1
|
Xu H, Blagg BSJ. Glucose-regulated protein 94 (Grp94/gp96) in viral pathogenesis: Insights into its role and therapeutic potentials. Eur J Med Chem 2025; 292:117713. [PMID: 40319577 DOI: 10.1016/j.ejmech.2025.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Glucose-regulated protein 94 (Grp94/gp96) is endoplasmic reticulum (ER) resident form of the 90 kDa heat shock protein 90 (Hsp90) that is responsible for folding, maturation and stabilization of more than 400 client proteins. Grp94 has been implicated for various diseases including metastatic cancer, primary open-angle glaucoma, and infectious diseases. In fact, Grp94 plays critical roles in different stages of viral infection cycle. It chaperones receptor proteins and viral glycoproteins that are necessary for viral entry and replication. Beyond its role in protein homeostasis, Grp94 modulates host cellular processes such as apoptosis and immune responses, which are often exploited by viruses to sustain infection. This work provides an overview of the roles of Grp94 in viral pathogenesis across various viruses and its involvement in immune modulation with the development of Grp94-selective inhibitors and their potential as anti-viral therapeutics.
Collapse
Affiliation(s)
- Hao Xu
- Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Riva F, Muzio M. Updates on Toll-Like Receptor 10 Research. Eur J Immunol 2025; 55:e202551840. [PMID: 40346761 PMCID: PMC12064872 DOI: 10.1002/eji.202551840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/12/2025]
Abstract
Toll-like receptors (TLRs) are transmembrane proteins that share sequence similarity and biological function as they are responsible for the innate immune response to exogenous or endogenous molecular patterns. Distinct ligands are recognized by the leucine-rich repeats regions and trigger an inflammatory signal into the cell thanks to the TIR domain of TLR. TLR10 shares the same structural organization but shows a unique expression pattern and functional activity yet to be fully elucidated. In this review, we summarize the literature on TLR10 expression and cellular localization. Several polymorphisms were reported for the TLR10 gene that is present in most mammalians and arose from gene duplication of an ancestral TLR1-like gene. Accordingly, TLR10 was shown to act as TLR1 in terms of TLR2 interaction and TLR1/2 ligands recognition; however, in contrast to all the other TLRs it could also trigger anti-inflammatory signaling and was responsive to several unrelated microbial components. In this review, we will describe key steps and recent updates on TLR10 research highlighting common or divergent findings, in humans and animals.
Collapse
Affiliation(s)
- Federica Riva
- Department of Veterinary Medicine and Animal SciencesUniversità degli Studi di MilanoLodiItaly
| | - Marta Muzio
- Cell signaling UnitDivision of Experimental oncology, IRCCS San Raffaele Scientific InstituteMilanoItaly
| |
Collapse
|
3
|
Camarano Eula MA, Bayona-Serrano JD, Nishiyama-Jr MY, Squaiella-Baptistão CC, Santoro ML, Junqueira-de-Azevedo IDLM. The underestimated local effects of Micrurus corallinus venom revealed by gene expression and histopathological alterations. Toxicon 2025; 259:108368. [PMID: 40268250 DOI: 10.1016/j.toxicon.2025.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
The mechanisms of action of elapid neurotoxins have been widely studied; however, the pathophysiological effects of these venoms, particularly from coral snakes, have not been extensively investigated. To gain a deeper understanding of the mechanisms involved in the local and systemic toxicity of Micrurus corallinus venom and their genomic responses, we injected mice with 2.70 μg of venom, corresponding to a sub-lethal dose (50 % of the LD50), and evaluated the effects using transcriptomic and histopathological approaches. mRNA was extracted from the liver, spleen, kidney, heart, brain, diaphragm, and both right and left gastrocnemius muscles of control and treated animals and subjected to RNA sequencing (RNA-Seq) to perform functional analyses of differentially expressed genes (DEGs). In the right gastrocnemius, the site of venom injection, we observed significant histopathological changes characterized by a pronounced local inflammatory response. Consistent with these findings, enrichment analyses revealed 2454 DEGs in the right gastrocnemius, mostly involved in inflammatory pathways. Systemically, the liver emerged as the most affected non-local organ, showing over 400 DEGs containing several up-regulated genes involved in the production of acute phase proteins. These results underscore that inflammation possibly induced by the sub-lethal amounts of venom typically injected during human envenomation, and not only the neurotoxicity, could be a potentially deleterious effect of venom and should not be ruled out when diagnosing envenomation caused by coral snakes.
Collapse
|
4
|
Zhang D, Liu J, Liu J, Fatima M, Yang L, Qin Y, Li W, Sun Z, Yang B. Exercise antagonizes cadmium-caused liver and intestinal injury in mice via Nrf2 and TLR2/NF-κB signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118100. [PMID: 40164036 DOI: 10.1016/j.ecoenv.2025.118100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/09/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Cadmium (Cd) causes a health risk to humans and animals. Exercise can prevent and treat a variety of diseases, but the effect and mechanism of exercise on cadmium poisoning are still unclear. The present research aims to investigate the antagonistic impacts of exercise on enterotoxicity and hepatotoxicity caused by Cd. The results indicated that exercise, both before and during Cd exposure, can reduce Cd caused pathological damages in the liver and duodenum of mice, suppressing the expression levels of the IL-1β, IL-6 and TNF-α genes. In mice exposed to Cd, exercise significantly decreased blood ALT and AST levels, alleviating oxidative stress in the liver by reducing MDA synthesis and enhancing SOD and GSH-PX activities. Exercise inhibited nuclear damage and hepatocyte apoptosis caused by Cd by increasing Bcl-2 protein expression and preventing the release of pro-apoptotic proteins such as caspase-3, Cytc, Bax, caspase-8and cleaved-caspase-3. Exercise before or during Cd exposure can increase the protein and gene expression of HO-1, NQO-1 and Nrf2 in the liver of mice exposed to Cd. These findings suggested that the Nrf2 signaling pathway may have contributed to the exercise-induced partial attenuation of Cd-induced hepatic injury. Exercise also promoted the expression of the occludin gene in the duodenum of Cd-exposed mice, decreasing the structural damage and inflammatory cell infiltration induced by Cd. NF-κB and TLR2 protein expression levels were elevated in mice exposed to Cd. However, exercise mitigated the increase in NF-κB and TLR2 expression in the duodenum of Cd-intoxicated mice, suggesting that the protective effects of exercise on the intestinal tract in Cd-exposed mice may be mediated through modulation of the NF-κB/TLR2 signaling pathway. In conclusion, this study elucidated the protective effects of exercise against Cd-induced hepatotoxicity and intestinal injury in mice. The protective mechanisms of exercise on Cd-exposed liver and intestinal tract were partially realized through the regulation of Nrf2 and NF-κB/TLR2 signaling pathways.
Collapse
Affiliation(s)
- Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Jiayi Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Jingru Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Maryam Fatima
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Lu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yingze Qin
- Second hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Wei Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China.
| |
Collapse
|
5
|
Qiu T, Zhu X, Wu J, Hong W, Hu W, Fang T. Mechanisms of rifaximin inhibition of hepatic fibrosis in mice with metabolic dysfunction associated steatohepatitis through the TLR4/NFκB pathway. Sci Rep 2025; 15:9815. [PMID: 40118973 PMCID: PMC11928543 DOI: 10.1038/s41598-025-92282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) has become a serious public health problem, posing an increasingly dangerous threat to human health owing to its increasing prevalence and accompanying intra- and extrahepatic adverse outcomes. Rifaximin is considered to have therapeutic potential for MASH; however, its efficacy remains controversial. Our study aimed to observe the ameliorative effects of rifaximin and explore its possible mechanisms at the cellular level. 1. 42 male C57BL/6J mice were divided into 3 groups, the CON group and MCD group were fed with normal feed and MCD feed for 12 weeks respectively, and the MCD + RFX group was treated with rifaximin by gavage for 4 weeks on the basis of MCD feed. Hematoxylin-eosin staining, Sirius red staining and immunohistochemical staining were used to observe the histopathological changes of liver and intestine. Differences in liver transaminases, inflammatory factors, fibrosis indexes and intestinal tight junction proteins were compared among the 3 groups of mice. 2. A MASH cell model was constructed by inducing HepG2 cells with free fatty acids to observe the effects of rifaximin on MASH in vitro. In addition, the effects of rifaximin on TLR4/NF-κB signaling pathway were explored by applying TLR4 agonist LPS and TLR4 inhibitor TAK-242. Hepatic histopathology was significantly improved in MASH mice after rifaximin treatment, and their serum alanine aminotransferase and aspartate aminotransferase levels were (72.72 ± 5.68) U/L and (222.8 ± 11.22) U/L, respectively, which were significantly lower than those in the MCD group [(293.3 ± 10.69) U/L and (414.1 ± 36.29) U/L, P < 0.05], and the levels of inflammatory factors and fibrosis indicators were reduced. Rifaximin ameliorated intestinal barrier injury with increased expression of intestinal tight junction protein ZO-1 in the MCD + RFX group of mice, and the concentration of LPS-binding proteins (4.92 ± 0.55 vs. 15.82 ± 1.71, P < 0.05) was lower than that in the MCD group. In the NASH cell model, rifaximin similarly exerted inhibitory effects on its inflammatory factors and TLR4/NF-κB signaling pathway. Application of TLR4 inhibitors weakened the inhibitory effect of rifaximin on MASH. Our study supports rifaximin as a potential treatment for MASH, with potential mechanisms related to improving intestinal barrier integrity and downregulating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ting Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of General Practice, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xiaodong Zhu
- Department of Gastroenterology, Quanzhou First Hospital, Quanzhou, China
| | - Jingju Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wenyuan Hong
- Anxi Maternal and Child Health Hospital, Quanzhou, China
| | - Weitao Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
6
|
Zeng J, Sun Y, Fang Y, Wang X, Huang Q, Zhang P, Shao M, Wang P, Cheng J, Di M, Liu T, Qian Q. Unleashing the potential of a low CpG Passer transposon for superior CAR-T cell therapy. Front Immunol 2025; 16:1541653. [PMID: 39981247 PMCID: PMC11840574 DOI: 10.3389/fimmu.2025.1541653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Background To date, the non-viral vector Chimeric Antigen Receptor (CAR) T cell preparation platform, exemplified by transposons, has demonstrated significant potential in tumor immunotherapy and yielded positive results in multiple clinical trials. Nonetheless, non-methylated CpG sequences within plasmid DNA can elicit an inflammatory response via Toll-like receptor 9 (TLR9) during CAR-T cell preparation, adversely affecting transgene expression. Additionally, de novo DNA methylation programs promote T cell exhaustion, which poses a significant limitation for CAR-T cell therapy applications. Methods High-throughput liquid protein chip and CBA analyses were utilized to determine the expression levels of inflammatory factors. Flow cytometry and luciferase reporter assays were employed for mutation screening. BALB/c mice and M-NSG mice were used to evaluate the inflammatory response and efficacy of LCG CAR-T in vivo, with TIL grouping detected via immunohistochemistry. Results In this study, we modified the newly discovered Passer (JL) transposon to construct a low-CpG content transposon for CAR-T cell (LCG CAR-T cell) preparation. In vitro experiments demonstrated that LCG CAR-T cells prepared using this new transposon exhibited stronger cytotoxicity. In animal models, LCG CAR-T cells significantly inhibited tumor growth and increased the populations of CD4+CAR-T cells and tumor-infiltrating lymphocytes. Furthermore, LCG CAR-T cells modulated pro-inflammatory cytokine release, thereby reducing in vivo inflammatory responses and surpassing the effects observed with unmodified CAR-T cells. Conclusions Collectively, our results demonstrate the high safety and efficacy of non-viral, low CpG Passer transposon CAR-T cells, offering new avenues for improving CAR-T cell efficacy while minimizing in vivo inflammation.
Collapse
Affiliation(s)
- Jianyao Zeng
- School of Medicine, Shanghai University, Shanghai, China
| | - Yan Sun
- School of Medicine, Shanghai University, Shanghai, China
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Yuan Fang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Xiaodie Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Qian Huang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Pingjing Zhang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Meiqi Shao
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Pei Wang
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Jingbo Cheng
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Meng Di
- School of Medicine, Shanghai University, Shanghai, China
| | - Tao Liu
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
| | - Qijun Qian
- School of Medicine, Shanghai University, Shanghai, China
- Innovative Drugs Business Group, Shanghai Cell Therapy Group, Shanghai, China
- Shanghai Mengchao Cancer Hospital, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Kim JH, Lee Y, Ahn S, Koh D, Lim Y, Lee YH, Bae DH, Shin SY. Design, Synthesis, and Biological Evaluation of Aryl Pyrazolopyrimidines as Toll-Like Receptor 7 Agonists. Chem Biol Drug Des 2025; 105:e70056. [PMID: 39887539 DOI: 10.1111/cbdd.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Compounds containing pyrazolopyrimidine scaffolds were designed and synthesized as toll-like receptor 7 (TLR7) agonists. Thirty-three compounds, including 22 novel compounds, were prepared, and their structures were identified using nuclear magnetic resonance spectroscopy and mass spectrometry. TLR7 agonist activity was determined in HEK-Blue hTLR7 reporter cells. Among the compounds tested, 2-((4-methoxyphenyl)amino)-7-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine-3-carbonitrile showed the highest activity, and further in vitro biological experiments were performed using this compound. Treatment with the title compound activated the TLR7-mediated NF-κB pathway, triggering the IRAK4-IKKα/β-IκBα-p65 NF-κB signaling cascade, which led to an increase in the expression of NF-κB-regulated innate cytokines such as TNFα and IL-1β in RAW264.7 macrophages. These findings suggest that the title compound acts as a TLR7 agonist and enhances the innate immune response.
