1
|
Yi C, Liu J, Zhao S, Gong D, Xu B, Li A, Bian E, Tian D. Identification of a pro-protein synthesis osteosarcoma subtype for predicting prognosis and treatment. Sci Rep 2024; 14:16475. [PMID: 39014082 PMCID: PMC11252356 DOI: 10.1038/s41598-024-67547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/12/2024] [Indexed: 07/18/2024] Open
Abstract
Osteosarcoma (OS) is a heterogeneous malignant spindle cell tumor that is aggressive and has a poor prognosis. Although combining surgery and chemotherapy has significantly improved patient outcomes, the prognosis for OS patients with metastatic or recurrent OS has remained unsatisfactory. Therefore, it is imperative to gain a fresh perspective on OS development mechanisms and treatment strategies. After studying single-cell RNA sequencing (scRNA-seq) data in public databases, we identified seven OS subclonal types based on intra-tumor heterogeneity. Subsequently, we constructed a prognostic model based on pro-protein synthesis osteosarcoma (PPS-OS)-associated genes. Correlation analysis showed that the prognostic model performs extremely well in predicting OS patient prognosis. We also demonstrated that the independent risk factors for the prognosis of OS patients were tumor primary site, metastatic status, and risk score. Based on these factors, nomograms were constructed for predicting the 3- and 5-year survival rates. Afterward, the investigation of the tumor immune microenvironment (TIME) revealed the vital roles of γδ T-cell and B-cell activation. Drug sensitivity analysis and immune checkpoint analysis identified drugs that have potential application value in OS. Finally, the jumping translocation breakpoint (JTB) gene was selected for experimental validation. JTB silencing suppressed the proliferation, migration, and invasion of OS cells. Therefore, our research suggests that PPS-OS-related genes facilitate the malignant progression of OS and may be employed as prognostic indicators and therapeutic targets in OS.
Collapse
Affiliation(s)
- Chengfeng Yi
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shibing Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Deliang Gong
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Bohan Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ao Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
2
|
Du R, Chen P, Li M, Zhu Y, He Z, Huang X. Developing a novel immune infiltration-associated mitophagy prediction model for amyotrophic lateral sclerosis using bioinformatics strategies. Front Immunol 2024; 15:1360527. [PMID: 38601155 PMCID: PMC11005030 DOI: 10.3389/fimmu.2024.1360527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which leads to muscle weakness and eventual paralysis. Numerous studies have indicated that mitophagy and immune inflammation have a significant impact on the onset and advancement of ALS. Nevertheless, the possible diagnostic and prognostic significance of mitophagy-related genes associated with immune infiltration in ALS is uncertain. The purpose of this study is to create a predictive model for ALS using genes linked with mitophagy-associated immune infiltration. Methods ALS gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. Univariate Cox analysis and machine learning methods were applied to analyze mitophagy-associated genes and develop a prognostic risk score model. Subsequently, functional and immune infiltration analyses were conducted to study the biological attributes and immune cell enrichment in individuals with ALS. Additionally, validation of identified feature genes in the prediction model was performed using ALS mouse models and ALS patients. Results In this study, a comprehensive analysis revealed the identification of 22 mitophagy-related differential expression genes and 40 prognostic genes. Additionally, an 18-gene prognostic signature was identified with machine learning, which was utilized to construct a prognostic risk score model. Functional enrichment analysis demonstrated the enrichment of various pathways, including oxidative phosphorylation, unfolded proteins, KRAS, and mTOR signaling pathways, as well as other immune-related pathways. The analysis of immune infiltration revealed notable distinctions in certain congenital immune cells and adaptive immune cells between the low-risk and high-risk groups, particularly concerning the T lymphocyte subgroup. ALS mouse models and ALS clinical samples demonstrated consistent expression levels of four mitophagy-related immune infiltration genes (BCKDHA, JTB, KYNU, and GTF2H5) with the results of bioinformatics analysis. Conclusion This study has successfully devised and verified a pioneering prognostic predictive risk score for ALS, utilizing eighteen mitophagy-related genes. Furthermore, the findings indicate that four of these genes exhibit promising roles in the context of ALS prognostic.
