quantified and producer cells were subjected to subcellular fractionation. Intracellular colocalization between core, E2, NS5A, NS4B proteins, and viral RNAs was quantitatively analyzed by confocal microscopy and by structured illumination microscopy. RESULTS Short exposure of HCV-infected cells to daclatasvir reduced viral assembly and induced clustering of structural proteins with non-structural HCV proteins, including core, E2, NS4B, and NS5A. These clustered structures appeared to be inactive assembly platforms, likely owing to loss of functional connection with replication complexes. Daclatasvir greatly reduced delivery of viral genomes to these core clusters without altering HCV RNA colocalization with NS5A. In contrast, daclatasvir neither induced clustered structures nor inhibited HCV assembly in cells infected with a daclatasvir-resistant mutant (NS5A-Y93H), indicating that daclatasvir targets a mutual, specific function of NS5A inhibiting both processes. CONCLUSIONS In addition to inhibiting replication complex biogenesis, daclatasvir prevents viral assembly by blocking transfer of the viral genome to assembly sites. This leads to clustering of HCV proteins because viral particles and replication complex vesicles cannot form or egress. This dual mode of action of daclatasvir could explain its efficacy in blocking HCV replication in cultured cells and in treatment of patients with HCV infection.
Collapse
Affiliation(s)
- Bertrand Boson
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Solène Denolly
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Fanny Turlure
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Christophe Chamot
- Plateau Technique Imagerie/Microcopie, Lyon Bio Image, SFR-BioSciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL, France
| | - Marlène Dreux
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France.
| |
Collapse
|
22
|
Falcón V, Acosta-Rivero N, González S, Dueñas-Carrera S, Martinez-Donato G, Menéndez I, Garateix R, Silva JA, Acosta E, Kourı J. Ultrastructural and biochemical basis for hepatitis C virus morphogenesis. Virus Genes 2017; 53:151-164. [PMID: 28233195 DOI: 10.1007/s11262-017-1426-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/06/2017] [Indexed: 12/16/2022]
Abstract
Chronic infection with HCV is a leading cause of cirrhosis, hepatocellular carcinoma and liver failure. One of the least understood steps in the HCV life cycle is the morphogenesis of new viral particles. HCV infection alters the lipid metabolism and generates a variety of microenvironments in the cell cytoplasm that protect viral proteins and RNA promoting viral replication and assembly. Lipid droplets (LDs) have been proposed to link viral RNA synthesis and virion assembly by physically associating these viral processes. HCV assembly, envelopment, and maturation have been shown to take place at specialized detergent-resistant membranes in the ER, rich in cholesterol and sphingolipids, supporting the synthesis of luminal LDs-containing ApoE. HCV assembly involves a regulated allocation of viral and host factors to viral assembly sites. Then, virus budding takes place through encapsidation of the HCV genome and viral envelopment in the ER. Interaction of ApoE with envelope proteins supports the viral particle acquisition of lipids and maturation. HCV secretion has been suggested to entail the ion channel activity of viral p7, several components of the classical trafficking and autophagy pathways, ESCRT, and exosome-mediated export of viral RNA. Here, we review the most recent advances in virus morphogenesis and the interplay between viral and host factors required for the formation of HCV virions.
Collapse
Affiliation(s)
- Viviana Falcón
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba.
| | - Nelson Acosta-Rivero
- National Center for Scientific Research, P.O. Box 6414, 10600, Havana, Cuba. .,Centre for Protein Studies, Faculty of Biology, University of Havana, 10400, Havana, Cuba.
| | | | | | | | - Ivon Menéndez
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Rocio Garateix
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - José A Silva
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | | | | |
Collapse
|
23
|
Neglected but Important Role of Apolipoprotein E Exchange in Hepatitis C Virus Infection. J Virol 2016; 90:9632-9643. [PMID: 27535051 DOI: 10.1128/jvi.01353-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease, infecting approximately 170 million people worldwide. HCV assembly is tightly associated with the lipoprotein pathway. Exchangeable apolipoprotein E (apoE) is incorporated on infectious HCV virions and is important for infectious HCV virion morphogenesis and entry. Moreover, the virion apoE level is positively correlated with its ability to escape E2 antibody neutralization. However, the role of apoE exchange in the HCV life cycle is unclear. In this study, the relationship between apoE expression and cell permissiveness to HCV infection was assessed by infecting apoE knockdown and derived apoE rescue cell lines with HCV. Exchange of apoE between lipoproteins and HCV lipoviral particles (LVPs) was evaluated by immunoprecipitation, infectivity testing, and viral genome quantification. Cell and heparin column binding assays were applied to determine the attachment efficiency of LVPs with different levels of incorporated apoE. The results showed that cell permissiveness for HCV infection was determined by exogenous apoE-associated lipoproteins. Furthermore, apoE exchange did occur between HCV LVPs and lipoproteins, which was important to maintain a high apoE level on LVPs. Lipid-free apoE was capable of enhancing HCV infectivity for apoE knockdown cells but not apoE rescue cells. A higher apoE level on LVPs conferred more efficient LVP attachment to both the cell surface and heparin beads. This study revealed that exogenous apoE-incorporating lipoproteins from uninfected hepatocytes safeguarded the apoE level of LVPs for more efficient attachment during HCV infection. IMPORTANCE In this study, a neglected but important role of apoE exchange in HCV LVP infectivity after virus assembly and release was identified. The data indicated that apoE expression level in uninfected cells is important for high permissiveness to HCV infection. Secreted apoE-associated lipoprotein specifically enhances infection of HCV LVPs. apoE exchange between HCV LVP and lipoproteins is important to maintain an adequate apoE level on LVPs for their efficient attachment to cell surface. These data defined for the first time an extracellular role of exchangeable apoE in HCV infection and suggested that exchangeable apolipoproteins reach a natural equilibrium between HCV LVPs and lipoprotein particles, which provides a new perspective to the understanding of the heterogeneity of HCV LVPs in composition.
