1
|
Liu Y, Chen N, He H, Liu L, Sun S. Sodium butyrate alleviates DSS-induced inflammatory bowel disease by inhibiting ferroptosis and modulating ERK/STAT3 signaling and intestinal flora. Ann Med 2025; 57:2470958. [PMID: 40028886 DOI: 10.1080/07853890.2025.2470958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), can seriously impact patients' quality of life. Sodium butyrate (NaB), a product of dietary fiber fermentation, has been shown to alleviate IBD symptoms. Some studies have shown that it is related to ferroptosis. However, the precise mechanism linking NaB, IBD, and ferroptosis is not clear. OBJECTIVE This study aimed to demonstrate that NaB suppresses ferroptosis, thereby alleviating inflammatory bowel disease (IBD) through modulation of the extracellular regulated protein kinases/signal transducer and activator of transcription 3 (ERK/STAT3) signaling pathway and intestinal flora. METHODS An IBD model was established using 2.5% (w/v) dextran sulfate sodium (DSS). Mice were orally administered low-dose NaB, high-dose NaB , or 5-aminosalicylic acid (5-ASA). Ferroptosis-related molecules were measured using specific kits, and western blotting (WB) and real-time polymerase chain reaction (RT-qPCR) were used to determine the levels of the target molecules. RESULTS NaB alleviated symptoms in IBD mice, including reduced weight loss, prolonged colon length, reduced disease activity index (DAI), and reduced spleen index and mRNA expression of inflammatory factors. Additionally, NaB reduced the content of Fe2+ and myeloperoxidase (MPO) and increased the content of GSH and the activity of superoxide dismutase (SOD), which reflected NaB-inhibited ferroptosis. Moreover, western blotting showed that NaB enhanced STAT3 and ERK phosphorylation. In addition, NaB regulates the composition and functions of flora related to IBD. CONCLUSION NaB alleviates IBD by inhibiting ferroptosis and modulating ERK/STAT3 signaling and the intestinal flora.
Collapse
Affiliation(s)
- Yingyin Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Nachuan Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Huaxing He
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lulin Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Suxia Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Minty M, Germain A, Sun J, Kaglan G, Servant F, Lelouvier B, Misselis E, Neagoe RM, Rossella M, Cardellini M, Burcelin R, Federici M, Fernandez-Real JM, Blasco-Baque V. Identifying the location-dependent adipose tissue bacterial DNA signatures in obese patients that predict body weight loss. Gut Microbes 2025; 17:2439105. [PMID: 39714075 DOI: 10.1080/19490976.2024.2439105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
Recent sets of evidence have described profiles of 16S rDNA sequences in host tissues, notably in fat pads that are significantly overrepresented and can serve as signatures of metabolic disease. However, these recent and original observations need to be further detailed and functionally defined. Here, using state-of-the-art targeted DNA sequencing and discriminant predictive approaches, we describe, from the longitudinal FLORINASH cohort of patients who underwent bariatric surgery, visceral, and subcutaneous fat pad-specific bacterial 16SrRNA signatures. The corresponding Porphyromonadaceae, Campylobacteraceae, Prevotellaceae, Actimomycetaceae, Veillonellaceae, Anaerivoracaceae, Fusobacteriaceae, and the Clostridium family XI 16SrRNA DNA segment profiles are signatures of the subcutaneous adipose depot while Pseudomonadaceae and Micrococcacecae, 16SrRNA DNA sequence profiles characterize the visceral adipose depot. In addition, we have further identified that a specific pre-bariatric surgery adipose tissue bacterial DNA signature predicts the efficacy of body weight loss in obese patients 5-10 years after the surgery. 16SrRNA signatures discriminate (ROC ~ 1) the patients who did not maintain bodyweight loss and those who did. Second, from the 16SrRNA sequences we infer potential pathways suggestive of catabolic biochemical activities that could be signatures of subcutaneous adipose depots that predict body weight loss.
Collapse
Affiliation(s)
- Matthieu Minty
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Alberic Germain
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Jiuwen Sun
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Gracia Kaglan
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | | | | | - Emiri Misselis
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Radu Mircea Neagoe
- Science and Technology "George Emil Palade" Tîrgu Mures, Second Department of Surgery, Emergency Mureş County Hospital, University of Medicine Pharmacy, Târgu Mureș, Romania
| | - Menghini Rossella
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Marina Cardellini
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| | - Massimo Federici
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona 'Dr Josep Trueta'
- Institut d'Investigacio Biomedica de Girona IdibGi, CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Vincent Blasco-Baque
- Institut National de la Santé et de la Recherche Médicale (INSERM), InCOMM Intestine ClinicOralOmics Metabolism & Microbiota UMR1297 Inserm / Université Toulouse III, Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, Cedex, France
| |
Collapse
|
3
|
Schlicht K, Pape L, Rohmann N, Knappe C, Epe J, Geisler C, Pohlschneider D, Brodesser S, Kruse L, Rohlfing ME, Hartmann K, Türk K, Marquardt J, Beckmann J, von Schönfels W, Beckmann A, Wietzke-Braun P, Schulte DM, Hollstein T, Demetrowitsch T, Jensen-Kroll J, Brix F, Schreiber S, Franke A, Schwarz K, Waschina S, Laudes M. Prediabetes and type 2 diabetes but not obesity are associated with alterations in bile acid related gut microbe-microbe and gut microbe-host community metabolism. Gut Microbes 2025; 17:2474143. [PMID: 40045464 PMCID: PMC11901388 DOI: 10.1080/19490976.2025.2474143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The interplay between bile acids (BAs) and metabolic diseases has gained importance in recent years, with a variety of studies investigating their relationship with diverging results. Therefore, in the present study we performed a detailed analysis of BA metabolism in 492 subjects with different metabolic phenotypes. Besides microbiomics and metabolomics this investigation included in silico analysis of community metabolism to examine metabolic interchange between different microbes as well as microbes and the human host. Our findings revealed distinct changes in the BA profiles of patients with diabetes and prediabetes, whereas obesity alone had no influence on circulating BAs. Impaired glycemic control led to increased circulating BAs, a shift toward more secondary BAs, and an increase in the ratio of glycine to taurine-conjugated BAs. Additional analyses revealed that the ratio of glycine to taurine conjugation demonstrated variations between the single BAs, cholic acid (CA), chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA), regardless of the metabolic status, with CA having a higher fraction of taurine conjugation. Furthermore, we found that microbiome alterations are associated with BAs, independent of diabetes or obesity. Analysis of microbial community metabolism revealed differential relative pathway abundance in relation to diabetes, particularly those related to membrane and polyamine synthesis. Increased bacterial cross-feeding of polyamines, galactose, and D-arabinose also coincided with an increase in BA. Notably, our serum metabolome analysis mirrored several of the previously in silico predicted exchanged metabolites, especially amino acid metabolism. Therefore, targeting BA metabolism may be a future approach for the treatment of metabolic diseases, especially prediabetes and type 2 diabetes.
Collapse
Affiliation(s)
- Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lea Pape
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Nathalie Rohmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Carina Knappe
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Johannes Epe
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Corinna Geisler
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniela Pohlschneider
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Susanne Brodesser
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lucy Kruse
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Maria-Elisabeth Rohlfing
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Katharina Hartmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Kathrin Türk
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jens Marquardt
- Department of Internal Medicine 1, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Jan Beckmann
- Department of General and Abdominal Surgery, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Witigo von Schönfels
- Department of General and Abdominal Surgery, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Alexia Beckmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Perdita Wietzke-Braun
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dominik M. Schulte
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Tim Hollstein
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Tobias Demetrowitsch
- Division of Food Technology, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Julia Jensen-Kroll
- Division of Food Technology, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Fynn Brix
- Division of Food Technology, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Karin Schwarz
- Division of Food Technology, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Silvio Waschina
- Division of Food Technology, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
4
|
Huang W, Zhu W, Lin Y, Chan FKL, Xu Z, Ng SC. Roseburia hominis improves host metabolism in diet-induced obesity. Gut Microbes 2025; 17:2467193. [PMID: 39976263 PMCID: PMC11845086 DOI: 10.1080/19490976.2025.2467193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Next-generation live biotherapeutics are promising to aid the treatment of obesity and metabolic diseases. Here, we reported a novel anti-obesity probiotic candidate, Roseburia hominis, that was depleted in stool samples of obese subjects compared with lean controls, and its abundance was negatively correlated with body mass index and serum triglycerides. Supplementation of R. hominis prevented body weight gain and disorders of glucose and lipid metabolism, prevented fatty liver, inhibited white adipose tissue expansion and brown adipose tissue whitening in mice fed with high-fat diet, and boosted the abundance of lean-related species. The effects of R. hominis could be partially attributed to the production of nicotinamide riboside and upregulation of the Sirtuin1/mTOR signaling pathway. These results indicated that R. hominis is a promising candidate for the development of next-generation live biotherapeutics for the prevention of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Wenli Huang
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenyi Zhu
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Lin
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K. L. Chan
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- Microbiota I-Center (MagIC), Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Fehringer M, Vogl T. Molecular mimicry in the pathogenesis of autoimmune rheumatic diseases. J Transl Autoimmun 2025; 10:100269. [PMID: 39877080 PMCID: PMC11773492 DOI: 10.1016/j.jtauto.2025.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Autoimmune rheumatic diseases (ARDs) are a heterogeneous group of conditions characterized by excessive and misdirected immune responses against the body's own musculoskeletal tissues. Their exact aetiology remains unclear, with genetic, demographic, behavioural and environmental factors implicated in disease onset. One prominent hypothesis for the initial breach of immune tolerance (leading to autoimmunity) is molecular mimicry, which describes structural or sequence similarities between human and microbial proteins (mimotopes). This similarity can lead to cross-reactive antibodies and T-cell receptors, resulting in an immune response against autoantigens. Both commensal microbes in the human microbiome and pathogens can trigger molecular mimicry, thereby potentially contributing to the onset of ARDs. In this review, we focus on the role of molecular mimicry in the onset of rheumatoid arthritis and systemic lupus erythematosus. Moreover, implications of molecular mimicry are also briefly discussed for ankylosing spondylitis, systemic sclerosis and myositis.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| |
Collapse
|
6
|
Ford D. Interactions between the intestinal microbiota and drug metabolism - Clinical implications and future opportunities. Biochem Pharmacol 2025; 235:116809. [PMID: 39983848 DOI: 10.1016/j.bcp.2025.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/10/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The importance of the intestinal microbita in a multitude of physiological processes is well-evidenced. These include metabolism of nutrients and xenobiotics, biosynthesis of vitamin K and vitamin B12, immunomodulation, maintenance of the gut mucosal barrier integrity and protection against some pathogens. Interindividual differences in the intestinal microbiota composition have impacts on health. The bioavailability and activity of some pharmaceuticals are heavily influenced by interindividual variability in metabolism, which has a genetic basis. This variability, primarily occurring in the liver but also in the intestine, has been studied extensively. Despite the advancement of this field - pharmacogenetics - its integration into clinical practice remains limited for reasons discussed herein. This highlights the even greater challenge of applying emerging knowledge on variability in the gut microbiota to drug therapy. However, ignoring these opportunities would be a mistake. While clinical applications of microbiota-guided drug therapy are currently absent and the ideas in this article are largely theoretical, research is uncovering that in cases where a substantial portion of a drug or its metabolites reaches the colon, or where drugs are formulated for colonic delivery, the gut microbiota can significantly affect drug metabolism and activity. Greater focus should be placed on research into how interindividual variability in the intestinal microbiome can modify pharmaceutical bioavailability and activity. This article is deliberately speculative and exploratory but proposes that, though there are still no clinical examples of microbiome-guided drug therapy, these interactions could afford opportunities for improvements in personalised medicine and also for drug design.
