1
|
Trivadila T, Iswantini D, Rahminiwati M, Rafi M, Salsabila AP, Sianipar RNR, Indariani S, Murni A. Herbal Immunostimulants and Their Phytochemicals: Exploring Morinda citrifolia, Echinacea purpurea, and Phyllanthus niruri. PLANTS (BASEL, SWITZERLAND) 2025; 14:897. [PMID: 40265854 PMCID: PMC11945065 DOI: 10.3390/plants14060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
The rising prevalence of infectious diseases and immune-related disorders underscores the need for effective and accessible therapeutic solutions. Herbal immunostimulants derived from medicinal plants offer promising alternatives, enhancing immune responses with lower toxicity and fewer side effects than synthetic drugs. This review explores the immunostimulatory potential of Morinda citrifolia, Echinacea purpurea, and Phyllanthus niruri, focusing on their bioactive compounds, mechanisms of action, and therapeutic relevance. These plants modulate innate and adaptive immune responses by activating macrophages, dendritic cells, and lymphocytes while regulating cytokine production to maintain immune homeostasis. Their immunomodulatory effects are linked to key signaling pathways, including NF-κB, MAPK, and JAK/STAT. In vitro and in vivo studies highlight their potential to strengthen immune responses and control inflammation, making them promising candidates for managing infectious and immune-related diseases. However, further research is needed to standardize formulations, determine optimal dosages, and validate safety and efficacy in clinical settings. Addressing these gaps will support the integration of herbal immunostimulants into evidence-based healthcare as sustainable and accessible immune-enhancing strategies.
Collapse
Affiliation(s)
- Trivadila Trivadila
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Dyah Iswantini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Min Rahminiwati
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
- School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, West Java, Indonesia
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Adisa Putri Salsabila
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
| | - Rut Novalia Rahmawati Sianipar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
| | - Susi Indariani
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Anggia Murni
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| |
Collapse
|
2
|
Tiwana G, Cock IE, Cheesman MJ. Phyllanthus niruri Linn.: Antibacterial Activity, Phytochemistry, and Enhanced Antibiotic Combinatorial Strategies. Antibiotics (Basel) 2024; 13:654. [PMID: 39061336 PMCID: PMC11273511 DOI: 10.3390/antibiotics13070654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) is a global public health threat caused by the misuse and overuse of antibiotics. It leads to infections becoming difficult to treat, causing serious illness, disability, and death. Current antibiotic development is slow, with only 25% of current antibiotics exhibiting novel mechanisms against critical pathogens. Traditional medicinal plants' secondary metabolites offer potential for developing novel antibacterial compounds. These compounds, often with strong antimicrobial activity, can be used to develop safe and effective antibacterial chemotherapies. This study investigated the antibacterial activity of Phyllanthus niruri Linn. extracts against a panel of bacterial pathogens using disc diffusion and microdilution assays and quantified by calculation of minimum inhibition concentration (MIC). Additionally, the effects of combinations of the extracts and selected conventional antibiotics were examined by sum of fractional inhibition concentration (ƩFIC) calculation and isobologram analysis. Liquid chromatography-mass spectrometry (LC-MS) phytochemistry analysis was used to identify noteworthy compounds in the active extracts and the Artemia nauplii bioassay was used to evaluate toxicity. The aqueous and methanolic extracts exhibited notable antibacterial activity in the broth microdilution assay against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) (MIC = 669 µg/mL and 738 µg/mL, respectively). The methanolic extract also showed noteworthy antibacterial action in the broth assay against Klebsiella pneumoniae (MIC = 738 µg/mL). The aqueous extract had noteworthy growth inhibitory activity against Bacillus cereus (MIC = 669 µg/mL), whilst the methanolic extract demonstrated good antibacterial activity against that bacterium (MIC = 184 µg/mL). The aqueous and methanol extracts showed minimal antibacterial action against Shigella flexneri and Shigella sonnei. The extracts were subjected to LC-MS analysis, which revealed several interesting phytochemicals, including a variety of flavonoids and tannins. The antibacterial activity and lack of toxicity of the P. niruri extracts indicates that they may be worthwhile targets for antibiotic development and further mechanistic and phytochemistry studies are required.