Collapse
|
24
|
Bukh J. The history of hepatitis C virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J Hepatol 2016; 65:S2-S21. [PMID: 27641985 DOI: 10.1016/j.jhep.2016.07.035] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
Abstract
The discovery of hepatitis C virus (HCV) in 1989 permitted basic research to unravel critical components of a complex life cycle for this important human pathogen. HCV is a highly divergent group of viruses classified in 7 major genotypes and a great number of subtypes, and circulating in infected individuals as a continuously evolving quasispecies destined to escape host immune responses and applied antivirals. Despite the inability to culture patient viruses directly in the laboratory, efforts to define the infectious genome of HCV resulted in development of experimental recombinant in vivo and in vitro systems, including replicons and infectious cultures in human hepatoma cell lines. And HCV has become a model virus defining new paradigms in virology, immunology and biology. For example, HCV research discovered that a virus could be completely dependent on microRNA for its replication since microRNA-122 is critical for the HCV life cycle. A number of other host molecules critical for HCV entry and replication have been identified. Thus, basic HCV research revealed important molecules for development of host targeting agents (HTA). The identification and characterization of HCV encoded proteins and their functional units contributed to the development of highly effective direct acting antivirals (DAA) against the NS3 protease, NS5A and the NS5B polymerase. In combination, these inhibitors have since 2014 permitted interferon-free therapy with cure rates above 90% among patients with chronic HCV infection; however, viral resistance represents a challenge. Worldwide control of HCV will most likely require the development of a prophylactic vaccine, and numerous candidates have been pursued. Research characterizing features critical for antibody-based virus neutralization and T cell based virus elimination from infected cells is essential for this effort. If the world community promotes an ambitious approach by applying current DAA broadly, continues to develop alternative viral- and host- targeted antivirals to combat resistant variants, and invests in the development of a vaccine, it would be possible to eradicate HCV. This would prevent about 500 thousand deaths annually. However, given the nature of HCV, the millions of new infections annually, a high chronicity rate, and with over 150 million individuals with chronic infection (which are frequently unidentified), this effort remains a major challenge for basic researchers, clinicians and communities.
Collapse
Affiliation(s)
- Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
25
|
Mouse Systems to Model Hepatitis C Virus Treatment and Associated Resistance. Viruses 2016; 8:v8060176. [PMID: 27338446 PMCID: PMC4926196 DOI: 10.3390/v8060176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/12/2016] [Accepted: 06/16/2016] [Indexed: 12/15/2022] Open
Abstract
While addition of the first-approved protease inhibitors (PIs), telaprevir and boceprevir, to pegylated interferon (PEG-IFN) and ribavirin (RBV) combination therapy significantly increased sustained virologic response (SVR) rates, PI-based triple therapy for the treatment of chronic hepatitis C virus (HCV) infection was prone to the emergence of resistant viral variants. Meanwhile, multiple direct acting antiviral agents (DAAs) targeting either the HCV NS3/4A protease, NS5A or NS5B polymerase have been approved and these have varying potencies and distinct propensities to provoke resistance. The pre-clinical in vivo assessment of drug efficacy and resistant variant emergence underwent a great evolution over the last decade. This field had long been hampered by the lack of suitable small animal models that robustly support the entire HCV life cycle. In particular, chimeric mice with humanized livers (humanized mice) and chimpanzees have been instrumental for studying HCV inhibitors and the evolution of drug resistance. In this review, we present the different in vivo HCV infection models and discuss their applicability to assess HCV therapy response and emergence of resistant variants.
Collapse
|
26
|
Ganesan M, Natarajan SK, Zhang J, Mott JL, Poluektova LI, McVicker BL, Kharbanda KK, Tuma DJ, Osna NA. Role of apoptotic hepatocytes in HCV dissemination: regulation by acetaldehyde. Am J Physiol Gastrointest Liver Physiol 2016; 310:G930-40. [PMID: 27056722 PMCID: PMC6842882 DOI: 10.1152/ajpgi.00021.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/31/2016] [Indexed: 02/08/2023]
Abstract
Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1β, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sathish Kumar Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jinjin Zhang
- School of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Justin L Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Benita L McVicker
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska;
| |
Collapse
|