1
|
Nevarez-Mejia J, Pickering H, Sosa RA, Valenzuela NM, Fishbein GA, Baldwin WM, Fairchild RL, Reed EF. Spatial multiomics of arterial regions from cardiac allograft vasculopathy rejected grafts reveal novel insights into the pathogenesis of chronic antibody-mediated rejection. Am J Transplant 2024; 24:1146-1160. [PMID: 38219867 PMCID: PMC11239797 DOI: 10.1016/j.ajt.2024.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Cardiac allograft vasculopathy (CAV) causes late graft failure and mortality after heart transplantation. Donor-specific antibodies (DSAs) lead to chronic endothelial cell injury, inflammation, and arterial intimal thickening. In this study, GeoMx digital spatial profiling was used to analyze arterial areas of interest (AOIs) from CAV+DSA+ rejected cardiac allografts (N = 3; 22 AOIs total). AOIs were categorized based on CAV neointimal thickening and underwent whole transcriptome and protein profiling. By comparing our transcriptomic data with that of healthy control vessels of rapid autopsy myocardial tissue, we pinpointed specific pathways and transcripts indicative of heightened inflammatory profiles in CAV lesions. Moreover, we identified protein and transcriptomic signatures distinguishing CAV lesions exhibiting low and high neointimal lesions. AOIs with low neointima showed increased markers for activated inflammatory infiltrates, endothelial cell activation transcripts, and gene modules involved in metalloproteinase activation and TP53 regulation of caspases. Inflammatory and apoptotic proteins correlated with inflammatory modules in low neointima AOIs. High neointima AOIs exhibited elevated TGFβ-regulated transcripts and modules enriched for platelet activation/aggregation. Proteins associated with growth factors/survival correlated with modules enriched for proliferation/repair in high neointima AOIs. Our findings reveal novel insight into immunological mechanisms mediating CAV pathogenesis.
Collapse
Affiliation(s)
- Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - William M Baldwin
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
2
|
Kang H, Hwang S, Kang H, Jo A, Lee JM, Choi JK, An HJ, Lee H. Altered tumor signature and T-cell profile after chemotherapy reveal new therapeutic opportunities in high-grade serous ovarian carcinoma. Cancer Sci 2024; 115:989-1000. [PMID: 38226451 PMCID: PMC10921005 DOI: 10.1111/cas.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Chemotherapy combined with debulking surgery is the standard treatment protocol for high-grade serous ovarian carcinoma (HGSOC). Nonetheless, a significant number of patients encounter relapse due to the development of chemotherapy resistance. To better understand and address this resistance, we conducted a comprehensive study investigating the transcriptional alterations at the single-cell resolution in tissue samples from patients with HGSOC, using single-cell RNA sequencing and T-cell receptor sequencing techniques. Our analyses unveiled notable changes in the tumor signatures after chemotherapy, including those associated with epithelial-mesenchymal transition and cell cycle arrest. Within the immune compartment, we observed alterations in the T-cell profiles, characterized by naïve or pre-exhausted populations following chemotherapy. This phenotypic change was further supported by the examination of adjoining T-cell receptor clonotypes in paired longitudinal samples. These findings underscore the profound impact of chemotherapy on reshaping the tumor landscape and the immune microenvironment. This knowledge may provide clues for the development of future therapeutic strategies to combat treatment resistance in HGSOC.