Collapse
Affiliation(s)
- Rongrong Du
- School of Medicine, Nankai University, Tianjin, China
- Department of Neurology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Peng Chen
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Mao Li
- Department of Neurology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yahui Zhu
- Department of Neurology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Zhengqing He
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xusheng Huang
- School of Medicine, Nankai University, Tianjin, China
- Department of Neurology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| |
Collapse
|
3
|
Jayathirtha M, Jayaweera T, Whitham D, Sullivan I, Petre BA, Darie CC, Neagu AN. Two-Dimensional-PAGE Coupled with nLC-MS/MS-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in MCF7 Breast Cancer Cells Transfected for JTB Protein Silencing. Molecules 2023; 28:7501. [PMID: 38005222 PMCID: PMC10673289 DOI: 10.3390/molecules28227501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The identification of new cancer-associated genes/proteins, the characterization of their expression variation, the interactomics-based assessment of differentially expressed genes/proteins (DEGs/DEPs), and understanding the tumorigenic pathways and biological processes involved in BC genesis and progression are necessary and possible by the rapid and recent advances in bioinformatics and molecular profiling strategies. Taking into account the opinion of other authors, as well as based on our own team's in vitro studies, we suggest that the human jumping translocation breakpoint (hJTB) protein might be considered as a tumor biomarker for BC and should be studied as a target for BC therapy. In this study, we identify DEPs, carcinogenic pathways, and biological processes associated with JTB silencing, using 2D-PAGE coupled with nano-liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics applied to a MCF7 breast cancer cell line, for complementing and completing our previous results based on SDS-PAGE, as well as in-solution proteomics of MCF7 cells transfected for JTB downregulation. The functions of significant DEPs are analyzed using GSEA and KEGG analyses. Almost all DEPs exert pro-tumorigenic effects in the JTBlow condition, sustaining the tumor suppressive function of JTB. Thus, the identified DEPs are involved in several signaling and metabolic pathways that play pro-tumorigenic roles: EMT, ERK/MAPK, PI3K/AKT, Wnt/β-catenin, mTOR, C-MYC, NF-κB, IFN-γ and IFN-α responses, UPR, and glycolysis/gluconeogenesis. These pathways sustain cancer cell growth, adhesion, survival, proliferation, invasion, metastasis, resistance to apoptosis, tight junctions and cytoskeleton reorganization, the maintenance of stemness, metabolic reprogramming, survival in a hostile environment, and sustain a poor clinical outcome. In conclusion, JTB silencing might increase the neoplastic phenotype and behavior of the MCF7 BC cell line. The data is available via ProteomeXchange with the identifier PXD046265.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Isabelle Sullivan
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd. No. 22, 700505 Iasi, Romania
| |
Collapse
|
4
|
Jayathirtha M, Jayaweera T, Whitham D, Petre BA, Neagu AN, Darie CC. Two-Dimensional Polyacrylamide Gel Electrophoresis Coupled with Nanoliquid Chromatography-Tandem Mass Spectrometry-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in the MCF7 Breast Cancer Cell Line Transfected for Jumping Translocation Breakpoint Protein Overexpression. Int J Mol Sci 2023; 24:14714. [PMID: 37834160 PMCID: PMC10572688 DOI: 10.3390/ijms241914714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The identification of new genes/proteins involved in breast cancer (BC) occurrence is widely used to discover novel biomarkers and understand the molecular mechanisms of BC initiation and progression. The jumping translocation breakpoint (JTB) gene may act both as a tumor suppressor or oncogene in various types of tumors, including BC. Thus, the JTB protein could have the potential to be used as a biomarker in BC, but its neoplastic mechanisms still remain unknown or controversial. We previously analyzed the interacting partners of JTBhigh protein extracted from transfected MCF7 BC cell line using SDS-PAGE complemented with in-solution digestion, respectively. The previous results suggested the JTB contributed to the development of a more aggressive phenotype and behavior for the MCF7 BC cell line through synergistic upregulation of epithelial-mesenchymal transition (EMT), mitotic spindle, and fatty acid metabolism-related pathways. In this work, we aim to complement the previously reported JTB proteomics-based experiments by investigating differentially expressed proteins (DEPs) and tumorigenic pathways associated with JTB overexpression using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Statistically different gel spots were picked for protein digestion, followed by nanoliquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis. We identified six DEPs related to the JTBhigh condition vs. control that emphasize a pro-tumorigenic (PT) role. Twenty-one proteins, which are known to be usually overexpressed in cancer cells, emphasize an anti-tumorigenic (AT) role when low expression occurs. According to our previous results, proteins that have a PT role are mainly involved in the activation of the EMT process. Interestingly, JTB overexpression has been correlated here with a plethora of significant upregulated and downregulated proteins that sustain JTB tumor suppressive functions. Our present and previous results sustain the necessity of the complementary use of different proteomics-based methods (SDS-PAGE, 2D-PAGE, and in-solution digestion) followed by tandem mass spectrometry to avoid their limitations, with each method leading to the delineation of specific clusters of DEPs that may be merged for a better understanding of molecular pathways and neoplastic mechanisms related to the JTB's role in BC initiation and progression.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 20A, 700505 Iasi, Romania;
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| |
Collapse
|
5
|
Blood leukocyte transcriptional modules and differentially expressed genes associated with disease severity and age in COVID-19 patients. Sci Rep 2023; 13:898. [PMID: 36650374 PMCID: PMC9844197 DOI: 10.1038/s41598-023-28227-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Since the molecular mechanisms determining COVID-19 severity are not yet well understood, there is a demand for biomarkers derived from comparative transcriptome analyses of mild and severe cases, combined with patients' clinico-demographic and laboratory data. Here the transcriptomic response of human leukocytes to SARS-CoV-2 infection was investigated by focusing on the differences between mild and severe cases and between age subgroups (younger and older adults). Three transcriptional modules correlated with these traits were functionally characterized, as well as 23 differentially expressed genes (DEGs) associated to disease severity. One module, correlated with severe cases and older patients, had an overrepresentation of genes involved in innate immune response and in neutrophil activation, whereas two other modules, correlated with disease severity and younger patients, harbored genes involved in the innate immune response to viral infections, and in the regulation of this response. This transcriptomic mechanism could be related to the better outcome observed in younger COVID-19 patients. The DEGs, all hyper-expressed in the group of severe cases, were mostly involved in neutrophil activation and in the p53 pathway, therefore related to inflammation and lymphopenia. These biomarkers may be useful for getting a better stratification of risk factors in COVID-19.