Collapse
Affiliation(s)
- Dianne Ford
- Faculty of Health and Life Sciences, Northumberland Building, Northumbria University,Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
7
|
Zouiouich S, Wan Y, Vogtmann E, Porras C, Abnet CC, Shi J, Sinha R. Sample Size Estimations Based on Human Microbiome Temporal Stability Over 6 Months: A Shallow Shotgun Metagenome Sequencing Analysis. Cancer Epidemiol Biomarkers Prev 2025; 34:588-597. [PMID: 39927868 DOI: 10.1158/1055-9965.epi-24-0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Biological factors affect the human microbiome, highlighting the need for reasonably estimating sample sizes in future population studies. METHODS We assessed the temporal stability of fecal microbiome diversity, species composition, and genes and functional pathways through shallow shotgun metagenome sequencing. Using intraclass correlation coefficients (ICC), we measured biological variability over 6 months. We estimated case numbers for 1:1 or 1:3 matched case-control studies, considering significance levels of 0.05 and 0.001 with 80% power, based on the collected fecal specimens per participant. RESULTS The fecal microbiome's temporal stability over 6 months varied (ICC < 0.6) for most alpha and beta diversity metrics. Heterogeneity was seen in species, genes, and pathways stability (ICC, 0.0-0.9). Detecting an OR of 1.5 per SD required 1,000 to 5,000 cases (0.05 significance for alpha and beta; 0.001 for species, genes, and pathways) with equal cases and controls. Low-prevalence species needed 15,102 cases, and high-prevalence species required 3,527. Similar needs applied to genes and pathways. In a 1:3 matched case-control study with one fecal specimen, 10,068 cases were needed for low-prevalence species and 2,351 for high-prevalence species. For ORs of 1.5 with multiple specimens, cases needed for low-prevalence species were 15,102 (one specimen), 8,267 (two specimens), and 5,989 (three specimens). CONCLUSIONS Detecting disease associations requires a large number of cases. Repeating prediagnostic samples and matching cases to more controls could decrease the needed number of cases for such detections. IMPACT Our results will help future epidemiologic study designs and implement well-powered microbiome studies.
Collapse
Affiliation(s)
- Semi Zouiouich
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Yunhu Wan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Carolina Porras
- Costa Rican Agency for Biomedical Research-INCIENSA Foundation, San José, Costa Rica
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
8
|
Schenkelaars N, Wekema L, Faas MM, Steegers-Theunissen RPM, Schoenmakers S. Protocol of the PROMOTE study: characterization of the microbiome, the immune response, and one-carbon metabolism in preconceptional and pregnant women with and without obesity (an observational subcohort of the Rotterdam Periconception cohort). PLoS One 2025; 20:e0319618. [PMID: 40173397 DOI: 10.1371/journal.pone.0319618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025] Open
Abstract
INTRODUCTION Preconceptional and maternal obesity are well-known risk factors for pregnancy and fetal complications including gestational diabetes, hypertensive disorders, and macrosomia. Maternal obesity is associated with offspring obesity and increased healthcare costs. To disrupt the cycle of obesity, we aim to investigate the impact of the composition of the maternal microbiota (bacteria and viruses) throughout preconception and pregnancy and the associations with the immune responses and one-carbon metabolism (1-CM) as an underlying mechanism in the pathophysiology of increased adverse pregnancy outcomes in maternal obesity. METHODS AND ANALYSIS The PROMOTE study is a subcohort of the Rotterdam Periconceptional Cohort, a hospital-based observational cohort study. We will include 70 women per BMI group: ≥ 30 kg/m2 or 18.5-25 kg/m2, at different time points in each group: 10 preconceptional, 50 in the first trimester (with longitudinal follow-up during pregnancy, delivery and postpartum) and 10 in the third trimester of pregnancy. Which makes a total of 140 inclusions. Vaginal and rectal bacteriome, virome, and blood samples are collected. In the third trimester inclusions, only faecal samples are collected. Microbiota samples will be analysed using 16S rRNA sequencing. Bacteriome and virome profiles are compared between the BMI subgroups, associations with general immune responses and 1-CM markers will be shown. TRIAL REGISTRATION ClinicalTrials.gov (NCT05754645).
Collapse
Affiliation(s)
- Nicole Schenkelaars
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lieske Wekema
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | | | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Takagi K, Tamura Y, Narita N, Komatsu S, Yamazaki S, Matsumura A, Kubota K, Matsumiya T, Sawada K, Nakaji S, Mikami T, Kobayashi W. Involvement of Megasphaera in the oral microbiome and dyslipidemia onset: evidence from a community-based study in Japan. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01258-4. [PMID: 40175821 DOI: 10.1007/s12223-025-01258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Dyslipidemia is a major risk factor for cardiovascular diseases and is influenced by genetic and environmental factors, including diet. Emerging research suggests a link between the gut microbiome and metabolic disorders. While the connection between the gut microbiota and dyslipidemia is well documented, the specific relationship between oral bacteria and dyslipidemia has not been thoroughly investigated. This study aimed to identify oral bacterial species associated with dyslipidemia in a community-based Japanese population. We conducted a metagenomic analysis on tongue coating samples from 763 participants in the Iwaki Health Promotion Project, which were collected during health checkups in 2017 and 2019. Dyslipidemia was diagnosed using standard lipid level criteria. The oral microbiome was analyzed via 16S rDNA amplicon sequencing. Statistical analyses included multiple regression and β diversity assessments. Our analysis revealed that the abundances of several bacterial genera, including Veillonella, Atopobium, Stomatobaculum, Tanneralla, and Megasphaera, are significantly associated with dyslipidemia. A higher relative abundance of Megasphaera was specifically observed in individuals with dyslipidemia. Moreover, Megasphaera abundance was closely associated with the onset of dyslipidemia (P = 0.038, odds ratio: 1.005, 95% confidence interval: 1.000-1.009), suggesting its role in metabolic regulation. This study revealed a significant association between the abundance of specific oral bacteria and dyslipidemia, suggesting the potential of using the oral microbiota as a biomarker for the early detection and management of dyslipidemia. Future research should explore the mechanisms through which oral bacteria influence lipid metabolism and the potential for microbioma-based therapies.
Collapse
Affiliation(s)
- Koki Takagi
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshihiro Tamura
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Norihiko Narita
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shotaro Komatsu
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shunya Yamazaki
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akihiro Matsumura
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kosei Kubota
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan.
| | - Kaori Sawada
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shigeyuki Nakaji
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuya Mikami
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Wataru Kobayashi
- Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
10
|
Roessler J, Zimmermann F, Heidecker B, Landmesser U, Haghikia A. Gut microbiota-related modulation of immune mechanisms in post-infarction remodelling and heart failure. ESC Heart Fail 2025; 12:942-954. [PMID: 39385474 PMCID: PMC11911630 DOI: 10.1002/ehf2.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 10/12/2024] Open
Abstract
The immune system has long been recognized as a key driver in the progression of heart failure (HF). However, clinical trials targeting immune effectors have consistently failed to improve patient outcome across different HF aetiologies. The activation of the immune system in HF is complex, involving a broad network of pro-inflammatory and immune-modulating components, which complicates the identification of specific immune pathways suitable for therapeutic targeting. Increasing attention has been devoted to identifying gut microbial pathways that affect cardiac remodelling and metabolism and, thereby impacting the development of HF. In particular, gut microbiota-derived metabolites, absorbed by the host and transported to the peripheral circulation, can act as signalling molecules, influencing metabolism and immune homeostasis. Recent reports suggest that the gut microbiota plays a crucial role in modulating immune processes involved in HF. Here, we summarize recent advances in understanding the contributory role of gut microbiota in (auto-)immune pathways that critically determine the progression or alleviation of HF. We also thoroughly discuss potential gut microbiota-based intervention strategies to treat or decelerate HF progression.
Collapse
Affiliation(s)
- Johann Roessler
- University Hospital St Josef‐Hospital Bochum, Cardiology and RhythmologyRuhr University BochumBochumGermany
- Department of Cardiology, Angiology and Intensive CareDeutsches Herzzentrum der Charité (DHZC), Campus Benjamin FranklinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), Partner site BerlinBerlinGermany
| | - Friederike Zimmermann
- Department of Cardiology, Angiology and Intensive CareDeutsches Herzzentrum der Charité (DHZC), Campus Benjamin FranklinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), Partner site BerlinBerlinGermany
| | - Bettina Heidecker
- Department of Cardiology, Angiology and Intensive CareDeutsches Herzzentrum der Charité (DHZC), Campus Benjamin FranklinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), Partner site BerlinBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive CareDeutsches Herzzentrum der Charité (DHZC), Campus Benjamin FranklinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), Partner site BerlinBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
- Friede Springe‐Cardiovascular Prevention Center at Charité, Charité‐Universitätsmedizin, Berlin Institute of Health (BIH)BerlinGermany
| | - Arash Haghikia
- University Hospital St Josef‐Hospital Bochum, Cardiology and RhythmologyRuhr University BochumBochumGermany
- Department of Cardiology, Angiology and Intensive CareDeutsches Herzzentrum der Charité (DHZC), Campus Benjamin FranklinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), Partner site BerlinBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
- Friede Springe‐Cardiovascular Prevention Center at Charité, Charité‐Universitätsmedizin, Berlin Institute of Health (BIH)BerlinGermany
| |
Collapse
|
11
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2025; 21:245-261. [PMID: 39613954 PMCID: PMC11916920 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
12
|
Liu W, Yu Q, Nasir M, Zhu X, Iqbal MS, Elumalai P, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J, Gao X. The Cry2Aa protein is not enough to pose a threat to Pardosa astrigera. Int J Biol Macromol 2025; 301:140241. [PMID: 39863222 DOI: 10.1016/j.ijbiomac.2025.140241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The widespread commercialization of genetically modified (GM) crops makes it important to assess the potential impact of Bacillus thuringiensis (Bt) on non-target organisms. Pardosa astrigera is an important predator in agroforestry ecosystems, and female and male spiders may react differently to Bt toxins due to their different activity habits and nutritional requirements. In this study, we found that exposure to Cry2Aa protein did not affect the survival and body weight of P. astrigera during growth and development. However, according to 16S rRNA sequencing results of the P. astrigera adults, Cry2Aa protein not only changed the diversity of symbiont bacteria, but also changed its symbiont composition. During feeding on prey without Bt artificial feed, the dominant communities in female and male adults were Actinobacteria and Corynebacterium-1, respectively. Feeding on prey containing Cry2Aa protein, Firmicutes were the dominant phyla. At the genus level, Cry2Aa protein significantly increased the relative abundance of Enterococcus and became the dominant genus in females only. In addition, Bacillus, Weissella and other symbiotic bacteria had significant changes in females. In terms of species composition, sex differences resulted in the absence of different types of symbiotic bacteria. Functional analysis of enrichment pathways showed significant changes in various metabolic pathways such as "Carbohydrate metabolism" and "Nucleotide metabolism", and there are differences between the sexes. These findings provide new data information and support for revealing the different strategies of spiders to cope with Cry2Aa protein based on sex differences, and also provide new data information and support for environmental safety assessment of GM crops.
Collapse
Affiliation(s)
- Weijiao Liu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Qiqing Yu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Muhammad Nasir
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Xiangzhen Zhu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Muhmmad Shahid Iqbal
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Punniyakotti Elumalai
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Li Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Kaixin Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Dongyang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jichao Ji
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Junyu Luo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Jinjie Cui
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Xueke Gao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
13
|
Litichevskiy L, Considine M, Gill J, Shandar V, Cox TO, Descamps HC, Wright KM, Amses KR, Dohnalová L, Liou MJ, Tetlak M, Galindo-Fiallos MR, Wong AC, Lundgren P, Kim J, Uhr GT, Rahman RJ, Mason S, Merenstein C, Bushman FD, Raj A, Harding F, Chen Z, Prateek GV, Mullis M, Deighan AG, Robinson L, Tanes C, Bittinger K, Chakraborty M, Bhatt AS, Li H, Barnett I, Davenport ER, Broman KW, Levy M, Cohen RL, Botstein D, Freund A, Di Francesco A, Churchill GA, Li M, Thaiss CA. Gut metagenomes reveal interactions between dietary restriction, ageing and the microbiome in genetically diverse mice. Nat Microbiol 2025:10.1038/s41564-025-01963-3. [PMID: 40164832 DOI: 10.1038/s41564-025-01963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
The gut microbiome changes with age and has been proposed to mediate the benefit of lifespan-extending interventions such as dietary restriction. However, the causes and consequences of microbiome ageing and the potential of such interventions remain unclear. Here we analysed 2,997 metagenomes collected longitudinally from 913 deeply phenotyped, genetically diverse mice to investigate interactions between the microbiome, ageing, dietary restriction (caloric restriction and fasting), host genetics and a range of health parameters. Among the numerous age-associated microbiome changes that we find in this cohort, increased microbiome uniqueness is the most consistent parameter across a second longitudinal mouse experiment that we performed on inbred mice and a compendium of 4,101 human metagenomes. Furthermore, cohousing experiments show that age-associated microbiome changes may be caused by an accumulation of stochastic environmental exposures (neutral theory) rather than by the influence of an ageing host (selection theory). Unexpectedly, the majority of taxonomic and functional microbiome features show small but significant heritability, and the amount of variation explained by host genetics is similar to ageing and dietary restriction. We also find that more intense dietary interventions lead to larger microbiome changes and that dietary restriction does not rejuvenate the microbiome. Lastly, we find that the microbiome is associated with multiple health parameters, including body composition, immune components and frailty, but not lifespan. Overall, this study sheds light on the factors influencing microbiome ageing and aspects of host physiology modulated by the microbiome.