Collapse
Affiliation(s)
- Huiram Kang
- Department of Microbiology, College of MedicineThe Catholic University of KoreaSeoulKorea
- Department of Biomedicine and Health Sciences, Graduate SchoolThe Catholic University of KoreaSeoulKorea
| | - Sohyun Hwang
- Department of Pathology, CHA Bundang Medical CenterCHA UniversitySeongnam‐siKorea
- Department of CHA Future Medicine Research InstituteCHA Bundang Medical CenterSeongnam‐siGyeonggi‐doSouth Korea
| | - Haeyoun Kang
- Department of Pathology, CHA Bundang Medical CenterCHA UniversitySeongnam‐siKorea
| | - Areum Jo
- Department of Microbiology, College of MedicineThe Catholic University of KoreaSeoulKorea
- Department of Biomedicine and Health Sciences, Graduate SchoolThe Catholic University of KoreaSeoulKorea
| | - Ji Min Lee
- Department of CHA Future Medicine Research InstituteCHA Bundang Medical CenterSeongnam‐siGyeonggi‐doSouth Korea
| | | | - Hee Jung An
- Department of Pathology, CHA Bundang Medical CenterCHA UniversitySeongnam‐siKorea
- Department of CHA Future Medicine Research InstituteCHA Bundang Medical CenterSeongnam‐siGyeonggi‐doSouth Korea
| | - Hae‐Ock Lee
- Department of Microbiology, College of MedicineThe Catholic University of KoreaSeoulKorea
- Department of Biomedicine and Health Sciences, Graduate SchoolThe Catholic University of KoreaSeoulKorea
| |
Collapse
|
3
|
Xu M, He Y, Li Y, Liu K, Zhang Y, Su T, Yao Y, Jin X, Zhang X, Lu F. Combined Use of Autologous Sustained-Release Scaffold of Adipokines and Acellular Adipose Matrix to Construct Vascularized Adipose Tissue. Plast Reconstr Surg 2024; 153:348e-360e. [PMID: 37171265 DOI: 10.1097/prs.0000000000010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Adipose tissue engineering plays a key role in the reconstruction of soft-tissue defects. The acellular adipose matrix (AAM) is a promising biomaterial for the construction of engineered adipose tissue. However, AAM lacks sufficient adipoinduction potency because of the abundant loss of matrix-bound adipokines during decellularization. METHODS An adipose-derived extracellular matrix collagen scaffold, "adipose collagen fragment" (ACF), was prepared using a novel mechanical method that provides sustained release of adipokines. Here, the authors used label-free proteomics methods to detect the protein components in AAM and ACF. In vivo, ACF was incorporated into AAM or acellular dermal matrix and implanted into nude mice to evaluate adipogenesis. Neoadipocytes, neovessels, and corresponding gene expression were evaluated. The effects of ACF on adipogenic differentiation of human adipose-derived stem cells and tube formation by human umbilical vein endothelial cells were tested in vitro. RESULTS Proteomics analysis showed that ACF contains diverse adipogenic and angiogenic proteins. ACF can release diverse adipokines and induce highly vascularized, mature adipose tissue in AAM, and even in nonadipogenic acellular dermal matrix. Higher expression of adipogenic markers peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha and greater numbers of tubule structures were observed in ACF-treated groups in vitro. CONCLUSION The combination of ACF and AAM could serve as a novel and promising strategy to construct mature, vascularized adipose tissue for soft-tissue reconstruction. CLINICAL RELEVANCE STATEMENT The combined use of AAM and ACF has been proven to induce a highly vascularized, mature, engineered adipose tissue in the nude mouse model, which may serve as a promising strategy for soft-tissue reconstruction.
