1
|
Geng Y, Chen Z, Luo T, Liu Y, Kong S, Yan X, Bai H, Wang Y. Innovative construction and application of bile duct organoids: Unraveling the complexity of bile duct diseases and potential therapeutic strategies. Cancer Lett 2025; 618:217619. [PMID: 40074068 DOI: 10.1016/j.canlet.2025.217619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
The biliary system is crucial for liver function, regulating bile production, secretion, and transport. Dysfunctions within this system can lead to various diseases, such as cholangiopathies and biliary fibrosis, which may progress from benign to malignant states like cholangiocarcinoma. While liver organoid research is well-established and technologically advanced, bile duct organoids (BDOs) offer significant potential. BDOs can accurately simulate the physiological structure and function of bile ducts, making them valuable tools for in-vitro biliary disease research. Here, we review the development of BDO models, focusing on stem cell-derived organoids and tissue-derived organoids. We also illustrate the role of cultivation strategies and extracellular scaffolds in supporting organoid growth and stability, including the influence of cellular components of the microenvironment and physicochemical factors. Furthermore, we discuss the applications of BDOs in biliary development, disease modeling, regenerative medicine, and drug screening. Additionally, we emphasize the transformative potential in BDO biobanks and personalized medicine, which helps to pave the way for innovative therapeutic strategies and personalized medicine. Finally, we summarize the current and prospective advancements in BDO technologies, highlighting the integration of emerging technologies such as artificial intelligence, 3D bioprinting, and organoid-on-chip systems. These technologies hold great promise for significantly enhancing both clinical and research applications in the field of biliary diseases.
Collapse
Affiliation(s)
- Yadi Geng
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China; School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ziye Chen
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Tianzi Luo
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Yakun Liu
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Siming Kong
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Hui Bai
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Li J, Chu J, Chen Z, Xu T, Ma G, Lin H, Chen S, Wang C. Surface Modification of Biodegradable Polymer Enhances Liver Organoid Attachment and Integration Forming a Cholangiocyte Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9839-9847. [PMID: 40214309 DOI: 10.1021/acs.langmuir.5c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Cell adhesion is a fundamental necessity for anchorage-dependent cells to thrive in the matrix. This process serves as the initial stage in a sequence of cellular activities, which includes cell diffusion, migration, proliferation, and differentiation. This study introduces a novel surface modification designed and engineered to enhance the attachment of cholangiocyte organoids and facilitate the spreading of cholangiocytes on the polymer surface. Our findings revealed that the recruiting of the collagen layer on the polydopamine (PDA) nanoparticle coating poly(lactide-co-trimethylene carbonate) (PLATMC) surface plays a key role in attracting the liver organoids and enhancing cell attachment and migration. This finding has promising results in generating a two-dimensional (2D) cholangiocyte monolayer through organoid attachment to the surface and subsequent cholangiocyte integration. The innovative approach combines surface modification with organoids culture technique, offering significant potential for advancing bile duct regenerative medicine and developing more complex three-dimensional (3D) tissues in vitro.
Collapse
Affiliation(s)
- Junzhi Li
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan 523820, China
- Institute of Science&Technology Innovation, Dongguan University of Technology, Songshan Lake, Dongguan 523000, China
- Department of Surgery, The University of Hong Kong, Sassoon Road, Kwoloon, Hong Kong 999077, China
| | - Jing Chu
- Department of Surgery, The University of Hong Kong, Sassoon Road, Kwoloon, Hong Kong 999077, China
| | - Zhenlin Chen
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan 523820, China
| | - Tengri Xu
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan 523820, China
| | - Guojiang Ma
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan 523820, China
| | - Hongrui Lin
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan 523820, China
| | - Shangsi Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan 523820, China
- Institute of Science&Technology Innovation, Dongguan University of Technology, Songshan Lake, Dongguan 523000, China
| |
Collapse
|
3
|
Quelhas P, Morgado D, Santos JD. Primary Cilia, Hypoxia, and Liver Dysfunction: A New Perspective on Biliary Atresia. Cells 2025; 14:596. [PMID: 40277920 DOI: 10.3390/cells14080596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Ciliopathies are disorders that affect primary or secondary cellular cilia or structures associated with ciliary function. Primary cilia (PC) are essential for metabolic regulation and embryonic development, and pathogenic variants in cilia-related genes are linked to several pediatric conditions, including renal-hepatic diseases and congenital defects. Biliary atresia (BA) is a progressive infantile cholangiopathy and the leading cause of pediatric liver transplantation. Although the exact etiology of BA remains unclear, evidence suggests a multifactorial pathogenesis influenced by both genetic and environmental factors. Patients with BA and laterality defects exhibit genetic variants associated with ciliopathies. Interestingly, even isolated BA without extrahepatic anomalies presents morphological and functional ciliary abnormalities, suggesting that environmental triggers may disrupt the ciliary function. Among these factors, hypoxia has emerged as a potential modulator of this dysfunction. Hypoxia-inducible factor 1-alpha (HIF-1α) plays a central role in hepatic responses to oxygen deprivation, influencing bile duct remodeling and fibrosis, which are key processes in BA progression. This review explores the crosstalk between hypoxia and hepatic ciliopathies, with a focus on BA. It discusses the molecular mechanisms through which hypoxia may drive disease progression and examines the therapeutic potential of targeting hypoxia-related pathways. Understanding how oxygen deprivation influences ciliary function may open new avenues for treating biliary ciliopathies and improving patient outcomes.
Collapse
Affiliation(s)
- Patrícia Quelhas
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diogo Morgado
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Jorge Dos Santos
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
4
|
Sorrentino G. Microenvironmental control of the ductular reaction: balancing repair and disease progression. Cell Death Dis 2025; 16:246. [PMID: 40180915 PMCID: PMC11968979 DOI: 10.1038/s41419-025-07590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
The ductular reaction (DR) is a dynamic adaptive cellular response within the liver, triggered by various hepatic insults and characterized by an expansion of dysmorphic biliary epithelial cells and liver progenitors. This complex response presents a dual role, playing a pivotal function in liver regeneration but, paradoxically, contributing to the progression of liver diseases, depending upon specific contextual factors and signaling pathways involved. This comprehensive review aims to offer a holistic perspective on the DR, focusing into its intricate cellular and molecular mechanisms, highlighting its pathological significance, and exploring its potential therapeutic implications. An up-to-date understanding of the DR in the context of different liver injuries is provided, analyzing its contributions to liver regeneration, inflammation, fibrosis, and ultimately carcinogenesis. Moreover, the review highlights the role of multiple microenvironmental factors, including the influence of extracellular matrix, tissue mechanics and the interplay with the intricate hepatic cell ecosystem in shaping the DR's regulation. Finally, in vitro and in vivo experimental models of the DR will be discussed, providing insights into how researchers can study and manipulate this critical cellular response. By comprehensively addressing the multifaceted nature of the DR, this review contributes to a more profound understanding of its pathophysiological role in liver diseases, thus offering potential therapeutic avenues for hepatic disorders and improving patient outcomes.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
5
|
Sugimoto A, Saito Y, Wang G, Sun Q, Yin C, Lee KH, Geng Y, Rajbhandari P, Hernandez C, Steffani M, Qie J, Savage T, Goyal DM, Ray KC, Neelakantan TV, Yin D, Melms J, Lehrich BM, Yasaka TM, Liu S, Oertel M, Lan T, Guillot A, Peiseler M, Filliol A, Kanzaki H, Fujiwara N, Ravi S, Izar B, Brosch M, Hampe J, Remotti H, Argemi J, Sun Z, Kendall TJ, Hoshida Y, Tacke F, Fallowfield JA, Blockley-Powell SK, Haeusler RA, Steinman JB, Pajvani UB, Monga SP, Bataller R, Masoodi M, Arpaia N, Lee YA, Stockwell BR, Augustin HG, Schwabe RF. Hepatic stellate cells control liver zonation, size and functions via R-spondin 3. Nature 2025; 640:752-761. [PMID: 40074890 PMCID: PMC12003176 DOI: 10.1038/s41586-025-08677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/21/2025] [Indexed: 03/14/2025]
Abstract
Hepatic stellate cells (HSCs) have a central pathogenetic role in the development of liver fibrosis. However, their fibrosis-independent and homeostatic functions remain poorly understood1-5. Here we demonstrate that genetic depletion of HSCs changes WNT activity and zonation of hepatocytes, leading to marked alterations in liver regeneration, cytochrome P450 metabolism and injury. We identify R-spondin 3 (RSPO3), an HSC-enriched modulator of WNT signalling, as responsible for these hepatocyte-regulatory effects of HSCs. HSC-selective deletion of Rspo3 phenocopies the effects of HSC depletion on hepatocyte gene expression, zonation, liver size, regeneration and cytochrome P450-mediated detoxification, and exacerbates alcohol-associated and metabolic dysfunction-associated steatotic liver disease. RSPO3 expression decreases with HSC activation and is inversely associated with outcomes in patients with alcohol-associated and metabolic dysfunction-associated steatotic liver disease. These protective and hepatocyte-regulating functions of HSCs via RSPO3 resemble the R-spondin-expressing stromal niche in other organs and should be integrated into current therapeutic concepts.
Collapse
Affiliation(s)
- Atsushi Sugimoto
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Yoshinobu Saito
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Guanxiong Wang
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Qiuyan Sun
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Chuan Yin
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Ki Hong Lee
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yana Geng
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Presha Rajbhandari
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Celine Hernandez
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Marcella Steffani
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Jingran Qie
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Thomas Savage
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | - Dhruv M Goyal
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Kevin C Ray
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taruna V Neelakantan
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Deqi Yin
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Johannes Melms
- Department of Medicine, Columbia University, New York, NY, USA
| | - Brandon M Lehrich
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tyler M Yasaka
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Oertel
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tian Lan
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Aveline Filliol
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Hiroaki Kanzaki
- Liver Tumour Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naoto Fujiwara
- Liver Tumour Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samhita Ravi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Benjamin Izar
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Mario Brosch
- Department of Internal Medicine I, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jochen Hampe
- Department of Internal Medicine I, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Helen Remotti
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Josepmaria Argemi
- Liver Unit and RNA Biology and Therapies Program, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy J Kendall
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Yujin Hoshida
- Liver Tumour Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Storm K Blockley-Powell
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Rebecca A Haeusler
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | | | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Institute of Human Nutrition, New York, NY, USA
| | - Satdarshan P Monga
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ramon Bataller
- Liver Unit,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Nicholas Arpaia
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Youngmin A Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brent R Stockwell
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany.
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY, USA.
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA.
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Institute of Human Nutrition, New York, NY, USA.
- Burch-Lodge Center for Human Longevity, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Ortuño-Costela MC, Pinzani M, Vallier L. Cell therapy for liver disorders: past, present and future. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01050-2. [PMID: 40102584 DOI: 10.1038/s41575-025-01050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/20/2025]
Abstract
The liver fulfils a plethora of vital functions and, due to their importance, liver dysfunction has life-threatening consequences. Liver disorders currently account for more than two million deaths annually worldwide and can be classified broadly into three groups, considering their onset and aetiology, as acute liver diseases, inherited metabolic disorders and chronic liver diseases. In the most advanced and severe forms leading to liver failure, liver transplantation is the only treatment available, which has many associated drawbacks, including a shortage of organ donors. Cell therapy via fully mature cell transplantation is an advantageous alternative that may be able to restore a damaged organ's functionality or serve as a bridge until regeneration can occur. Pioneering work has shown that transplanting adult hepatocytes can support liver recovery. However, primary hepatocytes cannot be grown extensively in vitro as they rapidly lose their metabolic activity. Therefore, different cell sources are currently being tested as alternatives to primary cells. Human pluripotent stem cell-derived cells, chemically induced liver progenitors, or 'liver' organoids, hold great promise for developing new cell therapies for acute and chronic liver diseases. This Review focuses on the advantages and drawbacks of distinct cell sources and the relative strategies to address different therapeutic needs in distinct liver diseases.
