1
|
Meng X, Li D, Kan R, Xiang Y, Pan L, Guo Y, Yu P, Luo P, Zou H, Huang L, Zhu Y, Mao B, He Y, Xie L, Xu J, Liu X, Li W, Chen Y, Zhu S, Yang Y, Yu X. Inhibition of ANGPTL8 protects against diabetes-associated cognitive dysfunction by reducing synaptic loss via the PirB signaling pathway. J Neuroinflammation 2024; 21:192. [PMID: 39095838 PMCID: PMC11297729 DOI: 10.1186/s12974-024-03183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2D) is associated with an increased risk of cognitive dysfunction. Angiopoietin-like protein 8 (ANGPTL8) is an important regulator in T2D, but the role of ANGPTL8 in diabetes-associated cognitive dysfunction remains unknown. Here, we explored the role of ANGPTL8 in diabetes-associated cognitive dysfunction through its interaction with paired immunoglobulin-like receptor B (PirB) in the central nervous system. METHODS The levels of ANGPTL8 in type 2 diabetic patients with cognitive dysfunction and control individuals were measured. Mouse models of diabetes-associated cognitive dysfunction were constructed to investigate the role of ANGPTL8 in cognitive function. The cognitive function of the mice was assessed by the Barnes Maze test and the novel object recognition test, and levels of ANGPTL8, synaptic and axonal markers, and pro-inflammatory cytokines were measured. Primary neurons and microglia were treated with recombinant ANGPTL8 protein (rA8), and subsequent changes were examined. In addition, the changes induced by ANGPTL8 were validated after blocking PirB and its downstream pathways. Finally, mice with central nervous system-specific knockout of Angptl8 and PirB-/- mice were generated, and relevant in vivo experiments were performed. RESULTS Here, we demonstrated that in the diabetic brain, ANGPTL8 was secreted by neurons into the hippocampus, resulting in neuroinflammation and impairment of synaptic plasticity. Moreover, neuron-specific Angptl8 knockout prevented diabetes-associated cognitive dysfunction and neuroinflammation. Mechanistically, ANGPTL8 acted in parallel to neurons and microglia via its receptor PirB, manifesting as downregulation of synaptic and axonal markers in neurons and upregulation of proinflammatory cytokine expression in microglia. In vivo, PirB-/- mice exhibited resistance to ANGPTL8-induced neuroinflammation and synaptic damage. CONCLUSION Taken together, our findings reveal the role of ANGPTL8 in the pathogenesis of diabetes-associated cognitive dysfunction and identify the ANGPTL8-PirB signaling pathway as a potential target for the management of this condition.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Danpei Li
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Ranran Kan
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yuxi Xiang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Limeng Pan
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yaming Guo
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Peng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Peiqiong Luo
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Huajie Zou
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Li Huang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yurong Zhu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Beibei Mao
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yi He
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Lei Xie
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Jialu Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Xiaoyan Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Li
- Computer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China.
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Fu CP, Oczypok EE, Ali H, DeLany JP, Reeves VL, Chang RF, Kershaw EE. Effect of physical activity in a weight loss program on circulating total ANGPTL8 concentrations in northern Americans with obesity: A prospective randomized controlled trial. Nutr Metab Cardiovasc Dis 2022; 32:1725-1733. [PMID: 35527126 PMCID: PMC9233128 DOI: 10.1016/j.numecd.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/22/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND AIMS The primary goals of this study were to clarify 1) the effect of weight loss by lifestyle intervention on circulating total angiopoietin-like protein 8 (ANGPTL8), and 2) the role of physical activity on serum total ANGPTL8 in northern Americans with obesity but without diabetes. METHODS AND RESULTS A total of 130 subjects with body mass index (BMI) ≧ 35 kg/m2 but without diabetes were recruited, and 121 subjects completed a weight loss program for data analysis. Abdominal adipose tissue was determined by non-contrast computed tomography (CT). Serum total ANGPTL8 was higher in the group with obesity than in the lean control group. Serum total ANGPTL8 was positively correlated with waist circumference (WC), BMI, fasting insulin, HOMA-IR, HOMA-B, QUICKI, hs-CRP, IL-6, and leptin. Serum total ANGPTL8 did not significantly differ between the two intervention groups at baseline, and it was significantly lower after weight loss, with comparable changes with diet only and diet plus physical activity. CONCLUSION Among northern Americans with obesity but without diabetes, a lifestyle modification resulted in significant reduction of circulating total ANGPTL8 concentrations in a 6-month weight-loss period. Although addition of physical activity resulted in greater total and liver fat loss, it did not promote further significant decline of serum total ANGPTL8 beyond diet alone.