Collapse
Affiliation(s)
- Mimi Xu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yunfan He
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yibao Li
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Kaiyang Liu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yuchen Zhang
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Ting Su
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yao Yao
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Xiaoxuan Jin
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Xiangdong Zhang
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Feng Lu
- From the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
4
|
Teng Y, Zhao X, Xi Y, Fu N. N6-methyladenosine-regulated ADIRF impairs lung adenocarcinoma metastasis and serves as a potential prognostic biomarker. Cancer Biol Ther 2023; 24:2249173. [PMID: 37700507 PMCID: PMC10501161 DOI: 10.1080/15384047.2023.2249173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
Aberrant expression of adipogenic regulatory factors (ADIRF) in tumor cells is critical for tumor growth and metastasis. N6-methyladenosine (m6A) modifications have an important role in a variety of biological activities. Our study aimed to investigate the role of ADIRF in adenocarcinoma and to elucidate the regulatory role of m6A signaling on ADIRF. Differential expression of genes in tumor and normal tissues was analyzed using the LUAD dataset (GSE1987). The Kaplan-Meier method and receiver operating characteristic (ROC) curve analysis were performed to evaluate the prognostic and diagnostic value of ADIRF in LUAD. Loss-of-function or gain-of-function experiments were performed to study the effect of ADIRF on LUAD growth in vitro. The molecular mechanism of action of ADIRF in LUAD was confirmed using a dual-luciferase reporter system and MeRIP-qPCR. We identified a loss of ADIRF expression in LUAD tissues and cells. Furthermore, the restoration of ADIRF levels attenuated LUAD cell growth and metastasis in vitro. Mechanistically, an m6A "eraser," α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5), eliminated the ADIRF m6A modification motif and further blocked the binding of the YTH domain-containing 2 (YTHDC2)-binding protein to ADIRF. At the molecular level, ALKBH5 enrichment increased ADIRF mRNA levels and prevented the attenuation of ADIRF mRNA by YTHDC2. The effects of ALKBH5 overexpression could also extend to the inhibition of LUAD cell proliferation and metastasis. This study linked ADIRF with the m6A modifying regulators ALKBH5 and YTHDC2, providing a promising molecular intervention for LUAD and deepening the understanding of LUAD mechanisms.
Collapse
Affiliation(s)
- Yin Teng
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaohan Zhao
- School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Xi
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ninghua Fu
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Schweizer L, Krishnan R, Shimizu A, Metousis A, Kenny H, Mendoza R, Nordmann TM, Rauch S, Kelliher L, Heide J, Rosenberger FA, Bilecz A, Borrego SN, Strauss MT, Thielert M, Rodriguez E, Müller-Reif JB, Chen M, Yamada SD, Mund A, Lastra RR, Mann M, Lengyel E. Spatial proteo-transcriptomic profiling reveals the molecular landscape of borderline ovarian tumors and their invasive progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.13.23298409. [PMID: 38014221 PMCID: PMC10680885 DOI: 10.1101/2023.11.13.23298409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Serous borderline tumors (SBT) are epithelial neoplastic lesions of the ovaries that commonly have a good prognosis. In 10-15% of cases, however, SBT will recur as low-grade serous cancer (LGSC), which is deeply invasive and responds poorly to current standard chemotherapy1,2,3. While genetic alterations suggest a common origin, the transition from SBT to LGSC remains poorly understood4. Here, we integrate spatial proteomics5 with spatial transcriptomics to elucidate the evolution from SBT to LGSC and its corresponding metastasis at the molecular level in both the stroma and the tumor. We show that the transition of SBT to LGSC occurs in the epithelial compartment through an intermediary stage with micropapillary features (SBT-MP), which involves a gradual increase in MAPK signaling. A distinct subset of proteins and transcripts was associated with the transition to invasive tumor growth, including the neuronal splicing factor NOVA2, which was limited to expression in LGSC and its corresponding metastasis. An integrative pathway analysis exposed aberrant molecular signaling of tumor cells supported by alterations in angiogenesis and inflammation in the tumor microenvironment. Integration of spatial transcriptomics and proteomics followed by knockdown of the most altered genes or pharmaceutical inhibition of the most relevant targets confirmed their functional significance in regulating key features of invasiveness. Combining cell-type resolved spatial proteomics and transcriptomics allowed us to elucidate the sequence of tumorigenesis from SBT to LGSC. The approach presented here is a blueprint to systematically elucidate mechanisms of tumorigenesis and find novel treatment strategies.