Collapse
Affiliation(s)
- Ji Hwan Kim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| | - Youngshim Lee
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| | - Seunghyun Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul, Korea
| | - Young Han Lee
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Dong-Ho Bae
- Department of Food Sciences and Biotechnology of Animal Resources, Konkuk University, Seoul, Korea
| | - Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul, Korea
- Cancer and Metabolism Institute, Konkuk University, Seoul, Korea
| |
Collapse
|
8
|
Han M, Qing Y, Fu J, He W, Huang J, Zhu X, Yang L, Yao L, Peng T, Wang Z, Li Z, Wu L, Yang Q, Hu B, Lv Y, Zhang H, Wan L, Meng X, Wang F, Qin S, Zhang Y, Wang Z. Mechanism of Jizhi syrup's prevention and treatment of acute bronchitis based on LPS-iNOS inflammatory mediators' signalling. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118708. [PMID: 39197804 DOI: 10.1016/j.jep.2024.118708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jizhi syrup (JZTJ) is composed of eight medicinal herbs, including Houttuynia cordata, Fagopyrum dibotrys, Ilex chinensis, Ephedra sinica, Aster tataricus, Peucedanum praeruptorum, Citrus aurantium and Glycyrrhiza uralensis. It is mainly used for coughing caused by exogenous wind heat. Symptoms include fever, aversion to cold, chest and diaphragm tightness, cough and sore throat; and acute bronchitis and acute exacerbation of chronic bronchitis with the above symptoms. PURPOSE This study aimed to preliminary analyse the chemical components in the liposoluble part of JZTJ, evaluate the anti-inflammatory effect of JZTJ by using six animal and cell models and predict the target and mechanism of acute bronchitis prevention and treatment with JZTJ. METHODS The chemical components in the liposoluble fraction of JZTJ (extracted by cyclohexane) were quantitatively analysed using gas chromatography-mass spectrometry (GC-MS). Classic non-specific inflammation models and acute bronchitis models were established to systematically evaluate the anti-inflammatory effect of JZTJ. The anti-inflammatory intensity and characteristics of three doses of JZTJ were comprehensively compared on the basis of principal component analysis method at the cellular and overall animal levels. By using lipopolysaccharides (LPSs) as modelling factors, a RAW264.7 macrophage inflammatory response model and a rat acute bronchitis model were created to study the effect of JZTJ on the in-vitro and - vivo LPS-iNOS-inflammatory mediators' inflammatory signalling pathway to reveal the mechanism of acute bronchitis prevention and treatment by JZTJ at the levels of genes, proteins, and inflammatory mediators. RESULTS Seventeen alkane and ester compounds were preliminarily qualitatively identified from the lipid soluble fraction of JZTJ: dibutyl phthalate, tetradecane, ridecane, n-hexadecanoic acid, pentadecane, n-decanoic acid, 2,6,10,14,18,22-tetracosahexaene, 2,6,10,15,19,23-hexamethyl-(all-E)-; phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl-; hexadecane. JZTJ has a significant inhibitory effect on acute non-specific inflammation, specifically inhibiting 'xylene-induced ear swelling in mice', 'acetic acid-induced increased permeability of abdominal capillaries in mice' and 'egg white-induced foot swelling in rats'. The above effects are most evident in high doses, followed by medium doses, whereas low doses have poorer or no effects. JZTJ can prevent and treat acute bronchitis induced by LPS in mice and rats, significantly improve the pathological changes in patchy interstitial and alveolar bleeding with excessive neutrophil infiltration and inhibit the release of inflammatory mediators by LPS-induced RAW264.7 macrophages. Its mechanism of action may be by downregulating the phosphorylation level of p-ERK1/2 protein, thereby inhibiting inducible nitric oxide synthase (iNOS) mRNA, tumour necrosis factor (TNF)-α mRNA and IL-1β. The expression levels of genes, such as mRNA and IL-6 mRNA, thereby reducing iNOS, TNF-α and IL-1β. The expression of proteins in the cytoplasm of lung and bronchial tissue cells reduced the release of downstream inflammatory mediators NO and IL-6. CONCLUSION Preliminary analysis of the chemical components in the lipid soluble fraction of JZTJ can lay the foundation for subsequent research on its effective components. Evaluating the anti-inflammatory effect of JZTJ is helpful for further research on its mechanism of action. The anti-inflammatory effects are exerted by regulating the inflammatory signalling pathway of LPS-iNOS inflammatory mediators, providing a scientific basis for their clinical application.
Collapse
Affiliation(s)
- Mengtian Han
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Qing
- Taiji Group Co., Ltd., Chongqing, 408099, China
| | - Jiaqing Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wencan He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Huang
- Taiji Group Co., Ltd., Chongqing, 408099, China
| | - Xiaoqi Zhu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lijuan Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
| | - Lincai Yao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Peng
- Taiji Group Co., Ltd., Chongqing, 408099, China
| | - Zhihua Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhangyu Li
- Taiji Group Co., Ltd., Chongqing, 408099, China
| | - Lian Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | | | - Boyang Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yongjun Lv
- Taiji Group Co., Ltd., Chongqing, 408099, China
| | - Hai Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Wan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China.
| | - Shaorong Qin
- Taiji Group Co., Ltd., Chongqing, 408099, China.
| | - Yi Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Shi S, Gong X. The Role of Microglia in Perioperative Pain and Pain Treatment: Recent Advances in Research. J Integr Neurosci 2025; 24:22675. [PMID: 40018770 DOI: 10.31083/jin22675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 03/01/2025] Open
Abstract
Microglia play a crucial role in monitoring the microenvironment of the central nervous system. Over the past decade, the role of microglia in the field of pain has gradually been unraveled. Microglia activation not only releases proinflammatory factors that enhance nociceptive signaling, but also participates in the resolving of pain. Opioids induce microglia activation, which enhances phagocytic activity and release of neurotoxic substances. Conversely, microglia activation reduces opioid efficacy and results in opioid tolerance. The application of microglia research to clinical pain management and drug development is a promising but challenging area. Microglia-targeted therapies may provide new avenues for pain management.
Collapse
Affiliation(s)
- Shengnan Shi
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441000 Xiangyang, Hubei, China
| | - Xingrui Gong
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441000 Xiangyang, Hubei, China
| |
Collapse
|
10
|
Cantiga-Silva C, de Oliveira PHC, Faria FD, Justo MP, Sivieri-Araújo G, Ervolino E, Pinheiro TN, Segura-Egea JJ, Cintra LTA. Increase Toll-like receptors 2 and 4 in apical periodontitis of rats with chronic liver disease. Odontology 2025; 113:296-304. [PMID: 38951301 DOI: 10.1007/s10266-024-00974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
The aim of this study was to evaluate the influence of liver fibrosis (LF) on the expression of Toll-like receptors (TLR) 2 and 4 in apical periodontitis (AP) in Wistar rats. Forty Wistar rats were allocated in the following groups (n = 10): C-control; AP-apical periodontitis; LF-liver fibrosis; AP + LF-rats with AP and LF. LF and AP were induced by established methodologies. Histological, bacteriological, and immunohistochemical analyses were performed according to pre-established scores. For comparisons between AP and AP + LF groups, the Mann-Whitney test was used (P < .05). The livers of the LF and AP + LF groups showed generalized portal inflammatory infiltrate and collagen fibers confirming the presence of LF. Histopathological analysis in the maxilla of the AP + LF group showed areas of necrosis comprising the entire dental pulp and periapical tissue surrounded by a more intense inflammatory infiltrate than observed in the AP group (P = 0.032). A significant number of specimens in the AP + LF group showed microorganisms beyond the apical foramen adhered to the extraradicular biofilm, demonstrating greater invasion compared to the AP group (P = .008). Immunohistochemical analysis showed a large number of cells immunoreactive for TLR2 and TLR4 in the AP + LF group, compared to the AP group (P < 0.05). Liver fibrosis favors the inflammation and contamination of microorganisms in apical periodontitis and triggers the expression of TLR2 and TLR4, modulating innate immunity response in periapical lesions.
Collapse
Affiliation(s)
- Cristiane Cantiga-Silva
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Pedro Henrique Chaves de Oliveira
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Flávio Duarte Faria
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Mariana Pagliusi Justo
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Gustavo Sivieri-Araújo
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Tiago Novaes Pinheiro
- Department of Oral Pathology and Oral Medicine, Dental School of Amazonas State University, Manaus, AM, Brazil
| | - Juan José Segura-Egea
- Endodontic Section, Department of Stomatology, School of Dentistry, University of Sevilla, Seville, Spain
| | - Luciano Tavares Angelo Cintra
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| |
Collapse
|
11
|
Di Zazzo A, Villani E, Barabino S, Giannaccare G. How Eyelid Changes May Impact on Tears. J Clin Med 2024; 13:6927. [PMID: 39598071 PMCID: PMC11594652 DOI: 10.3390/jcm13226927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
This article examines the impact of eyelid margin diseases on tear film composition and associated ocular surface disorders. It highlights the prevalence of blepharitis and meibomian gland dysfunction, discussing risk factors and diagnostic considerations. Various therapeutic approaches, including eyelid hygiene, antibiotics, and innovative treatments, are explored. Emphasizing the chronic nature of these conditions, the article underscores the need for patient compliance. Overall, it provides a concise overview of eyelid-related issues and potential management strategies.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, 00128 Rome, Italy
| | - Edoardo Villani
- Eye Clinic, San Giuseppe Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Multimedica, University of Milan, 20123 Milan, Italy;
| | - Stefano Barabino
- Ocular Surface & Dry Eye Center, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli Sacco, Università di Milano, 20122 Milan, Italy;
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| |
Collapse
|
12
|
Xu Y, Zhang E, Wei L, Dai Z, Chen S, Zhou S, Huang Y. NINJ1: A new player in multiple sclerosis pathogenesis and potential therapeutic target. Int Immunopharmacol 2024; 141:113021. [PMID: 39197295 DOI: 10.1016/j.intimp.2024.113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination. Current treatment options for MS focus on immunosuppression, but their efficacy can be limited. Recent studies suggest a potential role for nerve injury-induced protein 1 (NINJ1) in MS pathogenesis. NINJ1, a protein involved in cell death and inflammation, may contribute to the infiltration and activation of inflammatory cells in the CNS, potentially through enhanced blood-brain barrier crossing; enhancing plasma membrane rupture during cell death, leading to the release of inflammatory mediators and further tissue damage. This review explores the emerging evidence for NINJ1's involvement in MS. It discusses how NINJ1 might mediate the migration of immune cells across the blood-brain barrier, exacerbate neuroinflammation, and participate in plasma membrane rupture-related damage. Finally, the review examines potential therapeutic strategies targeting NINJ1 for improved MS management. Abbreviations: MS, Multiple sclerosis; CNS, Central nervous system; BBB, Blood-brain barrier; GSDMD, Gasdermin-D; EAE, Experimental autoimmune encephalitis; HMGB-1, High mobility group box-1 protein; LDH, Lactate dehydrogenase; PMR, Plasma membrane rupture; DMF, Dimethyl fumarate; DUSP1, Dual-specificity phosphatase 1; PAMPs, Pathogen-associated molecular patterns; DAMPs, Danger-associated molecular patterns; PRRs, Pattern recognition receptors; GM-CSF, Granulocyte-macrophage colony stimulating factor; IFN-γ, Interferon gamma; TNF, Tumor necrosis factor; APCs, Antigen-presenting cells; ECs, Endothelial cells; TGF-β, Transforming growth factor-β; PBMCs, Peripheral blood mononuclear cells; FACS, Fluorescence-activated cell sorting; MCP-1, Monocyte chemoattractant protein-1; NLRP3, Pyrin domain-containing 3; TCR, T cell receptor; ROS, Reactive oxygen species; AP-1, Activator protein-1; ANG1, Angiopoietin 1; BMDMs, Bone marrow-derived macrophages; Arp2/3, actin-related protein 2/3; EMT, epithelial-mesenchymal transition; FAK, focal adhesion kinase; LIMK1, LIM domain kinase 1; PAK1, p21-activated kinases 1; Rac1, Ras-related C3 botulinum toxin substrate 1; β-cat, β-caten; MyD88, myeloid differentiation primary response gene 88; TIRAP, Toll/interleukin-1 receptor domain-containing adapter protein; TLR4, Toll-like receptor 4; IRAKs, interleukin-1 receptor-associated kinases; TRAF6, TNF receptor associated factor 6; TAB2/3, TAK1 binding protein 2/3; TAK1, transforming growth factor-β-activated kinase 1; JNK, c-Jun N-terminal kinase; ERK1/2, Extracellular Signal Regulated Kinase 1/2; IKK, inhibitor of kappa B kinase; IκB, inhibitor of NF-κB; NF-κB, nuclear factor kappa-B; AP-1, activator protein-1; ASC, Apoptosis-associated Speck-like protein containing a CARD; NEK7, NIMA-related kinase 7; NLRP3, Pyrin domain-containing 3; CREB, cAMP response element-binding protein.