Collapse
Affiliation(s)
- Gagan Tiwana
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| | - Ian E. Cock
- School of Environment and Science, Nathan Campus, Griffith University, Brisbane 4111, Australia;
| | - Matthew J. Cheesman
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| |
Collapse
|
3
|
Gaurav I, Thakur A, Kumar G, Long Q, Zhang K, Sidu RK, Thakur S, Sarkar RK, Kumar A, Iyaswamy A, Yang Z. Delivery of Apoplastic Extracellular Vesicles Encapsulating Green-Synthesized Silver Nanoparticles to Treat Citrus Canker. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1306. [PMID: 37110891 PMCID: PMC10146377 DOI: 10.3390/nano13081306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The citrus canker pathogen Xanthomonas axonopodis has caused severe damage to citrus crops worldwide, resulting in significant economic losses for the citrus industry. To address this, a green synthesis method was used to develop silver nanoparticles with the leaf extract of Phyllanthus niruri (GS-AgNP-LEPN). This method replaces the need for toxic reagents, as the LEPN acts as a reducing and capping agent. To further enhance their effectiveness, the GS-AgNP-LEPN were encapsulated in extracellular vesicles (EVs), nanovesicles with a diameter of approximately 30-1000 nm naturally released from different sources, including plant and mammalian cells, and found in the apoplastic fluid (APF) of leaves. When compared to a regular antibiotic (ampicillin), the delivery of APF-EV-GS-AgNP-LEPN and GS-AgNP-LEPN to X. axonopodis pv. was shown to have more significant antimicrobial activity. Our analysis showed the presence of phyllanthin and nirurinetin in the LEPN and found evidence that both could be responsible for antimicrobial activity against X. axonopodis pv. Ferredoxin-NADP+ reductase (FAD-FNR) and the effector protein XopAI play a crucial role in the survival and virulence of X. axonopodis pv. Our molecular docking studies showed that nirurinetin could bind to FAD-FNR and XopAI with high binding energies (-10.32 kcal/mol and -6.13 kcal/mol, respectively) as compared to phyllanthin (-6.42 kcal/mol and -2.93 kcal/mol, respectively), which was also supported by the western blot experiment. We conclude that (a) the hybrid of APF-EV and GS-NP could be an effective treatment for citrus canker, and (b) it works via the nirurinetin-dependent inhibition of FAD-FNR and XopAI in X. axonopodis pv.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Gaurav Kumar
- Clinical Research Division, Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Qin Long
- Citrus Research Institute, Southwest University, Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Kui Zhang
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rakesh Kumar Sidu
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India
| | - Rajesh Kumar Sarkar
- Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
4
|
Park E, Ryu MJ, Kim NK, Bae MH, Seo Y, Kim J, Yeo S, Kanwal M, Choi CW, Heo JY, Jeong SY. Synergistic Neuroprotective Effect of Schisandra chinensis and Ribes fasciculatum on Neuronal Cell Death and Scopolamine-Induced Cognitive Impairment in Rats. Int J Mol Sci 2019; 20:ijms20184517. [PMID: 31547274 PMCID: PMC6770047 DOI: 10.3390/ijms20184517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
Mild cognitive impairment (MCI) is considered as a transitional stage between aging and Alzheimer’s disease. In the present study, we examined the protective effect of Schisandra chinensis (SC) and Ribes fasciculatum (RF) on neuronal cell death in vitro and scopolamine-induced cognitive impairment in Sprague Dawley® rats in vivo. A mixture of SC and RF extracts (SC+RF) significantly protected against hydrogen peroxide-induced PC12 neuronal cell death. The neuroprotective effect of SC+RF on scopolamine-induced memory impairment in rats was evaluated using the passive avoidance test and the Morris water maze test. In the passive avoidance test, SC+RF-treated rats showed an increased latency to escape, compared to the scopolamine-treated rats. Moreover, SC+RF treatment significantly reduced escape latency in water maze test, compared to treatment with scopolamine alone. To verify the long-term memory, we performed probe test of water maze test. As a result, rat treated with SC+RF spent more time in the target quadrant. Consistent with enhancement of memory function, the brain derived neurotrophic factor (BDNF) and its downstream molecules (pERK, pATK, and pCREB) are increased in SC+RF treatment in hippocampal area compared with scopolamine treated group. These results suggest that a mixture of SC and RF extracts may be a good therapeutic candidate for preventing mild cognitive impairment.