Collapse
Affiliation(s)
- Lisa Schweizer
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Rahul Krishnan
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Aasa Shimizu
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Andreas Metousis
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Hilary Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Rachelle Mendoza
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Thierry M. Nordmann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sarah Rauch
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Lucy Kelliher
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Janna Heide
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Florian A. Rosenberger
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Agnes Bilecz
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Sanaa Nakad Borrego
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Maximillian T. Strauss
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marvin Thielert
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Edwin Rodriguez
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Johannes B. Müller-Reif
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mengjie Chen
- Medicine/Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - S. Diane Yamada
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Andreas Mund
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ricardo R. Lastra
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Matthias Mann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Xu L, Tan Y, Xu F, Zhang Y. Long noncoding RNA ADIRF antisense RNA 1 upregulates insulin receptor substrate 1 to decrease the aggressiveness of osteosarcoma by sponging microRNA-761. Bioengineered 2022; 13:2028-2043. [PMID: 35030964 PMCID: PMC8973676 DOI: 10.1080/21655979.2021.2019872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An increasing number of studies have supported the critical regulatory actions of long noncoding RNAs (lncRNAs) in osteosarcoma (OS). However, the detailed roles of adipogenesis regulatory factor-antisense RNA 1 (ADIRF-AS1) in OS have not been comprehensively described. Hence, we first detected ADIRF-AS1 expression in OS and evaluated its clinical significance. Functional experiments were then performed to determine the modulatory role of ADIRF-AS1 in OS progression. ADIRF-AS1 was found to be overexpressed in OS, and the overall survival of patients with OS who had high ADIRF-AS1 levels was shorter than that of those with low levels. ADIRF-AS1 knockdown led to restricted proliferation, migration, and invasiveness of OS cells and increased apoptosis. Additionally, ADIRF-AS1 downregulation impeded tumor growth in vivo. Mechanistically, ADIRF-AS1 acted as a competitive endogenous RNA for microRNA-761 (miR-761) that siphoned miR-761 away from its target, namely insulin receptor substrate 1 (IRS1), leading to IRS1 overexpression. Rescue experiments showed that low levels of miR-761 or restoration of IRS1 could neutralize the effects of ADIRF-AS1 ablation in OS cells. In summary, ADIRF-AS1 exacerbates the oncogenicity of the OS cells by targeting the miR-761/IRS1 axis. Our findings may aid in the advancement of lncRNA-directed therapeutics for OS.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Oncology, Weifang Yidu Central Hospital, Weifang, Shandong China
| | - Yinling Tan
- Department of Orthopedics, Weifang Yidu Central Hospital, Weifang, Shandong China
| | - Fengxia Xu
- Department of Orthopedics, Weifang Yidu Central Hospital, Weifang, Shandong China
| | - Yong Zhang
- Department of Orthopedics, The Fifth People's Hospital of Jinan, Shandong China
| |
Collapse
|
7
|
Ruthenium complexes boost NK cell immunotherapy via sensitizing triple-negative breast cancer and shaping immuno-microenvironment. Biomaterials 2022; 281:121371. [DOI: 10.1016/j.biomaterials.2022.121371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 11/23/2022]
|
8
|
Kamimura K, Suda T, Fukuhara Y, Okuda S, Watanabe Y, Yokoo T, Osaki A, Waguri N, Ishikawa T, Sato T, Aoyagi Y, Takamura M, Wakai T, Terai S. Adipose most abundant 2 protein is a predictive marker for cisplatin sensitivity in cancers. Sci Rep 2021; 11:6255. [PMID: 33737617 PMCID: PMC7973578 DOI: 10.1038/s41598-021-85498-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cisplatin (CDDP) is one of the chemotherapeutic drugs being used to treat various cancers. Although effective in many cases, as high doses of CDDP cause cytotoxic effects that may worsen patients' condition, therefore, a marker of sensitivity to CDDP is necessary to enhance the safety and efficiency of CDDP administration. This study focused on adipose most abundant 2 (APM2) to examine its potential as a marker of CDDP sensitivity. The relationship of APM2 expression with the mechanisms of CDDP resistance was examined in vitro and in vivo using hepatocellular carcinoma (HCC) cells, tissues and serum of HCC patients (n = 71) treated initially with intrahepatic arterial infusion of CDDP followed by surgical resection. The predictability of serum APM2 for CDDP sensitivity was assessed in additional 54 HCC patients and 14 gastric cancer (GC) patients. APM2 expression in CDDP-resistant HCC was significantly higher both in serum and the tissue. Bioinformatic analyses and histological analyses demonstrated upregulation of ERCC6L (DNA excision repair protein ERCC6-like) by APM2, which accounts for the degree of APM2 expression. The serum APM2 level and chemosensitivity for CDDP were assessed and cut-off value of serum APM2 for predicting the sensitivity to CDDP was determined to be 18.7 µg/mL. The value was assessed in HCC (n = 54) and GC (n = 14) patients for its predictability of CDDP sensitivity, resulted in predictive value of 77.3% and 100%, respectively. Our study demonstrated that APM2 expression is related to CDDP sensitivity and serum APM2 can be an effective biomarker of HCC and GC for determining the sensitivity to CDDP.Trial registration: This study was registered with the University Hospital Medical Information Network Clinical Trials Registry (UMIN000028487).