Collapse
|
6
|
Jayathirtha M, Whitham D, Alwine S, Donnelly M, Neagu AN, Darie CC. Investigating the Function of Human Jumping Translocation Breakpoint Protein (hJTB) and Its Interacting Partners through In-Solution Proteomics of MCF7 Cells. Molecules 2022; 27:8301. [PMID: 36500393 PMCID: PMC9740069 DOI: 10.3390/molecules27238301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Human jumping translocation breakpoint (hJTB) gene is located on chromosome 1q21 and is involved in unbalanced translocation in many types of cancer. JTB protein is ubiquitously present in normal cells but it is found to be overexpressed or downregulated in various types of cancer cells, where this protein and its isoforms promote mitochondrial dysfunction, resistance to apoptosis, genomic instability, proliferation, invasion and metastasis. Hence, JTB could be a tumor biomarker for different types of cancer, such as breast cancer (BC), and could be used as a drug target for therapy. However, the functions of the protein or the pathways through which it increases cell proliferation and invasiveness of cancer cells are not well-known. Therefore, we aim to investigate the functions of JTB by using in-solution digestion-based cellular proteomics of control and upregulated and downregulated JTB protein in MCF7 breast cancer cell line, taking account that in-solution digestion-based proteomics experiments are complementary to the initial in-gel based ones. Proteomics analysis allows investigation of protein dysregulation patterns that indicate the function of the protein and its interacting partners, as well as the pathways and biological processes through which it functions. We concluded that JTB dysregulation increases the epithelial-mesenchymal transition (EMT) potential and cell proliferation, harnessing cytoskeleton organization, apical junctional complex, metabolic reprogramming, and cellular proteostasis. Deregulated JTB expression was found to be associated with several proteins involved in mitochondrial organization and function, oxidative stress (OS), apoptosis, and interferon alpha and gamma signaling. Consistent and complementary to our previous results emerged by using in-gel based proteomics of transfected MCF7 cells, JTB-related proteins that are overexpressed in this experiment suggest the development of a more aggressive phenotype and behavior for this luminal type A non-invasive/poor-invasive human BC cell line that does not usually migrate or invade compared with the highly metastatic MDA-MB-231 cells. This more aggressive phenotype of MCF7 cells related to JTB dysregulation and detected by both in-gel and in-solution proteomics could be promoted by synergistic upregulation of EMT, Mitotic spindle and Fatty acid metabolism pathways. However, in both JTB dysregulated conditions, several downregulated JTB-interacting proteins predominantly sustain antitumor activities, attenuating some of the aggressive phenotypical and behavioral traits promoted by the overexpressed JTB-related partners.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Mary Donnelly
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “AlexandruIoanCuza” University of Iasi, Carol I bvd. No. 20A, 700505 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
7
|
Jacobs NR, Norton PA. Role of chromosome 1q copy number variation in hepatocellular carcinoma. World J Hepatol 2021; 13:662-672. [PMID: 34239701 PMCID: PMC8239492 DOI: 10.4254/wjh.v13.i6.662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Chromosome 1q often has been observed to be amplified in hepatocellular carcinoma. This review summarizes literature reports of multiple genes that have been proposed as possible 1q amplification drivers. These largely fall within 1q21-1q23. In addition, publicly available copy number alteration data from The Cancer Genome Atlas project were used to identify additional candidate genes involved in carcinogenesis. The most frequent location for gene amplification was 1q22, consistent with the results of the literature search. The genes TPM3 and NUF2 were found to be candidates whose amplification and/or mRNA up-regulation was most highly associated with poorer hepatocellular carcinoma outcomes.