Collapse
Affiliation(s)
- Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maya Considine
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jasleen Gill
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vasuprada Shandar
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy O Cox
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kevin R Amses
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan J Liou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monika Tetlak
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mario R Galindo-Fiallos
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea C Wong
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Lundgren
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwon Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giulia T Uhr
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan J Rahman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Mason
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anil Raj
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Fiona Harding
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Zhenghao Chen
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - G V Prateek
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Martin Mullis
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA
- Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hongzhe Li
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian Barnett
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily R Davenport
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Karl W Broman
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | | | | | - Adam Freund
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Arc Institute, Palo Alto, CA, USA.
| |
Collapse
|
14
|
Jiang Y, Aton M, Zhu Q, Lu YY. Modeling microbiome-trait associations with taxonomy-adaptive neural networks. MICROBIOME 2025; 13:87. [PMID: 40158141 PMCID: PMC11954268 DOI: 10.1186/s40168-025-02080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
The human microbiome, a complex ecosystem of microorganisms inhabiting the body, plays a critical role in human health. Investigating its association with host traits is essential for understanding its impact on various diseases. Although shotgun metagenomic sequencing technologies have produced vast amounts of microbiome data, analyzing such data is highly challenging due to its sparsity, noisiness, and high feature dimensionality. Here, we develop MIOSTONE, an accurate and interpretable neural network model for microbiome-disease association that simulates a real taxonomy by encoding the relationships among microbial features. The taxonomy-encoding architecture provides a natural bridge from variations in microbial taxa abundance to variations in traits, encompassing increasingly coarse scales from species to domains. MIOSTONE has the ability to determine whether taxa within the corresponding taxonomic group provide a better explanation in a data-driven manner. MIOSTONE serves as an effective predictive model, as it not only accurately predicts microbiome-trait associations across extensive simulated and real datasets but also offers interpretability for scientific discovery. Both attributes are crucial for facilitating in silico investigations into the biological mechanisms underlying such associations among microbial taxa. Video Abstract.
Collapse
Affiliation(s)
- Yifan Jiang
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Matthew Aton
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Yang Young Lu
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
15
|
Gabarre P, Palacios R, Perez K, Seksik P, Bonnard B, Loens C, Lefranc C, de Barros JPP, Anjou L, Tamzali Y, Zahr N, Jaisser F, Tourret J. Immunosuppressive drugs and diet interact to modify the gut microbiota and cardiovascular risk factors, and to trigger diabetes. PLoS One 2025; 20:e0320438. [PMID: 40153399 PMCID: PMC11952260 DOI: 10.1371/journal.pone.0320438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/18/2025] [Indexed: 03/30/2025] Open
Abstract
BACKGROUND Kidney transplant recipients are prescribed an immunosuppressive therapy (IST) and some of them follow a high fat diet (HFD) despite medical recommendations. Both are frequently associated with gut microbiota changes and metabolic disorders. We aimed at precisely identifying the effect of the IST and the HFD on metabolic parameters and the gut microbiota in mice, and at establishing correlations between the latters. METHODS 8-week-old male mice were treated with IST (a combination of prednisone, mycophenolate mofetil and tacrolimus) or not and were fed HFD or standard chow. Metabolic parameters were measured, and the gut microbiota was explored by the quantification of specific bacterial groups by qPCR and by 16S rDNA sequencing. RESULTS The HFD increased insulinemia and decreased the fecal proportion of Bacteroidetes and of Bacteroides. The IST increased systolic blood pressure and the fecal proportion of Escherichia coli. The HFD and the IST administered together resulted in an additive effect on glucose intolerance, high fasting blood glucose, homeostasis model assessment of insulin resistance (HOMA-IR), percentage of fat mass, blood triglyceride, blood cholesterol, and endotoxemia. On the opposite, the HFD and the IST had antagonistic effects on body weight, the proportion of Firmicutes, the Firmicutes/Bacteroidetes ratio, and the proportion of Clostridium leptum, Bifidobacterium, and Lactobacillus in the feces. Finally, we found that the correlations between gut bacterial communities and metabolic consequences of the HFD were altered by the IST. CONCLUSION The IST and the HFD have specific consequences on the gut microbiota and metabolism. We hypothesize that the metabolic consequences are at least partially mediated by IST/HFD-induced dysbiosis.
Collapse
Affiliation(s)
- Paul Gabarre
- INSERM UMR, Centre de Recherche des Cordeliers CRC, Team Metabolic Diseases, Diabetes and Comorbidities, Paris, France,
| | - Roberto Palacios
- INSERM UMR, Centre de Recherche des Cordeliers CRC, Team Metabolic Diseases, Diabetes and Comorbidities, Paris, France,
| | - Kevin Perez
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland,
| | - Philippe Seksik
- Gastro-enterology Department, Centre de Recherche Saint Antoine, Sorbonne Université, INSERM UMRS 938, Assistance Publique – Hôpitaux de Paris APHP, Saint-Antoine Hospital, Paris, France,
| | - Benjamin Bonnard
- INSERM UMR, Centre de Recherche des Cordeliers CRC, Team Metabolic Diseases, Diabetes and Comorbidities, Paris, France,
| | - Christopher Loens
- INSERM UMR, Centre de Recherche des Cordeliers CRC, Team Metabolic Diseases, Diabetes and Comorbidities, Paris, France,
| | - Clara Lefranc
- INSERM UMR, Centre de Recherche des Cordeliers CRC, Team Metabolic Diseases, Diabetes and Comorbidities, Paris, France,
| | | | - Louis Anjou
- INSERM UMR, Centre de Recherche des Cordeliers CRC, Team Metabolic Diseases, Diabetes and Comorbidities, Paris, France,
| | - Yanis Tamzali
- Department of Kidney Transplantation – Nephrology, Assistance Publique – Hôpitaux de Paris APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, Paris, France
| | - Noël Zahr
- Department of Pharmacology, Assistance Publique – Hôpitaux de Paris AP-HP, INSERM, CIC-1901, Pharmacokinetics and Therapeutic Drug Monitoring Unit, UMR-S Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Frédéric Jaisser
- INSERM UMR, Centre de Recherche des Cordeliers CRC, Team Metabolic Diseases, Diabetes and Comorbidities, Paris, France,
| | - Jérôme Tourret
- Department of Kidney Transplantation – Nephrology, INSERM UMR, Centre de Recherche des Cordeliers CRC, Sorbonne Université, Assistance Publique – Hôpitaux de Paris APHP, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
16
|
Tonnele H, Chen D, Morillo F, Garcia-Calleja J, Chitre AS, Johnson BB, Sanches TM, Bonder MJ, Gonzalez A, Kosciolek T, George AM, Han W, Holl K, Horvath A, Ishiwari K, King CP, Lamparelli AC, Martin CD, Martinez AG, Netzley AH, Tripi JA, Wang T, Bosch E, Doris PA, Stegle O, Chen H, Flagel SB, Meyer PJ, Richards JB, Robinson TE, Woods LCS, Polesskaya O, Knight R, Palmer AA, Baud A. Novel insights into the genetic architecture and mechanisms of host/microbiome interactions from a multi-cohort analysis of outbred laboratory rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644349. [PMID: 40166210 PMCID: PMC11957159 DOI: 10.1101/2025.03.20.644349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The intestinal microbiome influences health and disease. Its composition is affected by host genetics and environmental exposures. Understanding host genetic effects is critical but challenging in humans, due to the difficulty of detecting, mapping and interpreting them. To address this, we analysed host genetic effects in four cohorts of outbred laboratory rats exposed to distinct but controlled environments. We found that polygenic host genetic effects were consistent across environments. We identified three replicated microbiome-associated loci. One involved a sialyltransferase gene and Paraprevotella and we found a similar association, between ST6GAL1 and Paraprevotella , in a human cohort. Given Paraprevotella 's known immunity-potentiating functions, this suggests ST6GAL1 's effects on IgA nephropathy and COVID-19 breakthrough infections may be mediated by Paraprevotella . Moreover, we found evidence of indirect genetic effects on microbiome phenotypes, which substantially increased their total genetic variance. Finally, we identified a novel mechanism whereby indirect genetic effects can contribute to "missing heritability".
Collapse
|
17
|
Jeerawattanawart S, Angkasekwinai P. Intestinal IL-25 prevents high-fat diet-induced obesity by modulating the cholesterol transporter NPC1L1 expression in the intestinal epithelial cells. Sci Rep 2025; 15:10445. [PMID: 40140439 PMCID: PMC11947149 DOI: 10.1038/s41598-025-95516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
The intestine is essential for digestion and nutrient absorption, and its altered function contributes to metabolic dysregulation and obesity-induced intestinal inflammation. Intestinal immune responses have been associated with the regulation of metabolic dysfunction during obesity. Given that the epithelial cell-derived cytokine IL-25 has been demonstrated to regulate metabolic disorders, we sought to examine the role of intestinal IL-25 in modulating a high-fat diet (HFD)-induced obesity. We found that mice on a high-fat diet exhibited decreased IL-25 expression in the small intestine. Intestinal IL-25 mRNA levels displayed an inverse association with plasma triglycerides, total cholesterol, glucose levels, and the expression of the cholesterol transporter Npc1l1 in the intestine. In HFD-induced obesity, transgenic mice overexpressing IL-25 in the intestinal epithelial cells demonstrated diminished mRNA expression of intestinal genes related to glucose, cholesterol, and fat absorption, along with chylomicron production, while also systemically decreasing plasma glucose, total cholesterol, and triglyceride levels, fat accumulation, and weight gain. In vitro, IL-25 treatment of human intestinal Caco-2 cells directly decreased cholesterol uptake and downregulated the expression of NPC1L1 and its transcriptional regulator, SREBP2. These findings highlight IL-25 as a potential modulator in the intestine that regulates intestinal cholesterol absorption and systemic metabolism in obesity.
Collapse
Affiliation(s)
- Siranart Jeerawattanawart
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
- Faculty of Medical Technology, Rangsit University, Pathum Thani, 12000, Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand.
- Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
18
|
Jadhav A, Vadiveloo M, Laforge R, Melanson KJ. Dietary fermentable carbohydrate consumption and association with cardiometabolic risk markers in college students: A cross-sectional study. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2025:1-10. [PMID: 40126399 DOI: 10.1080/07448481.2025.2475309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/03/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Objective: Determine fermentable carbohydrates (FCs) consumption and health parameter differences between high and low FC consumers in US college students. Participants: Consented students (n = 571; 18-22 years) in a general nutrition course. Methods: Diet History Questionnaire quantified total FC plus subclasses, soluble dietary fibers (SDF), and polyols. Anthropometrics, blood pressure, and blood glucose were collected by standard measures. Median split classified FC intakes; multiple linear regression evaluated differences in health parameters between low and high FC consumers. Results: Average FC intakes for low and high FC consumers were 4.6 ± 1.4gand 10.9 ± 4.0g, with most coming from soluble dietary fibers. After controlling for confounders, low FCs showed higher diastolic blood pressure (β = 2.95, p = 0.04), blood glucose (β = 2.65 mg/dL; p = 0.02*), and BMI (β = 0.99, p = 0.050*, R2=0.04) than high consumers. Conclusions: Despite low intakes, these college students showed inverse associations between FC and diastolic blood pressure, blood glucose, and BMI. Long-term mechanistic studies are needed to evaluate potential relationships.