Collapse
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan.
- Department of General Medicine, Niigata University School of Medicine, 1-757, Asahimachido-ri, Chuo-ku, Niigata, Niigata, 951-8510, Japan.
| | - Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine Niigata University Hospital, Minamiuonuma, Niigata, 949-7302, Japan
| | - Yasuo Fukuhara
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Yu Watanabe
- Division of Bioinformatics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Akihiko Osaki
- Department of Gastroenterology and Hepatology, Niigata City General Hospital, Niigata, Niigata, 950-1197, Japan
| | - Nobuo Waguri
- Department of Gastroenterology and Hepatology, Niigata City General Hospital, Niigata, Niigata, 950-1197, Japan
| | - Toru Ishikawa
- Department of Gastroenterology and Hepatology, Saiseikai Niigata Hospital, Niigata, Niigata, 950-1104, Japan
| | - Toshihiro Sato
- Department of Gastroenterology, Kashiwazaki General Hospital and Medical Center, Kashiwazaki, Niigata, 945-8535, Japan
| | - Yutaka Aoyagi
- Department of Gastroenterology and Hepatology, Niigata Medical Center, Niigata, Niigata, 950-2022, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| |
Collapse
|
9
|
Shinde V, Hu N, Renuse S, Mahale A, Pandey A, Eberhart C, Stone D, Al-Swailem SA, Maktabi A, Chakravarti S. Mapping Keratoconus Molecular Substrates by Multiplexed High-Resolution Proteomics of Unpooled Corneas. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:583-597. [PMID: 31651220 DOI: 10.1089/omi.2019.0143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Keratoconus (KCN) is a leading cause for cornea grafting worldwide. Keratoconus is a multifactorial disease that causes progressive thinning of the cornea and whose etiology is poorly understood. Several studies have used proteomics on patient tear fluids to identify potential biomarkers. However, proteome of the cornea itself has not been investigated fully. We report here new findings from a case-control study using multiplexed mass spectrometry (MS) on individual (unpooled) corneas to gain deeper insights into proteins and biomarkers relevant to keratoconus. We employed a high-pressure approach to extract total protein from individual corneas from five cases and five controls, followed by trypsin digestion and tandem mass tag (TMT) labeling. The MS-derived data were searched using the Human NCBI RefSeq protein database v92, with peptides and proteins filtered at 1% false discovery rate. A total of 3132 proteins were detected, of which 627 were altered significantly (p ≤ 0.05) in keratoconus corneas. The increases were overwhelmingly in the mTOR/PI3/AKT signal-mediated regulations of cell survival and proliferation, nonsense-mediated decay of transcripts, and proteasomal pathways. The decreases were in several extracellular matrix proteins and in many members of the complement system. Importantly, this multiplexed proteomic study of keratoconus corneas identified, to our knowledge, the largest number of corneal proteins. The novel findings include changes in pathways that regulate transcript stability, proteasomal degradation, and the complement system in corneas with keratoconus. These observations offer new prospects toward future discovery of novel molecular targets for diagnostic and therapeutic innovations for patients with keratoconus.