Collapse
Affiliation(s)
- Chia-Po Fu
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Elizabeth E Oczypok
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hira Ali
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James P DeLany
- Translational Research Institute Adventhealth, Florida, USA
| | - Valerie L Reeves
- Customer Delivery, Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02412, USA
| | - Ruey-Feng Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
| | - Erin E Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
3
|
Rhyu J, Yu R. Newly discovered endocrine functions of the liver. World J Hepatol 2021; 13:1611-1628. [PMID: 34904032 PMCID: PMC8637678 DOI: 10.4254/wjh.v13.i11.1611] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/05/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
The liver, the largest solid visceral organ of the body, has numerous endocrine functions, such as direct hormone and hepatokine production, hormone metabolism, synthesis of binding proteins, and processing and redistribution of metabolic fuels. In the last 10 years, many new endocrine functions of the liver have been discovered. Advances in the classical endocrine functions include delineation of mechanisms of liver production of endocrine hormones [including 25-hydroxyvitamin D, insulin-like growth factor 1 (IGF-1), and angiotensinogen], hepatic metabolism of hormones (including thyroid hormones, glucagon-like peptide-1, and steroid hormones), and actions of specific binding proteins to glucocorticoids, sex steroids, and thyroid hormones. These studies have furthered insight into cirrhosis-associated endocrinopathies, such as hypogonadism, osteoporosis, IGF-1 deficiency, vitamin D deficiency, alterations in glucose and lipid homeostasis, and controversially relative adrenal insufficiency. Several novel endocrine functions of the liver have also been unraveled, elucidating the liver’s key negative feedback regulatory role in the pancreatic α cell-liver axis, which regulates pancreatic α cell mass, glucagon secretion, and circulating amino acid levels. Betatrophin and other hepatokines, such as fetuin-A and fibroblast growth factor 21, have also been discovered to play important endocrine roles in modulating insulin sensitivity, lipid metabolism, and body weight. It is expected that more endocrine functions of the liver will be revealed in the near future.
Collapse
Affiliation(s)
- Jane Rhyu
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Run Yu
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, United States
| |
Collapse
|
4
|
Kucukoglu O, Sowa JP, Mazzolini GD, Syn WK, Canbay A. Hepatokines and adipokines in NASH-related hepatocellular carcinoma. J Hepatol 2021; 74:442-457. [PMID: 33161047 DOI: 10.1016/j.jhep.2020.10.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing in industrialised societies; this is likely secondary to the increasing burden of non-alcoholic fatty liver disease (NAFLD), its progressive form non-alcoholic steatohepatitis (NASH), and the metabolic syndrome. Cumulative studies suggest that NAFLD-related HCC may also develop in non-cirrhotic livers. However, prognosis and survival do not differ between NAFLD- or virus-associated HCC. Thus, research has increasingly focused on NAFLD-related risk factors to better understand the biology of hepatocarcinogenesis and to develop new diagnostic, preventive, and therapeutic strategies. One important aspect thereof is the role of hepatokines and adipokines in NAFLD/NASH-related HCC. In this review, we compile current data supporting the use of hepatokines and adipokines as potential markers of disease progression in NAFLD or as early markers of NAFLD-related HCC. While much work must be done to elucidate the mechanisms and interactions underlying alterations to hepatokines and adipokines, current data support the possible utility of these factors - in particular, angiopoietin-like proteins, fibroblast growth factors, and apelin - for detection or even as therapeutic targets in NAFLD-related HCC.