Collapse
Affiliation(s)
- Nathan R Jacobs
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Pamela A Norton
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| |
Collapse
|
8
|
Mori K, Uchida T, Yoshie T, Mizote Y, Ishikawa F, Katsuyama M, Shibanuma M. A mitochondrial ROS pathway controls matrix metalloproteinase 9 levels and invasive properties in RAS-activated cancer cells. FEBS J 2018; 286:459-478. [PMID: 30281903 PMCID: PMC7379617 DOI: 10.1111/febs.14671] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/29/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are tissue‐remodeling enzymes involved in the processing of various biological molecules. MMPs also play important roles in cancer metastasis, contributing to angiogenesis, intravasation of tumor cells, and cell migration and invasion. Accordingly, unraveling the signaling pathways controlling MMP activities could shed additional light on cancer biology. Here, we report a molecular axis, comprising the molecular adaptor hydrogen peroxide‐inducible clone‐5 (HIC‐5), NADPH oxidase 4 (NOX4), and mitochondria‐associated reactive oxygen species (mtROS), that regulates MMP9 expression and may be a target to suppress cancer metastasis. We found that this axis primarily downregulates mtROS levels which stabilize MMP9 mRNA. Specifically, HIC‐5 suppressed the expression of NOX4, the source of the mtROS, thereby decreasing mtROS levels and, consequently, destabilizing MMP9 mRNA. Interestingly, among six cancer cell lines, only EJ‐1 and MDA‐MB‐231 cells exhibited upregulation of NOX4 and MMP9 expression after shRNA‐mediated HIC‐5 knockdown. In these two cell lines, activating RAS mutations commonly occur, suggesting that the HIC‐5–mediated suppression of NOX4 depends on RAS signaling, a hypothesis that was supported experimentally by the introduction of activated RAS into mammary epithelial cells. Notably, HIC‐5 knockdown promoted lung metastasis of MDA‐MB‐231 cancer cells in mice. The tumor growth of HIC‐5–silenced MDA‐MB‐231 cells at the primary sites was comparable to that of control cells. Consistently, the invasive properties of the cells, but not their proliferation, were enhanced by the HIC‐5 knockdown in vitro. We conclude that NOX4‐mediated mtROS signaling increases MMP9 mRNA stability and affects cancer invasiveness but not tumor growth.
Collapse
Affiliation(s)
- Kazunori Mori
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Tetsu Uchida
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Toshihiko Yoshie
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Yuko Mizote
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Fumihiro Ishikawa
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Japan
| | - Motoko Shibanuma
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
9
|
Yin L, Zheng LJ, Jiang X, Liu WB, Han F, Cao J, Liu JY. Effects of Low-Dose Diethylstilbestrol Exposure on DNA Methylation in Mouse Spermatocytes. PLoS One 2015; 10:e0143143. [PMID: 26588706 PMCID: PMC4654501 DOI: 10.1371/journal.pone.0143143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/30/2015] [Indexed: 12/31/2022] Open
Abstract
Evidence from previous studies suggests that the male reproductive system can be disrupted by fetal or neonatal exposure to diethylstilbestrol (DES). However, the molecular basis for this effect remains unclear. To evaluate the effects of DES on mouse spermatocytes and to explore its potential mechanism of action, the levels of DNA methyltransferases (DNMTs) and DNA methylation induced by DES were detected. The results showed that low doses of DES inhibited cell proliferation and cell cycle progression and induced apoptosis in GC-2 cells, an immortalized mouse pachytene spermatocyte-derived cell line, which reproduces primary cells responses to E2. Furthermore, global DNA methylation levels were increased and the expression levels of DNMTs were altered in DES-treated GC-2 cells. A total of 141 differentially methylated DNA sites were detected by microarray analysis. Rxra, an important component of the retinoic acid signaling pathway, and mybph, a RhoA pathway-related protein, were found to be hypermethylated, and Prkcd, an apoptosis-related protein, was hypomethylated. These results showed that low-dose DES was toxic to spermatocytes and that DNMT expression and DNA methylation were altered in DES-exposed cells. Taken together, these data demonstrate that DNA methylation likely plays an important role in mediating DES-induced spermatocyte toxicity in vitro.
Collapse
Affiliation(s)
- Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Li-juan Zheng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
- Gansu People’s Hospital, Lanzhou, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Wen-bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jin-yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
10
|
Xie Y, Li Q, Yang Q, Yang M, Zhang Z, Zhu L, Yan H, Feng R, Zhang S, Huang C, Liu Z, Wen T. Overexpression of DCF1 inhibits glioma through destruction of mitochondria and activation of apoptosis pathway. Sci Rep 2014; 4:3702. [PMID: 24424470 PMCID: PMC3892183 DOI: 10.1038/srep03702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 01/29/2023] Open
Abstract
Gliomas are the most common brain tumors affecting the central nervous system and are associated with a high mortality rate. DCF1 is a membrane protein that was previously found to play a role in neural stem cell differentiation. In the present study, we found that overexpression of dcf1 significantly inhibited cell proliferation, migration, and invasion and dramatically promoted apoptosis in the glioblastoma U251 cell line. DCF1 deletion mutations in the functional region showed that the complete structure of DCF1 was necessary for apoptosis. Furthermore, significantly lower tumorigenicity was observed in athymic nude mice by transplanting U251 cells overexpressing dcf1. To decode the apoptosis induced by dcf1, mitochondrial structure and membrane potential in glioma cells were investigated and the results indicated obvious mitochondrial swelling, destruction of cristae, and a significant decline in membrane potential. Mechanismly, caspase-3 signaling was activated. Finally, endogenous dcf1 silence in U251 cells was investigated. Results showed a highly methylation at −1339 and −1322 position at dcf1 promoter sequence, revealing the causal relationship between dcf1 gene and tumorigencicity. The present study identified a previously unknown cancer apoptosis mechanism involving dcf1 overexpression and provided a novel approach to potentially treat glioma patients.