Collapse
Affiliation(s)
- Yinbin Xu
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Enhao Zhang
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Liangzhe Wei
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Zifeng Dai
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Siqi Chen
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.
| | - Yi Huang
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China.
| |
Collapse
|
13
|
Ki W, Renchinkhand G, Bae H, Nam MS. Antioxidant, Antihypertensive, and Anti-Inflammatory Activities of Long-Term Ripened Cheddar Cheese Water-Soluble Extract. Food Sci Anim Resour 2024; 44:1373-1388. [PMID: 39554823 PMCID: PMC11564144 DOI: 10.5851/kosfa.2024.e83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 11/19/2024] Open
Abstract
During cheese ripening, the proteins in the cheese are broken down, and various functional peptides are produced. This research aimed to investigate the changes in peptides and their physiological activities during the long-term maturation of Cheddar cheese. Young (YC), medium (MC), and 3-year-aged extra-sharp (EC) Cheddar cheeses were extracted with water, and bioactive peptides were identified using ultra performance liquid chromatography-high resolution mass spectrometer. Peptides reported to have antioxidant, angiotensin-converting enzyme (ACE)-inhibitory, and anti-inflammatory effects were identified and evaluated in the extracts. MC and EC showed stronger antioxidant activity than YC. The 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid inhibition rates of MC and EC were similar, but EC exhibited a higher 2,2-diphenyl-1-picrylhydrazyl inhibition rate. The antihypertensive effect was found to increase owing to the appearance of peptides with ACE-inhibitory activity in MC and EC. Quantitative real time polymerase chain reaction and immunoblot were run to evaluate the anti-inflammatory effects. YC did not show anti-inflammatory activity, but MC and EC were shown to effectively inhibit inflammatory mRNA expression. The immunoblot results showed that EC did not inhibit IκBα phosphorylation, but had an inhibitory effect at the mRNA expression level. Overall, the peptides contained in aged Cheddar cheese were shown to have excellent antioxidant, anti-inflammatory, and antihypertensive activities, and long-term ripening appeared to have a positive effect on these activities. This is presumed to have affected not only the already identified peptides but also unknown peptides; therefore, it is expected that the discovery of bioactive peptides will be possible through additional research.
Collapse
Affiliation(s)
- Woojin Ki
- Department of Dairy Science, College of
Agriculture & Life Sciences, Chungnam National
University, Daejeon 34134, Korea
| | - Gereltuya Renchinkhand
- Department of Biology, School of Arts and
Sciences, National University of Mongolia, Ulaanbaatar 14201,
Mongolia
| | - Hyoungcheol Bae
- Department of Dairy Science, College of
Agriculture & Life Sciences, Chungnam National
University, Daejeon 34134, Korea
| | - Myoung Soo Nam
- Department of Dairy Science, College of
Agriculture & Life Sciences, Chungnam National
University, Daejeon 34134, Korea
| |
Collapse
|
14
|
Ki W, Renchinkhand G, Bae H, Nam MS. Evaluation of Physiological Activity of Long-Term Ripened Gouda Water Extract. Foods 2024; 13:3446. [PMID: 39517230 PMCID: PMC11545096 DOI: 10.3390/foods13213446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigated peptide changes and their bioactive functions through the long-term ripening of Gouda. Young Gouda (YG), medium Gouda (MG), and extra-sharp Gouda (EG) water extracts were prepared and functional peptides were recognized using liquid chromatography-high-resolution mass spectrometry. Two peptides with ACE-inhibitory effects (IQP and LQP) were identified in YG, while in MG and EG were identified eight (EL, IVP, VP, LPP, VIP, IPP, VPP, and VVPP) and six (EL, YL, VP, IR, YPEL, and DKIHPF) functional peptides, respectively. MG (70.26%) and EG (46.81%) showed stronger antioxidant activity than YG (25.99%) in ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) inhibition, though the DPPH (2,2-diphenyl-1-picrylhydrazyl) inhibition rate decreased with ripening. The antihypertensive effect increased in MG (79.76%) and EG (94.50%) due to ACE-inhibitory peptides. Measurements of inflammatory mRNA expression levels and immunoblotting were conducted to assess the anti-inflammatory properties. MG and EG suppressed the transcription of IL-1β and IL-6 mRNA. Immunoblotting indicated that EG suppressed IκBα phosphorylation to 57%. The enhancement of bioactive function in the water-soluble part of long-term ripened Gouda cheese may have affected identified peptides as well as unknown peptides. Further studies are expected to aid in discovering these novel bioactive peptides.
Collapse
Affiliation(s)
- Woojin Ki
- Department of Dairy Science, College of Agriculture & Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (W.K.); (H.B.)
| | - Gereltuya Renchinkhand
- Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia;
| | - Hyoungchurl Bae
- Department of Dairy Science, College of Agriculture & Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (W.K.); (H.B.)
| | - Myoung Soo Nam
- Department of Dairy Science, College of Agriculture & Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (W.K.); (H.B.)
| |
Collapse
|
15
|
Snyder JD, Yoon TW, Lee S, Halder P, Fitzpatrick EA, Yi AK. Protein kinase D1 in myeloid lineage cells contributes to the accumulation of CXCR3 +CCR6 + nonconventional Th1 cells in the lungs and potentiates hypersensitivity pneumonitis caused by S. rectivirgula. Front Immunol 2024; 15:1403155. [PMID: 39464896 PMCID: PMC11502317 DOI: 10.3389/fimmu.2024.1403155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Hypersensitivity pneumonitis (HP) is an extrinsic allergic alveolitis characterized by inflammation of the interstitium, bronchioles, and alveoli of the lung that leads to granuloma formation. We previously found that activation of protein kinase D1 (PKD1) in the lungs following exposures to Saccharopolyspora rectivirgula contributes to the acute pulmonary inflammation, IL-17A expression in the lungs, and development of HP. In the present study, we investigated whether PKD1 in myeloid-lineage cells affects the pathogenic course of the S. rectivirgula-induced HP. Methods Mice were exposed intranasally to S. rectivirgula once or 3 times/week for 3 weeks. The protein and mRNA expression levels of cytokines/chemokines were detected by enzyme-linked immunosorbent assay and quantitative real-time PCR, respectively. Flow cytometry was used to detect the different types of immune cells and the levels of surface proteins. Lung tissue sections were stained with hematoxylin and eosin, digital images were captured, and immune cells influx into the interstitial lung tissue were detected. Results Compared to control PKD1-sufficient mice, mice with PKD1 deficiency in myeloid-lineage cells (PKD1mKO) showed significantly suppressed expression of TNFα, IFNγ, IL-6, CCL2, CCL3, CCL4, CXCL1, CXCL2, and CXCL10 and neutrophilic alveolitis after single intranasal exposure to S. rectivirgula. Substantially reduced levels of alveolitis and granuloma formation were observed in the PKD1mKO mice repeatedly exposed to S. rectivirgula for 3 weeks. In addition, expression levels of the Th1/Th17 polarizing cytokines and chemokines such as IFNγ, IL-17A, CXCL9, CXCL10, CXCL11, and CCL20 in lungs were significantly reduced in the PKD1mKO mice repeatedly exposed to S. rectivirgula. Moreover, accumulation of CXCR3+CCR6+ nonconventional Th1 in the lungs were significantly reduced in PKD1mKO mice repeatedly exposed to S. rectivirgula. Discussion Our results demonstrate that PKD1 in myeloid-lineage cells plays an essential role in the development and progress of HP caused by repeated exposure to S. rectivirgula by contributing Th1/Th17 polarizing proinflammatory responses, alveolitis, and accumulation of pathogenic nonconventional Th1 cells in the lungs.
Collapse
Affiliation(s)
- John D. Snyder
- Integrated Biomedical Science Graduate Program, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tae Won Yoon
- Integrated Biomedical Science Graduate Program, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sangmin Lee
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Priyanka Halder
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Elizabeth Ann Fitzpatrick
- Integrated Biomedical Science Graduate Program, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ae-Kyung Yi
- Integrated Biomedical Science Graduate Program, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
16
|
Razim A, Zabłocka A, Schmid A, Thaler M, Černý V, Weinmayer T, Whitehead B, Martens A, Skalska M, Morandi M, Schmidt K, Wysmołek ME, Végvári A, Srutkova D, Schwarzer M, Neuninger L, Nejsum P, Hrdý J, Palmfeldt J, Brucale M, Valle F, Górska S, Wisgrill L, Inic‐Kanada A, Wiedermann U, Schabussova I. Bacterial extracellular vesicles as intranasal postbiotics: Detailed characterization and interaction with airway cells. J Extracell Vesicles 2024; 13:e70004. [PMID: 39429019 PMCID: PMC11491762 DOI: 10.1002/jev2.70004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/23/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Escherichia coli A0 34/86 (EcO83) is a probiotic strain used in newborns to prevent nosocomial infections and diarrhoea. This bacterium stimulates both pro- and anti-inflammatory cytokine production and its intranasal administration reduces allergic airway inflammation in mice. Despite its benefits, there are concerns about the use of live probiotic bacteria due to potential systemic infections and gene transfer. Extracellular vesicles (EVs) derived from EcO83 (EcO83-EVs) might offer a safer alternative to live bacteria. This study characterizes EcO83-EVs and investigates their interaction with host cells, highlighting their potential as postbiotic therapeutics. EcO83-EVs were isolated, purified, and characterised following the Minimal Information of Studies of Extracellular Vesicles (MISEV) guidelines. Ex vivo studies conducted in human nasal epithelial cells showed that EcO83-EVs increased the expression of proteins linked to oxidative stress and inflammation, indicating an effective interaction between EVs and the host cells. Further in vivo studies in mice demonstrated that EcO83-EVs interact with nasal-associated lymphoid tissue, are internalised by airway macrophages, and stimulate neutrophil recruitment in the lung. Mechanistically, EcO83-EVs activate the NF-κΒ signalling pathway, resulting in the nitric oxide production. EcO83-EVs demonstrate significant potential as a postbiotic alternative to live bacteria, offering a safer option for therapeutic applications. Further research is required to explore their clinical use, particularly in mucosal vaccination and targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Agnieszka Razim
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Agnieszka Zabłocka
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| | - Anna Schmid
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Michael Thaler
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Viktor Černý
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Tamara Weinmayer
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Bradley Whitehead
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Anke Martens
- Division of Neonatology, Paediatric Intensive Care and Neuropediatric, Department of Paediatrics and Adolescent Medicine, Comprehensive Centre for PaediatricsMedical University of ViennaViennaAustria
| | - Magdalena Skalska
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of PhysicsAstronomy and Applied Computer Science, Jagiellonian UniversityKrakowPoland
| | - Mattia Morandi
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencePragueCzech Republic
| | - Katy Schmidt
- Research Support Facilities, Imaging Unit CIUS, Faculty of Life SciencesUniversity of ViennaViennaAustria
| | - Magdalena E. Wysmołek
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Akos Végvári
- Proteomics Biomedicum, Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Dagmar Srutkova
- Laboratory of GnotobiologyInstitute of Microbiology of the Czech Academy of SciencesNovy HradekCzech Republic
| | - Martin Schwarzer
- Laboratory of GnotobiologyInstitute of Microbiology of the Czech Academy of SciencesNovy HradekCzech Republic
| | - Lukas Neuninger
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Peter Nejsum
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Jiri Hrdý
- Institute of Immunology and Microbiology, First Faculty of MedicineCharles University and General University HospitalPragueCzech Republic
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Marco Brucale
- Institute of Nanostructured MaterialsCNR‐ISMNBolognaItaly
| | | | - Sabina Górska
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| | - Lukas Wisgrill
- Division of Neonatology, Paediatric Intensive Care and Neuropediatric, Department of Paediatrics and Adolescent Medicine, Comprehensive Centre for PaediatricsMedical University of ViennaViennaAustria
| | - Aleksandra Inic‐Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| |
Collapse
|
17
|
Zuo X, Cheng Q, Wang Z, Liu J, Lu W, Wu G, Zhu S, Liu X, Lv T, Song Y. A novel oral TLR7 agonist orchestrates immune response and synergizes with PD-L1 blockade via type I IFN pathway in lung cancer. Int Immunopharmacol 2024; 137:112478. [PMID: 38901243 DOI: 10.1016/j.intimp.2024.112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Despite the groundbreaking impact of immune checkpoint blockade (ICB), response rates in non-small cell lung cancer remain modest, particularly in immune-excluded or immune-desert microenvironments. Toll-like receptor 7 (TLR7) emerges as a latent target bridging innate and adaptive immunity, offering a promising avenue for combination therapies to augment ICB efficacy. Here, we explored the anti-tumor activity of the novel oral TLR7 agonist TQ-A3334 and its potential to enhance anti-programmed death ligand 1 (PD-L1) therapy through a combination strategy in a syngeneic murine lung cancer model. Oral administration of TQ-A3334 significantly alleviated tumor burden in C57BL/6J mice, modulated by type I interferon (IFN), and exhibited low toxicity. This therapy elicited activation of both innate and adaptive immune cells in tumor tissue, particularly increasing the abundance of CD8+ TILs through type I IFN pathway and subsequent CXCL10 expression. In vitro examinations validated that IFN-α-stimulated tumor cells exhibited increased secretion of CXCL10, conducive to the promoted trafficking of CD8+ T cells. Furthermore, combining TQ-A3334 with anti-PD-L1 treatment exceeded tumor control, with a further increase in CD8+ TIL frequency compared to monotherapy. These findings suggest that TQ-A3334 can mobilize innate immunity and promote T cell recruitment into the tumor microenvironment; a combination of TQ-A3334 and anti-PD-L1 antibodies can intensify the sensitivity of tumors to anti-PD-L1 therapy, which demonstrates significant potential for treating poorly immune-infiltrated lung cancer.