Collapse
Affiliation(s)
- Ajita Jadhav
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Maya Vadiveloo
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert Laforge
- Department of Psychology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kathleen J Melanson
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
19
|
Mamun MAA, Rakib A, Mandal M, Singh UP. Impact of a High-Fat Diet on the Gut Microbiome: A Comprehensive Study of Microbial and Metabolite Shifts During Obesity. Cells 2025; 14:463. [PMID: 40136712 PMCID: PMC11940932 DOI: 10.3390/cells14060463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Over the last few decades, the prevalence of metabolic diseases such as obesity, diabetes, non-alcoholic fatty liver disease, hypertension, and hyperuricemia has surged, primarily due to high-fat diet (HFD). The pathologies of these metabolic diseases show disease-specific alterations in the composition and function of their gut microbiome. How HFD alters the microbiome and its metabolite to mediate adipose tissue (AT) inflammation and obesity is not well known. Thus, this study aimed to identify the changes in the gut microbiome and metabolomic signatures induced by an HFD to alter obesity. To explore the changes in the gut microbiota and metabolites, 16S rRNA gene amplicon sequencing and metabolomic analyses were performed after HFD and normal diet (ND) feeding. We noticed that, at taxonomic levels, the number of operational taxonomic units (OTUs), along with the Chao and Shannon indexes, significantly shifted in HFD-fed mice compared to those fed a ND. Similarly, at the phylum level, an increase in Firmicutes and a decrease in Bacteroidetes were noticed in HFD-fed mice. At the genus level, an increase in Lactobacillus and Ruminococcus was observed, while Allobaculum, Clostridium, and Akkermansia were markedly reduced in the HFD group. Many bacteria from the Ruminococcus genus impair bile acid metabolism and restrict weight loss. Firmicutes are efficient in breaking down complex carbohydrates into short-chain fatty acids (SCFAs) and other metabolites, whereas Bacteroidetes are involved in a more balanced or efficient energy extraction. Thus, an increase in Firmicutes over Bacteroidetes enhances the absorption of more calories from food, which may contribute to obesity. Taken together, the altered gut microbiota and metabolites trigger AT inflammation, which contributes to metabolic dysregulation and disease progression. Thus, this study highlights the potential of the gut microbiome in the development of therapeutic strategies for obesity and related metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.)
| |
Collapse
|
20
|
Goldbaum AA, Bowers LW, Cox AD, Gillig M, Clapp Organski A, Cross TWL. The Role of Diet and the Gut Microbiota in the Obesity-Colorectal Cancer Link. Nutr Cancer 2025:1-14. [PMID: 40108862 DOI: 10.1080/01635581.2025.2476779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Obesity is positively associated with colorectal cancer (CRC) risk. Diet not only contributes to obesity, but also strongly influences the gut microbiota, a factor that is thought to independently affect CRC. To isolate the role of obesity-associated gut microbiota in CRC and to assess the impact of diet composition on this relationship, we transplanted the gut microbiota from donor mice that developed obesity or remained lean on a high-fat diet (HFD), Western diet (WD), or low-fat diet (LFD) into antibiotic-treated recipient mice that subsequently received azoxymethane to induce CRC. We hypothesized that the obesogenic diets of the donor mice, rather than their obesity status, would be a stronger driver of gut microbiota-mediated CRC development. Interestingly, while evidence supporting our hypothesis was observed, differential effects on CRC outcomes based on the type of obesogenic diets were found, such that HFD-associated gut microbiota promotes tumor incidence whereas WD-associated gut microbiota promotes tumor growth. Significantly enriched bacterial taxa present before tumor induction may be mediating these results through intestinal permeability or inflammation, such as Sutterella and Dorea in mice received HFD-associated gut microbiota, and Bacteroidetes in mice received WD-microbiota. Overall, our results demonstrated that diet drives the gut microbiota-derived impact on CRC development.
Collapse
Affiliation(s)
- Audrey A Goldbaum
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Laura W Bowers
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Molly Gillig
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Anna Clapp Organski
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Tzu-Wen L Cross
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
21
|
Xiao Y, Jing D, Xiao H, Mao M, Kuang Y, Shen M, Lv C, Jian X, Peng C, Chen X. Metagenomics Analysis of Altered Gut Microbiome in Psoriasis and the Mediation Analysis: A Case-Control Study. PSORIASIS (AUCKLAND, N.Z.) 2025; 15:45-54. [PMID: 40125310 PMCID: PMC11930025 DOI: 10.2147/ptt.s505283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Purpose Psoriasis is an inflammatory disease linked to gut microbiome dysbiosis. However, the mechanisms underlying gut microbiome changes caused by dietary habits in psoriasis remain unclear. Patients and Methods We performed a case-control study including 64 psoriasis patients and 64 age-, sex-, and body mass index (BMI)-matched controls. Stool samples were collected for metagenomics sequencing. The differential abundance analysis was performed to identify differentially abundant taxa between psoriasis and control groups. The dietary intake frequency information of each included subject was obtained through face-to-face interviews. Mediation analysis was used to identify potential mediators of the gut microbiome alterations in psoriasis. Results The gut microbiome of psoriasis patients was significantly alterated when compared to controls. Anaerostipes Hadrus, Blautia Wexlerae, and the other six species may be beneficial to psoriasis. However, Prevotella Copri and Eggerthellaceae could be pathogenic bacteria. The study also identified correlations between specific dietary habits and psoriasis, with the largest correlation observed between poultry consumption and psoriasis (OR=0.735, P=0.001), followed by red meat (OR=0.784, P=0.007) and fresh vegetables (OR=0.794, P=0.028). Mediation analysis revealed that Anaerostipes hadrus, Dorea longicatena, and Eggerthella lenta mediated the association between poultry and psoriasis. Conclusion The characteristics of intestinal flora in psoriasis patients were significantly different from controls. Intestinal flora mediated the association between diet and psoriasis to some extent. This study provides new insights for adjuvant treatments of psoriasis through dietary and intestinal microbiota interventions.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, People’s Republic of China
| | - Danrong Jing
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, People’s Republic of China
| | - Hui Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, People’s Republic of China
| | - Manyun Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, People’s Republic of China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, People’s Republic of China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, People’s Republic of China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410078, People’s Republic of China
| | - Chengzhi Lv
- Dalian Dermatosis Hospital, Dalian, People’s Republic of China
| | - Xingxing Jian
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders & Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, People’s Republic of China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
22
|
Kim KS, Na HS, Oh TJ, Han H, Kim J, Hong JS, Lee HJ, Park YS, Chung J. Oral microbiome changes in subjects with obesity following bariatric surgery compared to lean counterparts. Front Microbiol 2025; 16:1553404. [PMID: 40170925 PMCID: PMC11959278 DOI: 10.3389/fmicb.2025.1553404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction This study aimed to compare oral microbiome profiles between obese and lean individuals without clinical periodontitis, and to assess changes in the oral microbiome of obese subjects following bariatric surgery. Methods Individuals with a body mass index (BMI) > 30 were enrolled in the obese group, whereas those with a BMI < 23 served as controls. The obese surgery group, which consented to bariatric surgery, was followed up at 1, 3, and 6 months with clinical examinations. Oral examinations were conducted and periodontal disease was classified based on probing results. Saliva, buccal and subgingival microbiome samples were analyzed for community diversity, relative bacterial abundance, and differential abundance between control (n = 24) and obese group (n = 31). To evaluate effect size and statistical power, we used micropower, a simulation-based method for Permutational Multivariate Analysis of Variance-based β-diversity comparisons. Results The obese group exhibited distinct alpha diversity (buccal: Chao1 p = 0.0002, Shannon p = 0.0003, supragingival: Shannon p < 0.0001) compared with the control group. Bray-Curtis distance analysis indicated significant disparities in microbiome composition distribution in saliva (p = 0.003), buccal (p = 0.002), and subgingival plaque samples (p = 0.001). Although the obese and normal weight groups exhibited no significant periodontal differences, the obese group showed distinct species associated with periodontal disease, especially in subgingival plaque including Filifactor alocis, Peptostreptococcaceae spp., Prevotella spp., and Treponema maltophilum. Cluster analysis of the obese surgery group indicated the emergence of microbiomes associated with a healthy state that increased over time including Streptococcus salivarious and various Veillonella spp., whereas clusters containing periodontal pathogens including Porphyromonas spp., tended to diminish. Discussion The oral microbiome at 6 months post-bariatric surgery indicates a potential shift toward a healthy periodontal state, suggesting that weight loss interventions may positively impact oral microbial communities even in the absence of clinical periodontitis.
Collapse
Affiliation(s)
- Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyejung Han
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Jiyeon Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jin-Sil Hong
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
23
|
Guo X, Shao Y. Role of the oral-gut microbiota axis in pancreatic cancer: a new perspective on tumor pathophysiology, diagnosis, and treatment. Mol Med 2025; 31:103. [PMID: 40102723 PMCID: PMC11917121 DOI: 10.1186/s10020-025-01166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Pancreatic cancer, one of the most lethal malignancies, remains challenging due to late diagnosis, aggressive progression, and therapeutic resistance. Recent advances have revealed the presence of intratumoral microbiota, predominantly originating from the oral and gut microbiomes, which play pivotal roles in pancreatic cancer pathogenesis. The dynamic interplay between oral and gut microbial communities, termed the "oral-gut microbiota axis," contributes multifacetedly to pancreatic ductal adenocarcinoma (PDAC). Microbial translocation via anatomical or circulatory routes establishes tumor-resident microbiota, driving oncogenesis through metabolic reprogramming, immune regulation, inhibition of apoptosis, chronic inflammation, and dysregulation of the cell cycle. Additionally, intratumoral microbiota promote chemoresistance and immune evasion, further complicating treatment outcomes. Emerging evidence highlights microbial signatures in saliva and fecal samples as promising non-invasive diagnostic biomarkers, while microbial diversity correlates with prognosis. Therapeutic strategies targeting this axis-such as antibiotics, probiotics, and engineered bacteria-demonstrate potential to enhance treatment efficacy. By integrating mechanisms of microbial influence on tumor biology, drug resistance, and therapeutic applications, the oral-gut microbiota axis emerges as a critical regulator of PDAC, offering novel perspectives for early detection, prognostic assessment, and microbiome-based therapeutic interventions.
Collapse
Affiliation(s)
- Xuanchi Guo
- School of Stomatology, Shandong University, No. 44-1 Wenhua West Road, Jinan City, Shandong Province, China.
| | - Yuhan Shao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
24
|
Dong J, Yao W, Zhang W, Han J, Yang M, Hua Y, Wei Y. Identification and evaluation of active fractions from Radix Hedysari polysaccharides: Their regulatory impacts on intestinal flora and metabolism in mice. Int J Biol Macromol 2025; 307:142260. [PMID: 40112991 DOI: 10.1016/j.ijbiomac.2025.142260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Polysaccharides are one of the primary active components of Radix Hedysari, although their regulatory effects on gut microbiota remain poorly understood. In this study, Radix Hedysari polysaccharides (RHPS) were isolated and purified, yielding three fractions: RHPS-1, RHPS-2, and RHPS-4. The yields of these fractions were 51.33 %, 3.15 %, and 2.34 %, respectively, with weight-average molecular weights of 18.781, 25.660, and 100.149 kDa. The three polysaccharides were composed of arabinose, galactose, glucose, glucuronic acid. RHPS-1 exhibits good antioxidant, antibacterial, and immune-enhancing activities. Further purification of RHPS-1 yielded RHPS-1-1, and it was found that RHPS-1-1 enhances the growth of beneficial bacteria while suppressing the growth of harmful bacteria in mice. Additionally, mice treated with RHPS-1-1 were primarily involved in bile acid, short-chain fatty acid, and energy metabolism pathways. Our results represent the first demonstration that RHPS-1-1 exhibits good biological activity and possesses the ability to regulate the gut microbiota and its metabolites in mice.