Collapse
Affiliation(s)
- Yuqiong Xie
- 1] Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China [2] Institute of Systems Biology, Shanghai University, Shanghai 200444, China [3]
| | - Qiang Li
- 1] Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China [2] Institute of Systems Biology, Shanghai University, Shanghai 200444, China [3]
| | - Qingbo Yang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Mei Yang
- 1] Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China [2] Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| | - Zhifeng Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Liucun Zhu
- Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| | - Huang Yan
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ruili Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shiqing Zhang
- 1] Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China [2] Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| | - Chen Huang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zengrong Liu
- Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| | - Tieqiao Wen
- 1] Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China [2] Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
A mitochondrial thioredoxin-sensitive mechanism regulates TGF-β-mediated gene expression associated with epithelial–mesenchymal transition. Biochem Biophys Res Commun 2014; 443:821-7. [DOI: 10.1016/j.bbrc.2013.12.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 12/28/2022]
|
12
|
Mori K, Hamanaka H, Oshima Y, Araki Y, Ishikawa F, Nose K, Shibanuma M. A HIC-5- and KLF4-dependent mechanism transactivates p21(Cip1) in response to anchorage loss. J Biol Chem 2012; 287:38854-65. [PMID: 23007394 DOI: 10.1074/jbc.m112.377721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Anchorage loss elicits a set of responses in cells, such as transcriptional changes, in order to prevent inappropriate cell growth in ectopic environments. However, the mechanisms underlying these responses are poorly understood. In this study, we investigated the transcriptional up-regulation of cyclin-dependent kinase inhibitor p21(Cip1) during anchorage loss, which is important for cell cycle arrest of nonadherent cells in the G1 phase. Up-regulation was mediated by an upstream element, designated as the detachment-responsive element (DRE), that contained Kruppel-like factor 4 (KLF4) and runt-related transcription factor 1 (RUNX1) recognition sites; both of these together were necessary for transactivation, as individually they were insufficient. RNAi experiments revealed that KLF4 and a multidomain adaptor protein, hydrogen peroxide-inducible clone 5 (HIC-5), were critically involved in DRE transactivation. The role of HIC-5 in this mechanism was to tether KLF4 to DNA sites in response to cellular detachment. In addition, further analysis suggested that oligomerization and subsequent nuclear matrix localization of HIC-5, which was accelerated spontaneously in cells during anchorage loss, was assumed to potentiate the scaffolding function of HIC-5 in the nucleus and consequently regulate p21(Cip1) transcription in a manner responding to anchorage loss. At the RUNX1 site, a LIM-only protein, CRP2, imposed negative regulation on transcription, which appeared to be removed by anchorage loss and contributed to increased transcriptional activity of DRE together with regulation at the KLF4 sites. In conclusion, this study revealed a novel transcriptional mechanism that regulated gene expression in a detachment-dependent manner, thereby contributing to anchorage-dependent cell growth.
Collapse
Affiliation(s)
- Kazunori Mori
- Department of Molecular Biology, Division of Cancer Cell Biology, Showa University School of Pharmacy, Tokyo 142-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Shibanuma M, Ishikawa F, Kobayashi M, Katayama K, Miyoshi H, Wakamatsu M, Mori K, Nose K. Critical roles of the cAMP-responsive element-binding protein-mediated pathway in disorganized epithelial phenotypes caused by mitochondrial dysfunction. Cancer Sci 2012; 103:1803-10. [PMID: 22726539 DOI: 10.1111/j.1349-7006.2012.02369.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 11/30/2022] Open
Abstract
In most human cancers, somatic mutations have been identified in the mtDNA; however, their significance remains unclear. We recently discovered that NMuMG mouse mammary epithelial cells, when deprived of mitochondria or following inhibition of respiratory activity, undergo epithelial morphological disruption accompanied with irregular edging of E-cadherin, the appearance of actin stress fibers, and an altered gene expression profile. In this study, using the mtDNA-less pseudo ρ0 cells obtained from NMuMG mouse mammary epithelial cells, we examined the roles of two mitochondrial stress-associated transcription factors, cAMP-responsive element-binding protein (CREB) and C/EBP homologous protein-10 (CHOP), in the disorganization of epithelial phenotypes. We found that the expression of matrix metalloproteinase-13 and that of GADD45A, SNAIL and integrin α1 in the ρ0 cells were regulated by CHOP and CREB, respectively. Of note, knockdown and pharmacological inhibition of CREB ameliorated the disrupted epithelial morphology. It is interesting to note that the expression of high mobility group AT-hook 2 (HMGA2), a non-histone chromatin protein implicated in malignant neoplasms, was increased at the protein level through the CREB pathway. Here, we reveal how the activation of the CREB/HMGA2 pathway is implicated in the repression of integrin α1 expression in HepG2 human cancer cells, highlighting the importance of the CREB/HMGA2 pathway in malignant transformation associated with mitochondrial dysfunction, thereby raising the possibility that the pathway indirectly interferes with the cell-cell adhesion structure by influencing the cell-extracellular matrix adhesion status. Overall, the data suggest that mitochondrial dysfunction potentially contributes to neoplastic transformation of epithelial cells through the activation of these transcriptional pathways.