Collapse
Affiliation(s)
- Xueying Zuo
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Qinpei Cheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Zimu Wang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing 210008, Jiangsu, China
| | - Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing 210008, Jiangsu, China
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Guannan Wu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Xin Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, China.
| |
Collapse
|
18
|
Yan Q, Song C, Liu H, Li Y, Ma J, Zhao Y, Song Z, Chen Y, Zhu R, Zhang Z. Adipose-derived stem cell exosomes loaded with icariin attenuated M1 polarization of macrophages via inhibiting the TLR4/Myd88/NF-κB signaling pathway. Int Immunopharmacol 2024; 137:112448. [PMID: 38870883 DOI: 10.1016/j.intimp.2024.112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Abnormal macrophage polarization is one of the common pathological bases of various inflammatory diseases. The current research focus involves targeting macrophages to remodel their phenotype as a treatment approach for inflammatory diseases. Notably, exosomes can be delivered to specific types of cells or tissues or inflammatory area to realize targeted drug delivery. Although icariin (ICA) exhibits regulatory potential in macrophage polarization, the practical application of ICA is impeded by its water insolubility, poor permeability, and low bioavailability. Exploiting the inherent advantages of exosomes as natural drug carriers, we introduce a novel drug delivery system-adipose-derived stem cells-exosomes (ADSCs-EXO)-ICA. High-performance liquid chromatography analysis confirmed a loading rate of 92.7 ± 0.01 % for ADSCs-EXO-ICA, indicating the successful incorporation of ICA. As demonstrated by cell counting kit-8 assays, ADSCs-EXO exerted a significantly higher promotion effect on macrophage proliferation. The subsequent experimental results revealed the superior anti-inflammatory effect of ADSCs-EXO-ICA compared to individual treatments with EXO or ICA in the lipopolysaccharide + interferon-gamma-induced M1 inflammation model. Additionally, results from enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and western blot analyses revealed that ADSCs-EXO-ICA effectively inhibited macrophage polarization toward the M1-type and concurrently promoted polarization toward the M2-type. The underlying mechanism involved the modulation of macrophage polarization through inhibition of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear transcription factor-kappa B signaling pathway, thereby mitigating inflammation. These findings underscore the potential therapeutic value of ADSCs-EXO-ICA as a novel intervention for inflammatory diseases.
Collapse
Affiliation(s)
- Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Changheng Song
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Haixia Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yubo Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayi Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yukun Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjing Chen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
19
|
Chayanupatkul M, Machchimapiro P, Chuaypen N, Wanpiyarat N, Tumwasorn S, Siriviriyakul P, Werawatganon D. Single and Mixed Strains of Probiotics Reduced Hepatic Fat Accumulation and Inflammation and Altered Gut Microbiome in a Nonalcoholic Steatohepatitis Rat Model. Biomedicines 2024; 12:1847. [PMID: 39200311 PMCID: PMC11605219 DOI: 10.3390/biomedicines12081847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
As gut dysbiosis has been implicated in the pathogenesis of nonalcoholic steatohepatitis (NASH), probiotic supplementation might be a potential treatment for this condition. The aim of this study was to evaluate the effects of single- and mixed-strain probiotics on the severity of NASH induced by a high-fat, high-fructose (HFHF) diet and their mechanisms of action. Male Sprague-Dawley rats were divided into four groups (n = 7 per group): control group, NASH group, NASH + single-strain group, and NASH + mixed-strain group. In the single-strain and mixed-strain groups, rats received Lactobacillus plantarum B7 and Lactobacillus rhamnosus L34 + Lactobacillus paracasei B13 by oral gavage once daily, respectively. The duration of the study was 6 weeks. Liver tissue was used for histopathology, hepatic fat content was assessed by Oil Red O staining and hepatic free fatty acid (FFA), and hepatic TLR4 and CD14 expression were assessed by immunohistochemistry. Fresh feces was collected for gut microbiota analysis. Liver histology revealed a higher degree of fat accumulation, hepatocyte ballooning, and lobular inflammation in the NASH group, which improved in probiotics-treated groups. The amounts of hepatic fat droplets and hepatic FFA levels were more pronounced in the NASH group than in the control and treatment groups. Serum TNF- α levels were significantly higher in the NASH group than in control and probiotic groups. The expression of CD14 and TLR4 increased in the NASH group as compared with the control and probiotics-treated groups. Alpha diversity was reduced in the NASH group, but increased in both treatment groups. The relative abundance of Lactobacillus significantly decreased in the NASH group, but increased in both treatment groups. The relative abundance of Akkermansia significantly increased in the NASH group, but decreased in both treatment groups. In conclusion, both single-strain and mixed-strain probiotics could improve NASH histology by suppressing inflammatory responses in the liver, with this improvement potentially being associated with changes in the gut microbiota.
Collapse
Affiliation(s)
- Maneerat Chayanupatkul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panrawee Machchimapiro
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Metabolic Diseases in Gut and Urinary System Research Unit (MeDGURU), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natcha Wanpiyarat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasong Siriviriyakul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Duangporn Werawatganon
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
20
|
Giles BH, Kukolj N, Mann KK, Robaire B. Phenotypic and Functional Outcomes in Macrophages Exposed to an Environmentally Relevant Mixture of Organophosphate Esters in Vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:87002. [PMID: 39115886 PMCID: PMC11309092 DOI: 10.1289/ehp13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Organophosphate esters (OPEs) are flame retardants and plasticizers used in consumer products. OPEs are found ubiquitously throughout the environment with high concentrations in indoor house dust. Exposure to individual OPEs is associated with immune dysfunction, particularly in macrophages. However, OPEs exist as complex mixtures and the effects of environmentally relevant mixtures on the immune system have not been investigated. OBJECTIVES The objectives of this study were to evaluate the toxicity of an environmentally relevant mixture of OPEs that models Canadian house dust on macrophages using phenotypic and functional assessments in vitro. METHODS High-content live-cell fluorescent imaging for phenotypic biomarkers of toxicity in THP-1 macrophages treated with the OPE mixture was undertaken. We used confocal microscopy and cholesterol analysis to validate and expand on the observed OPE-induced lipid phenotype. Then, we used flow cytometry and live-cell imaging to conduct functional tests and uncover mechanisms of OPE-induced phagocytic suppression. Finally, we validated our THP-1 findings in human primary peripheral blood mononuclear cells (hPBMC) derived macrophages. RESULTS Exposure to non-cytotoxic dilutions of the OPE mixture resulted in higher oxidative stress and disrupted lysosome and lipid homeostasis in THP-1 and primary macrophages. We further observed that phagocytosis of apoptotic cells in THP-1 and primary macrophages was lower in OPE-exposed cells vs. controls. In THP-1 macrophages, phagocytosis of both Gram-positive and Gram-negative bacteria was also lower in OPE-exposed cells vs. controls. Additionally, the OPE mixture altered the expression of phagocytic receptors linked to the recognition of phosphatidylserine and pathogen-associated molecular patterns. DISCUSSION The results of this in vitro study suggested that exposure to an environmentally relevant mixture of OPEs resulted in higher lipid retention in macrophages and poor efferocytic response. These effects could translate to enhanced foam cell generation resulting in higher cardiovascular mortality. Furthermore, bacterial phagocytosis was lower in OPE-exposed macrophages in an in vitro setting, which may indicate the potential for reduced bacterial clearance in models of infections. Taken together, our data provide strong evidence that mixtures of OPEs can influence the biology of macrophages and offer new mechanistic insights into the impact of OPE mixtures on the immune system. https://doi.org/10.1289/EHP13869.
Collapse
Affiliation(s)
- Braeden H. Giles
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Nikola Kukolj
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Koren K. Mann
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Tong Y, Chen M, Huang X, Xu Y, Zhang L, Yu Z, Liu SY, Dai Z. Aptasensor based on gold nanostructure-decorated 2D Cu metal-organic framework nanosheets for highly sensitive and specific electrochemical lipopolysaccharide detection. Mikrochim Acta 2024; 191:500. [PMID: 39088046 DOI: 10.1007/s00604-024-06587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Detecting lipopolysaccharide (LPS) using electrochemical methods is significant because of their exceptional sensitivity, simplicity, and user-friendliness. Two-dimensional metal-organic framework (2D-MOF) that merges the benefits of MOF and 2D nanostructure has exhibited remarkable performance in constructing electrochemical sensors, notably surpassing traditional 3D-MOFs. In this study, Cu[tetrakis(4-carboxylphenyl)porphyrin] (Cu-TCPP) and Cu(tetrahydroxyquinone) (Cu-THQ) 2D nanosheets were synthesized and applied on a glassy carbon electrode (GCE). The 2D-MOF nanosheets, which serve as supporting layers, exhibit improved electron transfer and electronic conductivity characteristics. Subsequently, the modified electrode was subjected to electrodeposition with Au nanostructures, resulting in the formation of Au/Cu-TCPP/GCE and Au/Cu-THQ/GCE. Notably, the Au/Cu-THQ/GCE demonstrated superior electrochemical activity because of the 2D morphology, redox ligand, dense Cu sites, and improved deposition of flower-like Au nanostructure based on Cu-THQ. The electron transfer specific surface area was increased by the improved deposition of Au nanostructures, which facilitates enriched binding of LPS aptamer and significantly improved the detection performance of Apt/Au/Cu-THQ/GCE electrochemical aptasensor. The limit of detection for LPS reached 0.15 fg/mL with a linear range of 1 fg/mL - 100 pg/mL. The proposed aptasensor demonstrated the ability to detect LPS in serum samples with satisfactory accuracy, indicating significant potential for clinical diagnosis.
Collapse
Affiliation(s)
- Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yuzhi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lang Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhenning Yu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
22
|
Liu X, Tang Y, Luo Y, Gao Y, He L. Role and mechanism of specialized pro-resolving mediators in obesity-associated insulin resistance. Lipids Health Dis 2024; 23:234. [PMID: 39080624 PMCID: PMC11290132 DOI: 10.1186/s12944-024-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
With the changing times, obesity has become a characteristic epidemic in the context of the current era. Insulin resistance (IR) is most commonly caused by obesity, and IR is a common basis of the pathogenesis of many diseases such as cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes, which seriously threaten human life, as well as health. A major pathogenetic mechanism of obesity-associated IR has been found to be chronic low-grade inflammation in adipose tissue. Specialized pro-resolving mediators (SPMs) are novel lipid mediators that both function as "stop signals" for inflammatory reaction and promote inflammation to subside. In this article, we summarize the pathogenesis of obesity-associated IR and its treatments and outline the classification and biosynthesis of SPMs and their mechanisms and roles in the treatment of obesity-associated IR in order to explore the potential of SPMs for treating metabolic diseases linked with obesity-associated IR.
Collapse
Affiliation(s)
- Xinru Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Tang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Luo
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- College of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lisha He
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
23
|
Ota Y, Inagaki R, Nagai Y, Hirose Y, Murata M, Yamamoto S. TLR7 agonist, DSP-0509, with radiation combination therapy enhances anti-tumor activity and modulates T cell dependent immune activation. BMC Immunol 2024; 25:48. [PMID: 39054418 PMCID: PMC11270965 DOI: 10.1186/s12865-024-00643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND TLR7 is a key player in the antiviral immunity. TLR7 signaling activates antigen-presenting cells including DCs and macrophages. This activation results in the adaptive immunity including T cells and B cells. Therefore, TLR7 is an important molecule of the immune system. Based on these observations, TLR7 agonists considered to become a therapy weaponize the immune system against cancer. Radiation therapy (RT) is one of the standard cancer therapies and is reported to modulate the tumor immune response. In this study, we aimed to investigate the anti-tumor activity in combination of TLR7 agonist, DSP-0509, with RT and underlying mechanism. RESULT We showed that anti-tumor activity is enhanced by combining RT with the TLR7 agonist DSP-0509 in the CT26, LM8, and 4T1 inoculated mice models. We found that once- weekly (q1w) dosing of DSP-0509 rather than biweekly (q2w) dosing is needed to achieve superior anti-tumor activities in CT26 model. Spleen cells from the mice in RT/DSP-0509 combination treatment group showed increased tumor lytic activity, inversely correlated with tumor volume, as measured by the chromium-release cytotoxicity assay. We also found the level of cytotoxic T lymphocytes (CTLs) increased in the spleens of completely cured mice. When the mice completely cured by combination therapy were re-challenged with CT26 cells, all mice rejected CT26 cells but accepted Renca cells. This rejection was not observed with CD8 depletion. Furthermore, levels of splenic effector memory CD8 T cells were increased in the combination therapy group. To explore the factors responsible for complete cure by combination therapy, we analyzed peripheral blood leukocytes (PBLs) mRNA from completely cured mice. We found that Havcr2low, Cd274low, Cd80high, and Il6low were a predictive signature for the complete response to combination therapy. An analysis of tumor-derived mRNA showed that combination of RT and DSP-0509 strongly increased the expression of anti-tumor effector molecules including Gzmb and Il12. CONCLUSION These data suggest that TLR7 agonist, DSP-0509, can be a promising concomitant when used in combination with RT by upregulating CTLs activity and gene expression of effector molecules. This combination can be an expecting new radio-immunotherapeutic strategy in clinical trials.
Collapse
Affiliation(s)
- Yosuke Ota
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan.
| | | | - Yasuhiro Nagai
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | - Yuko Hirose
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | - Masashi Murata
- Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan
| | | |
Collapse
|
24
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
25
|
Wang G, Ma X, Huang W, Wang S, Lou A, Wang J, Tu Y, Cui W, Zhou W, Zhang W, Li Y, Geng S, Meng Y, Li X. Macrophage biomimetic nanoparticle-targeted functional extracellular vesicle micro-RNAs revealed via multiomics analysis alleviate sepsis-induced acute lung injury. J Nanobiotechnology 2024; 22:362. [PMID: 38910259 PMCID: PMC11194988 DOI: 10.1186/s12951-024-02597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Patients who suffer from sepsis typically experience acute lung injury (ALI). Extracellular vesicles (EVs) contain miRNAs, which are potentially involved in ALI. However, strategies to screen more effective EV-miRNAs as therapeutic targets are yet to be elucidated. In this study, functional EV-miRNAs were identified based on multiomics analysis of single-cell RNA sequencing of targeted organs and serum EV (sEV) miRNA profiles in patients with sepsis. The proportions of neutrophils and macrophages were increased significantly in the lungs of mice receiving sEVs from patients with sepsis compared with healthy controls. Macrophages released more EVs than neutrophils. MiR-125a-5p delivery by sEVs to lung macrophages inhibited Tnfaip3, while miR-221-3p delivery to lung neutrophils inhibited Fos. Macrophage membrane nanoparticles (MM NPs) loaded with an miR-125a-5p inhibitor or miR-221-3p mimic attenuated the response to lipopolysaccharide (LPS)-induced ALI. Transcriptome profiling revealed that EVs derived from LPS-stimulated bone marrow-derived macrophages (BMDMs) induced oxidative stress in neutrophils. Blocking toll-like receptor, CXCR2, or TNFα signaling in neutrophils attenuated the oxidative stress induced by LPS-stimulated BMDM-EVs. This study presents a novel method to screen functional EV-miRNAs and highlights the pivotal role of macrophage-derived EVs in ALI. MM NPs, as delivery systems of key sEV-miRNA mimics or inhibitors, alleviated cellular responses observed in sepsis-induced ALI. This strategy can be used to reduce septic organ damage, particularly lung damage, by targeting EVs.