Collapse
Affiliation(s)
- Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 301747, Korea
- Research Institute for Medical Science Chungnam National University School of Medicine, Daejeon 301747, Korea
| | - Nam Ki Kim
- Rpbio Research Institute, Rpbio Co. Ltd., Suwon 16229, Korea
| | - Mun Hyoung Bae
- Rpbio Research Institute, Rpbio Co. Ltd., Suwon 16229, Korea
| | - Youngha Seo
- Rpbio Research Institute, Rpbio Co. Ltd., Suwon 16229, Korea
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Subin Yeo
- NineB Research Institute, Nine B Co. Ltd., Suwon 16499, Korea
| | - Memoona Kanwal
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Chun Whan Choi
- Natural Products Research Team, Gyeonggi Business & Science Accelerator, Suwon 16229, Korea
| | - Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 301747, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 301747, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 301747, Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
5
|
Navarro M, Moreira I, Arnaez E, Quesada S, Azofeifa G, Alvarado D, Monagas MJ. Proanthocyanidin Characterization, Antioxidant and Cytotoxic Activities of Three Plants Commonly Used in Traditional Medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd. PLANTS 2017; 6:plants6040050. [PMID: 29048336 PMCID: PMC5750626 DOI: 10.3390/plants6040050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/10/2017] [Accepted: 10/15/2017] [Indexed: 12/16/2022]
Abstract
The phenolic composition of aerial parts from Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd., species commonly used in Costa Rica as traditional medicines, was studied using UPLC-ESI-TQ-MS on enriched-phenolic extracts. Comparatively, higher values of total phenolic content (TPC), as measured by the Folin-Ciocalteau method, were observed for P. niruri extracts (328.8 gallic acid equivalents/g) than for S. reticulata (79.30 gallic acid equivalents/g) whereas P. alliaceae extract showed the lowest value (13.45 gallic acid equivalents/g). A total of 20 phenolic acids and proanthocyanidins were identified in the extracts, including hydroxybenzoic acids (benzoic, 4-hydroxybenzoic, gallic, prochatechuic, salicylic, syringic and vanillic acids); hydroxycinnamic acids (caffeic, ferulic, and p-coumaric acids); and flavan-3-ols monomers [(+)-catechin and (−)-epicatechin)]. Regarding proanthocyanidin oligomers, five procyanidin dimers (B1, B2, B3, B4, and B5) and one trimer (T2) are reported for the first time in P. niruri, as well as two propelargonidin dimers in S. reticulata. Additionally, P. niruri showed the highest antioxidant DPPH and ORAC values (IC50 of 6.4 μg/mL and 6.5 mmol TE/g respectively), followed by S. reticulata (IC50 of 72.9 μg/mL and 2.68 mmol TE/g respectively) and P. alliaceae extract (IC50 >1000 μg/mL and 1.32 mmol TE/g respectively). Finally, cytotoxicity and selectivity on gastric AGS and colon SW20 adenocarcinoma cell lines were evaluated and the best values were also found for P. niruri (SI = 2.8), followed by S. reticulata (SI = 2.5). Therefore, these results suggest that extracts containing higher proanthocyanidin content also show higher bioactivities. Significant positive correlation was found between TPC and ORAC (R2 = 0.996) as well as between phenolic content as measured by UPLC-DAD and ORAC (R2 = 0.990). These findings show evidence for the first time of the diversity of phenolic acids in P. alliaceae and S. reticulata, and the presence of proanthocyanidins as minor components in latter species. Of particular relevance is the occurrence of proanthocyanidin oligomers in phenolic extracts from P. niruri and their potential bioactivity.