Collapse
Affiliation(s)
- M Carmen Ortuño-Costela
- Berlin Institute of Health, BIH Centre for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Massimo Pinzani
- University College London Institute for Liver and Digestive Health, Division of Medicine, Royal Free Hospital, London, UK
- University of Pittsburgh Medical Center-Mediterranean Institute for Transplantation and Highly Specialized Therapies (UPMC-ISMETT), Palermo, Italy
| | - Ludovic Vallier
- Berlin Institute of Health, BIH Centre for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
7
|
Manns MP, Bergquist A, Karlsen TH, Levy C, Muir AJ, Ponsioen C, Trauner M, Wong G, Younossi ZM. Primary sclerosing cholangitis. Nat Rev Dis Primers 2025; 11:17. [PMID: 40082445 DOI: 10.1038/s41572-025-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/16/2025]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic biliary inflammation associated with periductular fibrosis of the intrahepatic and extrahepatic bile ducts leading to strictures, bacterial cholangitis, decompensated liver disease and need for liver transplantation. This rare focal liver disease affects all races and ages, with a predominance of young males. There is an up to 88% association with inflammatory bowel disease. Although the aetiology is unknown and the pathophysiology is poorly understood, PSC is regarded as an autoimmune liver disease based on a strong immunogenetic background. Further, the associated risk for various malignancies, particularly cholangiocellular carcinoma, is also poorly understood. No medical therapy has been approved so far nor has been shown to improve transplant-free survival. However, ursodeoxycholic acid is widely used since it improves the biochemical parameters of cholestasis and is safe at low doses. MRI of the biliary tract is the primary imaging technology for diagnosis. Endoscopic interventions of the bile ducts should be limited to clinically relevant strictures for balloon dilatation, biopsy and brush cytology. End-stage liver disease with decompensation is an indication for liver transplantation with recurrent PSC in up to 38% of patients. Several novel therapeutic strategies are in various stages of development, including apical sodium-dependent bile acid transporter and ileal bile acid transporter inhibitors, integrin inhibitors, peroxisome proliferator-activated receptor agonists, CCL24 blockers, recombinant FGF19, CCR2/CCR5 inhibitors, farnesoid X receptor bile acid receptor agonists, and nor-ursodeoxycholic acid. Manipulation of the gut microbiome includes faecal microbiota transplantation. This article summarizes present knowledge and defines unmet medical needs to improve quality of life and survival.
Collapse
Affiliation(s)
- Michael P Manns
- Hannover Medical School (MHH) and Centre for Individualised Infection Medicine (CiiM), Hannover, Germany.
| | - Annika Bergquist
- Division of Hepatology, Department of Upper Gastrointestinal Disease, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Clinic of Surgery and Specialized medicine, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cynthia Levy
- Division of Digestive Health and Liver Diseases, University of Miami School of Medicine, Miami, FL, USA
| | - Andrew J Muir
- Division of Gastroenterology, Duke University School of Medicine, Durham, NC, USA
| | - Cyriel Ponsioen
- Department of Gastroenterology & Hepatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Grace Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Union Hospital, Hong Kong SAR, China
| | | |
Collapse
|
8
|
D'Artista L, Seehawer M. Cell Death and Survival Mechanisms in Cholangiocarcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:470-479. [PMID: 39103094 DOI: 10.1016/j.ajpath.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024]
Abstract
Cholangiocarcinoma (CCA) and other liver cancer subtypes often develop in damaged organs. Physiological agents or extrinsic factors such as toxins can induce cell death in such tissues, triggering compensatory proliferation and inflammation. Depending on extracellular and intracellular factors, different mechanisms such as apoptosis, necroptosis, ferroptosis, or autophagy can be triggered. Each of these mechanisms can lead to pro-tumorigenic or anti-tumorigenic events within a cell or through regulation of the microenvironment. However, the exact role of each cell death mechanism in CCA onset, progression, and treatment is not well known. Here, we summarize current knowledge of different cell death and survival mechanisms in patients with CCA and preclinical CCA research. We discuss cell death-related drugs with relevance to CCA treatment and how they could be used in the future to improve targeted CCA therapy.
Collapse
Affiliation(s)
- Luana D'Artista
- Center of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
Ko HY, Bea S, Yoon D, Hong B, Bae JH, Cho YM, Shin JY. Incretin-based drugs and the risk of gallbladder or biliary tract diseases among patients with type 2 diabetes across categories of body mass index: a nationwide cohort study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2025; 56:101242. [PMID: 40226782 PMCID: PMC11992583 DOI: 10.1016/j.lanwpc.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/06/2024] [Accepted: 10/31/2024] [Indexed: 04/15/2025]
Abstract
Background Despite emerging evidence of gallbladder or biliary tract diseases (GBD) risk regarding incretin-based drugs, population-specific safety profile considering obesity is lacking. We aimed to assess whether stratification by body mass index (BMI) modifies the measures of association between incretin-based drugs and the risk of GBD. Methods We conducted an active-comparator, new-user cohort study using a nationwide claims data (2013-2022) of Korea. We included type 2 diabetes (T2D) patients stratified by Asian BMI categories: Normal, 18.5 to <23 kg/m2; Overweight, 23 to <25 kg/m2; Obese, ≥25 kg/m2. The primary outcome was a composite of GBD, including cholelithiasis, cholecystitis, obstruction of the gallbladder or bile duct, cholangitis, and cholecystectomy. We used 1:1 propensity score (PS) matching and estimated hazard ratios (HR) with 95% confidence intervals (CI) using Cox models. Findings New users of DPP4i and SGLT2i were 1:1 PS matched (n = 251,420 pairs; 186,697 obese, 39,974 overweight, and 24,749 normal weight pairs). The overall HR for the risk of GBD with DPP4i vs. SGLT2i was 1.21 (95% CI 1.14-1.28), with no effect modification by BMI (p-value: 0.83). For the second cohort, new users of GLP1RA and SGLT2i were 1:1 PS matched (n = 45,443 pairs; 28,011 obese, 8948 overweight, and 8484 normal weight pairs). The overall HR for the risk of GBD with GLP1RA vs. SGLT2i was 1.27 (1.07-1.50), with no effect modification by BMI (p-value: 0.73). Interpretation The increased risks of GBD were presented in both cohorts with no evidence of effect heterogeneity by BMI. Funding Ministry of Food and Drug Safety, Health Fellowship Foundation.
Collapse
Affiliation(s)
- Hwa Yeon Ko
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Sungho Bea
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dongwon Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon-si, South Korea
| | - Bin Hong
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Jae Hyun Bae
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon-si, South Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
10
|
Zhou H, Zhou X, Huang G, Zhao Y, Lan P, Chen Z. Inhibition of ferroptosis protects intrahepatic bile duct cells against ischemia-reperfusion and bile salt toxicity. Biochem Pharmacol 2025; 233:116788. [PMID: 39890033 DOI: 10.1016/j.bcp.2025.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Ischemia-reperfusion injury (IRI) and bile salt toxicity are significant contributors to post-transplant cholangiopathy. Ferroptosis appears to play a critical role in intrahepatic bile duct injury induced by ischemia-reperfusion (I/R) and bile salt toxicity. Our study aimed to elucidate the role of ferroptosis in bile duct injuries and its potential as a therapeutic target for liver diseases. Mouse models of liver ischemia-reperfusion (I/R) and α-naphthyl isocyanate (ANIT)-induced liver cholestasis were employed to investigate the role of ferroptosis in intrahepatic bile duct injury in vivo. Hypoxia-reoxygenation (H/R) and bile salt treatment models were utilized to simulate the post-transplant bile duct injury process in vitro. In mouse models of liver I/R and cholestasis, we observed a downregulation of glutathione peroxidase 4 (GPX4) and an upregulation of lipid peroxidation levels in bile duct cells. Furthermore, the ferroptosis inhibitor Liproxstatin-1 (Lip-1) significantly attenuated intrahepatic bile duct injuries. Ferroptosis inhibitors alleviated cell death and lipid peroxide accumulation in human intrahepatic biliary epithelial cells (HiBECs) subjected to H/R or glycochenodeoxycholate (GCDCA) treatment. GCDCA treatment led to ferroptosis in HiBECs along with ferritin degradation. Inhibition of autophagy alleviated GCDCA-induced bile duct cell death. Our study suggested that ferroptosis played an important role of in the intrahepatic bile duct injury during I/R or cholestasis.
Collapse
Affiliation(s)
- Huisheng Zhou
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China
| | - Xi Zhou
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China
| | - Guobin Huang
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China
| | - Peixiang Lan
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China.
| | - Zhishui Chen
- Institute of Organ Transplantation Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Key Laboratory of Organ Transplantation Ministry of Education NHC Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases China.
| |
Collapse
|
11
|
Anwar AA, Jalan-Sakrikar N, Huebert RC. LncRNAs, RNA Therapeutics, and Emerging Technologies in Liver Pathobiology. Semin Liver Dis 2025; 45:1-14. [PMID: 39603269 DOI: 10.1055/a-2490-1921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The field of ribonucleic acid (RNA) biology has revealed an array of noncoding RNA species, particularly long noncoding RNAs (lncRNAs), which play crucial roles in liver disease pathogenesis. This review explores the diverse functions of lncRNAs in liver pathology, including metabolic-associated steatotic liver disease, hepatocellular carcinoma, alcohol-related liver disease, and cholangiopathies such as primary sclerosing cholangitis and cholangiocarcinoma. We highlight key lncRNAs that regulate lipid metabolism, inflammation, fibrosis, and oncogenesis in the liver, demonstrating their diagnostic and therapeutic potential. Emerging RNA-based therapies, such as mRNA therapy, RNA interference, and antisense oligonucleotides, offer approaches to modulate lncRNA activity and address liver disease at a molecular level. Advances in sequencing technologies and bioinformatics pipelines are simultaneously enabling the identification and functional characterization of novel lncRNAs, driving innovation in personalized medicine. In conclusion, this review highlights the potential of lncRNAs as biomarkers and therapeutic targets in liver disease and emphasizes the need for further research into their regulatory mechanisms and clinical applications.
Collapse
Affiliation(s)
- Abid A Anwar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
- Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
- Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota
| |
Collapse
|
12
|
Filipovic B, Marjanovic-Haljilji M, Blagojevic D, Dragovic M, Krsmanovic E, Matovic A, Panic N, Kiurski S, Zagorac Z, Milanovic M, Markovic O, Djokovic A, Glisic T, Dragasevic S, Popovic D. A Closer Look into Autoimmune Liver Diseases. Int J Mol Sci 2025; 26:1863. [PMID: 40076490 PMCID: PMC11899773 DOI: 10.3390/ijms26051863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Autoimmune liver diseases involve a heterogeneous group of chronic inflammatory disorders, including autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. Sometimes presented consistently as an overlapping syndrome, their pathogenesis is rather complex and has yet to be fully elucidated, despite extensive research efforts. This review article corroborates the molecular mechanisms of autoimmune liver diseases, as well as existing and potential therapeutic modalities.
Collapse
Affiliation(s)
- Branka Filipovic
- Department of Gastroenterology, Clinical and Hospital Center “Dr Dragisa Misovic-Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia; (B.F.); (D.B.); (M.D.); (E.K.); (N.P.); (S.K.); (D.P.)