Collapse
Affiliation(s)
- Guozhen Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xiaoxin Ma
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Weichang Huang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shuanghu Wang
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Anni Lou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Wanfu Cui
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangmei Zhou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenyong Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Li
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command, Southern Medical University, Guangzhou 510515, China
| | - Shiyu Geng
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
26
|
Fang B, Zhao L, Huo B, Chen F, Yuan P, Lai S, Wu A, Zhuo Y. Maternal consumption of fish oil protected breast-fed piglets against Escherichia coli lipopolysaccharide-induced damage through reshaping of intestinal fatty acids profile. Front Vet Sci 2024; 11:1417078. [PMID: 38952807 PMCID: PMC11215148 DOI: 10.3389/fvets.2024.1417078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
It has been well documented that n-3 polyunsaturated fatty acids (n-3 PUFA) can alleviate inflammation caused by Escherichia coli (E. coli) lipopolysaccharides (LPS), the etiologic agents that causing yellow or white dysentery in young pigs. However, it remains unclear whether the increase in n-3 PUFA availability could enhance the ability of nursery pigs to resist invasion by E. coli. LPS. Twenty-four 21-day-old female piglets, each two of them from the same sow fed the beef tallow (BT) or fish oil (FO) diets, were allocated into four treatment groups: BT-CON, piglets from the BT-fed sows and intraperitoneally injected with saline (9 g/L); BT-LPS, piglets from the BT-fed sows and injected with LPS (100 μg/kg body weight); FO-CON, piglets from the FO-fed sows and injected with saline; FO-LPS, piglets from the FO-fed sows and injected with LPS. Following 2 h of LPS challenge, the magnitudes of increase in body temperature approached to a marked (p < 0.01) difference between the BT-CON and BT-LPS piglets, whereas the dramatic (p < 0.01) difference between the FO-CON and FO-LPS piglets was only observed at 4 h post LPS challenge. The body temperature averaged across the time points evaluated was about 0.2°C lower (p < 0.05) in the FO group than in the BT group. The FO group had lower (p < 0.05) mean corpuscular hemoglobin concentration, lower increase in serum interleukin (IL)-1β (p < 0.10) and IL-8 (p < 0.05) levels, higher (p < 0.01) serum albumin concentration, and higher (p = 0.10) ratios of jejunum villus height to crypt depth than the BT group. The FO group had much higher (p < 0.0001) ileal content of C20:5n3, C24:0, and C22:6n3, which were 2-4 times the content of the BT group. LPS challenge resulted in decreased (p < 0.05) intestinal C20:1 and C20:5n3 content, and the decrease (p < 0.05) in intestinal C20:3n6 and C24:1 content was observed in the BT-LPS piglets rather than in the FO-LPS piglets. Taken together, this study indicated that maternal consumption of fish oil protected breast-fed piglets against E. coli LPS-induced damage through reshaping of intestinal fatty acids profile, which sheds new light on the development of nutritional strategies to enhance the ability of young pigs to resist E. coli invasion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Nigam M, Devi K, Coutinho HDM, Mishra AP. Exploration of gut microbiome and inflammation: A review on key signalling pathways. Cell Signal 2024; 118:111140. [PMID: 38492625 DOI: 10.1016/j.cellsig.2024.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The gut microbiome, a crucial component of the human system, is a diverse collection of microbes that belong to the gut of human beings as well as other animals. These microbial communities continue to coexist harmoniously with their host organisms and perform various functions that affect the host's general health. Each person's gut microbiota has a unique makeup. The gut microbiota is well acknowledged to have a part in the local as well as systemic inflammation that underlies a number of inflammatory disorders (e.g., atherosclerosis, diabetes mellitus, obesity, and inflammatory bowel disease).The gut microbiota's metabolic products, such as short-chain fatty acids (butyrate, propionate, and acetate) inhibit inflammation by preventing immune system cells like macrophages and neutrophils from producing pro-inflammatory factors, which are triggered by the structural elements of bacteria (like lipopolysaccharide). The review's primary goal is to provide comprehensive and compiled data regarding the contribution of gut microbiota to inflammation and the associated signalling pathways.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Kanchan Devi
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | | | - Abhay Prakash Mishra
- Department of Pharmacology, University of Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
28
|
Valente JV, Palmeira-de-Oliveira R, Guiomar L, Vaz CV, Rolo J, Gaspar C, Oliveira AS, Caramelo D, Breitenfeld L, Gonçalves JC, Delgado F, Martinez-de-Oliveira J, Palmeira-de-Oliveira A. Humulus lupulus aqueous extract and hydrolate as a potential ingredient for cosmetics: chemical characterization and in vitro antimicrobial, cytotoxicity, antioxidant and anti-inflammatory assessment. Fitoterapia 2024; 175:105861. [PMID: 38354824 DOI: 10.1016/j.fitote.2024.105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/21/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Humulus lupulus extracts have in their composition different molecules, such as polyphenols, α-acids, β-acids, and hydrocarbons, which contribute to the plant's medicinal properties. These molecules are associated with antimicrobial, antioxidant and anti-inflammatory activities. OBJECTIVE This work focuses on the evaluation of H. lupulus biological activities, with the aim of evaluating its potential for inclusion in cosmetic formulations. METHODS Two distinct aqueous extracts and two hydrolates obtained via hydrodistillation were evaluated. These include the flower parts (FE, FH) and the mix of aboveground parts (ME, MH). The chemical profiles for both aqueous extracts and hydrolates were identified by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). Antimicrobial, antioxidant, cytotoxicity, and anti-inflammatory activity were tested in vitro using standard methods. RESULTS Rutin was the major compound found in FE (40.041 μg mg-1 of extract) and ME (2.909 μg mg-1 of extract), while humulenol II was the most abundant compound in hydrolates (FH: 20.83%; MH: 46.80%). Furthermore, FE was able to inhibit the growth of Staphylococcus aureus and Staphylococcus epidermis with MIC values of 50% and 25% (v/v), respectively. FH showed the same effect in Staphylococcus aureus (50% v/v). FH evidenced poor antioxidant potential in DPPH scavenging test and demonstrated significant antioxidant and anti-inflammatory effects by reducing (***p < 0.001) intracellular reactive oxygen species (ROS), NO (nitric oxide) levels (***p < 0.001) and cyclooxygenase-2 (COX-2) protein expression (***p < 0.001) in lipopolysaccharide (LPS)-stimulated macrophages. Nevertheless, it is important to note that FH exhibited cytotoxicity at high concentrations in 3T3 fibroblasts and RAW 264.7 macrophages. CONCLUSION The studied H. lupulus aqueous extracts and hydrolates revealed that FH stands out as the most promising bioactive source for cosmetic formulations. However, future research addressing antimicrobial activity is necessary to confirm its potential incorporation into dermatological and cosmetic formulations.
Collapse
Affiliation(s)
- João Vasco Valente
- CICS-UBI: Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Rita Palmeira-de-Oliveira
- CICS-UBI: Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; Faculdade de Ciências da Saúde, University of Beira Interior, Covilhã, Portugal; Labfit-HPRD: Health Products Research and Development Lda, Covilhã, Portugal
| | - Liliana Guiomar
- CICS-UBI: Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; Faculdade de Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI: Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; Faculdade de Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Joana Rolo
- CICS-UBI: Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Carlos Gaspar
- CICS-UBI: Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; Faculdade de Ciências da Saúde, University of Beira Interior, Covilhã, Portugal; Labfit-HPRD: Health Products Research and Development Lda, Covilhã, Portugal
| | - Ana Sofia Oliveira
- CICS-UBI: Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; Faculdade de Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Débora Caramelo
- Escola Superior Agrária do Instituto Politécnico de Castelo Branco, Portugal; CERNAS: Research Center for Natural Resources, Environment and Society, Agriculture Science Research Group, Castelo Branco, Portugal
| | - Luiza Breitenfeld
- CICS-UBI: Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; Faculdade de Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - José Carlos Gonçalves
- Escola Superior Agrária do Instituto Politécnico de Castelo Branco, Portugal; CERNAS: Research Center for Natural Resources, Environment and Society, Agriculture Science Research Group, Castelo Branco, Portugal; Centro de Biotecnologia de Plantas da Beira Interior, Castelo Branco, Portugal
| | - Fernanda Delgado
- Escola Superior Agrária do Instituto Politécnico de Castelo Branco, Portugal; CERNAS: Research Center for Natural Resources, Environment and Society, Agriculture Science Research Group, Castelo Branco, Portugal; Centro de Biotecnologia de Plantas da Beira Interior, Castelo Branco, Portugal
| | - José Martinez-de-Oliveira
- CICS-UBI: Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana Palmeira-de-Oliveira
- CICS-UBI: Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; Faculdade de Ciências da Saúde, University of Beira Interior, Covilhã, Portugal; Labfit-HPRD: Health Products Research and Development Lda, Covilhã, Portugal.
| |
Collapse
|
29
|
Nofi CP, Prince JM, Wang P, Aziz M. Chromatin as alarmins in necrotizing enterocolitis. Front Immunol 2024; 15:1403018. [PMID: 38881893 PMCID: PMC11176418 DOI: 10.3389/fimmu.2024.1403018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights.
Collapse
Affiliation(s)
- Colleen P. Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Jose M. Prince
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
30
|
Hanson MA. When the microbiome shapes the host: immune evolution implications for infectious disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230061. [PMID: 38497259 PMCID: PMC10945400 DOI: 10.1098/rstb.2023.0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 03/19/2024] Open
Abstract
The microbiome includes both 'mutualist' and 'pathogen' microbes, regulated by the same innate immune architecture. A major question has therefore been: how do hosts prevent pathogenic infections while maintaining beneficial microbes? One idea suggests hosts can selectively activate innate immunity upon pathogenic infection, but not mutualist colonization. Another idea posits that hosts can selectively attack pathogens, but not mutualists. Here I review evolutionary principles of microbe recognition and immune activation, and reflect on newly observed immune effector-microbe specificity perhaps supporting the latter idea. Recent work in Drosophila has found a surprising importance for single antimicrobial peptides in combatting specific ecologically relevant microbes. The developing picture suggests these effectors have evolved for this purpose. Other defence responses like reactive oxygen species bursts can also be uniquely effective against specific microbes. Signals in other model systems including nematodes, Hydra, oysters, and mammals, suggest that effector-microbe specificity may be a fundamental principle of host-pathogen interactions. I propose this effector-microbe specificity stems from weaknesses of the microbes themselves: if microbes have intrinsic weaknesses, hosts can evolve effectors that exploit those weaknesses. I define this host-microbe relationship as 'the Achilles principle of immune evolution'. Incorporating this view helps interpret why some host-microbe interactions develop in a coevolutionary framework (e.g. Red Queen dynamics), or as a one-sided evolutionary response. This clarification should be valuable to better understand the principles behind host susceptibilities to infectious diseases. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Mark A Hanson
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9FE, UK
| |
Collapse
|
31
|
Esswein J, Vickers M, Kleinman M, Whitworth J, Corkins M, Riley Pace S. Cause or effect? Undetectable vitamin D in a patient with Crohn's disease. JPGN REPORTS 2024; 5:194-196. [PMID: 38756124 PMCID: PMC11093929 DOI: 10.1002/jpr3.12045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/12/2023] [Accepted: 01/14/2024] [Indexed: 05/18/2024]
Abstract
Crohn's disease has been described as the "great mimicker" with a wide array of presentations. We describe a case of a teenager who presented with tetany and undetectable vitamin D as initial presentation of Crohn's disease. There are reports of adults in tetany due to electrolyte derangements in chronic gastrointestinal diseases secondary to malabsorption. However, the role of deficient vitamin D as it contributes to immune system dysfunction has only begun to be explored. Vitamin D is essential for calcium absorption, immune regulation, and gut epithelial barrier. This case report discusses vitamin D physiology and its potential mediation in the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Julia Esswein
- Division of Internal Medicine and PediatricsUniversity of Tennessee Health Sciences CenterMemphisTennesseeUSA
| | - Maggie Vickers
- Division of GastroenterologyLeBonheur Children's HospitalMemphisTennesseeUSA
| | - Michael Kleinman
- Division of Internal Medicine and PediatricsUniversity of Tennessee Health Sciences CenterMemphisTennesseeUSA
| | - John Whitworth
- Division of GastroenterologyLeBonheur Children's HospitalMemphisTennesseeUSA
| | - Mark Corkins
- Division of GastroenterologyLeBonheur Children's HospitalMemphisTennesseeUSA
| | - S. Riley Pace
- Division of Internal Medicine and PediatricsUniversity of Tennessee Health Sciences CenterMemphisTennesseeUSA
| |
Collapse
|
32
|
Su L, Guo B, Jiang L, Lin Y, Xu Q, Zheng D, Xiu Y. Intestinal epithelial cells of Japanese flounder (Paralichthys olivaceus) as an in vitro model for studying intestine immune function based on transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109473. [PMID: 38458502 DOI: 10.1016/j.fsi.2024.109473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Japanese flounder (Paralichthys olivaceus) is an economically crucial marine species, but diseases like hemorrhagic septicemia caused by Edwardsiella tarda have resulted in significant economic losses. E. tarda infects various hosts, and its pathogenicity in fish is not fully understood. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and are representative of typical PAMP molecules that cause activation of the immune system. The PoIEC cell line is a newly established intestinal epithelial cell line from P. olivaceus. In order to investigate whether it can be used as an in vitro model for studying the pathogenesis of E. tarda and LPS stimulation, we conducted RNA-seq experiments for the PoIECs model of E. tarda infection and LPS stimulation. In this study, transcriptome sequencing was carried out in the PoIEC cell line after treatment with LPS and E. tarda. A total of 62.52G of high-quality data from transcriptome sequencing results were obtained in nine libraries, of which an average of 87.96% data could be aligned to the P. olivaceus genome. Data analysis showed that 283 and 414 differentially expressed genes (DEGs) in the LPS versus Control (LPS-vs-Con) and E. tarda versus Control groups (Et-vs-Con), respectively, of which 60 DEGs were shared in two comparation groups. The GO terms were predominantly enriched in the extracellular space, inflammatory response, and cytokine activity in the LPS-vs-Con group, whereas GO terms were predominantly enriched in nucleus and positive regulation of transcription by RNA polymerase II in the Et-vs-Con group. KEGG analysis revealed that three immune-related pathways were co-enriched in both comparison groups, including the Toll-like receptor signaling pathway, C-type lectin receptor signaling pathway, and Cytokine-cytokine receptor interaction. Five genes were randomly screened to confirm the validity and accuracy of the transcriptome data. These results suggest that PoIEC cell line can be an ideal in vitro model for studies of marine fish gut immunity and pathogenesis of Edwardsiellosis.