Collapse
Affiliation(s)
- Vishal Shinde
- Department of Ophthalmology, NYU Langone Health, New York, New York
| | - Nan Hu
- Department of Ophthalmology, NYU Langone Health, New York, New York
| | - Santosh Renuse
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Alka Mahale
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Charles Eberhart
- Pathology, Ophthalmology and Oncology Department, Johns Hopkins Hospital, Baltimore, Maryland
| | - Donald Stone
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland
| | - Samar A Al-Swailem
- Anterior Segment Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Azza Maktabi
- Department of Pathology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Langone Health, New York, New York.,Department of Pathology, NYU Langone Health, New York, New York
| |
Collapse
|
10
|
Øverbye A, Skotland T, Koehler CJ, Thiede B, Seierstad T, Berge V, Sandvig K, Llorente A. Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget 2016. [PMID: 26196085 PMCID: PMC4745805 DOI: 10.18632/oncotarget.4851] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumour-specific molecules can be found in exosomes isolated from biological fluids. We have here investigated the proteome of urinary exosomes by using mass spectrometry to identify proteins differentially expressed in prostate cancer patients compared to healthy male controls. In total, 15 control and 16 prostate cancer samples of urinary exosomes were analyzed. Importantly, 246 proteins were differentially expressed in the two groups. The majority of these proteins (221) were up-regulated in exosomes from prostate cancer patients. These proteins were analyzed according to specific criteria to create a focus list that contained 37 proteins. At 100% specificity, 17 of these proteins displayed individual sensitivities above 60%. Even though several of these proteins showed high sensitivity and specificity for prostate cancer as individual biomarkers, combining them in a multi-panel test has the potential for full differentiation of prostate cancer from non-disease controls. The highest sensitivity, 94%, was observed for transmembrane protein 256 (TM256; chromosome 17 open reading frame 61). LAMTOR proteins were also distinctly enriched with very high specificity for patient samples. TM256 and LAMTOR1 could be used to augment the sensitivity to 100%. Other prominent proteins were V-type proton ATPase 16 kDa proteolipid subunit (VATL), adipogenesis regulatory factor (ADIRF), and several Rab-class members and proteasomal proteins. In conclusion, this study clearly shows the potential of using urinary exosomes in the diagnosis and clinical management of prostate cancer.
Collapse
Affiliation(s)
- Anders Øverbye
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian J Koehler
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bernd Thiede
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Therese Seierstad
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Viktor Berge
- Department of Urology, Oslo University Hospital, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Proteomic analysis of proteins surrounding occludin and claudin-4 reveals their proximity to signaling and trafficking networks. PLoS One 2015; 10:e0117074. [PMID: 25789658 PMCID: PMC4366163 DOI: 10.1371/journal.pone.0117074] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/18/2014] [Indexed: 01/15/2023] Open
Abstract
Tight junctions are complex membrane structures that regulate paracellular movement of material across epithelia and play a role in cell polarity, signaling and cytoskeletal organization. In order to expand knowledge of the tight junction proteome, we used biotin ligase (BioID) fused to occludin and claudin-4 to biotinylate their proximal proteins in cultured MDCK II epithelial cells. We then purified the biotinylated proteins on streptavidin resin and identified them by mass spectrometry. Proteins were ranked by relative abundance of recovery by mass spectrometry, placed in functional categories, and compared not only among the N- and C- termini of occludin and the N-terminus of claudin-4, but also with our published inventory of proteins proximal to the adherens junction protein E-cadherin and the tight junction protein ZO-1. When proteomic results were analyzed, the relative distribution among functional categories was similar between occludin and claudin-4 proximal proteins. Apart from already known tight junction- proteins, occludin and claudin-4 proximal proteins were enriched in signaling and trafficking proteins, especially endocytic trafficking proteins. However there were significant differences in the specific proteins comprising the functional categories near each of the tagging proteins, revealing spatial compartmentalization within the junction complex. Taken together, these results expand the inventory of known and unknown proteins at the tight junction to inform future studies of the organization and physiology of this complex structure.