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (M.M.); (O.M.); (A.D.); (T.G.); (S.D.)
| | - Marija Marjanovic-Haljilji
- Department of Gastroenterology, Clinical and Hospital Center “Dr Dragisa Misovic-Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia; (B.F.); (D.B.); (M.D.); (E.K.); (N.P.); (S.K.); (D.P.)
| | - Dragana Blagojevic
- Department of Gastroenterology, Clinical and Hospital Center “Dr Dragisa Misovic-Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia; (B.F.); (D.B.); (M.D.); (E.K.); (N.P.); (S.K.); (D.P.)
| | - Milica Dragovic
- Department of Gastroenterology, Clinical and Hospital Center “Dr Dragisa Misovic-Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia; (B.F.); (D.B.); (M.D.); (E.K.); (N.P.); (S.K.); (D.P.)
| | - Emilija Krsmanovic
- Department of Gastroenterology, Clinical and Hospital Center “Dr Dragisa Misovic-Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia; (B.F.); (D.B.); (M.D.); (E.K.); (N.P.); (S.K.); (D.P.)
| | - Ana Matovic
- Department of Cardiology, Clinical and Hospital Center “Dr Dragisa Misovic-Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia;
| | - Natasa Panic
- Department of Gastroenterology, Clinical and Hospital Center “Dr Dragisa Misovic-Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia; (B.F.); (D.B.); (M.D.); (E.K.); (N.P.); (S.K.); (D.P.)
| | - Stanimir Kiurski
- Department of Gastroenterology, Clinical and Hospital Center “Dr Dragisa Misovic-Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia; (B.F.); (D.B.); (M.D.); (E.K.); (N.P.); (S.K.); (D.P.)
| | - Zagor Zagorac
- Clinic for Surgery, Clinical and Hospital Center “Dr Dragisa Misovic-Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia;
| | - Miljan Milanovic
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (M.M.); (O.M.); (A.D.); (T.G.); (S.D.)
- Clinic for Surgery, Clinical and Hospital Center “Dr Dragisa Misovic-Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia;
| | - Olivera Markovic
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (M.M.); (O.M.); (A.D.); (T.G.); (S.D.)
- Department of Hematology, Clinical and Hospital Center “Bezanijska Kosa”, Dr Zorza Matea s/n, 11080 Belgrade, Serbia
| | - Aleksandra Djokovic
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (M.M.); (O.M.); (A.D.); (T.G.); (S.D.)
- Department of Cardiology, Clinical and Hospital Center “Bezanijska Kosa”, Dr Zorza Matea s/n, 11080 Belgrade, Serbia
| | - Tijana Glisic
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (M.M.); (O.M.); (A.D.); (T.G.); (S.D.)
- Clinic for Gastroenterology and Hepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Sanja Dragasevic
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (M.M.); (O.M.); (A.D.); (T.G.); (S.D.)
- Clinic for Gastroenterology and Hepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Dusan Popovic
- Department of Gastroenterology, Clinical and Hospital Center “Dr Dragisa Misovic-Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia; (B.F.); (D.B.); (M.D.); (E.K.); (N.P.); (S.K.); (D.P.)
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (M.M.); (O.M.); (A.D.); (T.G.); (S.D.)
| |
Collapse
|
13
|
Bowen CM, Ditmars F, Liu N, Abril JM, Ajasin D, Russell WK, Stevenson H, Eugenin EA, Fair JH, Fagg WS. Amniotic Fluid Reduces Liver Fibrosis By Attenuating Hepatic Stellate Cell Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639215. [PMID: 40027749 PMCID: PMC11870538 DOI: 10.1101/2025.02.20.639215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Regardless of the source of injury or metabolic dysfunction, fibrosis is a frequent driver of liver pathology. Excessive liver fibrosis is caused by persistent activation of hepatic stellate cells (HSCs), which is defined by myofibroblast activation (MFA) and the epithelial-mesenchymal transition (EMT). Strategies to prevent or reverse this HSC phenotype will be critical for successful treatment of liver fibrosis. We have previously shown that full-term, cell-free human amniotic fluid (cfAF) inhibits MFA and EMT in fibroblasts in vitro. We hypothesize that cfAF treatment can attenuate HSC activation and limit liver fibrosis. We tested if cfAF could prevent liver fibrosis or HSC activation in murine models of liver damage, three-dimensional hepatic spheroids, and HSC cultures. Administering cfAF prevented weight loss and the extent of fibrosis in mice with chronic liver damage without stimulating deleterious immune responses. Gene expression profiling and immunostaining indicated that cfAF administration in carbon tetrachloride-treated mice reduced EMT- and MFA-related biomarker abundance and modulated transcript levels associated with liver metabolism, immune regulatory pathways, and cell signaling. cfAF treatment lowered MFA biomarker levels in a dose-dependent manner in hepatic spheroids exposed to ethanol. Treating HSCs with cfAF in vitro strongly repressed EMT. Multi-omics analyses revealed that it also attenuates TGFβ-induced MFA and inflammation-associated processes. Thus, cfAF treatment prevents liver fibrosis by safeguarding against persistent HSC activation. These findings suggest that cfAF may be a safe and effective therapy for reducing liver fibrosis and preventing the development of cirrhosis and/or hepatocellular carcinoma.
Collapse
Affiliation(s)
- Charles M. Bowen
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Frederick Ditmars
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Naiyou Liu
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Jose Marri Abril
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - David Ajasin
- Department of Neurobiology, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - William K. Russell
- Deparment of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Heather Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Jeffrey H. Fair
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - W. Samuel Fagg
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Deparment of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Merakris Therapeutics, RTP Frontier, Research Triangle Park, North Carolina, 27709, USA
| |
Collapse
|
14
|
Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, Guo Y, Wang H, Dong E, Xiao J. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduct Target Ther 2025; 10:33. [PMID: 39904973 PMCID: PMC11794951 DOI: 10.1038/s41392-024-02072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
As a highly complex organ with digestive, endocrine, and immune-regulatory functions, the liver is pivotal in maintaining physiological homeostasis through its roles in metabolism, detoxification, and immune response. Various factors including viruses, alcohol, metabolites, toxins, and other pathogenic agents can compromise liver function, leading to acute or chronic injury that may progress to end-stage liver diseases. While sharing common features, liver diseases exhibit distinct pathophysiological, clinical, and therapeutic profiles. Currently, liver diseases contribute to approximately 2 million deaths globally each year, imposing significant economic and social burdens worldwide. However, there is no cure for many kinds of liver diseases, partly due to a lack of thorough understanding of the development of these liver diseases. Therefore, this review provides a comprehensive examination of the epidemiology and characteristics of liver diseases, covering a spectrum from acute and chronic conditions to end-stage manifestations. We also highlight the multifaceted mechanisms underlying the initiation and progression of liver diseases, spanning molecular and cellular levels to organ networks. Additionally, this review offers updates on innovative diagnostic techniques, current treatments, and potential therapeutic targets presently under clinical evaluation. Recent advances in understanding the pathogenesis of liver diseases hold critical implications and translational value for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yuan
- Aier Institute of Ophthalmology, Central South University, Changsha, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jinhang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangxin Kong
- Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Zhaodi Che
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yangkun Guo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| | - Erdan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
15
|
Li Y, Leung PS, Zhang W, Zhang S, Liu Z, Kurth M, Patterson AD, Gershwin ME, Song J. Immunobiology of bile and cholangiocytes. J Autoimmun 2025; 151:103376. [PMID: 39892203 DOI: 10.1016/j.jaut.2025.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
The biliary tract is now recognized as an immune organ, and within the biliary tract, both bile and cholangiocytes play a key role in maintaining immune defense and homeostasis. First, immunoreactive proteins such as secretory IgA provide local antimicrobial effects. Second, bile acids (BAs) protect the biliary tree from immune-related injury through receptor signaling, mainly via the membrane-bound receptor TGR5 on cholangiocytes. Third, the biliary microbiota, similar to the intestinal microbiota, contributes to sustaining a stable physiobiological microenvironment. Fourth, cholangiocytes actively modulate the expression/release of adhesion molecules and cytokines/chemokines and are involved in antigen presentation; additionally, cholangiocyte senescence and apoptosis also influence immune responses. Conversely, aberrant bile composition, altered BA profiles, imbalances in the biliary microbiota, and cholangiocyte dysfunction are associated with immune-mediated cholangiopathies, including primary biliary cholangitis, primary sclerosing cholangitis, and biliary atresia. While current therapeutic agents that modulate BA homeostasis and receptor signaling have shown promise in preclinical and clinical studies, future research on biliary/intestinal microbiota and cholangiocyte function should focus on developing novel therapeutic strategies for treating cholangiopathies.
Collapse
Affiliation(s)
- Yang Li
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Patrick Sc Leung
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Shucheng Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Zhenning Liu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Mark Kurth
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, 16802, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Junmin Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China.
| |
Collapse
|
16
|
Nagaraj M, Emmagouni SKG, Chaurasiya V, Li L, Nguyen VD, Keskitalo S, Varjosalo M, Zhou Y, Haridas PAN, Olkkonen VM. Insight into the function of the Golgi membrane protein GOLM1 in cholangiocytes through interactomic analysis. FEBS Lett 2025. [PMID: 39891560 DOI: 10.1002/1873-3468.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
GOLM1, a Golgi membrane protein, is upregulated in cancers and liver diseases. Analysis of public RNAseq data from healthy human liver suggested that GOLM1 is predominantly expressed in cholangiocytes. Therefore, this study was initiated to understand the molecular functions of GOLM1 in cholangiocytes through protein interactomics. The findings reveal a number of putative GOLM1-interacting partners involved in cellular regimes such as mitochondrial and Golgi functions, ribonucleoprotein biogenesis, cell cycle, and basement membrane organization. Further, to validate select key roles, GOLM1 was silenced in MMNK-1 cholangiocytes and the effects on cell functions were studied. The silencing resulted in impaired mitochondrial function, reduced mitochondrial and P-body markers, increased apoptosis, and reduced cell adhesion, suggesting crucial roles of GOLM1 in maintaining normal cholangiocyte metabolism and function.
Collapse
Affiliation(s)
- Meghana Nagaraj
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
- Doctoral Programme in Integrative Life Science, University of Helsinki, Finland
| | | | - Vaishali Chaurasiya
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Luyang Li
- Systems Immunity University Research Institute, and Division of Infection and Immunity, Cardiff University, UK
| | - Van Dien Nguyen
- Systems Immunity University Research Institute, and Division of Infection and Immunity, Cardiff University, UK
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland
- HiLIFE-Proteomics Unit, Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland
- HiLIFE-Proteomics Unit, Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland
| | - You Zhou
- Systems Immunity University Research Institute, and Division of Infection and Immunity, Cardiff University, UK
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
17
|
Ding Z, Zhang R, Zhu W, Lu Y, Zhu Z, Xie H, Tang W. CTHRC1 serves as an indicator in biliary atresia for evaluating the stage of liver fibrosis and predicting prognosis. Dig Liver Dis 2025; 57:385-393. [PMID: 39043537 DOI: 10.1016/j.dld.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Liver fibrosis is a pathological feature of biliary atresia (BA). However, both histological fibrosis stage and existing biomarkers fail to predict prognosis at the time of hepatoportonterostomy (HPE). AIMS To explore the role of collagen triple- helix repeat containing-1 (CTHRC1) in BA. METHODS CTHRC1 expression levels were detected and its association with liver fibrosis stage was analyzed in patients with BA. Immunohistochemistry and immunofluorescent analyses were performed to detect the expression and localization of CTHRC1. Epithelial-mesenchymal transition (EMT) and proliferation were analyzed in cholangiocytes treated with recombinant human CTHRC1 protein. Survival analyses were performed to assess the prognostic value of CTHRC1 in patients with BA. RESULTS CTHRC1 was upregulated in BA, and its expression level was positively correlated with fibrosis-related markers and the severity of liver fibrosis. In liver tissue CTHRC1 was co-localized with CK19 and highly expressed in patients with severe liver fibrosis. Further experiments revealed that CTHRC1 promoted cholangiocyte EMT and proliferation. Additionally, CTHRC1 expression levels at HPE could predict the 2-year native liver survival (NLS). CONCLUSIONS CTHRC1 promotes the EMT and proliferation of cholangiocytes and indicate the stage of liver fibrosis. The CTHRC1 expression levels can predict outcomes of BA.
Collapse
Affiliation(s)
- Zequan Ding
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China
| | - Ruyi Zhang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China
| | - Wei Zhu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China
| | - Yao Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China
| | - Zhongxian Zhu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China
| | - Hua Xie
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China.