Collapse
Affiliation(s)
- Ozlem Kucukoglu
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Jan-Peter Sowa
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Guillermo Daniel Mazzolini
- Laboratory of Gene Therapy, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires 999071, Argentina; Liver Unit, Hospital Universitario Austral, Universidad Austral, Argentina
| | - Wing-Kin Syn
- Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA; Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC, USA; Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Vizcaya, Spain
| | - Ali Canbay
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany.
| |
Collapse
|
5
|
Serum concentrations of selected adipokines in virus-related liver cirrhosis and hepatocellular carcinoma. Clin Exp Hepatol 2020; 6:235-242. [PMID: 33145430 PMCID: PMC7592085 DOI: 10.5114/ceh.2020.99517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Aim of the study Hepatotropic viruses cause metabolic disturbances such as insulin resistance and hepatosteatosis. Moreover, metabolic factors, such as insulin resistance, obesity, and type 2 diabetes mellitus, increase the risk for hepatocellular carcinoma (HCC) in patients with virus-related liver cirrhosis. Cytokines secreted by the adipose tissue (adipokines) may be implicated in these metabolic disturbances, but there is little evidence regarding the role of adipokines in virus-related cirrhosis and HCC. Thus, we studied whether serum concentrations of selected adipokines were altered in patients with virus-related liver cirrhosis, including patients with HCC. Material and methods We included 43 patients with liver cirrhosis due to chronic hepatitis B or chronic hepatitis C. Of these patients, 36 had HCC and 7 did not have any malignant lesions. In addition to routine clinical and laboratory variables, we analyzed serum concentrations of betatrophin, insulin, vaspin, visfatin, and irisin. Results Compared with healthy controls, patients with HCC had significantly increased vaspin concentrations and significantly reduced irisin concentrations. Compared with controls, patients with virus-related cirrhosis, with or without HCC, had significantly increased concentrations of insulin and betatrophin. The serum visfatin concentration was non-significantly higher in patients with virus-related cirrhosis than in controls. None of the studied adipokines was a significant predictor of HCC. Serum concentrations of the studied adipokines were not related to cirrhosis severity or HCC stage. Conclusions Metabolic parameters, including serum adipokine concentrations, are altered in patients with virus-related liver cirrhosis. Adipokines might be related to the HCC risk in these patients.
Collapse
|
6
|
Gülcü Bulmuş F, Melekoğlu R, Gürsu MF, Bağcı H, Celik Kavak E, Akyol A. Evaluation of second-trimester maternal serum betatrophin levels and lipid and carbohydrate metabolism parameters in patients with gestational diabetes mellitus. Turk J Obstet Gynecol 2020; 17:28-33. [PMID: 32341827 PMCID: PMC7171536 DOI: 10.4274/tjod.galenos.2020.67026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Objective: We investigated the role of betatrophin in the etiopathogenesis of gestational diabetes mellitus (GDM) and its association with lipid and carbohydrate metabolism in patients with GDM and normoglycemic pregnant women. Materials and Methods: A total of 60 patients [30 pregnant women with GDM (study group) and 30 healthy age-, body mass index-, and gestational agematched pregnant women (control group)] were included in this study. Serum betatrophin, fasting glucose, insulin, glycated hemoglobin A1c (HbA1c), and C-peptide levels, as well as lipid parameters, were measured. Results: Serum betatrophin, fasting glucose, HbA1c, insulin, and C-peptide levels were significantly higher in the GDM group than in the control group (p<0.001, p=0.009, p=0.013, p<0.001, and p<0.001, respectively). Levels of triglycerides and very-low-density lipoprotein cholesterol were significantly higher in the GDM group (p=0.020 and p=0.020, respectively), but total cholesterol and LDL cholesterol levels were similar in the two groups (p=0.810 and p=0.273, respectively). Betatrophin levels in the GDM group were correlated positively with insulin levels (r=0.336, p=0.009) and the homeostatic model assessment of insulin resistance (HOMA-IR) score (r=0.269, p=0.038), and negatively with the C-peptide levels (r=-0.399, p=0.002); they were not correlated with any other glucose or lipid parameters. Multivariate stepwise linear regression analysis demonstrated that insulin levels (β=0.134, p=0.013) and the HOMA-IR score (β=0.112, p=0.017) were associated independently with serum betatrophin levels. Conclusion: These results demonstrate that serum betatrophin levels were significantly higher in pregnant women with GDM than in normoglycemic pregnant women. The levels of betatrophin were correlated significantly with insulin resistance parameters, which is a key feature of GDM pathophysiology.