Collapse
Affiliation(s)
- Jiaqi Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jie Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
25
|
Zubillaga-Martín D, Solórzano-García B, Yanez-Montalvo A, de León-Lorenzana A, Falcón LI, Vázquez-Domínguez E. Gut microbiota signatures of the three Mexican primate species, including hybrid populations. PLoS One 2025; 20:e0317657. [PMID: 40100798 PMCID: PMC11918351 DOI: 10.1371/journal.pone.0317657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/02/2025] [Indexed: 03/20/2025] Open
Abstract
Diversity of the gut microbiota has proven to be related with host physiology, health and behavior, influencing host ecology and evolution. Gut microbial community relationships often recapitulate primate phylogeny, suggesting phylosymbiotic associations. Howler monkeys (Alouatta) have been a model for the study of host-gut microbiota relationships, showing the influence of different host related and environmental factors. Differences in life-history traits and feeding behavior with other atelids, like spider monkeys, may reveal distinct patterns of bacterial gut communities, yet few wild populations have been studied; likewise, gut microbiota studies of hybrid populations are mostly lacking. We analyzed diversity and abundance patterns of the gut microbiota of wild populations of the three Mexican primates Ateles geoffroyi, Alouatta palliata and A. pigra from different regions across its distribution in the country, including sympatric localities and the Alouatta hybrid zone. Interspecific differences in gut microbial diversity were higher than intraspecific differences, concordant with phylosymbiosis. Ateles harbored the more differentiated diversity with a major presence of rare taxa, while differences were less strong between Alouatta species. Hybrids had a microbial diversity in-between their parental species, yet also showing unique microbe taxa. Genetic distances between Alouatta individuals correlated positively with their gut microbial dissimilarities. Results show that interspecific and intraspecific overall diversity, abundance and composition patterns are affected by environment, geographic distribution and host genetics. Our study provides the first comprehensive study of gut microbiota of the three Mexican primates and hybrid populations.
Collapse
Affiliation(s)
- Diego Zubillaga-Martín
- Laboratorio de Genética y Ecología, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Brenda Solórzano-García
- Laboratorio de Parasitología y Medicina de la Conservación, ENES-Mérida U.N.A.M., Ucú, Yucatán, México
| | - Alfredo Yanez-Montalvo
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Unidad Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán, México
| | - Arit de León-Lorenzana
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Unidad Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán, México
| | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Unidad Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán, México
| | - Ella Vázquez-Domínguez
- Laboratorio de Genética y Ecología, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
26
|
Shi H, Li J. MAGs-based genomic comparison of gut significantly enriched microbes in obese individuals pre- and post-bariatric surgery across diverse locations. Front Cell Infect Microbiol 2025; 15:1485048. [PMID: 40171165 PMCID: PMC11958714 DOI: 10.3389/fcimb.2025.1485048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Obesity, a pressing global health issue, is intricately associated with distinct gut microbiota profiles. Bariatric surgeries, such as Laparoscopic Sleeve Gastrectomy (LSG), Sleeve Gastrectomy (SG), and Roux-en-Y Gastric Bypass (RYGB), induce substantial weight loss and reshape gut microbiota composition and functionality, yet their comparative impacts remain underexplored. Methods This study integrated four published metagenomic datasets, encompassing 500 samples, and employed a unified bioinformatics workflow for analysis. We assessed gut microbiota α-diversity, identified species biomarkers using three differential analysis approaches, and constructed high-quality Metagenome-Assembled Genomes (MAGs). Comparative genomic, functional profiling and KEGG pathway analyses were performed, alongside estimation of microbial growth rates via Peak-to-Trough Ratios (PTRs). Results RYGB exhibited the most pronounced enhancement of gut microbiota α-diversity compared to LSG and SG. Cross-cohort analysis identified 39 species biomarkers: 27 enriched in the non-obesity group (NonOB_Enrich) and 12 in the obesity group (OB_Enrich). Among the MAGs, 177 were NonOB_Enrich and 14 were OB_Enrich. NonOB_Enrich MAGs displayed enriched carbohydrate degradation profiles (e.g., GH105, GH2, GH23, GH43, and GT0 families) and higher gene diversity in fatty acid biosynthesis and secondary metabolite pathways, alongside significant enrichment in amino acid metabolism (KEGG analysis). Post-surgery, Akkermansia muciniphila and Bacteroides uniformis showed elevated growth rates based on PTRs. Discussion These findings underscore RYGB's superior impact on gut microbiota diversity and highlight distinct microbial functional adaptations linked to weight loss, offering insights for targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Jia Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Lewis N, Villani A, Lagopoulos J. Gut dysbiosis as a driver of neuroinflammation in attention-deficit/hyperactivity disorder: A review of current evidence. Neuroscience 2025; 569:298-321. [PMID: 39848564 DOI: 10.1016/j.neuroscience.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
There is mounting evidence for the involvement of the immune system, neuroinflammation and disturbed gut microbiota, or dysbiosis, in attention-deficit/hyperactivity disorder (ADHD). Gut dysbiosis is strongly implicated in many physical, autoimmune, neurological, and neuropsychiatric conditions, however knowledge of its particular pathogenic role in ADHD is sparse. As such, this narrative review examines and synthesizes the available evidence related to inflammation, dysbiosis, and neural processes in ADHD. Minimal differences in microbiota diversity measures between cases and controls were found, however many relative abundance differences were observed at all classification levels (phylum to strain). Compositional differences of taxa important to key gut-brain axis pathways, in particular Bacteroides species and Faecalibacterium, may contribute to inflammation, brain functioning differences, and symptoms, in ADHD. We have identified one possible model of ADHD etiopathogenesis involving systemic inflammation, an impaired blood-brain barrier, and neural disturbances as downstream consequences of gut dysbiosis. Nevertheless, studies conducted to date have varied degrees of methodological rigour and involve diverse participant characteristics and analytical techniques, highlighting a need for additional research.
Collapse
Affiliation(s)
- Naomi Lewis
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia; Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya, QLD 4575, Australia.
| | - Anthony Villani
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia.
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Eccles Blvd, Birtinya, QLD 4575, Australia.
| |
Collapse
|
28
|
Jiang Z, He L, Li D, Zhuo L, Chen L, Shi RQ, Luo J, Feng Y, Liang Y, Li D, Congmei X, Fu Y, Chen YM, Zheng JS, Tao L. Human gut microbial aromatic amino acid and related metabolites prevent obesity through intestinal immune control. Nat Metab 2025:10.1038/s42255-025-01246-5. [PMID: 40087408 DOI: 10.1038/s42255-025-01246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2025] [Indexed: 03/17/2025]
Abstract
Obesity affects millions of people in the world. The gut microbiome influences body fat accumulation, but the mechanisms remain to be investigated. Here, we show an association between microbial aromatic amino acid metabolites in serum and body fat accumulation in a large Chinese longitudinal cohort. We next identify that 4-hydroxyphenylacetic acid (4HPAA) and its analogues effectively protect male mice from high-fat-diet-induced obesity. These metabolites act on intestinal mucosa to regulate the immune response and control lipid uptake, which protects against obesity. We further demonstrate that T cells and B cells are not vital for 4HPAA-mediated obesity prevention, and innate lymphoid cells have antagonistic roles. Together, these findings reveal specific microbial metabolites as pivotal molecules to prohibit obesity through immune control, establishing mechanisms of host modulation by gut microbial metabolites.
Collapse
Affiliation(s)
- Zengliang Jiang
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Jiaxing, Zhejiang, China
| | - Liuqing He
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Diyin Li
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Laibao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lingjun Chen
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Rui-Qi Shi
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jianhua Luo
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yuhui Feng
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yuhui Liang
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Danyang Li
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Xiao Congmei
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanqing Fu
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China.
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Liang Tao
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China.
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
29
|
Wu O, Gao J, Zhang X, Liu W, Zhang H, Khederzadeh S, Lu X, Wu Y. TLR5's Role in Obesity-related Hypertension: Updated Evidence and Prospects. Angiology 2025:33197251326384. [PMID: 40079382 DOI: 10.1177/00033197251326384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Toll-like receptor 5 (TLR5), integral to the immune system as a primary sensor for flagellin, is central to the link between innate and adaptive immunity, modulating immune responses and cytokine production essential for defense against flagellated pathogens and immune tolerance. This review consolidates the understanding of TLR5's structural and signaling mechanisms and its interactions with flagellin, shedding light on its dual role in immune responses and its promise as a therapeutic target. It highlights TLR5's intricate role in the pathogenesis of obesity-related hypertension, a growing global health concern that correlates with rising obesity rates and is characterized by a complex interplay of immune responses and metabolic dysregulation. Despite the current understanding, the impact of TLR5 on obesity-related hypertension is marked by conflicting findings, indicating a need for further exploration. The review critically analyzes the existing literature, providing novel insights from rodent models and human studies that underscore TLR5's therapeutic potential, setting the stage for transformative research in managing obesity-related hypertension. It calls for deeper investigation into TLR5's multifaceted role, emphasizing its promise as a target for managing obesity-related hypertension and the necessity for future research to clarify its complexities and to innovate treatment strategies.
Collapse
Affiliation(s)
- Ou Wu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, P.R. China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Jin Gao
- Clinical Laboratory, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, P.R. China
| | - Xingyu Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wei Liu
- JFIntelligent Healthcare Technology Co. Ltd, Nanchang, Jiangxi, P.R. China
| | - Hu Zhang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital Affiliated with Medical College of Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Saber Khederzadeh
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, P.R. China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, P.R. China
| | - Xi Lu
- Hangzhou Vocational and Technical College, Hangzhou, Zhejiang, P.R. China
| | - Ya Wu
- Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
30
|
Cherrak Y, Younes AA, Perez-Molphe-Montoya E, Maurer L, Yilmaz K, Enz U, Zeder C, Kiefer P, Christen P, Gül E, Vorholt JA, von Mering C, Hardt WD. Neutrophil recruitment during intestinal inflammation primes Salmonella elimination by commensal E. coli in a context-dependent manner. Cell Host Microbe 2025; 33:358-372.e4. [PMID: 40023150 DOI: 10.1016/j.chom.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Foodborne bacterial diarrhea involves complex pathogen-microbiota-host interactions. Pathogen-displacing probiotics are increasingly popular, but heterogeneous patient outcomes highlighted the need to understand individualized host-probiotic activity. Using the mouse gut commensal Escherichia coli 8178 and the human probiotic E. coli Nissle 1917, we found that the degree of protection against the enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm) varies across mice with distinct gut microbiotas. Pathogen clearance is linked to enteropathy severity and subsequent recruitment of intraluminal neutrophils, which differs in a microbiota-dependent manner. By combining mouse knockout and antibody-mediated depletion models with bacterial genetics, we show that neutrophils and host-derived reactive oxygen species directly influence E. coli-mediated S. Tm displacement by potentiating siderophore-bound toxin killing. Our work demonstrates how host immune factors shape pathogen-displacing probiotic efficiency while also revealing an unconventional antagonistic interaction where a gut commensal and the host synergize to displace an enteric pathogen.
Collapse
Affiliation(s)
- Yassine Cherrak
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Eugenio Perez-Molphe-Montoya
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Koray Yilmaz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ursina Enz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Science and Technology, 8092 Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
31
|
Inan S, Wilson RP, Tükel Ç. IUPHAR review: From gut to brain: The role of gut dysbiosis, bacterial amyloids, and metabolic disease in Alzheimer's disease. Pharmacol Res 2025; 215:107693. [PMID: 40086611 DOI: 10.1016/j.phrs.2025.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Gut microbial dysbiosis, or altered gut microbial communities, in Alzheimer's Disease suggests a pathogenic role for gut inflammation and microbial products in shaping a neuroinflammatory environment. Similarly, metabolic diseases, such as obesity and diabetes, are also associated with an increased risk of Alzheimer's Disease. As the metabolic landscape shifts during gut inflammation, and gut inflammation in turn impacts metabolic processes, we explore how these interconnected pathways may contribute to the progression of Alzheimer's Disease. Additionally, we discuss the role of bacterial amyloids produced by gut microbes, which may exacerbate amyloid aggregation in the brain and contribute to neurodegenerative processes. Furthermore, we highlight potential therapeutic strategies aimed at reducing gut inflammation, improving metabolic health, and decreasing amyloid content as a means to mitigate Alzheimer's Disease progression. These approaches, targeting the gut-brain-metabolic axis, could offer promising avenues for delaying or preventing cognitive decline in affected individuals.