Collapse
Affiliation(s)
- Motoko Shibanuma
- Department of Cancer Cell Biology, Showa University School of Pharmacy, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu YP, Yang XN, Jazag A, Pan JS, Hu TH, Liu JJ, Guleng B, Ren JL. HBsAg inhibits the translocation of JTB into mitochondria in HepG2 cells and potentially plays a role in HCC progression. PLoS One 2012; 7:e36914. [PMID: 22615844 PMCID: PMC3352868 DOI: 10.1371/journal.pone.0036914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/10/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS The expression of the jumping translocation breakpoint (JTB) gene is upregulated in malignant liver tissues; however, JTB is associated with unbalanced translocations in many other types of cancer that suppress JTB expression. No comprehensive analysis on its function in human hepatocellular carcinoma (HCC) has been performed to date. We aimed to define the biological consequences for interaction between JTB and HBsAg in HCC cell lines. METHODS We employed the stable transfection to establish small HBsAg expressing HepG2 cell line, and stably silenced the JTB expression using short hairpin RNA in HepG2 cell line. The effects of JTB and small HBsAg in vitro were determined by assessing cell apoptosis and motility. RESULTS Silencing of JTB expression promoted cancer cell motility and reduced cell apoptosis, which was significantly enhanced by HBs expression. Expression of HBsAg inhibited the translocation of JTB to the mitochondria. Furthermore, silencing of the JTB resulted in an increase in the phosphorylation of p65 in HepG2 cells and HepG2-HBs cells, whereas HBsAg expression decreased the phosphorylation of p65. The silencing of JTB in HepG2-HBs cells conferred increased advantages in cell motility and anti-apoptosis. CONCLUSION HBsAg inhibited the translocation of JTB to the mitochondria and decreased the phosphorylation of p65 through the interaction with JTB, After JTB knockdown, HBsAg exhibited a stronger potential to promote tumor progression. Our data suggested that JTB act as a tumor suppressor gene in regards to HBV infection and its activation might be applied as a therapeutic strategy for in control of HBV related HCC development.
Collapse
Affiliation(s)
- Yun-Peng Liu
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian Province, China
| | - Xiao-Ning Yang
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian Province, China
| | - Amarsanaa Jazag
- National Institute of Medical Research, 3rd General Hospital, Ulaanbaatar, Mongolia
| | - Jin-Shui Pan
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian Province, China
| | - Tian-Hui Hu
- Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Jing-Jing Liu
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian Province, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian Province, China
- Medical College of Xiamen University, Xiamen, Fujian Province, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
15
|
The Structure of the Extracellular Domain of the Jumping Translocation Breakpoint Protein Reveals a Variation of the Midkine Fold. J Mol Biol 2012; 415:22-8. [DOI: 10.1016/j.jmb.2011.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/28/2011] [Accepted: 10/28/2011] [Indexed: 11/23/2022]
|
16
|
Shibanuma M, Inoue A, Ushida K, Uchida T, Ishikawa F, Mori K, Nose K. Importance of mitochondrial dysfunction in oxidative stress response: A comparative study of gene expression profiles. Free Radic Res 2011; 45:672-80. [PMID: 21391894 DOI: 10.3109/10715762.2011.564169] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondria are considered to play an important role in oxidative stress response since they are a source of reactive oxygen species and are also targeted by these species. This study examined the mitochondrial conditions in cells of epithelial origin that were exposed to H(2)O(2) and found a decline in the membrane potential along with a specific loss of UQCRC1, a sub-unit of complex III, suggesting that mitochondrial dysfunction occurs upon exposure to oxidative stress. This observation led to the hypothesis that certain cellular responses to oxidative stress occurred because of mitochondrial dysfunction. When mitochondria-less (pseudo ρ0) cells were examined as a model of mitochondrial dysfunction, striking similarities were found in their cellular responses compared with those found in cells exposed to oxidative stress, including changes in gene expression and gelatinolytic enzyme activities, thus suggesting that cellular responses to oxidative stress were partly mediated by mitochondrial dysfunction. This possibility was further validated by microarray analysis, which suggested that almost one-fourth of the cellular responses to oxidative stress were mediated by mitochondrial dysfunction that accompanies oxidative stress, thereby warranting a therapeutic strategy that targets mitochondria for the treatment of oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Motoko Shibanuma
- Department of Cancer Cell Biology, Showa University School of Pharmacy, Shinagawa-ku Tokyo 142-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Chen L, Chan THM, Guan XY. Chromosome 1q21 amplification and oncogenes in hepatocellular carcinoma. Acta Pharmacol Sin 2010; 31:1165-71. [PMID: 20676120 DOI: 10.1038/aps.2010.94] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal of human malignancies. During human multistep hepatocarcinogenesis, genomic gain represents an important mechanism in the activation of proto-oncogenes. In many circumstances, activated oncogenes hold clinical implications both as prognostic markers and targets for cancer therapeutics. Gain of chromosome 1q copy is one of the most frequently detected alterations in HCC and 1q21 is the most frequent minimal amplifying region (MAR). A better understanding of the physiological and pathophysiological roles of target genes within 1q21 amplicon will significantly improve our knowledge in HCC pathogenesis, and may lead to a much more effective management of HCC bearing amplification of 1q21. Such knowledge has long term implications for the development of new therapeutic strategies for HCC treatment. Our research group and others, focused on the identification and characterization of 1q21 target genes such as JTB, CKS1B, and CHD1L in HCC progression. In this review, we will summarize the current scientific knowledge of known target genes within 1q21 amplicon and the precise oncogenic mechanisms of CHD1L will be discussed in detail.