Collapse
Affiliation(s)
- Mirtha Navarro
- Department of Chemistry, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica.
| | - Ileana Moreira
- Department of Biology, Technological University of Costa Rica (TEC), Cartago 7050, Costa Rica.
| | - Elizabeth Arnaez
- Department of Biology, Technological University of Costa Rica (TEC), Cartago 7050, Costa Rica.
| | - Silvia Quesada
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica.
| | - Gabriela Azofeifa
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica.
| | - Diego Alvarado
- Department of Biology, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica.
| | - Maria J Monagas
- Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC-UAM), C/Nicolas Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
6
|
Balaban YH, Aka C, Koca-Caliskan U. Liver immunology and herbal treatment. World J Hepatol 2017; 9:757-770. [PMID: 28660010 PMCID: PMC5474722 DOI: 10.4254/wjh.v9.i17.757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/29/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Beyond the metabolic functions, the liver recently has been defined as an organ of immune system (IS), which have central regulatory role for innate and adaptive immunity. The liver keeps a delicate balance between hepatic screening of pathogenic antigens and immune tolerance to self-antigens. Herbal treatments with immunological effects have potential to alter this hepatic immune balance towards either therapeutic side or diseases side by inducing liver injury via hepatotoxicity or initiation of autoimmune diseases. Most commonly known herbal treatments, which have therapeutic effect on liver and IS, have proven via in vitro, in vivo, and/or clinical studies were summarized in this review.
Collapse
Affiliation(s)
- Yasemin H Balaban
- Yasemin H Balaban, Gastroenterology Unit, Private Etimed Hospital, 06790 Ankara, Turkey
| | - Ceylan Aka
- Yasemin H Balaban, Gastroenterology Unit, Private Etimed Hospital, 06790 Ankara, Turkey
| | - Ufuk Koca-Caliskan
- Yasemin H Balaban, Gastroenterology Unit, Private Etimed Hospital, 06790 Ankara, Turkey
| |
Collapse
|
7
|
Putri DU, Rintiswati N, Soesatyo MHNE, Haryana SM. Immune modulation properties of herbal plant leaves: Phyllanthus niruri aqueous extract on immune cells of tuberculosis patient - in vitro study. Nat Prod Res 2017; 32:463-467. [DOI: 10.1080/14786419.2017.1311888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Denise Utami Putri
- Faculty of Medicine, Graduate Program of Medical and Health Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ning Rintiswati
- Faculty of Medicine, Department of Microbiology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Marsetyawan HNE Soesatyo
- Faculty of Medicine, Department of Histology and Cell Biology, Universitas Gadjah Mada, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia Mubarika Haryana
- Faculty of Medicine, Department of Histology and Cell Biology, Universitas Gadjah Mada, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
8
|
Lee NYS, Khoo WKS, Adnan MA, Mahalingam TP, Fernandez AR, Jeevaratnam K. The pharmacological potential of Phyllanthus niruri. ACTA ACUST UNITED AC 2016; 68:953-69. [PMID: 27283048 DOI: 10.1111/jphp.12565] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/29/2016] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Phyllanthus niruri is a traditional shrub of the genus Phyllanthaceae with long-standing Ayurvedic, Chinese and Malay ethnomedical records. Preliminary studies from cell and animal model have provided valuable scientific evidence for its use. AIM This review aims to summarize selected scientific evidence on the pharmacological properties of P. niruri over the past 35 years while identifying potential areas of further development of this herb as an economical adjunct. METHODS The review covers literature pertaining to the evidence base therapeutic potential of P. niruri spanning from 1980 to 2015 available on PubMed. RESULTS Evidence suggests that the extracts of P. niruri possess hepatoprotective, antiviral, antibacterial, hypolipidaemic, hypoglycaemic, analgesic, anti-inflammatory, cardioprotective, anti-urolithiatic and antihyperuricaemic properties due its novel bioactive compounds. CONCLUSION Scientific evidence suggests that there is strong pharmacological potential in developing P. niruri as a drug to be used in liver disorders and in antiviral therapy. Despites this, large-scale heterogeneity in study protocol and unstandardized reporting standards limit the ability for valuable comparison and may mask the ability to replicate these studies. Thus interpretation of findings should be performed with caution and further studies should be performed in line with best practices. More cheminformatics, toxicological and mechanistic studies would aid the progress to clinical trial studies.