Collapse
Affiliation(s)
- Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| | - R Paul Wilson
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Min H, Choi KS, Yun S, Jang S. Live Biotherapeutic Products for Metabolic Diseases: Development Strategies, Challenges, and Future Directions. J Microbiol Biotechnol 2025; 35:e2410054. [PMID: 40081885 PMCID: PMC11925753 DOI: 10.4014/jmb.2410.10054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 03/16/2025]
Abstract
Metabolic diseases, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, have emerged as major global health challenges. Recent research has revealed that the gut microbiome is closely associated with the development of these conditions. The Food and Drug Administration has recognized certain probiotic strains with therapeutic potential, classifying them as live biotherapeutic products (LBPs). LBPs, which are derived from naturally occurring microorganisms, may present an effective strategy for treating metabolic diseases by restoring gut microbiota balance and regulating metabolic functions. This review explores the development of LBPs specifically for metabolic disease treatments, covering every phase from strain identification, non-clinical and clinical trials, manufacturing and formulation to regulatory approval. Furthermore, it addresses the challenges involved in the commercialization of these therapies. By offering critical insights into the research and development of LBPs for metabolic disease treatment, this review aims to contribute to the progress of these promising therapies.
Collapse
Affiliation(s)
- Heonhae Min
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyu-Sung Choi
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Saebom Yun
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
33
|
Saad MJA, Santos A. The Microbiota and Evolution of Obesity. Endocr Rev 2025; 46:300-316. [PMID: 39673174 PMCID: PMC11894537 DOI: 10.1210/endrev/bnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Obesity is a major global concern and is generally attributed to a combination of genetic and environmental factors. Several hypotheses have been proposed to explain the evolutionary origins of obesity epidemic, including thrifty and drifty genotypes, and changes in thermogenesis. Here, we put forward the hypothesis of metaflammation, which proposes that due to intense selection pressures exerted by environmental pathogens, specific genes that help develop a robust defense mechanism against infectious diseases have had evolutionary advantages and that this may contribute to obesity in modern times due to connections between the immune and energy storage systems. Indeed, incorporating the genetic variations of gut microbiota into the complex genetic framework of obesity makes it more polygenic than previously believed. Thus, uncovering the evolutionary origins of obesity requires a multifaceted approach that considers the complexity of human history, the unique genetic makeup of different populations, and the influence of gut microbiome on host genetics.
Collapse
Affiliation(s)
- Mario J A Saad
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| |
Collapse
|
34
|
Li J, Hu X, Tao X, Li Y, Jiang W, Zhao M, Ma Z, Chen B, Sheng S, Tong J, Zhang H, Shen B, Gao X. Deconstruct the link between gut microbiota and neurological diseases: application of Mendelian randomization analysis. Front Cell Infect Microbiol 2025; 15:1433131. [PMID: 40115072 PMCID: PMC11922733 DOI: 10.3389/fcimb.2025.1433131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/21/2025] [Indexed: 03/23/2025] Open
Abstract
Background Recent research on the gut-brain axis has deepened our understanding of the correlation between gut bacteria and the neurological system. The inflammatory response triggered by gut microbiota may be associated with neurodegenerative diseases. Additionally, the impact of gut microbiota on emotional state, known as the "Gut-mood" relationship, could play a role in depression and anxiety disorders. Results This review summarizes recent data on the role of gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including epilepsy, schizophrenia, Alzheimer's disease, brain cancer, Parkinson's disease, bipolar disorder and stroke. Also, we conducted a Mendelian randomization study on seven neurological disorders (Epilepsy, schizophrenia, Alzheimer's disease, brain cancer, Parkinson's disease, bipolar disorder and stroke). MR-Egger and MR-PRESSO tests confirmed the robustness of analysis against horizontal pleiotropy. Conclusions By comparing the protective and risk factors for neurological disorders found in our research and other researches, we can furtherly determine valuable indicators for disease evolution tracking and potential treatment targets. Future research should explore extensive microbiome genome-wide association study datasets using metagenomics sequencing techniques to deepen our understanding of connections and causality between neurological disorders.
Collapse
Affiliation(s)
- Jingqiu Li
- Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Xinyang Hu
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Xinyu Tao
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yuming Li
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wan Jiang
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingtao Zhao
- Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Zhehui Ma
- Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Shuyan Sheng
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Jiaye Tong
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Haibo Zhang
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiaomei Gao
- Frist Clinical Medical College, Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Cho HW, Seo K, Lee MY, Lee SY, So KM, Song SY, Seo WD, Chun JL, Kim KH. Anti-Obesity Potential of Barley Sprouts in Dog Diets and Their Impact on the Gut Microbiota. Microorganisms 2025; 13:594. [PMID: 40142488 PMCID: PMC11944565 DOI: 10.3390/microorganisms13030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Barley sprouts, the germinated and grown leaves of barley, contain various bioactive compounds, including policosanol, saponarin, and lutonarin. The ingestion of barley sprouts may benefit canine weight management, potentially owing to the anti-obesity properties of bioactive compounds. However, there is limited evidence on the efficacy and safety of barley sprout supplementation in dogs. Therefore, through this study, we assessed the impact of barley-sprout-supplemented diet on body weight and health markers in healthy adult beagles over a 16-week period. The results showed a 7.2% reduction in body weight in dogs fed the barley sprout diet. Hematology, complete blood cell count, and blood biochemistry analyses confirmed that all parameters remained within normal ranges, with no significant differences observed between the control and experimental groups. Although the levels of IFN-γ, IL-6, and insulin remained stable, leptin, a hormone associated with body fat, significantly decreased. Further analysis of alterations in the gut microbiota following barley sprout supplementation revealed no significant differences between the control and experimental groups with respect to alpha and beta diversity analysis. The shift at the phylum level, with a decrease in Firmicutes and an increase in Bacteroidetes, resulted in a reduced Firmicutes/Bacteroidetes ratio. Additionally, the abundance of the Ruminococcus gnavus group was high in the experimental group. Functional predictions indicated an enhancement in carbohydrate, amino acid, and cofactor and vitamin metabolism. These findings suggest that a barley sprouts diet is safe for dogs and may offer benefits for weight management through favorable alterations in body weight, hormone levels, and gut microbiota composition.
Collapse
Affiliation(s)
- Hyun-Woo Cho
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.-W.C.); (M.Y.L.); (S.-Y.L.); (K.-M.S.)
| | - Kangmin Seo
- Ingredient Examination Diversion, National Agricultural Products Quality Management Service, Ministry of Agriculture, Food and Rural Affairs, Gimcheon 39660, Republic of Korea;
| | - Min Young Lee
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.-W.C.); (M.Y.L.); (S.-Y.L.); (K.-M.S.)
| | - Sang-Yeob Lee
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.-W.C.); (M.Y.L.); (S.-Y.L.); (K.-M.S.)
| | - Kyoung-Min So
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.-W.C.); (M.Y.L.); (S.-Y.L.); (K.-M.S.)
| | - Seung-Yeob Song
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-Y.S.); (W.-D.S.)
| | - Woo-Duck Seo
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-Y.S.); (W.-D.S.)
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.-W.C.); (M.Y.L.); (S.-Y.L.); (K.-M.S.)
| | - Ki Hyun Kim
- Academic-Industrial Cooperation Organization, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
36
|
Lopes EW, Yu Z, Walsh SE, Casey K, Ananthakrishnan AN, Richter JM, Burke KE, Chan AT, Khalili H. Dietary Nut and Legume Intake and Risk of Crohn's Disease and Ulcerative Colitis. Inflamm Bowel Dis 2025:izaf032. [PMID: 40037780 DOI: 10.1093/ibd/izaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Indexed: 03/06/2025]
Abstract
BACKGROUND We investigated the relationship between nut and legume intake and risk of Crohn's disease (CD) and ulcerative colitis (UC). METHODS We conducted a prospective cohort study of 223 283 adults from the Nurses' Health Study (NHS), NHSII, and Health Professionals Follow-Up Study (1986-2017), excluding those with inflammatory bowel disease (IBD) at baseline. Food frequency questionnaires were used to calculate nut and legume intake. Inflammatory bowel disease was self-reported on questionnaires and confirmed via blinded record review. Using Cox proportional hazards models, we calculated adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for CD and UC according to categories of nut and legume intake. RESULTS In over 5 460 315 person-years of follow-up (CD = 371, UC = 481), neither nut nor legume intake was associated with CD or UC risk. Compared to those who never consumed nuts, those who consumed nuts ≥2 times/week had an aHR = 0.96 (95% CI, 0.63-1.47; Ptrend = 0.57) for CD and 1.30 (95% CI, 0.92-1.84; Ptrend = 0.36) for UC. Compared to those who consumed legumes 0-3 times/month, those who consumed legumes ≥4 times/week had an aHR of 1.26 (95% CI, 0.78-2.04; Ptrend = 0.59) for CD and 0.72 (95% CI, 0.44-1.18; Ptrend = 0.20) for UC. Baseline BMI modified the relationship between nut intake and CD risk (Pint = 0.03). In those with BMI ≥25, the aHR for CD was 0.14 (95% CI, 0.03-0.56; P = .006) per additional serving/day of nuts compared with 0.88 (95% CI, 0.45-1.74; P = .72) for those with BMI <25. CONCLUSIONS Nut and legume intake were not associated with CD or UC risk. However, higher nut intake decreased CD risk in overweight or obese individuals. Thus, personalized-risk stratification, rather than generalized dietary recommendations, may be important for IBD prevention strategies.
Collapse
Affiliation(s)
- Emily W Lopes
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translation Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zeling Yu
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Shawna E Walsh
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Casey
- Clinical and Translation Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translation Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - James M Richter
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Kristin E Burke
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translation Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translation Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translation Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
37
|
Zhang Y, Liu R, Chen Y, Cao Z, Liu C, Bao R, Wang Y, Huang S, Pan S, Qin L, Wang J, Ning G, Wang W. Akkermansia muciniphila supplementation in patients with overweight/obese type 2 diabetes: Efficacy depends on its baseline levels in the gut. Cell Metab 2025; 37:592-605.e6. [PMID: 39879980 DOI: 10.1016/j.cmet.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/23/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Akkermansia muciniphila is a promising target for managing obesity and type 2 diabetes (T2D), but human studies are limited. We conducted a 12-week randomized, double-blind, placebo-controlled trial involving 58 participants with overweight or obese T2D, who received A. muciniphila (AKK-WST01) or placebo, along with routine lifestyle guidance. Both groups showed decreases in body weight and glycated hemoglobin (HbA1c), without significant between-group differences. In participants with low baseline A. muciniphila, AKK-WST01 supplementation showed high colonization efficiency and significant reductions in body weight, fat mass, and HbA1c, which were not found in the placebo group. However, AKK-WST01 supplementation showed poor colonization and no significant clinical improvements in participants with high baseline A. muciniphila. These findings were verified in germ-free mice receiving feces with low or high A. muciniphila. Our study indicates that metabolic benefits of A. muciniphila supplementation could depend on its baseline intestinal levels, supporting the potential for gut microbiota-guided probiotic supplementation. (ClinicalTrials.gov number, NCT04797442).
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yufei Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiwen Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Cong Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Riqiang Bao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yufan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shijia Pan
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Li Qin
- Department of Endocrinology, Chongming hospital affiliated to Shanghai University of Health & Medicine Sciences, Shanghai 202150, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
38
|
Metwaly A, Kriaa A, Hassani Z, Carraturo F, Druart C, Arnauts K, Wilmes P, Walter J, Rosshart S, Desai MS, Dore J, Fasano A, Blottiere HM, Maguin E, Haller D. A Consensus Statement on establishing causality, therapeutic applications and the use of preclinical models in microbiome research. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01041-3. [PMID: 40033063 DOI: 10.1038/s41575-025-01041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 03/05/2025]
Abstract
The gut microbiome comprises trillions of microorganisms and profoundly influences human health by modulating metabolism, immune responses and neuronal functions. Disruption in gut microbiome composition is implicated in various inflammatory conditions, metabolic disorders and neurodegenerative diseases. However, determining the underlying mechanisms and establishing cause and effect is extremely difficult. Preclinical models offer crucial insights into the role of the gut microbiome in diseases and help identify potential therapeutic interventions. The Human Microbiome Action Consortium initiated a Delphi survey to assess the utility of preclinical models, including animal and cell-based models, in elucidating the causal role of the gut microbiome in these diseases. The Delphi survey aimed to address the complexity of selecting appropriate preclinical models to investigate disease causality and to study host-microbiome interactions effectively. We adopted a structured approach encompassing a literature review, expert workshops and the Delphi questionnaire to gather insights from a diverse range of stakeholders. Experts were requested to evaluate the strengths, limitations, and suitability of these models in addressing the causal relationship between the gut microbiome and disease pathogenesis. The resulting consensus statements and recommendations provide valuable insights for selecting preclinical models in future studies of gut microbiome-related diseases.