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210000, Jiangsu Province, China.
| |
Collapse
|
18
|
Di Giorgio C, Urbani G, Marchianò S, Biagioli M, Bordoni M, Bellini R, Massa C, Lachi G, Cari L, Morretta E, Spinelli L, Monti MC, Sepe V, Zampella A, Distrutti E, Banales JM, Lapitz A, Milkiewicz P, Milkiewicz M, Fiorucci S. Liver GPBAR1 Associates With Immune Dysfunction in Primary Sclerosing Cholangitis and Its Activation Attenuates Cholestasis in Abcb4-/- Mice. Liver Int 2025; 45:e16235. [PMID: 39804015 PMCID: PMC11727439 DOI: 10.1111/liv.16235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model. METHODS Single-cell analysis of healthy human liver samples and gene expression analysis of PSC liver samples were conducted. In vitro studies on a human cholangiocyte cell line (NHC), U937 and human hepatic stellate cells (hSteCs) were performed. Additionally, Abcb4-/- mice were treated with BAR501 for 12-24 weeks. RESULTS Single-cell analysis demonstrated that GPBAR1 is expressed by macrophages, NK cells, sinusoidal cells and to a lesser extent by cholangiocytes. Total liver expression of GPBAR1 increases in PSC patients compared to that in healthy controls and positively correlates with markers for monocytes and NK cells and cytokeratin 19. In vitro treatment of NHCs with BAR501 reversed the acquisition of a pro-inflammatory phenotype and the downregulation of GPBAR1 expression promoted by LPS in an NF-κB-dependent manner. Treating Abcb4-/- mice reduced bile duct inflammation and liver fibrosis and prevented the downregulation of GPBAR1 expression. Treating mice with BAR501 also modulated the bile acid pool composition and reduced the dysbiosis-associated gut permeability, and intestinal and systemic inflammation. Ex vivo experiments using conditioned media from BAR501-treated cholangiocytes mitigated the activation of macrophages. CONCLUSIONS Our study provides evidence for the therapeutic potential of selective GPBAR1 agonists in intestinal inflammation-associated cholestasis, warranting the evaluation of BAR501 in PSC patients.
Collapse
Affiliation(s)
| | - Ginevra Urbani
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Silvia Marchianò
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Michele Biagioli
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | - Rachele Bellini
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Carmen Massa
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Ginevra Lachi
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Luigi Cari
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Elva Morretta
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Lucio Spinelli
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | | | - Valentina Sepe
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Angela Zampella
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | | | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University HospitalUniversity of the Basque Country (UPV/EHU), CIBERehdDonostia‐San SebastianSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Department of Biochemistry and Genetics, School of SciencesUniversity of NavarraPamplonaSpain
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University HospitalUniversity of the Basque Country (UPV/EHU), CIBERehdDonostia‐San SebastianSpain
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
- Translational Medicine GroupPomeranian Medical UniversitySzczecinPoland
| | - Malgorzata Milkiewicz
- Department of Medical BiologyPomeranian Medical University in SzczecinSzczecinPoland
| | - Stefano Fiorucci
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| |
Collapse
|
19
|
Yang Y, Jiang J, Zhou J, Wang S, Chen G, Zheng S. Clinical Course and Outcome of COVID-19 in Children With Biliary Atresia: A Retrospective Study. Health Sci Rep 2025; 8:e70462. [PMID: 39931263 PMCID: PMC11808391 DOI: 10.1002/hsr2.70462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Background and Aims To investigate the infection status and outcomes of biliary atresia (BA) patients during the coronavirus disease 2019 (COVID-19) pandemic in Chinese population. Methods This retrospective study involved Kasai-postoperative BA patients who had achieved jaundice-free during the SARS-CoV-2 outbreak from December 1, 2022 to February 28, 2023. Children without hepatobiliary diseases hospitalized during the same period were as control group. Data collected included nutritional status, comorbidities, epidemiologic characteristics, fever symptoms (duration, max), respiratory symptoms (cough, runny nose and shortness of breath), and gastrointestinal symptoms (diarrhea and vomiting). All cases infected with SARS-CoV-2 were followed up for 3 months. Results A total of 128 BA patients were enrolled, ranged in age from 6 months to 12 years old (median age: 1.8 years). A total of 51 (39.8%) and 49 BA patients (38.3%) were classified as confirmed and suspected COVID-19 cases, respectively. Only two confirmed cases presented with moderate symptoms, while the rest developed asymptomatic or mild cases. Compared to the 115 control groups, the proportion of symptomatic cases in BA was slightly higher (78.1% vs. 67.8%) without significant difference (p = 0.07). Similarly, no differences were found in proportion of fever, respiratory tract symptoms and gastrointestinal symptoms between BA and control groups. However, it is worth noting that 7 BA patients developed symptoms of cholangitis during SARS-CoV-2 infection, who experienced pale stool and elevated bilirubin levels. After hospitalization, six patients achieved jaundice-free survival, but one child finally had to undergo liver transplantation due to hepatic failure. Conclusions The symptoms and course of COVID-19 in BA patients were similar to those in healthy population. The vast majority of BA patients made a good recovery from COVID-19.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Pediatric SurgeryChildren's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of HealthShanghaiChina
| | - Jingying Jiang
- Department of Pediatric SurgeryChildren's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of HealthShanghaiChina
| | - Jin Zhou
- Department of Pediatric SurgeryChildren's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of HealthShanghaiChina
| | - Shuxin Wang
- Department of Pediatric SurgeryChildren's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of HealthShanghaiChina
| | - Gong Chen
- Department of Pediatric SurgeryChildren's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of HealthShanghaiChina
| | - Shan Zheng
- Department of Pediatric SurgeryChildren's Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of HealthShanghaiChina
| |
Collapse
|
20
|
Parisse S, Carnevale S, Damato E, Ferri F, Mischitelli M, Corona M, Lucatelli P, Cantafora A, De Santis A, Alvaro D, Muscaritoli M, Ginanni Corradini S. Effect of Daily Fiber Intake Among Cirrhotic Patients With and Without Portosystemic Shunts. Curr Dev Nutr 2025; 9:104527. [PMID: 39896732 PMCID: PMC11787017 DOI: 10.1016/j.cdnut.2024.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 02/04/2025] Open
Abstract
Background A diet rich in fiber, especially soluble fiber, causes cholestatic liver damage and fibrosis in animal models with intestinal dysbiosis, high serum bile acid concentrations, and congenital portosystemic shunts (PSs), but no data on patients with cirrhosis (CIRs) are available. Objectives To investigate whether dietary fiber consumption was associated with clinical outcomes of CIRs and whether their effect differed according to the presence of PSs. Methods Daily soluble and insoluble fiber intake was extrapolated from 3-d food diaries in 25 patients with chronic hepatitis (CH) and 80 CIRs outpatient liver transplant candidates abstinent from alcohol and nonviremic for ≥6 mo. In CIRs, the presence of PSs was verified by computed tomography, and the model for end-stage liver disease (MELD) score was calculated at enrollment and after 6 mo. Results PSs were present in 48 (60%) CIRs. The MELD score after 6 mo, compared with enrollment, had improved in 19 and 10 CIRs with and without PSs, respectively. By adjusting for confounders in logistic regression models we found that improvement in MELD over time was inversely associated with insoluble fiber consumption expressed in milligrams per kilogram (mg/kg) body weight in CIRs without PSs [odds ratio (OR): 0.968; 95% confidence interval (CI): 0.939, 0.997; P = 0.005] but with soluble fiber consumption in CIRs with PSs [OR: 0.946; 95% CI: 0.912, 0.982; P = 0.001]. In CIRs with PSs, soluble fiber consumption was inversely associated with normal serum alkaline phosphatase values at enrollment [OR: 0.964; 95% CI: 0.963, 0.993; P = 0.010]. CHs with normal serum alanine transaminase consumed significantly more soluble fiber (p=0.015) than those with abnormal alanine transaminase. Conclusions The clinical impact of dietary fiber changes from beneficial to harmful as the stage of chronic liver disease progresses. In particular, in the advanced cirrhosis stage with PSs, soluble fiber intake appears to significantly influence disease progression and should be kept low.
Collapse
Affiliation(s)
- Simona Parisse
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Elio Damato
- Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Flaminia Ferri
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Monica Mischitelli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Mario Corona
- Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Pierleone Lucatelli
- Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Alfredo Cantafora
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Adriano De Santis
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
21
|
Qian Y, Zhao J, Wu H, Kong X. Innate immune regulation in inflammation resolution and liver regeneration in drug-induced liver injury. Arch Toxicol 2025; 99:115-126. [PMID: 39395921 DOI: 10.1007/s00204-024-03886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Drug-induced liver injury (DILI) is an acute liver injury that poses a significant threat to human health. In severe cases, it can progress into chronic DILI or even lead to liver failure. DILI is typically caused by either intrinsic hepatotoxicity or idiosyncratic metabolic or immune responses. In addition to the direct damage drugs inflict on hepatocytes, the immune responses and liver inflammation triggered by hepatocyte death can further exacerbate DILI. Initially, we briefly discussed the differences in immune cell activation based on the type of liver cell death (hepatocytes, cholangiocytes, and LSECs). We then focused on the role of various immune cells (including macrophages, monocytes, neutrophils, dendritic cells, liver sinusoidal endothelial cells, eosinophils, natural killer cells, and natural killer T cells) in both the liver injury and liver regeneration stages of DILI. This article primarily reviews the role of innate immune regulation mediated by these immune cells in resolving inflammation and promoting liver regeneration during DILI, as well as therapeutic approaches targeting these immune cells for the treatment of DILI. Finally, we discussed the activation and function of liver progenitor cells (LPCs) during APAP-induced massive hepatic necrosis and the involvement of chronic inflammation in DILI.
Collapse
Affiliation(s)
- Yihan Qian
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, China.
| |
Collapse
|
22
|
He J, Li S, Yang Z, Ma J, Qian C, Huang Z, Li L, Yang Y, Chen J, Sun Y, Zhao T, Luo L. Gallbladder-derived retinoic acid signalling drives reconstruction of the damaged intrahepatic biliary ducts. Nat Cell Biol 2025; 27:39-47. [PMID: 39779943 DOI: 10.1038/s41556-024-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/25/2024] [Indexed: 01/11/2025]
Abstract
Severe damage to the intrahepatic biliary duct (IHBD) network occurs in multiple human advanced cholangiopathies, such as primary sclerosing cholangitis, biliary atresia and end-stage primary biliary cholangitis. Whether and how a severely damaged IHBD network could reconstruct has remained unclear. Here we show that, although the gallbladder is not directly connected to the IHBD, there is a common hepatic duct (CHD) in between, and severe damage to the IHBD network induces migration of gallbladder smooth muscle cells (SMCs) to coat the CHD in mouse and zebrafish models. These gallbladder-derived, CHD-coating SMCs produce retinoic acid to activate Sox9b in the CHD, which drives proliferation and ingrowth of CHD cells into the inner liver to reconstruct the IHBD network. This study reveals a hitherto unappreciated function of the gallbladder in the recovery of injured liver, and characterizes mechanisms involved in how the gallbladder and liver communicate through inter-organ cell migration to drive tissue regeneration. Carrying out cholecystectomy will thus cause previously unexpected impairments to liver health.
Collapse
Affiliation(s)
- Jianbo He
- State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Shuang Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Zhuolin Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Jianlong Ma
- State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanfang Qian
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Linke Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Yun Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Jingying Chen
- State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfan Sun
- State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianyu Zhao
- State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingfei Luo
- State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China.