Collapse
Affiliation(s)
- Lin Su
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baoshan Guo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lirong Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiping Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qingyue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Zheng
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
33
|
Martínez-López S, Ángel-Gomis E, Gómez-Hurtado I, Fernández-Iglesias A, Morante J, Gracia-Sancho J, Boix P, Cubero FJ, Zapater P, Caparrós E, Francés R. Cirrhosis-downregulated LSECtin can be retrieved by cytokines, shifts the TLR-induced LSECs secretome and correlates with the hepatic Th response. Liver Int 2024; 44:996-1010. [PMID: 38293766 DOI: 10.1111/liv.15836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND AND AIMS We evaluated tolerogenic C-type lectin LSECtin loss in cirrhosis and its potential regulation by cytokines. METHODS Liver tissue from patients with cirrhosis and healthy controls, immortalised and generated LSECtin-CRISPR immortalised LSECs, and murine primary LSECs from the CCl4 model were handled. RESULTS LSECtin expression was reduced in liver tissue from cirrhotic patients, and it decreased from compensated to decompensated disease. Increased phosphorylation of MAPK, Akt and NFkB was observed upon LSECtin stimulation in LSEC murine cell line, showing a pattern of inflammatory and chemotactic cytokines either restrained (IL-10, CCL4) or unrestrained (TNF-α, IL-1β, IL-6, CCL2). CD44 attenuated whereas LAG-3 increased all substrates phosphorylation in combination with TLR4 and TLR2 ligands except for NFkB. TNF-α, IL-1 β, IL-6 and CCL2 were restrained by LSECtin crosslinking on TLRs studied. Conversely, IL-10 and CCL4 were upregulated, suggesting a LSECtin-TLRs synergistic effect. Also, LSECtin was significantly induced after IL-13 stimulation or combined with anti-inflammatory cytokines in cirrhotic and immortalised LSECs. Th17 and regulatory T cells were progressively increased in the hepatic tissue from compensated to decompensated patients. A significant inverse correlation was present between gene expression levels of CLEC4G/LSECtin and RORγT and FOXP3 in liver tissues. CONCLUSION LSECtin restrains TLR proinflammatory secretome induced on LSECs by interfering immune response control, survival and MAPKs signalling pathways. The cytokine-dependent induction of LSECtin and the association between LSECtin loss and Th17 cell subset expansion in the liver, provides a solid background for exploring LSECtin retrieval as a mechanism to reprogram LSEC homeostatic function hampered during cirrhosis.
Collapse
Affiliation(s)
- Sebastián Martínez-López
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Enrique Ángel-Gomis
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Isabel Gómez-Hurtado
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Anabel Fernández-Iglesias
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Liver Vascular Biology Research Group, IDIBAPS, Barcelona, Spain
| | - Javier Morante
- Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante, Spain
| | - Jordi Gracia-Sancho
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Liver Vascular Biology Research Group, IDIBAPS, Barcelona, Spain
| | - Paula Boix
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Francisco J Cubero
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Pedro Zapater
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto IDIBE, Universidad Miguel Hernández, Elche, Spain
| | - Esther Caparrós
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Rubén Francés
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto IDIBE, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
34
|
Zhang Y, Liu W, Wei G, Liu Q, Shao G, Gu X, Cui X, Zhou Z, Wang Y, Zhao S, Muhammad F, Li S, Li T, Du Y, Wei H. Bioinspired Nanozymes as Nanodecoys for Urinary Tract Infection Treatment. ACS NANO 2024; 18:9019-9030. [PMID: 38483200 DOI: 10.1021/acsnano.3c12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Urinary tract infections (UTIs), common bacterial infections in communities and medical facilities, are mainly mediated by FimH. The glycan sites of the uromodulin protein play a crucial role in protecting against UTIs by interacting with FimH. A bioinspired approach using glycan-FimH interactions may effectively reduce bacteria through an antiadhesive mechanism, thereby curbing bacterial resistance. However, typical antiadhesive therapy alone fails to address the excessive reactive oxygen species and inflammatory response during UTIs. To bridge this gap, antioxidant nanozymes with antiadhesive ability were developed as nanodecoys to counter bacteria and inflammation. Specifically, ultrasmall dextran-coated ceria (DEC) was engineered to address UTIs, with dextran blocking FimH adhesion and ceria exhibiting anti-inflammatory properties. DECs, metabolizable by the kidneys, reduced bacterial content in the urinary tract, mitigating inflammation and tissue damage. In murine models, DECs successfully treated acute UTIs, repeated infections, and catheter-related UTIs. This dual approach not only highlights the potential of nanozymes for UTIs but also suggests applicability to other FimH-induced infections in the lungs and bowels, marking a significant advancement in nanozyme-based clinical approaches.
Collapse
Affiliation(s)
- Yihong Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wanling Liu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Gen Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Xiang Gu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaomiao Cui
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zijun Zhou
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuting Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sheng Zhao
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Faheem Muhammad
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sirong Li
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tong Li
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
- NMPA Key Laboratory for Biomedical Optics, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
35
|
Seo HS, Han JH, Lim J, Bae GH, Byun MJ, Wang CPJ, Han J, Park J, Park HH, Shin M, Park TE, Kim TH, Kim SN, Park W, Park CG. Enhanced Postsurgical Cancer Treatment Using Methacrylated Glycol Chitosan Hydrogel for Sustained DNA/Doxorubicin Delivery and Immunotherapy. Biomater Res 2024; 28:0008. [PMID: 38532906 PMCID: PMC10964224 DOI: 10.34133/bmr.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 03/28/2024] Open
Abstract
Background: Cancer recurrence and metastasis are major contributors to treatment failure following tumor resection surgery. We developed a novel implantable drug delivery system utilizing glycol chitosan to address these issues. Glycol chitosan is a natural adjuvant, inducing dendritic cell activation to promote T helper 1 cell immune responses, macrophage activation, and cytokine production. Effective antigen production by dendritic cells initiates T-cell-mediated immune responses, aiding tumor growth control. Methods: In this study, we fabricated multifunctional methacrylated glycol chitosan (MGC) hydrogels with extended release of DNA/doxorubicin (DOX) complex for cancer immunotherapy. We constructed the resection model of breast cancer to verify the anticancer effects of MGC hydrogel with DNA/DOX complex. Results: This study demonstrated the potential of MGC hydrogel with extended release of DNA/DOX complex for local and efficient cancer therapy. The MGC hydrogel was implanted directly into the surgical site after tumor resection, activating tumor-related immune cells both locally and over a prolonged period of time through immune-reactive molecules. Conclusions: The MGC hydrogel effectively suppressed tumor recurrence and metastasis while enhancing immunotherapeutic efficacy and minimizing side effects. This biomaterial-based drug delivery system, combined with cancer immunotherapy, can substantial improve treatment outcomes and patient prognosis.
Collapse
Affiliation(s)
- Hee Seung Seo
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jun-Hyeok Han
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Ga-Hyun Bae
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of MetaBioHealth,
SKKU Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Min Ji Byun
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jieun Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School Medicine,
University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| | - Hee Ho Park
- Department of Bioengineering,
Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering,
Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering,
Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Se-Na Kim
- Research and Development Center,
MediArk Inc., 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk 28644, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of MetaBioHealth,
SKKU Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Biomaterials Research Center,
Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Biomedical Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| |
Collapse
|
36
|
Du Y, Wang J, Zhang J, Li N, Li G, Liu X, Lin Y, Wang D, Kang K, Bian L, Zhao X. Intracerebral hemorrhage-induced brain injury in mice: The role of peroxiredoxin 2-Toll-like receptor 4 inflammatory axis. CNS Neurosci Ther 2024; 30:e14681. [PMID: 38516845 PMCID: PMC10958402 DOI: 10.1111/cns.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Peroxiredoxin 2 (Prx2), an intracellular protein that regulates redox reactions, released from red blood cells is involved in inflammatory brain injury after intracerebral hemorrhage (ICH). Toll-like receptor 4 (TLR4) may be crucial in this process. This study investigated the role of the Prx2-TLR4 inflammatory axis in brain injury following experimental ICH in mice. METHODS First, C57BL/6 mice received an intracaudate injection of autologous arterial blood or saline and their brains were harvested on day 1 to measure Prx2 levels. Second, mice received an intracaudate injection of either recombinant mouse Prx2 or saline. Third, the mice were co-injected with autologous arterial blood and conoidin A, a Prx2 inhibitor, or vehicle. Fourth, the mice received a Prx2 injection and were treated with TAK-242, a TLR4 antagonist, or saline (intraperitoneally). Behavioral tests, magnetic resonance imaging, western blot, immunohistochemistry/immunofluorescence staining, and RNA sequencing (RNA-seq) were performed. RESULTS Brain Prx2 levels were elevated after autologous arterial blood injection. Intracaudate injection of Prx2 caused brain swelling, microglial activation, neutrophil infiltration, neuronal death, and neurological deficits. Co-injection of conoidin A attenuated autologous arterial blood-induced brain injury. TLR4 was expressed on the surface of microglia/macrophages and neutrophils and participated in Prx2-induced inflammation. TAK-242 treatment attenuated Prx2-induced inflammation and neurological deficits. CONCLUSIONS Prx2 can cause brain injury following ICH through the TLR4 pathway, revealing the Prx2-TLR4 inflammatory axis as a potential therapeutic target.
Collapse
Affiliation(s)
- Yang Du
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Jinjin Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Jia Zhang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Ning Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Guangshuo Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xinmin Liu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Yijun Lin
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Dandan Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Kaijiang Kang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Liheng Bian
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xingquan Zhao
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
37
|
Bahitham W, Alghamdi S, Omer I, Alsudais A, Hakeem I, Alghamdi A, Abualnaja R, Sanai FM, Rosado AS, Sergi CM. Double Trouble: How Microbiome Dysbiosis and Mitochondrial Dysfunction Drive Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Biomedicines 2024; 12:550. [PMID: 38540163 PMCID: PMC10967987 DOI: 10.3390/biomedicines12030550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are closely related liver conditions that have become more prevalent globally. This review examines the intricate interplay between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH. The combination of these two factors creates a synergistic situation referred to as "double trouble", which promotes the accumulation of lipids in the liver and the subsequent progression from simple steatosis (NAFLD) to inflammation (NASH). Microbiome dysbiosis, characterized by changes in the composition of gut microbes and increased intestinal permeability, contributes to the movement of bacterial products into the liver. It triggers metabolic disturbances and has anti-inflammatory effects. Understanding the complex relationship between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH is crucial for advancing innovative therapeutic approaches that target these underlying mechanisms.