Collapse
|
18
|
Pan JS, Cai JY, Xie CX, Zhou F, Zhang ZP, Dong J, Xu HZ, Shi HX, Ren JL. Interacting with HBsAg compromises resistance of jumping translocation breakpoint protein to ultraviolet radiation-induced apoptosis in 293FT cells. Cancer Lett 2009; 285:151-156. [PMID: 19487072 DOI: 10.1016/j.canlet.2009.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 05/05/2009] [Accepted: 05/10/2009] [Indexed: 01/19/2023]
Abstract
Jumping translocation breakpoint protein (JTB) is suppressed in many cancers, implying it plays a role in the neoplastic transformation of cells. In order to explore the role of JTB in the carcinogenesis of liver, we used mammalian two-hybrid, co-immunoprecipitation, GST pull-down and laser scanning confocal to verify the interaction between HBs and JTB. According to the results, HBs interacts with JTB. In addition, we further determined that S region within HBs is sufficient for binding JTB. Overexpression of JTB conferred resistance to apoptosis induced by ultraviolet radiation, whereas this effect was compromised by the co-overexpression of HBs.
Collapse
Affiliation(s)
- Jin-Shui Pan
- Division of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Transcriptional induction of MMP-10 by TGF-beta, mediated by activation of MEF2A and downregulation of class IIa HDACs. Oncogene 2009; 29:909-19. [PMID: 19935709 DOI: 10.1038/onc.2009.387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factor (TGF)-beta regulates the expression of matrix metalloproteinases (MMPs) and components of the extracellular matrix, thereby profoundly affecting the microenvironment of cells including cancerous ones. We studied MMP-10 induction by TGF-beta in mammary epithelial cells and found that the induction was dependent on the myocyte enhancer factor (MEF)-2 transcription factor. TGF-beta upregulated the gene promoter through the MEF2 site, and knockdown of the MEF2A transcription factor negatively affected MMP-10 induction, whereas its overexpression had a positive effect on the induction. In response to TGF-beta, acetylation and concomitant binding of MEF2A to the promoter region increased, thus suggesting a critical role of MEF2A in transactivation of MMP-10 by TGF-beta. Consistent with the fact that class IIa histone deacetylases (HDACs) interact with MEF2 and suppress transcription, knockdown of HDACs increased and their overexpression inhibited MMP-10 expression. Intriguingly, TGF-beta promoted proteasome-dependent degradation of HDACs. Consistent with this, acetylation of core histones was increased around the MEF2 site of the MMP-10 promoter by TGF-beta and alleviated by overexpression of HDACs. Collectively, it is possible that TGF-beta transcriptionally upregulated MMP-10 through activation of MEF2A, concomitant with acetylation of core histones increasing around the promoter, as a consequence of degradation of the class IIa HDACs.