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China.
| |
Collapse
|
23
|
Gilgenkrantz H, Sayegh RA, Lotersztajn S. Immunoregulation of Liver Fibrosis: New Opportunities for Antifibrotic Therapy. Annu Rev Pharmacol Toxicol 2025; 65:281-299. [PMID: 39259981 DOI: 10.1146/annurev-pharmtox-020524-012013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Liver fibrosis develops in response to chronic liver injury and is characterized by a sustained inflammatory response that leads to excessive collagen deposition by myofibroblasts. The fibrogenic response is governed by the release of inflammatory mediators from innate, adaptive, and innate-like lymphoid cells and from nonprofessional immune cells (i.e., epithelial cells, hepatic myofibroblasts, and liver sinusoidal endothelial cells). Upon removal of the underlying cause, liver fibrosis can resolve via activation of specific immune cell subsets. Despite major advances in the understanding of fibrosis pathogenesis, there is still no approved antifibrotic therapy. This review summarizes our current knowledge of the immune cell landscape and the inflammatory mechanisms underlying liver fibrosis progression and regression. We discuss how reprogramming immune cell phenotype, in particular through targeting selective inflammatory pathways or modulating cell-intrinsic metabolism, may be translated into antifibrogenic therapies.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| | - Rola Al Sayegh
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| | - Sophie Lotersztajn
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| |
Collapse
|
24
|
Klindt C, Truong JK, Bennett AL, Pachura KJ, Herebian D, Mayatepek E, Luedde T, Ebert M, Karpen SJ, Dawson PA. Hepatic bile acid accretion correlates with cholestatic liver injury and therapeutic response in Cyp2c70 knockout mice with a humanized bile acid composition. Am J Physiol Gastrointest Liver Physiol 2024; 327:G789-G809. [PMID: 39350733 PMCID: PMC11684888 DOI: 10.1152/ajpgi.00129.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 11/12/2024]
Abstract
Cyp2c70 knockout (KO) mice lack the liver enzyme responsible for synthesis of 6-hydroxylated muricholate bile acid species and possess a more hydrophobic human-like bile acid composition. Cyp2c70 KO mice develop cholestatic liver injury that can be prevented by the administration of an ileal bile acid transporter (IBAT) inhibitor. In this study, we investigated the potential of an ileal bile acid transporter (IBAT) inhibitor (SC-435) and steroidal farnesoid X receptor (FXR) agonist (cilofexor) to modulate established hepatobiliary injury and the consequent relationship of intrahepatic bile acid content and hydrophobicity to the cholestatic liver injury phenotype. Oral administration of SC-435, cilofexor, or combined treatment for 2 wk markedly reduced serum markers of liver injury and improved histological and gene expression markers of fibrosis, liver inflammation, and ductular reaction in male and female Cyp2c70 KO mice, with the greatest benefit in the combination treatment group. The IBAT inhibitor and FXR agonist significantly reduced intrahepatic bile acid content but not hepatic bile acid pool hydrophobicity, and markers of liver injury were strongly correlated with intrahepatic total bile acid and taurochenodeoxycholic acid accretion. Biomarkers of liver injury increased linearly with similar hepatic thresholds for pathological accretion of hydrophobic bile acids in male and female Cyp2c70 KO mice. These findings further support targeting intrahepatic bile acid retention as a component of treatments for cholestatic liver disease.NEW & NOTEWORTHY Bile acids are implicated as a common contributor to the pathogenesis and progression of cholestatic liver disease. Using a mouse model with a humanized bile acid composition, we demonstrated that mono and combination therapy using an IBAT inhibitor and FXR nonsteroidal agonist were effective at reducing hepatic bile acid accretion and reversing liver injury, without reducing hepatic bile acid hydrophobicity. The findings support the concept of a therapeutically tractable threshold for bile acid-induced liver injury.
Collapse
Affiliation(s)
- Caroline Klindt
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine University, Duesseldorf, Germany
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jennifer K Truong
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
- Rectify Pharma, Cambridge, Massachusetts, United States
| | - Ashley L Bennett
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Kimberly J Pachura
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine University, Duesseldorf, Germany
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Saul J Karpen
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
- Stravitz-Sanyal Liver Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Paul A Dawson
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| |
Collapse
|
25
|
Venturin C, Fabris L. Machine learning application to histology for the study of cholangiopathies (BiliQML): A chance to put liver biopsy back to its former glory? Am J Physiol Gastrointest Liver Physiol 2024; 327:G733-G736. [PMID: 39378378 DOI: 10.1152/ajpgi.00173.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Affiliation(s)
- Camilla Venturin
- Clinical Medicine 1 and Thrombotic and Haemorrhagic Disease Unit, and Haemophilia Center, Padua University-Hospital, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Luca Fabris
- Clinical Medicine 1 and Thrombotic and Haemorrhagic Disease Unit, and Haemophilia Center, Padua University-Hospital, Department of Medicine (DIMED), University of Padua, Padua, Italy
- Department of Internal Medicine, Digestive Disease Section, Liver Center, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
26
|
Yan J, Ye Z, Wang X, Zhong D, Wang Z, Yan T, Li T, Yuan Y, Liu Y, Wang Y, Cai X. Recent research progresses of bioengineered biliary stents. Mater Today Bio 2024; 29:101290. [PMID: 39444940 PMCID: PMC11497374 DOI: 10.1016/j.mtbio.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Bile duct lesion, including benign (eg. occlusion, cholelithiasis, dilatation, malformation) and malignant (cholangiocarcinoma) diseases, is a frequently encountered challenge in hepatobiliary diseases, which can be repaired by interventional or surgical procedures. A viable cure for bile duct lesions is implantation with biliary stents. Despite the placement achieved by current clinical biliary stents, the creation of functional and readily transplantable biliary stents remains a formidable obstacle. Excellent biocompatibility, stable mechanics, and absorbability are just a few benefits of using bioengineered biliary stents, which can also support and repair damaged bile ducts that drain bile. Additionally, cell sources & organoids derived from the biliary system that are loaded onto scaffolds can encourage bile duct regeneration. Therefore, the implantation of bioengineered biliary stent is considered as an ideal treatment for bile duct lesion, holding a broad potential for clinical applications in future. In this review, we look back on the development of conventional biliary stents, biodegradable biliary stents, and bioengineered biliary stents, highlighting the crucial elements of bioengineered biliary stents in promoting bile duct regeneration. After providing an overview of the various types of cell sources & organoids and fabrication methods utilized for the bioengineering process, we present the in vitro and in vivo applications of bioengineered biliary ducts, along with the latest advances in this exciting field. Finally, we also emphasize the ongoing challenges and future development of bioengineered biliary stents.
Collapse
Affiliation(s)
- Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yu Liu
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
27
|
Duijzer R, Dalloyaux D, Boerrigter MM, Lemmers H, Dijkstra H, van Emst L, Te Morsche RHM, Jaeger M, Joosten LAB, Drenth JPH. Exploring the innate immune response in polycystic liver disease. Cytokine 2024; 184:156800. [PMID: 39541862 DOI: 10.1016/j.cyto.2024.156800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
RATIONALE The role of the innate immune system in polycystic liver disease (PLD) has been underexplored despite its potential importance in disease progression. This study explores the innate immune response in PLD patients by analyzing cytokine production of peripheral blood mononuclear cells (PBMCs) in response to various pathogens compared to healthy controls. METHODS Samples were collected from patients with ADPLD or ADPKD and PLD. PBMCs were isolated and stimulated with LPS (1 ng), LPS (10 ng), E. coli, K. pneumoniae, S. aureus, and C. albicans. ELISA was used to measure TNF, IL-1β, IL-1Ra, IL-6, and IL-8 concentrations after 24 hours, and IL-17, IL-22, and IFNγ concentrations after 7 days. Control samples were matched for age and gender. RESULTS 104 patients and 12 controls were included. PLD patients showed consistent increased IL-6 concentrations compared to controls. Other cytokine levels varied per stimulus. Controls showed higher IL-8 and TNF concentrations in response to Gram-negative bacteria, while PLD patients showed higher IL-1β and IL-1Ra levels in response to S. aureus and C. albicans. No clear differences were found in IL-17, IL-22, and IFN-γ concentrations after 7 days. These observed differences were independent of demographic and clinical parameters. CONCLUSION Compared to healthy controls, the PLD patients innate immune system shows an altered response when stimulated by various pathogens. These findings underscore the importance of further investigation into the underlying mechanisms as this might help our understanding disease progression and be a potential target for new therapies.
Collapse
Affiliation(s)
- Renée Duijzer
- Department of Gastroenterology and Hepatology, Radboudumc, Nijmegen, the Netherlands
| | - Daisy Dalloyaux
- Department of Gastroenterology and Hepatology, Radboudumc, Nijmegen, the Netherlands
| | - Melissa M Boerrigter
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Liesbeth van Emst
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - René H M Te Morsche
- Department of Gastroenterology and Hepatology, Radboudumc, Nijmegen, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center and Radboud Community for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Amsterdam UMC, the Netherlands; European Reference Network RARE-LIVER, Hamburg, Germany.
| |
Collapse
|
28
|
Shearn CT, Anderson AL, Devereaux MW, Koch SD, Larsen LD, Spencer LA, Orlicky DJ, Colgan SP, Steiner CA, Sokol RJ. Overexpression of TNFα in TNF∆ARE+/- mice increases hepatic periportal inflammation and alters bile acid signaling in mice. Hepatol Commun 2024; 8:e0589. [PMID: 39585296 PMCID: PMC11596574 DOI: 10.1097/hc9.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/05/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Intestinal inflammation is a common factor in ~70% of patients diagnosed with primary sclerosing cholangitis. The TNF∆ARE+/- mouse overexpresses TNFα and spontaneously develops ileitis after weaning. The aim of this study was to examine the influence of ileitis and TNFα overexpression on hepatic injury, fibrosis, inflammation, and bile acid homeostasis. METHODS Using serum, hepatic, and ileal tissue isolated from 24- to 26-week-old C57BL/6 and TNF∆ARE+/- mice, hepatic injury and fibrosis, inflammation, ductal proliferation, and regulation of bile acid synthesis were assessed by immunohistochemical and quantitative PCR methods. RESULTS Compared to age-matched C57BL/6 mice, TNF∆ARE+/- mice exhibited increased serum AST, ALT, and serum bile acids, which corresponded to increased hepatic picrosirius red staining, and an increase in hepatic mRNA expression of Tgfb, Timp1, Col1a1, and MMP9 supporting induction of fibrosis. Examining inflammation, immunohistochemical staining revealed a significant periportal increase in MPO+ neutrophils, CD3+ lymphocytes, and a panlobular increase in F4/80+ macrophages. Importantly, periportal inflammation corresponded to significantly increased proinflammatory chemokines as well as hepatic cytokeratin 7 staining supporting increased ductular proliferation. In the liver, increased mRNA expression of bile acid transporters was associated with suppression of classical but not alternative bile acid synthesis. In the ileum, increased inflammation correlated with suppression of Nr1h4 and increased Fgf15 and Nr0b2 mRNA expression. CONCLUSIONS Increased TNFα expression is sufficient to promote both intestinal and hepatobiliary inflammation and fibrotic injury and contributes to hepatic dysregulation of FXR signaling and bile acid homeostasis. Overall, these results suggest that the TNF∆ARE+/- mouse may be a useful model for studying chronic hepatic inflammation.
Collapse
Affiliation(s)
- Colin T. Shearn
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
- The Digestive Health Institute, Aurora, Colorado, USA
| | - Aimee L. Anderson
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael W. Devereaux
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Samuel D. Koch
- Mucosal Inflammation Program, Division of Gastroenterology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Leigha D. Larsen
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lisa A. Spencer
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sean P. Colgan
- Mucosal Inflammation Program, Division of Gastroenterology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Calen A. Steiner
- Mucosal Inflammation Program, Division of Gastroenterology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ronald J. Sokol
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
- The Digestive Health Institute, Aurora, Colorado, USA
- Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
29
|
Frau C, Vallier L. Exploiting the plasticity of cholangiocytes to repair the biliary tree. Curr Opin Genet Dev 2024; 89:102257. [PMID: 39255689 DOI: 10.1016/j.gde.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
Cholangiocytes are the main cell type lining the epithelium of the biliary tree of the liver. This cell type has been implicated not only in diseases affecting the biliary tree but also in chronic liver diseases targeting other hepatic cells such as hepatocytes. However, the isolation and culture of cholangiocytes have been particularly arduous, thereby limiting the development of new therapies. The emergence of organoids has the potential to address in part this challenge. Indeed, cholangiocyte organoids can be established from both the intra- and extrahepatic regions of the biliary tree, providing an advantageous platform for disease modeling and mechanism investigations. Accordingly, recent studies on cholangiocyte organoids, together with the advent of single-cell -omics, have opened the field to exciting discoveries concerning the plastic nature of these cells and their capability to adapt to different environments and stimuli. This review will focus on describing how these plasticity properties could be exploited in regenerative medicine and cell-based therapy, opening new frontiers for treating disorders affecting the biliary tree and beyond.