Collapse
Affiliation(s)
- Funda Gülcü Bulmuş
- Fırat University Faculty of Medicine, Vocational School of Health Services, Elazığ, Turkey
| | - Rauf Melekoğlu
- İnönü University Faculty of Medicine, Department of Obstetrics and Gynecology, Malatya, Turkey
| | - Mehmet Ferit Gürsu
- Fırat University Faculty of Medicine, Department of Biochemistry, Elazığ, Turkey
| | - Helin Bağcı
- Karabük University Training and Research Hospital, Clinic of Obstetrics and Gynecology, Karabük, Turkey
| | - Ebru Celik Kavak
- Fırat University Faculty of Medicine, Department of Obstetrics and Gynecology, Elazığ, Turkey
| | - Alpaslan Akyol
- Fırat University Faculty of Medicine, Department of Obstetrics and Gynecology, Elazığ, Turkey
| |
Collapse
|
7
|
Xu F, Chen Y, Wang N, Sun K. Bacteria-Derived Recombinant Human ANGPTL8/Betatrophin Significantly Increases the Level of Triglyceride. Protein J 2020; 38:472-478. [PMID: 30929133 PMCID: PMC6708509 DOI: 10.1007/s10930-019-09825-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ANGPTL8/Betatrophin has been implicated in the regulation of both glucose and triglyceride metabolism. However, its role in regulating glucose metabolism by promoting β cell proliferation remains controversial, and its physiological functions and molecular targets are largely unknown. Hence, it is of great importance to make recombinant protein and test its effects on β cell mass directly. In this study, the mature form gene of human ANGPTL8/betatrophin was obtained through chemical synthesis on to the vector pUCE, and the fusion protein was expressed in the Transetta (DE3)/pEASY-E2-betatrophin strain. The inclusion bodies were solubilized in urea and purified by Ni–NTA affinity chromatography. The yield of purified ANGPTL8/betatrophin was approximately 20 mg per liter of culture medium. In vitro studies revealed that the recombinant ANGPTL8/betatrophin had no proliferation effect on MIN6 cells but promoted TG levels in HepG2 cells. This method to generate bioactive ANGPTL8/betatrophin is a simple, practical and user-friendly protocol.