Collapse
Affiliation(s)
- Wesam Bahitham
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Siraj Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Ibrahim Omer
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Ali Alsudais
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Ilana Hakeem
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Arwa Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Reema Abualnaja
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia; (W.B.); (S.A.); (I.O.); (A.A.); (I.H.); (A.A.); (R.A.)
| | - Faisal M. Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah 21423, Saudi Arabia;
| | - Alexandre S. Rosado
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Consolato M. Sergi
- Anatomic Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
38
|
King N, Dhumal D, Lew SQ, Kuo SH, Galanakou C, Oh MW, Chong SY, Zhang N, Lee LTO, Hayouka Z, Peng L, Lau GW. Amphiphilic Dendrimer as Potent Antibacterial against Drug-Resistant Bacteria in Mouse Models of Human Infectious Diseases. ACS Infect Dis 2024; 10:453-466. [PMID: 38241613 DOI: 10.1021/acsinfecdis.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Modern medicine continues to struggle against antibiotic-resistant bacterial pathogens. Among the pathogens of critical concerns are the multidrug-resistant (MDR) Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae. These pathogens are major causes of nosocomial infections among immunocompromised individuals, involving major organs such as lung, skin, spleen, kidney, liver, and bloodstream. Therefore, novel approaches are direly needed. Recently, we developed an amphiphilic dendrimer DDC18-8A exhibiting high antibacterial and antibiofilm efficacy in vitro. DDC18-8A is composed of a long hydrophobic alkyl chain and a small hydrophilic poly(amidoamine) dendron bearing amine terminals, exerting its antibacterial activity by attaching and inserting itself into bacterial membranes to trigger cell lysis. Here, we examined the pharmacokinetics and in vivo toxicity as well as the antibacterial efficacy of DDC18-8A in mouse models of human infectious diseases. Remarkably, DDC18-8A significantly reduced the bacterial burden in mouse models of acute pneumonia and bacteremia by P. aeruginosa, methicillin-resistant S. aureus (MRSA), and carbapenem-resistant K. pneumoniae and neutropenic soft tissue infection by P. aeruginosa and MRSA. Most importantly, DDC18-8A outperformed pathogen-specific antibiotics against all three pathogens by achieving a similar bacterial clearance at 10-fold lower therapeutic concentrations. In addition, it showed superior stability and biodistribution in vivo, with excellent safety profiles yet without any observable abnormalities in histopathological analysis of major organs, blood serum biochemistry, and hematology. Collectively, we provide strong evidence that DDC18-8A is a promising alternative to the currently prescribed antibiotics in addressing challenges associated with nosocomial infections by MDR pathogens.
Collapse
Affiliation(s)
- Noah King
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Dinesh Dhumal
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Aix Marseille University, Parc Scientifique et Technologique de Luminy 913, Marseille 13288, France
| | - Shi Qian Lew
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Christina Galanakou
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Aix Marseille University, Parc Scientifique et Technologique de Luminy 913, Marseille 13288, France
| | - Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Sook Yin Chong
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Nian Zhang
- Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Leo Tsz On Lee
- Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ling Peng
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labelisée Ligue Contre le Cancer, Aix Marseille University, Parc Scientifique et Technologique de Luminy 913, Marseille 13288, France
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| |
Collapse
|
39
|
Yeh M, Salazar-Cavazos E, Krishnan A, Altan-Bonnet G, DeVoe DL. Probing T-cell activation in nanoliter tumor co-cultures using membrane displacement trap arrays. Integr Biol (Camb) 2024; 16:zyae014. [PMID: 39074471 PMCID: PMC11286267 DOI: 10.1093/intbio/zyae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Immune responses against cancer are inherently stochastic, with small numbers of individual T cells within a larger ensemble of lymphocytes initiating the molecular cascades that lead to tumor cytotoxicity. A potential source of this intra-tumor variability is the differential ability of immune cells to respond to tumor cells. Classical microwell co-cultures of T cells and tumor cells are inadequate for reliably culturing and analyzing low cell numbers needed to probe this variability, and have failed in recapitulating the heterogeneous small domains observed in tumors. Here we leverage a membrane displacement trap array technology that overcomes limitations of conventional microwell plates for immunodynamic studies. The microfluidic platform supports on-demand formation of dense nanowell cultures under continuous perfusion reflecting the tumor microenvironment, with real-time monitoring of T cell proliferation and activation within each nanowell. The system enables selective ejection of cells for profiling by fluorescence activated cell sorting, allowing observed on-chip variability in immune response to be correlated with off-chip quantification of T cell activation. The technology offers new potential for probing the molecular origins of T cell heterogeneity and identifying specific cell phenotypes responsible for initiating and propagating immune cascades within tumors. Insight Box Variability in T cell activation plays a critical role in the immune response against cancer. New tools are needed to unravel the mechanisms that drive successful anti-tumor immune response, and to support the development of novel immunotherapies utilizing rare T cell phenotypes that promote effective immune surveillance. To this end, we present a microfluidic cell culture platform capable of probing differential T cell activation in an array of nanoliter-scale wells coupled with off-chip cell analysis, enabling a high resolution view of variable immune response within tumor / T cell co-cultures containing cell ensembles orders of magnitude smaller than conventional well plate studies.
Collapse
Affiliation(s)
- Michael Yeh
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, United States
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | | | - Anagha Krishnan
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Grégoire Altan-Bonnet
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
40
|
Jasemi SV, Khazaei H, Morovati MR, Joshi T, Aneva IY, Farzaei MH, Echeverría J. Phytochemicals as treatment for allergic asthma: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155149. [PMID: 37890444 DOI: 10.1016/j.phymed.2023.155149] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Allergic asthma is an inflammatory disease caused by the immune system's reaction to allergens, inflammation and narrowing of the airways, and the production of more than normal mucus. One of the main reasons is an increased production of inflammatory cytokines in the lungs that leads to the appearance of symptoms of asthma, including inflammation and shortness of breath. On the other hand, it has been proven that phytochemicals with their antioxidant and anti-inflammatory properties can be useful in improving allergic asthma. PURPOSE Common chemical treatments for allergic asthma include corticosteroids, which have many side effects and temporarily relieve symptoms but are not a cure. Therefore, taking the help of natural compounds to improve the quality of life of asthmatic patients can be a valuable issue that has been evaluated in the present review. STUDY DESIGN AND METHODS In this study, three databases (Scopus, PubMed, and Cochrane) with the keywords: allergic asthma, phytochemical, plant, and herb were evaluated. The primary result was 5307 articles. Non-English, repetitive, and review articles were deleted from the study. RESULTS AND DISCUSSION Finally, after carefully reading the articles, 102 were included in the study (2006-2022). The results of this review state that phytochemicals suppress the inflammatory pathways via inhibition of inflammatory cytokines production/secretion, genes, and proteins involved in the inflammation process, reducing oxidative stress indicators and symptoms of allergic asthma, such as cough and mucus production in the lungs. CONCLUSION With their antioxidant effects, this study concluded that phytochemicals suppress cytokines and other inflammatory indicators and thus can be considered an adjunctive treatment for improving allergic asthma.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), Uttarakhand, India
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
41
|
Hossen MS, Hasan MN, Haque M, Al Arian T, Halder SK, Uddin MJ, Abdullah-Al-Mamun M, Shakil MS. Immunoinformatics-aided rational design of multiepitope-based peptide vaccine (MEBV) targeting human parainfluenza virus 3 (HPIV-3) stable proteins. J Genet Eng Biotechnol 2023; 21:162. [PMID: 38055114 DOI: 10.1186/s43141-023-00623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Human parainfluenza viruses (HPIVs) are common RNA viruses responsible for respiratory tract infections. Human parainfluenza virus 3 (HPIV-3) is particularly pathogenic, causing severe illnesses with no effective vaccine or therapy available. RESULTS The current study employed a systematic immunoinformatic/reverse vaccinology approach to design a multiple epitope-based peptide vaccine against HPIV-3 by analyzing the virus proteome. On the basis of a number of therapeutic features, all three stable and antigenic proteins with greater immunological relevance, namely matrix protein, hemagglutinin neuraminidase, and RNA-directed RNA polymerase L, were chosen for predicting and screening suitable T-cell and B-cell epitopes. All of our desired epitopes exhibited no homology with human proteins, greater population coverage (99.26%), and high conservancy among reported HPIV-3 isolates worldwide. All of the T- and B-cell epitopes are then joined by putative ligands, yielding a 478-amino acid-long final construct. Upon computational refinement, validation, and thorough screening, several programs rated our peptide vaccine as biophysically stable, antigenic, allergenic, and non-toxic in humans. The vaccine protein demonstrated sufficiently stable interaction as well as binding affinity with innate immune receptors TLR3, TLR4, and TLR8. Furthermore, codon optimization and virtual cloning of the vaccine sequence in a pET32a ( +) vector showed that it can be readily expressed in the bacterial system. CONCLUSION The in silico designed HPIV-3 vaccine demonstrated potential in evoking an effective immune response. This study paves the way for further preclinical and clinical evaluation of the vaccine, offering hope for a future solution to combat HPIV-3 infections.
Collapse
Affiliation(s)
- Md Sakib Hossen
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka, 1213, Bangladesh.
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216, Bangladesh.
| | - Md Nazmul Hasan
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216, Bangladesh.
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
| | - Munima Haque
- Biotechnology Program, Department of Mathematics and Natural Sciences (MNS), Brac University, kha-208, 1 Bir Uttam Rafiqul Islam Ave, Dhaka, 1212, Bangladesh
| | - Tawsif Al Arian
- Department of Pharmacy, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Jasim Uddin
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - M Abdullah-Al-Mamun
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Salman Shakil
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216, Bangladesh
- Microbiology Program, Department of Mathematics and Natural Sciences (MNS), Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| |
Collapse
|
42
|
Wang G, Li Q, Guo Y, Chen L, Yao Y, Zhong Y, Sun J, Yan X, Wang H, Wang X, Ding L, Ju H. Interception Proximity Labeling for Interrogating Cell Efflux Microenvironment. Anal Chem 2023; 95:17798-17807. [PMID: 37976298 DOI: 10.1021/acs.analchem.3c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The difficulty in elucidating the microenvironment of extracellular H2O2 efflux has led to the lack of a critical extracellular link in studies of the mechanisms of redox signaling pathways. Herein, we mounted horseradish peroxidase (HRP) to glycans expressed globally on the living cell surface and constructed an interception proximity labeling (IPL) platform for H2O2 efflux. The release of endogenous H2O2 is used as a "physiological switch" for HRP to enable proximity labeling. Using this platform, we visualize the oxidative stress state of tumor cells under the condition of nutrient withdrawal, as well as that of macrophages exposed to nonparticulate stimuli. Furthermore, in combination with a proteomics technique, we identify candidate proteins at the invasion interface between fungal mimics (zymosan) and macrophages by interception labeling of locally accumulated H2O2 and confirm that Toll-like receptor 2 binds zymosan in a glycan-dependent manner. The IPL platform has great potential to elucidate the mechanisms underlying biological processes involving redox pathways.
Collapse
Affiliation(s)
- Guyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuna Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liusheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunyan Yao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yihong Zhong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiahui Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaomin Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
43
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
44
|
Ivanova E, Hue-Beauvais C, Chaulot-Talmon A, Castille J, Laubier J, De Casanove C, Aubert-Frambourg A, Germon P, Jammes H, Le Provost F. DNA methylation and gene expression changes in mouse mammary tissue during successive lactations: part I - the impact of inflammation. Epigenetics 2023; 18:2215633. [PMID: 37302099 PMCID: PMC10732689 DOI: 10.1080/15592294.2023.2215633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Mastitis is among the main reasons women cease breastfeeding, which leads to them supplementing breast milk with artificial formula. In farm animals, mastitis results in significant economic losses and the premature culling of some animals. Nevertheless, researchers do not know enough about the effect of inflammation on the mammary gland. This article discusses the changes to DNA methylation in mouse mammary tissue caused by lipopolysaccharide-induced inflammation (4 h post-injection of lipopolysaccharide). We analysed the expression of some genes related to mammary gland function, epigenetic regulation, and the immune response. The analysis focused on three comparisons: inflammation during the first lactation, inflammation during second lactation with no history of inflammation, and inflammation during second lactation with previous inflammation. We identified differentially methylated cytosines (DMCs), differentially methylated regions (DMRs), and some differentially expressed genes (DEGs) for each comparison. The three comparisons shared some DEGs; however, few DMCs and only one DMR were shared. These observations suggest that inflammation is one of several factors affecting epigenetic regulation during successive lactations. Furthermore, the comparison between animals in second lactation with and without inflammation, with no inflammation history during first lactation showed a different pattern compared to the other conditions in this experiment. This indicates that inflammation history plays an important role in determining epigenetic changes. The data presented in this study suggest that lactation rank and previous inflammation history are equally important when explaining mammary tissue gene expression and DNA methylation changes.Abbreviations: RRBS, reduced representation bisulfite sequencing; RT-qPCR, real-time quantitative polymerase chain reaction; MEC, mammary epithelial cells; TSS, transcription start site; TTS, transcription termination site; UTR, untranslated region; SINE, short interspersed nuclear element; LINE, long interspersed nuclear element; CGI, CpG island; DEG, differentially expressed gene; DMC, differentially methylated cytosine; DMR, differentially methylated region; GO term, gene ontology term; MF, molecular function; BP, biological process.
Collapse
Affiliation(s)
- E. Ivanova
- Université Paris-Saclay, INRAE, AgroParistech, GABI, France
| | | | - A. Chaulot-Talmon
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-En-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - J. Castille
- Université Paris-Saclay, INRAE, AgroParistech, GABI, France
| | - J Laubier
- Université Paris-Saclay, INRAE, AgroParistech, GABI, France
| | - C De Casanove
- Université Paris-Saclay, INRAE, AgroParistech, GABI, France
| | - A. Aubert-Frambourg
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-En-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - P. Germon
- INRAE, Université de Tours, ISP, Nouzilly, France
| | - H. Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-En-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - F. Le Provost
- Université Paris-Saclay, INRAE, AgroParistech, GABI, France
| |
Collapse
|
45
|
Geng P, Jin Q, Zhou X, Zhu F. Effects of environmental pollutant benzop[α]yrene on the innate immunity of Scylla paramamosain and its mechanism. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109228. [PMID: 37967729 DOI: 10.1016/j.fsi.2023.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Benzo[α]pyrene (BaP), a polycyclic aromatic hydrocarbon, is present in the aquatic environment and may be harmful to aquatic animals. We exposed the mud crab Scylla paramamosain to BaP for 7 days, the of superoxide dismutase (SOD), catalase (CAT), phenoloxidase (PO), lysozyme (LZM), glutathione (GSH), glutathione-S-transferase (GST), and acid phosphatase (ACP) activities in the hemolymph of mud crab were reduced. Additionally, the reactive oxygen species content was increased in mud crabs after exposed to BaP. When BaP concentration was increased, the total hemocyte count (THC), the survival rate of hemocytes and their proliferation were decreased. Histopathology analysis revealed damaged hepatopancreas cells, which indicating that BaP exposure is cytotoxic to crab hemocytes. However, the degree of DNA damage did not worsen with increasing BaP concentration. The expression levels of p53, MCM7, Caspase-3, and Myosin were changed with increasing concentration of BaP, which indicated that BaP exposure may affect apoptosis and phagocytosis in mud crabs. As BaP concentration was increased, the apoptosis rate of hemocytes was increased and the phagocytosis was decreased. These results confirmed that BaP exposure inhibited the innate immune response of mud crabs. A possible explanation for this effect is that BaP reduces the antioxidant enzyme activity and increases the reactive oxygen species content in mud crabs, thereby oxidizing and damaging hemocytes, which stimulates phagocytosis and apoptosis and negatively affects the innate immunity of S. paramamosain.