Collapse
Affiliation(s)
- Amira Metwaly
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University Munich, Freising, Germany
- ZIEL Institute for Food & Health, Technical University Munich, Freising, Germany
| | - Aicha Kriaa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Federica Carraturo
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | | | - Kaline Arnauts
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland
| | - Stephan Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Joel Dore
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France
| | - Alessio Fasano
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
- Department of Paediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center,Massachusetts General Hospital Brigham, Harvard Medical School, Boston, MA, USA
| | - Hervé M Blottiere
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France
- Nantes Université, INRAE, UMR1280, PhAN, Nantes, France
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Dirk Haller
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University Munich, Freising, Germany.
- ZIEL Institute for Food & Health, Technical University Munich, Freising, Germany.
| |
Collapse
|
39
|
Mahamud AGMSU, Tanvir IA, Kabir ME, Samonty I, Chowdhury MAH, Rahman MA. Gerobiotics: Exploring the Potential and Limitations of Repurposing Probiotics in Addressing Aging Hallmarks and Chronic Diseases. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10501-w. [PMID: 40029460 DOI: 10.1007/s12602-025-10501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
As unhealthy aging continues to rise globally, there is a pressing need for effective strategies to promote healthy aging, extend health span, and address aging-related complications. Gerobiotics, an emerging concept in geroscience, offers a novel approach to repurposing selective probiotics, postbiotics, and parabiotics to modulate key aging processes and enhance systemic health. This review explores recent advancements in gerobiotics research, focusing on their role in targeting aging hallmarks, regulating longevity-associated pathways, and reducing risks of multiple age-related chronic conditions. Despite their promise, significant challenges remain, including optimizing formulations, ensuring safety and efficacy across diverse populations, and achieving successful clinical translation. Addressing these gaps through rigorous research, well-designed clinical trials, and advanced biotechnologies can establish gerobiotics as a transformative intervention for healthy aging and chronic disease prevention.
Collapse
Affiliation(s)
| | | | - Md Ehsanul Kabir
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Ismam Samonty
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| |
Collapse
|
40
|
Li J, Wei W, Ma X, Ji J, Ling X, Xu Z, Guan Y, Zhou L, Wu Q, Huang W, Liu F, Zhao M. Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats. Food Funct 2025; 16:1731-1759. [PMID: 39752320 DOI: 10.1039/d4fo04251d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities. However, the regulatory mechanisms linking rice peptides (RP), gut dysbiosis, and hypertension remain to be fully elucidated. In our study, male spontaneously hypertensive rats (SHR) were fed with chow diet and concomitantly treated with ddH2O (Ctrl) or varying doses of rice peptides (20, 100, or 500 mg (kg bw day)-1 designated as low-dose RP, LRP; medium-dose RP, MRP; high-dose RP, HAP) or captopril (Cap) by intragastric administration. Wistar-Kyoto (WKY) rats served as the normotensive control group and were orally administered with ddH2O. We observed beneficial effects of RP in lowering blood pressure and ameliorating cardiovascular risk profiles, as evidenced by improvements in glucolipid metabolic disorders, hepatic and renal damage, left ventricular hypertrophy and endothelial dysfunction in hypertensive rats. More importantly, we found that RP attenuated intestinal pathological damage, improved impaired intestinal barrier, and reduced intestinal inflammation by inhibiting the HMGB1-TLR4-NF-κB pathway. Notably, multi-omics integrative analyses have revealed that RP altered the composition and function of the gut microbiota. This is exemplified by the observed enrichment of beneficial bacterial constituents, such as g_Lactobacillus, g_Lactococcus, s_Lactobacillus_intestinalis, and Lactococcus lactis, and elevated production of microbiota-derived short-chain fatty acid metabolites. Collectively, these studies suggest that the hypotensive effects of RP may be associated with modulation of the gut microbiota and its short-chain fatty acids metabolites. This implicates the microbiota-gut-HMGB1-TLR4-NF-κB axis as a novel venue for the amelioration of hypertension and its complications.
Collapse
Affiliation(s)
- Juan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Wei Wei
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, 274108, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaomin Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Center for Experimental Public Health and Preventive Medicine Education, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jing Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Xiaomeng Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Zhuyan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yutong Guan
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Leyan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, 201203, China.
| | - Wenhua Huang
- AMWAY (China) R&D Center, Guangzhou, 510730, China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
41
|
Hai C, Wang L, Wu D, Pei D, Yang Y, Liu X, Zhao Y, Bai C, Su G, Bao Z, Yang L, Li G. Loss of Myostatin leads to low production of CH 4 by altering rumen microbiota and metabolome in cattle. Int J Biol Macromol 2025; 294:139533. [PMID: 39761884 DOI: 10.1016/j.ijbiomac.2025.139533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Myostatin (MSTN) is a protein that plays a crucial role in regulating skeletal muscle development. Despite the known benefits of MSTN mutant cattle for increasing beef production, their potential impact on CH4 emissions has not been quantified. The study comparing wild-type (WT) cattle to MSTN-knockout (MSTN-KO) cattle revealed that CH4 production was lower. Macrogenomic analysis revealed a significant decrease in rumen archaea, with reduced Richness indices (P = 0.036). The MSTN-KO cattle also showed altered archaea distribution and composition at different taxonomic levels. LEfSe results showed changes in 21 methanogenic archaea clades, with obligately hydrogen (H2)-dependent methylotrophs Candidatus Methanoplasma termitum species belonging to Methanomassiliicoccales order demonstrating the most significant decrease. Rumen metabolites revealed a decrease in the ratio of acetate to propionate, indicating a shift in rumen fermentation pattern towards propionate fermentation. Additionally, the changing trend of methanogenic archaea is consistent with the evolution of methanogens, and this is correlated with the higher levels of linoleic acid in the rumen of MSTN-KO cattle. Linoleic acid affects the utilization of H2 by methanogenic archaea, leading to a reduction in obligately H2-dependent methylotrophs. Our study suggests that MSTN-KO cattle have potential as an economically and ecologically benign breed for reducing methane emissions.
Collapse
Affiliation(s)
- Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Linfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Dongchao Pei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Yuqing Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, College of Ecology and Environment, Inner Mongolia University, Hohhot 010000, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China.
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China.
| |
Collapse
|
42
|
Shukla A, Sharma C, Malik MZ, Singh AK, Aditya AK, Mago P, Shalimar, Ray AK. Deciphering the tripartite interaction of urbanized environment, gut microbiome and cardio-metabolic disease. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124693. [PMID: 40022791 DOI: 10.1016/j.jenvman.2025.124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
The world is experiencing a sudden surge in urban population, especially in developing Asian and African countries. Consequently, the global burden of cardio-metabolic disease (CMD) is also rising owing to gut microbiome dysbiosis due to urbanization factors such as mode of birth, breastfeeding, diet, environmental pollutants, and soil exposure. Dysbiotic gut microbiome indicated by altered Firmicutes to Bacteroides ratio and loss of beneficial short-chain fatty acids-producing bacteria such as Prevotella, and Ruminococcus may disrupt host-intestinal homeostasis by altering host immune response, gut barrier integrity, and microbial metabolism through altered T-regulatory cells/T-helper cells balance, activation of pattern recognition receptors and toll-like receptors, decreased mucus production, elevated level of trimethylamine-oxide and primary bile acids. This leads to a pro-inflammatory gut characterized by increased pro-inflammatory cytokines such as tumour necrosis factor-α, interleukin-2, Interferon-ϒ and elevated levels of metabolites or metabolic endotoxemia due to leaky gut formation. These pathophysiological characteristics are associated with an increased risk of cardio-metabolic disease. This review aims to comprehensively elucidate the effect of urbanization on gut microbiome-driven cardio-metabolic disease. Additionally, it discusses targeting the gut microbiome and its associated pathways via strategies such as diet and lifestyle modulation, probiotics, prebiotics intake, etc., for the prevention and treatment of disease which can potentially be integrated into clinical and professional healthcare settings.
Collapse
Affiliation(s)
- Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Chanchal Sharma
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Md Zubbair Malik
- Department of Translational Medicine, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Abhishek Kumar Aditya
- Department of Medicine, K.D. Medical College, Hospital and Research Center, Mathura, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India; Campus of Open Learning, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
43
|
Thoumas JL, Cavaroc A, Sery D, Leulier F, De Vadder F. Suboptimal Refeeding Compensates Stunting in a Mouse Model of Juvenile Malnutrition. J Nutr 2025; 155:849-861. [PMID: 39756681 DOI: 10.1016/j.tjnut.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Early postnatal life is a critical period of rapid growth in mammals, heavily reliant on adequate nutrition. Protein-energy malnutrition (PEM) during this window can lead to stunting and wasting, with lasting health consequences. OBJECTIVES This study developed a mouse model of juvenile PEM to assess the effects of refeeding with various diets and interventions on growth recovery, including probiotic supplementation and suboptimal refeeding diets. Outcomes included length and weight catch-up, organ weights, and glucose tolerance. METHODS Juvenile male and female C57Bl/6J mice (N = 8 to 11/group) were fed a low-protein diet (LPD, 5% kcal from protein) starting at postnatal day 14 (P14) to which the pups and dams had access. Following weaning, mice were refed an optimal diet (27% kcal from protein) at different times (P28 to P56). Male mice received additional interventions, including supplementation with Lactiplantibacillus plantarum WJL (LpWJL) during refeeding or refeeding with a Western diet (WD), 15.3% kcal from protein, or a modified Western diet (MWD) 7.5% kcal from protein. Statistical analyses used analysis of variance, analysis of covariance, and principal component analysis. RESULTS Optimal refeeding restored growth in females (body weight in optimal-fed: 20.5 ± 0.3 g vs. 19.4 ± 0.6 g in P56-refed), but males showed persistent stunting (26.8 ± 0.7 g vs. 21.9 ± 0.9 g; P < 0.05). In males, LpWJL did not enhance growth recovery and exacerbated glucose intolerance in suboptimal refeeding groups. Males refed WD or MWD restored body length but showed impaired glucose metabolism, particularly in mice refed WD, with glycemia 30 min after glucose challenge reaching 20.4 ± 4.0 mM vs. 14.3 ± 3.0 mM in optimal-fed mice (P < 0.05). CONCLUSIONS Sex-dependent differences in recovery from PEM were evident, with males showing incomplete growth recovery despite optimal refeeding. Suboptimal diets compensated for stunting but impaired glucose metabolism, and LpWJL did not improve growth outcomes.
Collapse
Affiliation(s)
- Jean-Louis Thoumas
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Amandine Cavaroc
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Damien Sery
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Filipe De Vadder
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
44
|
Lan F, Wang X, Zhou Q, Li X, Jin J, Zhang W, Wen C, Wu G, Li G, Yan Y, Yang N, Sun C. Deciphering the coordinated roles of the host genome, duodenal mucosal genes, and microbiota in regulating complex traits in chickens. MICROBIOME 2025; 13:62. [PMID: 40025569 PMCID: PMC11871680 DOI: 10.1186/s40168-025-02054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The complex interactions between host genetics and the gut microbiome are well documented. However, the specific impacts of gene expression patterns and microbial composition on each other remain to be further explored. RESULTS Here, we investigated this complex interplay in a sizable population of 705 hens, employing integrative analyses to examine the relationships among the host genome, mucosal gene expression, and gut microbiota. Specific microbial taxa, such as the cecal family Christensenellaceae, which showed a heritability of 0.365, were strongly correlated with host genomic variants. We proposed a novel concept of regulatability ( r b 2 ), which was derived from h2, to quantify the cumulative effects of gene expression on the given phenotypes. The duodenal mucosal transcriptome emerged as a potent influencer of duodenal microbial taxa, with much higher r b 2 values (0.17 ± 0.01, mean ± SE) than h2 values (0.02 ± 0.00). A comparative analysis of chickens and humans revealed similar average microbiability values of genes (0.18 vs. 0.20) and significant differences in average r b 2 values of microbes (0.17 vs. 0.04). Besides, cis ( h cis 2 ) and trans heritability ( h trans 2 ) were estimated to assess the effects of genetic variations inside and outside the cis window of the gene on its expression. Higher h trans 2 values than h cis 2 values and a greater prevalence of trans-regulated genes than cis-regulated genes underscored the significant role of loci outside the cis window in shaping gene expression levels. Furthermore, our exploration of the regulatory effects of duodenal mucosal genes and the microbiota on 18 complex traits enhanced our understanding of the regulatory mechanisms, in which the CHST14 gene and its regulatory relationships with Lactobacillus salivarius jointly facilitated the deposition of abdominal fat by modulating the concentration of bile salt hydrolase, and further triglycerides, total cholesterol, and free fatty acids absorption and metabolism. CONCLUSIONS Our findings highlighted a novel concept of r b 2 to quantify the phenotypic variance attributed to gene expression and emphasize the superior role of intestinal mucosal gene expressions over host genomic variations in elucidating host‒microbe interactions for complex traits. This understanding could assist in devising strategies to modulate host-microbe interactions, ultimately improving economic traits in chickens.