Collapse
Affiliation(s)
- Carla Frau
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany; Berlin Institute of Health @Charite, Berlin, Germany.
| | - Ludovic Vallier
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany; Berlin Institute of Health @Charite, Berlin, Germany.
| |
Collapse
|
30
|
Liu A, Huang Z, Cui S, Xiao Y, Guo X, Pan G, Song L, Deng J, Xu T, Fan Y, Wang R. Ionically assembled hemostatic powders with rapid self-gelation, strong acid resistance, and on-demand removability for upper gastrointestinal bleeding. MATERIALS HORIZONS 2024; 11:5983-5996. [PMID: 39422136 DOI: 10.1039/d4mh00837e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Upper gastrointestinal bleeding (UGIB) is bleeding in the upper part of the gastrointestinal tract with an acidic and dynamic environment that limits the application of conventional hemostatic materials. This study focuses on the development of N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride/phytic acid (HTCC/PA, HP) powders with fast hemostatic capability and strong acid resistance, for potential applications in managing UGIB. Upon contact with liquids within 5 seconds, HP powders rapidly transform into hydrogels, forming ionic networks through electrostatic interactions. The ionic crosslinking process facilitates the HP powders with high blood absorption (3.4 times of self-weight), sufficient tissue adhesion (5.2 and 6.1 kPa on porcine skin and stomach, respectively), and hemostasis (within 15 seconds for in vitro clotting). Interestingly, the PA imparts the HP powders with strong acid resistance (69.8% mass remaining after 10 days of incubation at pH 1) and on-demand removable sealing while HTCC contributes to fast hemostasis and good wet adhesion. Moreover, the HP powders show good biocompatibility and promote wound healing. Therefore, these characteristics highlight the promising clinical potential of HP powders for effectively managing UGIB.
Collapse
Affiliation(s)
- Ashuang Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 325035, P. R. China
| | - Zhimao Huang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Shengyong Cui
- Department of Burn Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, P. R. China
| | - Ying Xiao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Xiangshu Guo
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Gaoke Pan
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Lei Song
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Junjie Deng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 325035, P. R. China
| | - Ting Xu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Youfen Fan
- Department of Burn Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, P. R. China
| | - Rong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| |
Collapse
|
31
|
Har-Zahav A, Tobar A, Fried S, Sivan R, Wilkins BJ, Russo P, Shamir R, Wells RG, Gurevich M, Waisbourd-Zinman O. Oral N-acetylcysteine ameliorates liver fibrosis and enhances regenerative responses in Mdr2 knockout mice. Sci Rep 2024; 14:26513. [PMID: 39489865 PMCID: PMC11532366 DOI: 10.1038/s41598-024-78387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024] Open
Abstract
Cholangiopathies are poorly understood disorders with no effective therapy. The extrahepatic biliary tree phenotype is less studied compared to the intrahepatic biliary injury in both human disease and Mdr2-/- mice, the established cholestatic mouse model. This study aimed to characterize the extra hepatic biliary tree of Mdr2-/- mice at various ages and to determine if injury can be repaired with the antioxidant and glutathione precursor N-acetyl-L-Cysteine treatment (NAC). We characterized extra hepatic bile ducts (EHBD)s at various ages from 2 to 40 weeks old FVB/N and Mdr2-/- mice. We examined the therapeutic potential of local NAC ex vivo using EHBD explants at early and late stages of injury; and systematic therapy by in vivo oral administration for 3 weeks. EHBD and liver sections were assessed by histology and immunofluorescent stains. Serum liver enzyme activities were analyzed, and liver spatial protein expression analysis was performed. Mdr2-/- mice developed progressive EHBD injury, similar to extrahepatic PSC. NAC treatment of ex vivo EHBD explants led to improved duct morphology. In vivo, oral administration of NAC improved liver fibrosis, and decreased liver enzyme activities. Spatial protein analysis revealed cell-type specific differential response to NAC, collectively indicating a transition from pro-apoptotic into proliferative state. NAC treatment should be further investigated as a potential therapeutic option for human cholangiopathies.
Collapse
Affiliation(s)
- Adi Har-Zahav
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Ana Tobar
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
- Department of Pathology, Rabin Medical Center, Petach Tikva, Israel
| | - Sophia Fried
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Sivan
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pierre Russo
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Raanan Shamir
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Rebecca G Wells
- Departments of Medicine, Bioengineering, and Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Gurevich
- The Organ Transplantation Division, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Orith Waisbourd-Zinman
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Mašek J, Filipovic I, Van Hul N, Belicová L, Jiroušková M, Oliveira DV, Frontino AM, Hankeova S, He J, Turetti F, Iqbal A, Červenka I, Sarnová L, Verboven E, Brabec T, Björkström NK, Gregor M, Dobeš J, Andersson ER. Jag1 insufficiency alters liver fibrosis via T cell and hepatocyte differentiation defects. EMBO Mol Med 2024; 16:2946-2975. [PMID: 39358604 PMCID: PMC11554675 DOI: 10.1038/s44321-024-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Fibrosis contributes to tissue repair, but excessive fibrosis disrupts organ function. Alagille syndrome (ALGS, caused by mutations in JAGGED1) results in liver disease and characteristic fibrosis. Here, we show that Jag1Ndr/Ndr mice, a model for ALGS, recapitulate ALGS-like fibrosis. Single-cell RNA-seq and multi-color flow cytometry of the liver revealed immature hepatocytes and paradoxically low intrahepatic T cell infiltration despite cholestasis in Jag1Ndr/Ndr mice. Thymic and splenic regulatory T cells (Tregs) were enriched and Jag1Ndr/Ndr lymphocyte immune and fibrotic capacity was tested with adoptive transfer into Rag1-/- mice, challenged with dextran sulfate sodium (DSS) or bile duct ligation (BDL). Transplanted Jag1Ndr/Ndr lymphocytes were less inflammatory with fewer activated T cells than Jag1+/+ lymphocytes in response to DSS. Cholestasis induced by BDL in Rag1-/- mice with Jag1Ndr/Ndr lymphocytes resulted in periportal Treg accumulation and three-fold less periportal fibrosis than in Rag1-/- mice with Jag1+/+ lymphocytes. Finally, the Jag1Ndr/Ndr hepatocyte expression profile and Treg overrepresentation were corroborated in patients' liver samples. Jag1-dependent hepatic and immune defects thus interact to determine the fibrotic process in ALGS.
Collapse
Affiliation(s)
- Jan Mašek
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden.
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic.
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden.
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Lenka Belicová
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Markéta Jiroušková
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Daniel V Oliveira
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Anna Maria Frontino
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Simona Hankeova
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Jingyan He
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Fabio Turetti
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Afshan Iqbal
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Igor Červenka
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Lenka Sarnová
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Elisabeth Verboven
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden
| | - Tomáš Brabec
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Solna, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden.
| |
Collapse
|
33
|
Van Campenhout R, Vinken M. Hepatic cell junctions: Pulling a double-duty. Liver Int 2024; 44:2873-2889. [PMID: 39115254 DOI: 10.1111/liv.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in the structural and functional organization of multicellular tissues, including in liver. Specifically, hepatic cell junctions mediate intercellular adhesion and communication between liver cells. The establishment of the hepatic cell junction network is a prerequisite for normal liver functioning. Hepatic cell junctions indeed support liver-specific features and control essential aspects of the hepatic life cycle. This review paper summarizes the role of cell junctions and their components in relation to liver physiology, thereby also discussing their involvement in hepatic dysfunctionality, including liver disease and toxicity.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
34
|
Mohanty S, Roy S. Bioactive Hydrogels Inspired by Laminin: An Emerging Biomaterial for Tissue Engineering Applications. Macromol Biosci 2024; 24:e2400207. [PMID: 39172212 DOI: 10.1002/mabi.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Tissue or organ damage due to severe injuries or chronic diseases can adversely affect the quality of life. Current treatments rely on organ or tissue transplantation which has limitations including unavailability of donors, ethical issues, or immune rejection after transplantations. These limitations can be addressed by tissue regeneration which involves the development of bioactive scaffolds closely mimicking the extracellular matrix (ECM). One of the major components of ECM is the laminin protein which supports several tissues associated with important organs. In this direction, peptide-based hydrogels can effectively mimic the essential characteristics of laminin. While several reports have discussed the structure of laminin, the potential of laminin-derived peptide hydrogels as effective biomaterial for tissue engineering applications is yet to be discussed. In this context, the current review focuses on the structure of laminin and its role as an essential ECM protein. Further, the potential of short peptide hydrogels in mimicking the crucial properties of laminin is proposed. The review further highlights the significance of bioactive hydrogels inspired by laminin - in addressing numerous tissue engineering applications including angiogenesis, neural, skeletal muscle, liver, and adipose tissue regeneration along with a brief outlook on the future applications of these laminin-based hydrogels.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
35
|
Niu C, Hu Y, Xu K, Pan X, Wang L, Yu G. The role of the cytoskeleton in fibrotic diseases. Front Cell Dev Biol 2024; 12:1490315. [PMID: 39512901 PMCID: PMC11540670 DOI: 10.3389/fcell.2024.1490315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Fibrosis is the process whereby cells at a damaged site are transformed into fibrotic tissue, comprising fibroblasts and an extracellular matrix rich in collagen and fibronectin, following damage to organs or tissues that exceeds their repair capacity. Depending on the affected organs or tissues, fibrosis can be classified into types such as pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and cardiac fibrosis. The primary pathological features of fibrotic diseases include recurrent damage to normal cells and the abnormal activation of fibroblasts, leading to excessive deposition of extracellular matrix and collagen in the intercellular spaces. However, the etiology of certain specific fibrotic diseases remains unclear. Recent research increasingly suggests that the cytoskeleton plays a significant role in fibrotic diseases, with structural changes in the cytoskeleton potentially influencing the progression of organ fibrosis. This review examines cytoskeletal remodeling and its impact on the transformation or activation of normal tissue cells during fibrosis, potentially offering important insights into the etiology and therapeutic strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Caoyuan Niu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yanan Hu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyue Pan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
36
|
Jin C, Jiang P, Zhang Z, Han Y, Wen X, Zheng L, Kuang W, Lian J, Yu G, Qian X, Ren Y, Lu M, Xu L, Chen W, Chen J, Zhou Y, Xin J, Wang B, Jin X, Qian P, Yang Y. Single-cell RNA sequencing reveals the pro-inflammatory roles of liver-resident Th1-like cells in primary biliary cholangitis. Nat Commun 2024; 15:8690. [PMID: 39375367 PMCID: PMC11458754 DOI: 10.1038/s41467-024-53104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/02/2024] [Indexed: 10/09/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by multilineage immune dysregulation, which subsequently causes inflammation, fibrosis, and even cirrhosis of liver. Due to the limitation of traditional assays, the local hepatic immunopathogenesis of PBC has not been fully characterized. Here, we utilize single-cell RNA sequencing technology to depict the immune cell landscape and decipher the molecular mechanisms of PBC patients. We reveal that cholangiocytes and hepatic stellate cells are involved in liver inflammation and fibrosis. Moreover, Kupffer cells show increased levels of inflammatory factors and decreased scavenger function related genes, while T cells exhibit enhanced levels of inflammatory factors and reduced cytotoxicity related genes. Interestingly, we identify a liver-resident Th1-like population with JAK-STAT activation in the livers of both PBC patients and murine PBC model. Finally, blocking the JAK-STAT pathway alleviates the liver inflammation and eliminates the liver-resident Th1-like cells in the murine PBC model. In conclusion, our comprehensive single-cell transcriptome profiling expands the understanding of pathological mechanisms of PBC and provides potential targets for the treatment of PBC in patients.