Collapse
|
20
|
Held-Kuznetsov V, Rotem S, Assaraf YG, Mor A. Host‐defense peptide mimicry for novel antitumor agents. FASEB J 2009; 23:4299-307. [DOI: 10.1096/fj.09-136358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Viktoria Held-Kuznetsov
- Department of Biotechnology and Food Engineering Technion-Israel Institute of Technology Haifa Israel
| | - Shahar Rotem
- Department of Biotechnology and Food Engineering Technion-Israel Institute of Technology Haifa Israel
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory Faculty of Biology Technion-Israel Institute of Technology Haifa Israel
| | - Amram Mor
- Department of Biotechnology and Food Engineering Technion-Israel Institute of Technology Haifa Israel
| |
Collapse
|
21
|
McGrattan P, Logan A, Humphreys M, Bowers M. Jumping translocation in acute monocytic leukemia (M5b) with alternative breakpoint sites in the long arm of donor chromosome 3. Med Oncol 2009; 27:667-72. [DOI: 10.1007/s12032-009-9266-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 07/03/2009] [Indexed: 11/30/2022]
|
22
|
Ishikawa F, Akimoto T, Yamamoto H, Araki Y, Yoshie T, Mori K, Hayashi H, Nose K, Shibanuma M. Gene expression profiling identifies a role for CHOP during inhibition of the mitochondrial respiratory chain. J Biochem 2009; 146:123-32. [PMID: 19304788 DOI: 10.1093/jb/mvp052] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial dysfunction, in particular, interference in the respiratory chain, is often responsible for the toxicogenic effects of xenobiotics. In this study, changes in gene expression resulting from pharmacological inhibition of the respiratory chain were studied by DNA microarray analysis using cells treated with rotenone or antimycin A, which inhibit complexes I and III of the electron transport system, respectively. Forty-eight genes were either up- or down-regulated more than 3-fold. These included stress- and/or metabolic-related effector genes and several transcriptional regulators represented by CHOP-10. Further study using siRNA showed that among the four genes studied, up-regulation of three was dependent on CHOP-10. C/EBPbeta, a dimerizing partner of CHOP-10, was also involved in two of the three genes including Trib3, implying that CHOP-10, heterodimerizing with C/EBPbeta or another partner played a key role in the expression of a set of genes under stress. Although CHOP-10 and Trib3 were both ER-stress response genes, signal inducing Trib3 during mitochondrial stress was distinct from that during ER stress. Cytotoxicity caused by inhibition of the respiratory chain was attenuated by treatment with siRNA for CHOP-10. This study demonstrated the importance of CHOP-10 in coordinating individual gene expression in response to the mitochondrial stress.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Department of Microbiology, Showa University School of Pharmacy, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mori K, Hirao E, Toya Y, Oshima Y, Ishikawa F, Nose K, Shibanuma M. Competitive nuclear export of cyclin D1 and Hic-5 regulates anchorage dependence of cell growth and survival. Mol Biol Cell 2008; 20:218-32. [PMID: 18946086 DOI: 10.1091/mbc.e08-04-0428] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Anchorage dependence of cell growth and survival is a critical trait that distinguishes nontransformed cells from transformed cells. We demonstrate that anchorage dependence is determined by anchorage-dependent nuclear retention of cyclin D1, which is regulated by the focal adhesion protein, Hic-5, whose CRM1-dependent nuclear export counteracts that of cyclin D1. An adaptor protein, PINCH, interacts with cyclin D1 and Hic-5 and potentially serves as an interface for the competition between cyclin D1 and Hic-5 for CRM1. In nonadherent cells, the nuclear export of Hic-5, which is redox-sensitive, was interrupted due to elevated production of reactive oxygen species, and cyclin D1 was exported from the nucleus. When an Hic-5 mutant that was continuously exported in a reactive oxygen species-insensitive manner was introduced into the cells, cyclin D1 was retained in the nucleus under nonadherent conditions, and a significant population of cells escaped from growth arrest or apoptosis. Interestingly, activated ras achieved predominant cyclin D1 nuclear localization and thus, growth in nonadherent cells. We report a failsafe system for anchorage dependence of cell growth and survival.
Collapse
Affiliation(s)
- Kazunori Mori
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Downregulation of hepatocyte nuclear factor-4alpha and its role in regulation of gene expression by TGF-beta in mammary epithelial cells. Exp Cell Res 2008; 314:2131-40. [PMID: 18433744 DOI: 10.1016/j.yexcr.2008.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/15/2008] [Accepted: 03/19/2008] [Indexed: 11/21/2022]
Abstract
We found that a specific isoform of hepatocyte nuclear factor 4alpha (HNF-4alpha), HNF-4alpha8, was expressed in mouse mammary epithelial NMuMG cells, and that its expression was repressed by TGF-beta. The repression was interfered by dominant negative forms of activin receptor-like kinase 5 (ALK5) and Smad3, and sensitive to cycloheximide, suggesting the involvement of additional protein(s) as well as ALK5 and Smad3 in the repression. Further study showed that high mobility group A2 (HMGA2), which is reported to be directly upregulated by Smads, repressed HNF-4alpha8 expression. Therefore, it is likely that HMGA2 mediates the downregulation of HNF-4alpha8 downstream of ALK5 and Smads To determine the significance of the downregulation of HNF-4alpha8 in TGF-beta signaling, we performed DNA microarray analysis and extracted a subgroup of TGF-beta1-regulated genes, including tenascin C and tissue inhibitor of metalloproteinase 3 (TIMP-3), whose regulation by TGF-beta1 was attenuated by forced expression of HNF-4alpha8. HMGA2 has recently emerged as a transcriptional organizer of TGF-beta signaling, regulating several key factors involved in epithelial-mesenchymal transition (EMT). In this study, we identified an isoform of HNF-4alpha as a new target downstream of HMGA2 and assigned a new role to HNF-4alpha in the TGF-beta signaling/transcriptional cascade driven by ALK5/Smad/HMGA2 and associated with the malignant transformation of cells.
Collapse
|