Collapse
Affiliation(s)
- Fangren Lan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiqiong Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenxin Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
45
|
Li R, Ding X, Lei M, Li P, Giannenas I, Wang J, Zhu W. The impact of combined thymol and rosmarinic acid on the intestinal microbiota and barrier function of the piglets challenged by Escherichia coli K88. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:131-144. [PMID: 39967693 PMCID: PMC11834115 DOI: 10.1016/j.aninu.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 02/20/2025]
Abstract
It has been found that thymol (Thy) and rosmarinic acid (Ros-A) improve the growth performance of piglets and relieve intestinal inflammation in animals. The effects of Thy and Ros-A separately or in combination (Thy × Ros-A) on the intestinal function and health of piglets challenged with Escherichia coli K88 (E. coli K88) were investigated. A total of 30 piglets aged 21 d were assigned to 5 groups (n = 6). The control (Con) and K88 groups piglets received a basal diet, while the Thy, Ros-A, and Thy × Ros-A groups were fed a basal diet supplemented with 500 mg/kg Thy, 500 mg/kg Ros-A, and 250 mg/kg Thy + 250 mg/kg Ros-A, respectively. On the 19th and 20th day, piglets in the K88, Thy, Ros-A, and Thy × Ros-A groups were orally administered 10 mL of phosphate-buffered saline (PBS) containing approximately 1 × 109 CFU/mL of E. coli K88, while the Con group received an equal volume of PBS. The results showed that the Thy × Ros-A treatment reduced the damage to ileal villi induced by the E. coli K88 challenge, leading to longer villi in the ileum (P < 0.05). Thy and Ros-A modulated the composition of the ileal microbiota. Compared to the K88 group, the Thy × Ros-A group had a higher abundance of Lactobacillus and Romboutsia, while Escherichia-Shigella and Desulforvibrio were lower (P < 0.05). Additionally, the Thy × Ros-A group showed elevated levels of gene and protein expressions for zonula occludens-1, occludin, and claudin-1 compared to the K88 group (P < 0.05). In conclusion, combining Thy and Ros-A reduced ileal damage and relieved the inflammation in weaned piglets challenged with E. coli K88 by regulating intestinal microflora and improving barrier function.
Collapse
Affiliation(s)
- Runlin Li
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuedong Ding
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingkang Lei
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Li
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ilias Giannenas
- Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
46
|
Campos-Bayardo TI, Román-Rojas D, García-Sánchez A, Cardona-Muñoz EG, Sánchez-Lozano DI, Totsuka-Sutto S, Gómez-Hermosillo LF, Casillas-Moreno J, Andrade-Sierra J, Pazarín-Villaseñor L, Campos-Pérez W, Martínez-López E, Miranda-Díaz AG. The Role of TLRs in Obesity and Its Related Metabolic Disorders. Int J Mol Sci 2025; 26:2229. [PMID: 40076851 PMCID: PMC11900219 DOI: 10.3390/ijms26052229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity affects the adaptability of adipose tissue (AT), impairing its ability to regulate energy and metabolism. Obesity is associated with many metabolic disorders, including dyslipidemia, hypertension, sleep disorders, non-alcoholic liver disease, and some types of cancer. Toll-like receptors (TLRs) are important in obesity and related metabolic disorders. TLRs are pattern-recognizing receptors (PRRs) involved in the innate immune system and recognize pathogen-associated molecular patterns (PAMPs) and endogenous ligands. TLRs, especially TLR2 and TLR4, are activated by fatty acids, endotoxins, and other ligands. TLR2 and TLR4 activation triggers inflammatory responses. Chronic inflammation driven by TLR activation is a hallmark of obesity and metabolic diseases. The inflammatory response triggered by TLR activation alters insulin signaling, contributing to insulin resistance, a key feature of metabolic syndrome and type 2 diabetes. Modulation of TLR activity through lifestyle changes (diet and exercise), obesity surgery, and pharmacological agents is under study as a possible therapeutic approach to controlling obesity and its complications.
Collapse
Affiliation(s)
- Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniel Román-Rojas
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniela Itzel Sánchez-Lozano
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Sylvia Totsuka-Sutto
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Luis Francisco Gómez-Hermosillo
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Casillas-Moreno
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Andrade-Sierra
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Leonardo Pazarín-Villaseñor
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Wendy Campos-Pérez
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Erika Martínez-López
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| |
Collapse
|
47
|
Zhao A, Li J, Peterson M, Black M, Gaulke CA, Jeffery EH, Miller MJ. Cooked Broccoli Alters Cecal Microbiota and Impacts Microbial Metabolism of Glucoraphanin in Lean and Obese Mice. Mol Nutr Food Res 2025; 69:e202400813. [PMID: 39962804 PMCID: PMC11924887 DOI: 10.1002/mnfr.202400813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 03/21/2025]
Abstract
SCOPE Brassica vegetables contain unique compounds known as glucosinolates (GSLs), which, when hydrolyzed by plant or microbial myrosinase, form bioactive isothiocyanates (ITCs) that offer health benefits to the host. The present study evaluated the impact of cooked broccoli (broccoli myrosinase inactivated) consumption on cecal microbial metabolism of glucoraphanin (GRP) in lean and obese mice and characterized the changes in cecal microbiota following broccoli-containing diets. METHODS AND RESULTS Twenty lean and 20 diet-induced obese (DIO) mice were randomized to consume control or cooked broccoli supplemented diets for 7 days. Cooked broccoli consumption increased ex vivo microbial GRP hydrolysis by cecal contents collected from lean and obese mice, led to increased production of sulforaphane (SF), sulforaphane-cysteine (SF-CYS), total ITC, and colonic NAD(P)H: Quinone Oxidoreductase (NQO1) activity. Further investigation revealed increased abundance of health-promoting gut microbiota, including Lachnospiraceae NK4A136 group and Dubosiella newyorkensis, following broccoli-containing diets. The Peptococcaseae family, the Blautia genus, and an amplicon sequence variation (ASV) from the Oscillospiraceae family exhibited negative correlation with total ITC production. CONCLUSION These finding suggest that cooked broccoli consumption enhances microbial GRP hydrolysis to produce more bioactive ITCs and inform future strategies toward altering microbial GSL metabolism to promote gut health in both lean and obese individuals.
Collapse
Affiliation(s)
- Anqi Zhao
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
| | - Jiaxuan Li
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | - Mark Peterson
- College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Molly Black
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | | | - Elizabeth H Jeffery
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | - Michael J Miller
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
48
|
Koshida T, Gohda T, Kaga N, Taka H, Shimozawa K, Murakoshi M, Yamashiro Y, Suzuki Y. Inappropriate diet and hygiene status affect the progression of diabetic kidney disease by causing dysbiosis. Nutrition 2025; 131:112633. [PMID: 39642696 DOI: 10.1016/j.nut.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Although the effects of an unhealthy diet on the risks of diabetes and its renal complications are well understood, the effects of hygiene status have not been fully elucidated. RESEARCH METHODS AND PROCEDURES We created four groups of mice according to the diet fed (standard [SD] or high-fat [HFD]) and their living environment (conventional [CV] or specific pathogen-free [SPF]), and characterized the extent of their kidney pathology, their gut microbiota, and their fecal short-chain fatty acid (SCFA) concentrations. RESULTS The body masses and glycated hemoglobin levels of the HFD and CV groups were significantly higher than those of the SD and SPF groups, respectively. The renal mRNA expression of markers of inflammation and fibrosis and the protein level of CD31 were higher in the HFD and CV groups than in the SD and SPF groups, respectively. Although the alpha diversities and total SCFA concentrations of the HFD and CV groups were significantly lower than those of the SD and SPF groups, respectively, the mRNA expression of genes involved in inflammation, innate immunity, tight junctions, and glucose transporters in the gut was only affected by HFD. CONCLUSIONS Gut microbial dysbiosis, owing to the combined effects of inappropriate diet and excessive hygiene, accompanied by lower intestinal SCFA production, may contribute to the development and/or progression of diabetes and diabetic kidney disease through the induction of inflammation and fibrosis.
Collapse
Affiliation(s)
- Takeo Koshida
- Department of Nephrology, Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Tomohito Gohda
- Department of Nephrology, Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan.
| | - Naoko Kaga
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hikari Taka
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Kenta Shimozawa
- Department of Nephrology, Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Maki Murakoshi
- Department of Nephrology, Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
49
|
Fang Y, Tian Z, Li W, Li D, Li J, Hu Z, Qiu Y, Zhu Z, Liu Z. Gut microbiota alterations in adolescent idiopathic scoliosis: a comparison study with healthy control and congenital scoliosis. Spine Deform 2025; 13:497-507. [PMID: 39438431 DOI: 10.1007/s43390-024-00988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This study aims to compare the composition of GM isolated from individuals with AIS or congenital scoliosis (CS) and age-matched control (Ctr). METHODS A total of 48 patients with AIS, 24 patients with CS, and 31 healthy individuals were recruited as the discovery cohort, and 9 pairs of siblings where one was affected by AIS were recruited as the validation cohort. The GM profile was determined with 16S rRNA sequencing, and the alpha-diversity and beta-diversity metrics were performed with Mothur. Linear discriminant analysis (LDA) analysis was performed to identify the enriched species. RESULTS The α diversity (Chao1 index) was significantly lower in AIS patients with low BMI (< 18.5) than those with normal BMI. The PcoA analysis showed a trend of clustering of GM in AIS compared to that in Ctr and CS groups (r2 = 0.0553, p = 0.001). METASTAT analysis showed Cellulomonadaceae was significantly enriched in AIS groups compared to CS and Ctr. LDA analysis showed 9 enriched species in AIS patients. Compared to Ctr, two species including Hungatella genus and Bacteroides fragilis were significantly enriched, while the Firmicutes versus Bacteroidetes (F/B) ratio and the Ruminococcus genus were significantly decreased in AIS but not CS groups. The significantly reduced F/B ratio and Ruminococcus genus in AIS were replicated in the validation cohort. CONCLUSIONS Our study elucidated an association between low BMI and GM diversity in AIS patients. The reduced F/B ratio and Ruminococcus genus in AIS patients were identified and validated in 9 pairs of AIS patients and their unaffected siblings. Our pilot results may help understand the anthropometric discrepancy in these patients and support a possible role of GM in the pathogenesis of AIS.
Collapse
Affiliation(s)
- Yinyu Fang
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Zhen Tian
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Weibiao Li
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Dongyue Li
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Zongshan Hu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China.
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
50
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic human gut microbiome and immune shifts during an immersive psychosocial intervention program. Brain Behav Immun 2025; 125:428-443. [PMID: 39701328 PMCID: PMC11903166 DOI: 10.1016/j.bbi.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Although depression is a leading cause of disability worldwide, the pathophysiological mechanisms underlying this disorder-particularly those involving the gut microbiome-are poorly understood. METHOD To investigate, we conducted a community-based observational study to explore complex associations between changes in the gut microbiome, cytokine levels, and depression symptoms in 51 participants (Mage = 49.56, SD = 13.31) receiving an immersive psychosocial intervention. A total of 142 multi-omics samples were collected from participants before, during, and three months after the nine-day inquiry-based stress reduction program. RESULTS Results revealed that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. CONCLUSIONS These findings reveal a potentially protective link between the Prevotella-dominant microbiome and depression, as evidenced by a reduced pro-inflammatory environment and fewer depressive symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, may highlight potential avenues for microbiome-targeted therapies for managing depression.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA
| | - Ariel B Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA; Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA.
| |
Collapse
|