Collapse
Affiliation(s)
- Fangfang Xu
- Department of Research and Discipline Development, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China. .,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yuqing Chen
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Nan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Sun
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|
8
|
Hu H, Yuan G, Wang X, Sun J, Gao Z, Zhou T, Yin W, Cai R, Ye X, Wang Z. Effects of a diet with or without physical activity on angiopoietin-like protein 8 concentrations in overweight/obese patients with newly diagnosed type 2 diabetes: a randomized controlled trial. Endocr J 2019; 66:89-105. [PMID: 30429410 DOI: 10.1507/endocrj.ej18-0191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Angiopoietin-like protein 8 (ANGPTL8) is a newly discovered adipokine plays an important role in energy homoeostasis, obesity and type 2 diabetes (T2D). Although lifestyle modification in obesity and T2D is known to offer metabolic benefits, there is paucity of comprehensive data on change in ANGPTL8. We investigated the effect of lifestyle intervention on ANGPTL8 concentrations. 384 obese/overweight adults with newly diagnosed T2D were randomly assigned (1:1:1) to diet (n = 128), diet + activity (n = 128) or usual care (control, n = 128) groups. All patients received usual care. Besides, the diet group received a calorie-restricted diet aiming for a weight loss of 5-10%. The diet + activity group additionally received a pedometer-based walking program. Primary outcome was change in ANGPTL8 concentration at 6 months. Data were analyzed according to intention-to-treat. From baseline to 6 months, the median ANGPTL8 level changed from 804.38 pg/mL to 792.86 pg/mL in control group. Compared with control, ANGPTL8 decreased with diet (baseline-adjusted between-group difference was -121.00 pg/mL, 95% CI -177.47 to -64.53; p < 0.0001) and diet + activity (-126.16 pg/mL, -181.21 to -71.11; p < 0.0001). There was no greater effect of diet + activity compared with diet (-5.16 pg/mL, -53.63 to 43.31; p = 0.8348). Both effects disappeared after adjusting for change in body fat, but did not differ significantly when adjusting for physical activity. A 6-month intervention inducing weight loss by a calorie-restricted diet or diet + activity, resulted in significant decrease on ANGPTL8 concentration. These effects were established by change in total body fat, and not by change in physical activity.
Collapse
Affiliation(s)
- Hao Hu
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Jiangsu 212001, China
| | - Xinchen Wang
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Zhejiang 310012, China
| | - Jin Sun
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Zhaohua Gao
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Tingting Zhou
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Wenwen Yin
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Ruonan Cai
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Xing Ye
- Department of Cardiovascular Medicine, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Zhaoling Wang
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| |
Collapse
|
9
|
Pan R, Zhang H, Yu S, Deng J, Ma S, Li Y, Yuan G, Wang J. Betatrophin for diagnosis and prognosis of mothers with gestational diabetes mellitus. J Int Med Res 2018; 47:710-717. [PMID: 30392425 PMCID: PMC6381505 DOI: 10.1177/0300060518808683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Objectives Betatrophin is a widely used diagnostic marker for type 2 diabetes mellitus (DM), but its clinical utility in diagnosing gestational DM (GDM) is unclear. We evaluated the relationship between betatrophin and the risk of GDM as well as the ability of betatrophin to predict postpartum type 2 DM (PDM). Methods In total, 386 patients were categorized into those with and without PDM. All underwent the oral glucose tolerance test while pregnant. Betatrophin was assessed to examine the diagnostic characteristics of GDM. Results The betatrophin concentration was remarkably higher in patients with than without GDM. The patients were categorized into three groups; those with a betatrophin concentration of 300 to 600 pg/mL and >600 pg/mL had a higher risk of GDM after adjusting for body mass index, age, homeostatic model assessment–insulin resistance (HOMA-IR) concentration, and betatrophin concentration than those with a betatrophin concentration of <300 pg/mL. The HOMA-IR concentration tended to increase as the betatrophin concentration increased, and betatrophin was independently associated with GDM after adjusting for confounders. The betatrophin concentration was higher among pregnant patients with than without PDM. Conclusions Betatrophin has high sensitivity but low specificity for diagnosing GDM and may be a promising predictor of PDM.
Collapse
Affiliation(s)
- Ruirong Pan
- 1 Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,3 Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haiming Zhang
- 2 Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shuping Yu
- 1 Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jialiang Deng
- 1 Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Suxian Ma
- 1 Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yanyan Li
- 1 Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- 1 Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jifang Wang
- 1 Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|