Collapse
Affiliation(s)
- Nathanael Y S Lee
- Perdana University - Royal College of Surgeons in Ireland, Serdang, Selangor, Malaysia
| | - William K S Khoo
- Perdana University - Royal College of Surgeons in Ireland, Serdang, Selangor, Malaysia
| | - Mohammad Akmal Adnan
- Perdana University - Royal College of Surgeons in Ireland, Serdang, Selangor, Malaysia
| | | | - Anne R Fernandez
- Perdana University - Royal College of Surgeons in Ireland, Serdang, Selangor, Malaysia
| | - Kamalan Jeevaratnam
- Perdana University - Royal College of Surgeons in Ireland, Serdang, Selangor, Malaysia.,Faculty of Health and Medical Sciences, VSM Building, University of Surrey, Guildford, UK.,Physiological Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Boye A, Yang Y, Asenso J, Wei W. Anti-fibro-hepatocarcinogenic Chinese herbal medicines: A mechanistic overview. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:278-89. [PMID: 27366355 PMCID: PMC4927134 DOI: 10.5455/jice.20160530032814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Chinese herbal medicine (CHM) is an integral component of complementary/alternative medicine and it is increasingly becoming the preferred therapeutic modality for the treatment of liver fibrosis and hepatocellular carcinoma (HCC) worldwide. Accordingly, the World Health Organization (WHO) has attested to the popularity and efficacy of indigenous herbal therapies including CHM as a first line of treatment for some diseases including liver disorders. However, the WHO and drug discovery experts have always recommended that use of indigenous herbal remedies must go hand-in-hand with the requisite mechanistic elucidation so as to constitute a system of verification of efficacy within the ethnobotanical context of use. Although many CHM experts have advanced knowledge on CHM, nonetheless, more enlightenment is needed, particularly mechanisms of action of CHMs on fibro-hepato-carcinogenesis. We, herein, provide in-depth mechanisms of the action of CHMs which have demonstrated anti-fibro-hepatocarcinogenic effects, in pre-clinical and clinical studies as published in PubMed and other major scientific databases. Specifically, the review brings out the important signaling pathways, and their downstream targets which are modulated at multi-level by various anti-fibro-hepatocarcinogenic CHMs.
Collapse
Affiliation(s)
- Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui Province, China
| | - Yan Yang
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui Province, China
| | - James Asenso
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Hong M, Li S, Tan HY, Wang N, Tsao SW, Feng Y. Current Status of Herbal Medicines in Chronic Liver Disease Therapy: The Biological Effects, Molecular Targets and Future Prospects. Int J Mol Sci 2015; 16:28705-45. [PMID: 26633388 PMCID: PMC4691073 DOI: 10.3390/ijms161226126] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
Chronic liver dysfunction or injury is a serious health problem worldwide. Chronic liver disease involves a wide range of liver pathologies that include fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The efficiency of current synthetic agents in treating chronic liver disease is not satisfactory and they have undesirable side effects. Thereby, numerous medicinal herbs and phytochemicals have been investigated as complementary and alternative treatments for chronic liver diseases. Since some herbal products have already been used for the management of liver diseases in some countries or regions, a systematic review on these herbal medicines for chronic liver disease is urgently needed. Herein, we conducted a review describing the potential role, pharmacological studies and molecular mechanisms of several commonly used medicinal herbs and phytochemicals for chronic liver diseases treatment. Their potential toxicity and side effects were also discussed. Several herbal formulae and their biological effects in chronic liver disease treatment as well as the underlying molecular mechanisms are also summarized in this paper. This review article is a comprehensive and systematic analysis of our current knowledge of the conventional medicinal herbs and phytochemicals in treating chronic liver diseases and on the potential pitfalls which need to be addressed in future study.