Collapse
|
12
|
HOWELL MARK, GREEN RYAN, KILLEEN ALEXIS, WEDDERBURN LAMAR, PICASCIO VINCENT, RABIONET ALEJANDRO, PENG ZHENLING, LARINA MAYA, XUE BIN, KURGAN LUKASZ, UVERSKY VLADIMIRN. NOT THAT RIGID MIDGETS AND NOT SO FLEXIBLE GIANTS: ON THE ABUNDANCE AND ROLES OF INTRINSIC DISORDER IN SHORT AND LONG PROTEINS. J BIOL SYST 2013. [DOI: 10.1142/s0218339012400086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intrinsically disordered proteins or proteins with disordered regions are very common in nature. These proteins have numerous biological functions which are complementary to the biological activities of traditional ordered proteins. A noticeable difference in the amino acid sequences encoding long and short disordered regions was found and this difference was used in the development of length-dependent predictors of intrinsic disorder. In this study, we analyze the scaling of intrinsic disorder in eukaryotic proteins and investigate the presence of length-dependent functions attributed to proteins containing long disordered regions.
Collapse
Affiliation(s)
- MARK HOWELL
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - RYAN GREEN
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - ALEXIS KILLEEN
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - LAMAR WEDDERBURN
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - VINCENT PICASCIO
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - ALEJANDRO RABIONET
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - ZHENLING PENG
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - MAYA LARINA
- Department of Mathematics and Informatics, College of Medical Biochemistry, Volgograd State Medical University, 400131 Volgograd, Russia
| | - BIN XUE
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - LUKASZ KURGAN
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - VLADIMIR N. UVERSKY
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
13
|
Fukuhara Y, Suda T, Kobayashi M, Tamura Y, Igarashi M, Waguri N, Kawai H, Aoyagi Y. Identification of cellular genes showing differential expression associated with hepatitis B virus infection. World J Hepatol 2012; 4:139-148. [PMID: 22567186 PMCID: PMC3345538 DOI: 10.4254/wjh.v4.i4.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 09/06/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the impact of hepatitis B virus (HBV) infection on cellular gene expression, by conducting both in vitro and in vivo studies. METHODS Knockdown of HBV was targeted by stable expression of short hairpin RNA (shRNA) in huH-1 cells. Cellular gene expression was compared using a human 30K cDNA microarray in the cells and quantified by real-time reverse transcription-polymerase chain reaction (RT-PCR) (qRT-PCR) in the cells, hepatocellular carcinoma (HCC) and surrounding non-cancerous liver tissues (SL). RESULTS The expressions of HBsAg and HBx protein were markedly suppressed in the cells and in HBx transgenic mouse liver, respectively, after introduction of shRNA. Of the 30K genes studied, 135 and 103 genes were identified as being down- and up-regulated, respectively, by at least twofold in the knockdown cells. Functional annotation revealed that 85 and 62 genes were classified into four up-regulated and five down-regulated functional categories, respectively. When gene expression levels were compared between HCC and SL, eight candidate genes that were confirmed to be up- or down-regulated in the knockdown cells by both microarray and qRT-PCR analyses were not expressed as expected from HBV reduction in HCC, but had similar expression patterns in HBV- and hepatitis C virus-associated cases. In contrast, among the eight genes, only APM2 was constantly repressed in HBV non-associated tissues irrespective of HCC or SL. CONCLUSION The signature of cellular gene expression should provide new information regarding the pathophysiological mechanisms of persistent hepatitis and hepatocarcinogenesis that are associated with HBV infection.
Collapse
Affiliation(s)
- Yasuo Fukuhara
- Yasuo Fukuhara, Takeshi Suda, Makoto Kobayashi, Yasushi Tamura, Masato Igarashi, Nobuo Waguri, Hirokazu Kawai, Yutaka Aoyagi, Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata 951-8122, Japan
| | | | | | | | | | | | | | | |
Collapse
|