Collapse
Affiliation(s)
- Peilin Geng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Qingri Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
46
|
Stierschneider A, Wiesner C. Shedding light on the molecular and regulatory mechanisms of TLR4 signaling in endothelial cells under physiological and inflamed conditions. Front Immunol 2023; 14:1264889. [PMID: 38077393 PMCID: PMC10704247 DOI: 10.3389/fimmu.2023.1264889] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Toll-like receptor 4 (TLR4) are part of the innate immune system. They are capable of recognizing pathogen-associated molecular patterns (PAMPS) of microbes, and damage-associated molecular patterns (DAMPs) of damaged tissues. Activation of TLR4 initiates downstream signaling pathways that trigger the secretion of cytokines, type I interferons, and other pro-inflammatory mediators that are necessary for an immediate immune response. However, the systemic release of pro-inflammatory proteins is a powerful driver of acute and chronic inflammatory responses. Over the past decades, immense progress has been made in clarifying the molecular and regulatory mechanisms of TLR4 signaling in inflammation. However, the most common strategies used to study TLR4 signaling rely on genetic manipulation of the TLR4 or the treatment with agonists such as lipopolysaccharide (LPS) derived from the outer membrane of Gram-negative bacteria, which are often associated with the generation of irreversible phenotypes in the target cells or unintended cytotoxicity and signaling crosstalk due to off-target or pleiotropic effects. Here, optogenetics offers an alternative strategy to control and monitor cellular signaling in an unprecedented spatiotemporally precise, dose-dependent, and non-invasive manner. This review provides an overview of the structure, function and signaling pathways of the TLR4 and its fundamental role in endothelial cells under physiological and inflammatory conditions, as well as the advances in TLR4 modulation strategies.
Collapse
Affiliation(s)
| | - Christoph Wiesner
- Department Science & Technology, Institute Biotechnology, IMC Krems University of Applied Sciences, Krems, Austria
| |
Collapse
|
47
|
Kappagoda CN, Senevirathne R, Jayasundara D, Warnasekara Y, Srimantha L, De Silva L, Agampodi SB. The human Toll-like receptor 2 (TLR2) response during pathogenic Leptospira infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567338. [PMID: 38014008 PMCID: PMC10680769 DOI: 10.1101/2023.11.16.567338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Human innate immune responses are triggered through the interaction of human pattern recognition receptors and pathogen-associated molecular patterns. The role of toll-like receptor2 (TLR2) in mice innate immune response to leptospirosis is well established, while human studies are limited. The present study aimed to determine the TLR2 response among confirmed cases of leptospirosis. Methodology/Principle findings The study has two components. Clinically suspected patients of leptospirosis were confirmed using a previously validated qPCR assay. Total RNA was extracted from patients' RNA-stabilized whole blood samples. Human TLR2 gene expression (RT-qPCR) analysis was carried out using an exon-exon spanning primer pair, using CFX Maestro™ software. The first set of patient samples was used to calculate the Relative Normalized Expression (ΔΔCq value) of the TLR2 gene in comparison to a healthy control sample and normalized by the reference gene GAPDH (Glyceraldehyde-3-phosphate dehydrogenase). Secondly, recruited patient samples were subjected to TLR2 gene expression analysis and compared to healthy controls and normalized by the reference genes Beta-2-microglobulin(B2M), Hypoxanthine phosphoribosyltransferase 1 (HPRT 1).In the initial cohort of 64 confirmed leptospirosis cases, 18 were selected for human TLR2 gene expression analysis based on criteria of leptospiremia and RNA yield. Within this group, one individual exhibited a down-regulation of TLR2 gene (Expression/ΔΔCq=0.01352), whereas the remaining subjects presented no significant change in gene expression. In a subsequent cohort of 23 confirmed cases, 13 were chosen for similar analysis. Among these, three patients demonstrated down-regulation of TLR2 gene expression, with Expression/ΔΔCq values of 0.86574, 0.47200, and 0.28579, respectively. No TLR2 gene expression was noted in the other patients within this second group. Conclusions Our investigation into the acute phase of leptospirosis using human clinical samples has revealed a downregulation of TLR2 gene expression. This observation contrasts to the upregulation commonly reported in the majority of in-vitro and in-vivo studies of Leptospira infection. These preliminary findings prompt a need for further research to explore the mechanisms underlying TLR2's role in the pathogenesis of leptospirosis, which may differ in clinical settings compared to laboratory models. Author Summary The human immune system employs pattern recognition receptors like toll-like receptor 2 (TLR2) to detect and combat infections such as leptospirosis. While TLR2's role is well-documented in mice, its function in the human response to leptospirosis remains unclear. Our study evaluated TLR2 activity in patients with confirmed leptospirosis. We conducted a genetic analysis of blood samples from these patients, comparing TLR2 gene activity against healthy individuals, with standard reference genes for accuracy. Contrary to expectations and existing laboratory data, we observed a decrease in TLR2 activity in some patients. This suggests that human TLR2 responses in actual infections may diverge from established laboratory models. These findings indicate a need for further study to understand the human immune response to leptospirosis, which may significantly differ from that observed in controlled experimental settings.
Collapse
|
48
|
Park BJ, Yoon YB, Park SC, Shin GS, Kwak HJ, Lee DH, Choi MY, Kim JW, Cho SJ. Multiple toll-like receptors (TLRs) display differential bacterial and ligand specificity in the earthworm, Eisenia andrei. J Invertebr Pathol 2023; 201:108010. [PMID: 37865158 DOI: 10.1016/j.jip.2023.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Toll-like receptors (TLRs), an ancient and well-conserved group of pattern recognition receptors (PRRs), recognize conserved pathogen-associated molecular patterns. TLRs consist of three domains: the extracellular N-terminal domain, containing one or more leucine-rich repeats (LRRs), responsible for the recognizing and binding of antigens; the type-I transmembrane domain; and the intracellular domain known as the Toll/Interleukin-1 receptor (TIR) domain required for the downstream signaling pathway. We identified six new full-length complementary DNA (cDNA) sequences, Ean-TLR1/2/3/4/5/6. The deduced amino acid sequences indicate that Ean-TLRs consist of one signal peptide, one LRR N-terminal domain (Ean-TLR4/5), varying numbers of LRRs, one (Ean-TLR1/2/3/4/5) or two (Ean-TLR6) LRR C-terminal domains, one type-I transmembrane domain, and a TIR domain. In addition, a TIR domain alignment revealed that three conserved motifs, designated as Box 1, Box 2, and Box 3, contain essential amino acid residues for downstream signaling activity. Phylogenetic analysis of earthworm TLRs generated two separate evolutionary branches representing single (sccTLR) and multiple (mccTLR) cysteine cluster TLRs. Ean-TLR1/2/3/4 (sccTLR type) and Ean-TLR6 (mccTLR type) were clustered with corresponding types of previously reported earthworm TLRs as well as TLRs from Clitellata and Polychaete. As PRRs, earthworm TLRs should be capable of sensing a diverse range of pathogens. Except for Ean-TLR3, which was not responsive to any bacteria, earthworm TLR expression was significantly induced by Gram-positive but not Gram-negative bacteria. Moreover, it is likely that earthworms can differentiate between different species of Gram-positive bacteria via their TLR responses. The ligand specificity of earthworm TLRs suggests that their pathogenic ligand recognition is likely to be as specific and diverse as the mammalian TLR pathogen-sensing system.
Collapse
Affiliation(s)
- Beom Jun Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yoo Bin Yoon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Soon Cheol Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Geun-Seup Shin
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hee-Jin Kwak
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Dong Ho Lee
- College of General Education, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Min Young Choi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
49
|
Ishaq Z, Zaheer T, Waseem M, Shahwar Awan H, Ullah N, AlAsmari AF, AlAsmari F, Ali A. Immunoinformatics aided designing of a next generation poly-epitope vaccine against uropathogenic Escherichia coli to combat urinary tract infections. J Biomol Struct Dyn 2023; 42:11976-11996. [PMID: 37811774 DOI: 10.1080/07391102.2023.2266018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Urinary tract infections (UTIs) are the second most prevalent bacterial infections and uropathogenic Escherichia coli (UPEC) stands among the primary causative agents of UTIs. The usage of antibiotics is the routine therapy being used in various countries to treat UTIs but becoming ineffective because of increasing antibiotic resistance among UPEC strains. Thus, there must be the development of some alternative treatment strategies such as vaccine development against UPEC. In the following study, pan-genomics along with reverse vaccinology approaches is used under the framework of bioinformatics for the identification of core putative vaccine candidates, employing 307 UPEC genomes (complete and draft), available publicly. A total of nine T-cell epitopes (derived from B-cells) of both MHC classes (I and II), were prioritized among three potential protein candidates. These epitopes were then docked together by using linkers (GPGPG and AAY) and an adjuvant (Cholera Toxin B) to form a poly-valent vaccine construct. The chimeric vaccine construct was undergone by molecular modelling, further refinement and energy minimization. We predicted positive results of the vaccine construct in immune simulations with significantly high levels of immune cells. The protein-protein docking analysis of vaccine construct with toll-like receptors predicted efficient binding, which was further validated by molecular dynamics simulation of vaccine construct with TLR-2 and TLR-4 at 120 ns, resulting in stable complexes' conformation throughout the simulation run. Overall, the vaccine construct demonstrated positive antigenic response. In future, this chimeric vaccine construct or the identified epitopes could be experimentally validated for the development of UPEC vaccines against UTIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zaara Ishaq
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tahreem Zaheer
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Maaz Waseem
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hayeqa Shahwar Awan
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Shifa International Hospitals Ltd, Islamabad, Pakistan
| | - Nimat Ullah
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- NYU Langone Health, New York, United States
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
50
|
Tiwari P, Ali SA, Puri B, Kumar A, Datusalia AK. Tinospora cordifolia Miers enhances the immune response in mice immunized with JEV-vaccine: A network pharmacology and experimental approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154976. [PMID: 37573808 DOI: 10.1016/j.phymed.2023.154976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Tinospora cordifolia Miers. (TC) (Giloya/Guduchi) is a native Indian herb, reported for its wide array of medicinal activities including immunomodulatory activity. However, the exact pharmacological mechanism of TC as an immunomodulatory agent remains unclear. Central to this, to the best of our knowledge, no study has explored the immunoadjuvant potential of TC in response to the Japanese encephalitis (JE) vaccines. PURPOSE The study aims to explore the immunoadjuvant potential of TC ethanolic extract in response to the JE vaccine and illustrates its potential mechanism of immunomodulation using an integrated approach of network pharmacology and in-vivo experimental study. STUDY DESIGN AND METHODS Initially, the extract was prepared and the components of TC were identified through high-resolution liquid chromatography mass spectrometry (HR-LC/MS). The compounds were then screened for network pharmacology analysis. Next, the drug and disease targets were identified and the network was constructed using Cytoscape 3.7.2 to obtain different signalling pathways of TC in JEV. We then evaluated the immunoadjuvant potential of TC ethanolic extract in mice immunized with inactivated JE vaccine (SA-14-14-2 strain). BALB/c mice were supplemented with TC extract (30 and 100 mg/kg, i.g.), daily for 56 days, marked with immunization on 28th day of the study, by JE vaccine. Blood was collected for flow cytometry and haematological analysis (total and differential cell counts). The surface expression of immune-cell markers (CD3+, CD4+, CD19+, CD11c+, CD40+) were evaluated on day 0 (pre-immunization), day 14 and 28 post-immunization. Additionally, inflammatory cytokines (IFN-γ+/IL-17A+) were evaluated post-14 and 28 days of immunization. RESULTS The HR-LC/MS analysis identified the presence of glycosides, terpenoids, steroids and alkaloids in the TC extract. Through network analysis, 09 components and 166 targets were obtained, including pathways that involve toll-like receptor signalling, pattern-recognition receptor signalling, cytokine receptor and cytokine mediated signalling, etc. The in-vivo results showed that preconditioning with TC ethanolic extract significantly elevated the haematological variables (leucocyte count) as well as the surface expression of CD markers (B and T cell subsets) on day 0 (pre-immunization), day 14 and 28 post-immunization. Furthermore, preconditioning of TC demonstrated a dose-dependant augmentation of immune cells (CD3+, CD4+, CD19+, CD11c+) and inflammatory cytokines (IFN-γ+/IL-17A+) on day 14 and 28 post-immunization when compared to vaccine alone group. CONCLUSION Results showed that preconditioning with TC extract before immunization might play a potential role in enhancing the cell-mediated as well as humoral immunity. Altogether, the combinatorial approach of network pharmacology and in-vivo animal experimentation demonstrated the immunoadjuvant potential of TC in response to JEV vaccine.
Collapse
Affiliation(s)
- Priyanka Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India
| | - Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India
| | - Bhupendra Puri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India.
| |
Collapse
|