Collapse
Affiliation(s)
- Ming Hong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Sai-Wah Tsao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Puntel RL, Tamborena T, Gularte CAO, Escoto DF, Gayer MC, Roehrs R, Folmer V, Avila DS. Antioxidant Activity of some Medicinal Plant Extracts: Implications for Neuroprotection. ACTA ACUST UNITED AC 2015. [DOI: 10.5567/pharmacologia.2015.282.292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
The effect of Lycii Radicis Cortex extract on bone formation in vitro and in vivo. Molecules 2014; 19:19594-609. [PMID: 25432011 PMCID: PMC6271141 DOI: 10.3390/molecules191219594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is a common skeletal disease caused by decreased bone mass; it enhances the risk of bone fracture. This study aimed to discover novel herbal extract(s) for the treatment of osteoporosis. We screened 64 ethanol extracts of edible plants native to Korea for their ability to increase the cellular proliferation and differentiation of two osteoblastic cell lines: C3H10T1/2 and MC3T3-E1. We selected a Lycii Radicis Cortex (LRC), Lycium Chinese root bark as the primary candidate. Treatment with LRC extract showed enhanced alkaline phosphatase activity and increased expression of bone metabolic markers Alpl, Runx2, and Bglap genes in both osteoblastic cell lines. There was no effect on the osteoclastic differentiation of primary-cultured monocytes from the mouse bone marrows. Furthermore, the study examined the effect of LRC extract in vivo in ovariectomizd (OVX) mice for 8 weeks and 16 weeks, respectively. Bone mineral density (BMD) was significantly higher in LRC extract-administered group than in the non-LRC-administered OVX control group. The results indicated that LRC extract prevented the OVX-induced BMD loss in mice via promoting the differentiation of osteoblast linage cells. These results suggest that LRC extract may be a good natural herbal medicine candidate for the treatment of osteoporosis.
Collapse
|
13
|
Aqueous Extract of Phyllanthus niruri Leaves Displays In Vitro Antioxidant Activity and Prevents the Elevation of Oxidative Stress in the Kidney of Streptozotocin-Induced Diabetic Male Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:834815. [PMID: 24991228 PMCID: PMC4058581 DOI: 10.1155/2014/834815] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 01/09/2023]
Abstract
P. niruri has been reported to possess antidiabetic and kidney protective effects. In the present study, the phytochemical constituents and in vitro antioxidant activity of P. niruri leaf aqueous extract were investigated together with its effect on oxidative stress and antioxidant enzymes levels in diabetic rat kidney. Results. Treatment of diabetic male rats with P. niruri leaf aqueous extract (200 and 400 mg/kg) for 28 consecutive days prevents the increase in the amount of lipid peroxidation (LPO) product, malondialdehyde (MDA), and the diminution of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity levels in the kidney of diabetic rats. The amount of LPO showed strong negative correlation with SOD, CAT, and GPx activity levels. P. niruri leaf aqueous extract exhibits in vitro antioxidant activity with IC50 slightly lower than ascorbic acid. Phytochemical screening of plant extract indicates the presence of polyphenols. Conclusion. P. niruri leaf extract protects the kidney from oxidative stress induced by diabetes.
Collapse
|
14
|
Antioxidant effects of Phyllanthus niruri tea on healthy subjects. ASIAN PAC J TROP MED 2014; 7:113-8. [DOI: 10.1016/s1995-7645(14)60005-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/15/2013] [Accepted: 01/15/2014] [Indexed: 11/23/2022] Open
|