Collapse
Affiliation(s)
- Ciliang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhaoru Zhang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xue Wen
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Kuang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangshan Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yue Ren
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaomiao Lu
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Xu
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixin Chen
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiyang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Zhou
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxia Xin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xi Jin
- Depratment of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
37
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Bile Acids-Based Therapies for Primary Sclerosing Cholangitis: Current Landscape and Future Developments. Cells 2024; 13:1650. [PMID: 39404413 PMCID: PMC11475195 DOI: 10.3390/cells13191650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare, chronic liver disease with no approved therapies. The ursodeoxycholic acid (UDCA) has been widely used, although there is no evidence that the use of UDCA delays the time to liver transplant or increases survival. Several candidate drugs are currently being developed. The largest group of these new agents is represented by FXR agonists, including obeticholic acid, cilofexor, and tropifexor. Other agents that target bile acid metabolism are ASTB/IBAP inhibitors and fibroblasts growth factor (FGF)19 analogues. Cholangiocytes, the epithelial bile duct cells, play a role in PSC development. Recent studies have revealed that these cells undergo a downregulation of GPBAR1 (TGR5), a bile acid receptor involved in bicarbonate secretion and immune regulation. Additional agents under evaluation are PPARs (elafibranor and seladelpar), anti-itching agents such as MAS-related G-protein-coupled receptors antagonists, and anti-fibrotic and immunosuppressive agents. Drugs targeting gut bacteria and bile acid pathways are also under investigation, given the strong link between PSC and gut microbiota.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
38
|
Li Y, Li TY, Qiao Q, Zhang MT, Tong MX, Xu LF, Zhang ZB. Polymeric immunoglobulin receptor promotes Th2 immune response in the liver by increasing cholangiocytes derived IL-33: a diagnostic and therapeutic biomarker of biliary atresia. EBioMedicine 2024; 108:105344. [PMID: 39288533 PMCID: PMC11421278 DOI: 10.1016/j.ebiom.2024.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Biliary atresia (BA) is a devastating neonatal cholangiopathy with an unclear pathogenesis, and prompt diagnosis of BA is currently challenging. METHODS Proteomic and immunoassay analyses were performed with serum samples from 250 patients to find potential BA biomarkers. The expression features of polymeric immunoglobulin receptor (PIGR) were investigated using human biopsy samples, three different experimental mouse models, and cultured human biliary epithelial cells (BECs). Chemically modified small interfering RNA and adenovirus expression vector were applied for in vivo silencing and overexpressing PIGR in a rotavirus-induced BA mouse model. Luminex-based multiplex cytokine assays and RNA sequencing were used to explore the molecular mechanism of PIGR involvement in the BA pathogenesis. FINDINGS Serum levels of PIGR, poliovirus receptor (PVR), and aldolase B (ALDOB) were increased in BA patients and accurately distinguished BA from infantile hepatitis syndrome (IHS). Combined PIGR and PVR analysis distinguished BA from IHS with an area under the receiver operating characteristic curve of 0.968 and an accuracy of 0.935. PIGR expression was upregulated in the biliary epithelium of BA patients; Th1 cytokines TNF-α and IFN-γ induced PIGR expression in BECs via activating NF-κB pathway. Silencing PIGR alleviated symptoms, reduced IL-33 expression, and restrained hepatic Th2 inflammation in BA mouse model; while overexpressing PIGR increased liver fibrosis and IL-33 expression, and boosted hepatic Th2 inflammation in BA mouse model. PIGR expression promotes the proliferation and epithelial-mesenchymal transition, and reduced the apoptosis of BECs. INTERPRETATION PIGR participated in BA pathogenesis by promoting hepatic Th2 inflammation via increasing cholangiocytes derived IL-33; PIGR has the value as a diagnostic and therapeutic biomarker of BA. FUNDING This study was financially supported by the National Natural Science Foundation of China (82170529), the National Key R&D Program (2021YFC2701003), and the National Natural Science Foundation of China (82272022).
Collapse
Affiliation(s)
- Yuan Li
- Department of Paediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Tian-Yu Li
- Department of Paediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Qi Qiao
- Department of Paediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Min-Ting Zhang
- Department of Paediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Ming-Xin Tong
- Department of Paediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Ling-Fen Xu
- Department of Paediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Zhi-Bo Zhang
- Department of Paediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China.
| |
Collapse
|
39
|
Hussein KH, Ahmadzada B, Correa JC, Sultan A, Wilken S, Amiot B, Nyberg SL. Liver tissue engineering using decellularized scaffolds: Current progress, challenges, and opportunities. Bioact Mater 2024; 40:280-305. [PMID: 38973992 PMCID: PMC11226731 DOI: 10.1016/j.bioactmat.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Liver transplantation represents the only definitive treatment for patients with end-stage liver disease. However, the shortage of liver donors provokes a dramatic gap between available grafts and patients on the waiting list. Whole liver bioengineering, an emerging field of tissue engineering, holds great potential to overcome this gap. This approach involves two main steps; the first is liver decellularization and the second is recellularization. Liver decellularization aims to remove cellular and nuclear materials from the organ, leaving behind extracellular matrices containing different structural proteins and growth factors while retaining both the vascular and biliary networks. Recellularization involves repopulating the decellularized liver with appropriate cells, theoretically from the recipient patient, to reconstruct the parenchyma, vascular tree, and biliary network. The aim of this review is to identify the major advances in decellularization and recellularization strategies and investigate obstacles for the clinical application of bioengineered liver, including immunogenicity of the designed liver extracellular matrices, the need for standardization of scaffold fabrication techniques, selection of suitable cell sources for parenchymal repopulation, vascular, and biliary tree reconstruction. In vivo transplantation models are also summarized for evaluating the functionality of bioengineered livers. Finally, the regulatory measures and future directions for confirming the safety and efficacy of bioengineered liver are also discussed. Addressing these challenges in whole liver bioengineering may offer new solutions to meet the demand for liver transplantation and improve patient outcomes.
Collapse
Affiliation(s)
- Kamal H. Hussein
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
- Department of Surgery, Anesthesiology, and Radiology, College of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Boyukkhanim Ahmadzada
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Julio Cisneros Correa
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Ahmer Sultan
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Silvana Wilken
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
40
|
Vidal-Correoso D, Mateo SV, Muñoz-Morales AM, Lucas-Ruiz F, Jover-Aguilar M, Alconchel F, Martínez-Alarcón L, Sánchez-Redondo S, Santos V, López-López V, Ríos-Zambudio A, Cascales P, Pons JA, Ramírez P, Pelegrín P, Peinado H, Baroja-Mazo A. Cell-specific Extracellular Vesicles and Their miRNA Cargo Released Into the Organ Preservation Solution During Cold Ischemia Storage as Biomarkers for Liver Transplant Outcomes. Transplantation 2024; 108:e301-e312. [PMID: 38578699 DOI: 10.1097/tp.0000000000005008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Liver transplantation (LT) is crucial for end-stage liver disease patients, but organ shortages persist. Donation after circulatory death (DCD) aims to broaden the donor pool but presents challenges. Complications like acute rejection, hepatic artery thrombosis, and biliary issues still impact posttransplant prognosis. Biomarkers, including extracellular vesicles (EVs) and microRNAs (miRNAs), show promise in understanding and monitoring posttransplant events. This study explores the role of EVs and their miRNA cargo in LT, including their potential as diagnostic tools. METHODS EVs from intrahepatic end-ischemic organ preservation solution (eiOPS) in 79 donated livers were detected using different techniques (nanosight tracking analysis, transmission electron microscopy, and flow cytometry). EV-derived miRNAs were identified by quantitative real time-polymerase chain reaction. Bioinformatics analysis was performed using the R platform. RESULTS Different-sized and origin-specific EVs were found in eiOPS, with significantly higher concentrations in DCD compared with donation after brain death organs. Additionally, several EV-associated miRNAs, including let-7d-5p , miR-28-5p , miR-200a-3p , miR-200b-3p , miR-200c-3p , and miR-429 , were overexpressed in DCD-derived eiOPS. These miRNAs also exhibited differential expression patterns in liver tissue biopsies. Pathway analysis revealed enrichment in signaling pathways involved in extracellular matrix organization and various cellular processes. Moreover, specific EVs and miRNAs correlated with clinical outcomes, including survival and early allograft dysfunction. A predictive model combining biomarkers and clinical variables showed promise in acute rejection detection after LT. CONCLUSIONS These findings provide new insights into the use of EVs and miRNAs as biomarkers and their possible influence on posttransplantation outcomes, potentially contributing to improved diagnostic approaches and personalized treatment strategies in LT.
Collapse
Affiliation(s)
- Daniel Vidal-Correoso
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Sandra V Mateo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Ana M Muñoz-Morales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Fernando Lucas-Ruiz
- Experimental Ophthalmology Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Jover-Aguilar
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Felipe Alconchel
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Laura Martínez-Alarcón
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Sara Sánchez-Redondo
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Víctor López-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Antonio Ríos-Zambudio
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pedro Cascales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - José Antonio Pons
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Hepatology and Liver Transplant Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Ramírez
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
41
|
Kellerer M, Javed S, Casar C, Will N, Berkhout LK, Schwinge D, Krebs CF, Schramm C, Neumann K, Tiegs G. Antagonistic effects of the cytotoxic molecules granzyme B and TRAIL in the immunopathogenesis of sclerosing cholangitis. Hepatology 2024; 80:844-858. [PMID: 38441998 PMCID: PMC11407778 DOI: 10.1097/hep.0000000000000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by biliary inflammation and fibrosis. We showed an elevated interferon γ response in patients with primary sclerosing cholangitis and in multidrug resistance protein 2-deficient ( Mdr2-/- ) mice developing sclerosing cholangitis. Interferon γ induced expression of the cytotoxic molecules granzyme B (GzmB) and TRAIL in hepatic lymphocytes and mediated liver fibrosis in sclerosing cholangitis. APPROACH AND RESULTS In patient samples and Mdr2-/- mice, we identified lymphocyte clusters with a cytotoxic gene expression profile using single-cell RNA-seq and cellular indexing of transcriptomes and epitopes by sequencing analyses combined with multi-parameter flow cytometry. CD8 + T cells and NK cells showed increased expression of GzmB and TRAIL in sclerosing cholangitis. Depletion of CD8 + T cells ameliorated disease severity in Mdr2-/- mice. By using Mdr2-/- × Gzmb-/- and Mdr2-/- × Tnfsf10-/- mice, we investigated the significance of GzmB and TRAIL for disease progression in sclerosing cholangitis. Interestingly, the lack of GzmB resulted in reduced cholangiocyte apoptosis, liver injury, and fibrosis. In contrast, sclerosing cholangitis was aggravated in the absence of TRAIL. This correlated with elevated GzmB and interferon γ expression by CD8 + T cells and NK cells enhanced T-cell survival, and increased apoptosis and expansion of cholangiocytes. CONCLUSIONS GzmB induces apoptosis and fibrosis in sclerosing cholangitis, whereas TRAIL regulates inflammatory and cytotoxic immune responses, subsequently leading to reduced liver injury and fibrosis.
Collapse
Affiliation(s)
- Mareike Kellerer
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sana Javed
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pharmacy, The University of Faisalabad, Pakistan
| | - Christian Casar
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico Will
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura K. Berkhout
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorothee Schwinge
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
Ma Y, Zou C, Yang Y, Fang M, Guan Y, Sun J, Gao Y, Shang Z, Zhang X. Arachidonic acid enhances hepatocyte bile acid uptake and alleviates cholestatic liver disease by upregulating OATP1 expression. Food Funct 2024; 15:9916-9927. [PMID: 39258405 DOI: 10.1039/d4fo02158d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cholestatic liver disease is caused by disorders of bile synthesis, secretion, and excretion. Over the long term, progressive liver cell damage from the disease evolves into liver fibrosis and cirrhosis, ultimately leading to liver failure and even cancer. Notably, cholestatic liver disease has a complex pathogenesis that remains relatively unclear. In this study, we generated two mouse models of cholestatic liver disease using a 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet and α-naphthyl isothiocyanate (ANIT) gavage. Quantitative proteomics using liquid chromatography-tandem mass spectrometry showed that arachidonic acid metabolism was a common pathway in both models. Additionally, serum arachidonic acid concentrations were lower in both models than in the control group. Arachidonic acid supplementation in the diet of DDC model mice significantly reduced the levels of serum markers of cholestasis (alanine aminotransferase, aspartate transaminase, alkaline phosphatase, total bile acid, and total bilirubin) and decreased the degree of bile duct hyperplasia and cholestasis. To elucidate the mechanisms by which arachidonic acid improved bile stasis, we analyzed gene expression after arachidonic acid administration and found that Oatp1 was upregulated in the liver tissue of cholestatic mice. Arachidonic acid also increased Oatp1 expression in AML12 cells, which promoted bile acid uptake. Conclusively, our research showed that arachidonic acid mitigates cholestatic liver disease by upregulating Oatp1, promoting bile acid uptake by hepatocytes and participating in intestinal-hepatic circulation. Overall, these results suggest that supplementing foods with arachidonic acid in the daily diet may be an effective treatment strategy for cholestatic liver disease.
Collapse
Affiliation(s)
- Yanlu Ma
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Chen Zou
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Yilan Yang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Yunfeng Guan
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Jianqi Sun
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Anhui Hospital, Anhui, China
| | - Zhi Shang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
43
|
Raz M, Milo T, Glass DS, Mayo A, Alon U. Endocrine gland size is proportional to its target tissue size. iScience 2024; 27:110625. [PMID: 39224518 PMCID: PMC11367476 DOI: 10.1016/j.isci.2024.110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Endocrine glands secrete hormones into the circulation to target distant tissues and regulate their functions. The qualitative relationship between hormone-secreting organs and their target tissues is well established, but a quantitative approach is currently limited. Quantification is important, as it could allow us to study the endocrine system using engineering concepts of optimality and tradeoffs. In this study, we collected literature data on 24 human hormones secreted from dedicated endocrine cells. We find that the number of endocrine cells secreting a hormone is proportional to the number of its target cells. A single endocrine cell serves approximately 2,000 target cells, a relationship that spans 6 orders of magnitude of cell numbers. This suggests an economic principle of cells working near their maximal capacity, and glands that are no bigger than they need to be.
Collapse
Affiliation(s)
- Moriya Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tomer Milo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David S. Glass
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
44
|
Jalan-Sakrikar N, Guicciardi ME, O’Hara SP, Azad A, LaRusso NF, Gores GJ, Huebert RC. Central role for cholangiocyte pathobiology in cholestatic liver diseases. Hepatology 2024:01515467-990000000-01022. [PMID: 39250501 PMCID: PMC11890218 DOI: 10.1097/hep.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cholangiopathies comprise a spectrum of chronic intrahepatic and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis, and often cirrhosis and its sequela. Treatment for these diseases is limited, and collectively, they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators but also common cellular and molecular events driving disease progression (eg, cholestatic fibrogenesis, inflammation, and duct damage). The common pathways involve cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, which are central to the pathogenesis of these disorders. Current information suggests that cholangiocytes function as a signaling "hub" in biliary tract-associated injury. Herein, we review the pivotal role of cholangiocytes in cholestatic fibrogenesis, focusing on the crosstalk between cholangiocytes and portal fibroblasts and HSCs. The proclivity of these cells to undergo a senescence-associated secretory phenotype, which is proinflammatory and profibrogenic, and the intrinsic intracellular activation pathways resulting in the secretion of cytokines and chemokines are reviewed. The crosstalk between cholangiocytes and cells of the innate (neutrophils and macrophages) and adaptive (T cells and B cells) immune systems is also examined in detail. The information will help consolidate information on this topic and guide further research and potential therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Adiba Azad
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| |
Collapse
|
45
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
46
|
Xiang Y, Gao Y, Cheng Q, Lei Z, Zhang X, Yang Y, Zhang J. Recombinant collagen coating 3D printed PEGDA hydrogel tube loading with differentiable BMSCs to repair bile duct injury. Colloids Surf B Biointerfaces 2024; 241:114064. [PMID: 38954937 DOI: 10.1016/j.colsurfb.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Bile duct injury presents a significant clinical challenge following hepatobiliary surgery, necessitating advancements in the repair of damaged bile ducts is a persistent issue in biliary surgery. 3D printed tubular scaffolds have emerged as a promising approach for the repair of ductal tissues, yet the development of scaffolds that balance exceptional mechanical properties with biocompatibility remains an ongoing challenge. This study introduces a novel, bio-fabricated bilayer bile duct scaffold using a 3D printing technique. The scaffold comprises an inner layer of polyethylene glycol diacrylate (PEGDA) to provide high mechanical strength, and an outer layer of biocompatible, methacryloylated recombinant collagen type III (rColMA) loaded with basic fibroblast growth factor (bFGF)-encapsulated liposomes (bFGF@Lip). This design enables the controlled release of bFGF, creating an optimal environment for the growth and differentiation of bone marrow mesenchymal stem cells (BMSCs) into cholangiocyte-like cells. These cells are instrumental in the regeneration of bile duct tissues, evidenced by the pronounced expression of cholangiocyte differentiation markers CK19 and CFTR. The PEGDA//rColMA/bFGF@Lip bilayer bile duct scaffold can well simulate the bile duct structure, and the outer rColMA/bFGF@Lip hydrogel can well promote the growth and differentiation of BMSCs into bile duct epithelial cells. In vivo experiments showed that the scaffold did not cause cholestasis in the body. This new in vitro pre-differentiated active 3D printed scaffold provides new ideas for the study of bile duct tissue replacement.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China; Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou 570208, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Qiuhua Cheng
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Zhongwen Lei
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Xiaoyu Zhang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China; Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou 570208, China.
| | - Jianquan Zhang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China; Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou 570208, China.
| |
Collapse
|
47
|
Kasper VL, Assis DN. Pathophysiology of Cystic Fibrosis Liver Disease. Pediatr Pulmonol 2024; 59 Suppl 1:S98-S106. [PMID: 39105342 DOI: 10.1002/ppul.26869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 08/07/2024]
Abstract
Hepatobiliary complications of Cystic Fibrosis (CF) constitute a significant burden for persons with CF of all ages, with advanced CF liver disease in particular representing a leading cause of mortality. The causes of the heterogeneity of clinical manifestations, ranging from steatosis to focal biliary cholestasis and biliary strictures, are poorly understood and likely reflect a variety of environmental and disease-modifying factors in the setting of underlying CFTR mutations. This review summarizes the current understanding of the pathophysiology of hepatobiliary manifestations of CF, and discusses emerging disease models and therapeutic approaches that hold promise to impact this important yet incompletely addressed aspect of CF care.
Collapse
Affiliation(s)
- Vania L Kasper
- The Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - David N Assis
- Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
48
|
Roh HS, Kim DE, Kim G, Kim J, Fan D, Kim HS, Kim YH, Lee JH, Kim BG, Ryu MO, Kim HS, Baek KH, Bhang DH. Establishment and long-term expansion of adult hepatobiliary organoids co-cultured with liver endothelial cells. Heliyon 2024; 10:e36120. [PMID: 39253181 PMCID: PMC11382056 DOI: 10.1016/j.heliyon.2024.e36120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
The liver has a unique ability to regenerate in response to injury or disease with hepatocytes and biliary epithelial cells (BECs) driving the regenerative response. Liver progenitor cells (LPCs) also play role in regeneration with the ability to differentiate into either hepatocytes or BECs. However, during chronic liver disease, the regenerative capacity of the liver is impaired. The use of LPCs is a promising therapeutic strategy for patients with chronic liver diseases. LPCs can be expanded in vitro as self-renewing organoids, however, most approaches to LPC organoids do not include critical cells from the LPC niche in 3D organoid cultures. In this study, we highlight the role of liver endothelial cells (LiECs), as a part of LPC niche, in supporting the hepatobiliary organoids in long-term culture even in the absence of defined growth supplements, such as Wnt agonists. Furthermore, LiECs alter the gene expression profile of hepatobiliary organoids involved in inflammation, migration, extracellular matrix organization, and receptor signaling pathway through paracrine manner. Our findings expand the role of LiECs for regulating stemness of LPCs and elucidate a role for niche cells in a LPC organoid co-culture model with a reduction in growth supplements.
Collapse
Affiliation(s)
- Hyun-Soo Roh
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-Do, 16419, Republic of Korea
- Attislab Inc., Anyang, Gyeonggi-Do, 14059, Republic of Korea
| | - Da-Eun Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Gahee Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-Do, 16419, Republic of Korea
- Attislab Inc., Anyang, Gyeonggi-Do, 14059, Republic of Korea
| | - Jongsu Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Dengxia Fan
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Hong Sook Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Yong-Hee Kim
- Attislab Inc., Anyang, Gyeonggi-Do, 14059, Republic of Korea
| | - Jae-Hee Lee
- Attislab Inc., Anyang, Gyeonggi-Do, 14059, Republic of Korea
| | - Byung Gak Kim
- Attislab Inc., Anyang, Gyeonggi-Do, 14059, Republic of Korea
| | - Min-Ok Ryu
- Laboratory of Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 88082, Republic of Korea
| | - Hwan Soo Kim
- Department of General Surgery, Kangwon National University, School of Medicine, Kangwon National University Hospital, Cuncheon, Republic of Korea
| | - Kwan-Hyuck Baek
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Dong Ha Bhang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-Do, 16419, Republic of Korea
- Attislab Inc., Anyang, Gyeonggi-Do, 14059, Republic of Korea
| |
Collapse
|
49
|
Mata-Martínez E, Ramírez-Ledesma MG, Vázquez-Victorio G, Hernández-Muñoz R, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic Signaling in Non-Parenchymal Liver Cells. Int J Mol Sci 2024; 25:9447. [PMID: 39273394 PMCID: PMC11394727 DOI: 10.3390/ijms25179447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Guadalupe Ramírez-Ledesma
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| |
Collapse
|
50
|
Katsumi T, Sato H, Murakami R, Hanatani T, Uchiyama F, Suzuki F, Maki K, Hoshikawa K, Haga H, Saito T, Ueno Y. Identification of microbial antigens in liver tissues involved in the pathogenesis of primary biliary cholangitis using 16S rRNA metagenome analysis. PLoS One 2024; 19:e0308912. [PMID: 39159233 PMCID: PMC11332946 DOI: 10.1371/journal.pone.0308912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Multiple factors are involved in the pathogenesis of primary biliary cholangitis (PBC), a chronic cholestatic liver disease, characterized by intrahepatic cholangiopathy. In particular, studies have suggested that environmental factors such as the presence of granulomas in the portal vein region are important for the development of PBC. This study aimed to comprehensively analyze and identify foreign-derived antigens in PBC liver tissue to confirm their involvement in PBC pathogenesis. METHODS Portal areas and hepatocyte regions were selectively dissected from formalin-fixed paraffin-embedded PBC liver tissue samples using the microlaser method, followed by total DNA extraction. We then validated whether the bacterial strains identified through 16S rRNA metagenomic analysis were detected in PBC liver tissues. RESULTS The most frequently detected bacterial genera in the PBC liver tissue samples were Sphingomonas panacis, Providencia, and Cutibacterium. These bacterial genera were also detected in the other PBC samples. Validation for the detection of S. panacis, the most abundant genus, revealed polymerase chain reaction bands extracted from the portal areas of all samples. They were also more highly expressed than bands detected in the hepatocyte region. CONCLUSION S. panacis antigen was specifically detected in the portal areas of PBC liver tissues. The introduction of foreign-derived antigens into the liver as an environmental factor could be a possible mechanism for the development of PBC.
Collapse
Affiliation(s)
- Tomohiro Katsumi
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hidenori Sato
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Ryoko Murakami
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Takumi Hanatani
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Fumi Uchiyama
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Fumiya Suzuki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Keita Maki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Kyoko Hoshikawa
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Takafumi Saito
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|