1
|
Li S, Zhang J, Wei W, Zhang Z, Huang W, Xia L. The important role of myeloid-derived suppressor cells: From hepatitis to liver cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189329. [PMID: 40262654 DOI: 10.1016/j.bbcan.2025.189329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Liver homeostasis is coordinated by crosstalk between resident and infiltrating inflammatory cells. Liver disease creates a dynamic inflammatory microenvironment characterized by aberrant metabolism and continuous hepatic regeneration, making it an important risk factor for hepatocellular carcinoma (HCC) as well as liver failure. Recent studies have revealed a critical heterogeneous population of myeloid-derived suppressor cells (MDSCs), which influence liver disease progression and malignancy by dynamically regulating the immune microenvironment. MDSCs play an important role in preventing excessive immune responses in the liver. However, MDSCs are also associated with the promotion of liver injury and liver cancer progression. The plasticity of MDSCs in liver disease is a unique challenge for therapeutic intervention strategies and requires a deeper understanding of the underlying mechanisms. Here, we review the role of MDSCs in the establishment and progression of liver disease and highlight the evidence for MDSCs as a priority target for current and future therapeutic strategies. We explore the fate of MDSCs from hepatitis to liver cancer, providing recent insights into potential targets for clinical intervention.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wang Wei
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhicheng Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
2
|
Liu T, Wang H, Zhao Y, Wang YX, Xing X, Gao P. Drug development for chronic hepatitis B functional cure: Recent progress. World J Hepatol 2025; 17:105797. [PMID: 40308829 PMCID: PMC12038417 DOI: 10.4254/wjh.v17.i4.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects approximately 254 million individuals globally, contributing to significant morbidity and mortality due to HBV-related liver failure and cirrhosis, which result in millions of fatalities each year. Although approved antiviral nucleos(t)ide analogues can effectively suppress HBV replication, their ability to reduce hepatitis B surface antigen (HBsAg) levels in plasma remains limited. The clinical application of the immunomodulator interferon-alpha is restricted by concerns regarding its safety and the severity of associated adverse reactions, rendering long-term administration challenging. Therefore, current drug development efforts for chronic hepatitis B aim to achieve a functional cure, which is defined as HBsAg serological clearance and sustained suppression of HBV DNA. This review discusses recent advancements in novel direct-acting therapeutic strategies for the treatment of chronic hepatitis B by focusing on the progresses in HBV entry inhibitors, monoclonal antibodies, RNA interferences, and other agents that directly target the virus. Furthermore, we discuss the development of immunomodulatory therapies, including TLR-7/8 agonists, immune checkpoint inhibitors, and therapeutic vaccines. In the end, we conclude by highlighting the importance of the rational combination-strategy design to improve the functional cure rate of HBV.
Collapse
Affiliation(s)
- Ting Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - He Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - Yue Zhao
- Graduate School Base Office, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Ying-Xin Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - Xue Xing
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - Peng Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning Province, China.
| |
Collapse
|
3
|
Huang SC, Kao JH. Combining therapeutic agents to target the immune systems of hepatitis B patients: what do we need to consider? Expert Rev Gastroenterol Hepatol 2025; 19:371-375. [PMID: 40057835 DOI: 10.1080/17474124.2025.2477256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Chronic hepatitis B (CHB) remains a major global health challenge, with functional cure achieved in only a small subset of patients. Current oral antiviral agents effectively suppress viral replication but fail to eliminate the hepatitis B virus (HBV). Recent advances in immunomodulatory therapies offer new hope for improving functional cure rates. AREAS COVERED This special report discusses the latest therapeutic strategies targeting immune responses in CHB. We list the mechanisms of immune evasion in HBV infection and highlight emerging immunomodulatory agents. Key findings from recent clinical trials and critical considerations are summarized to provide an overview of ongoing efforts and future direction to achieve functional cure. EXPERT OPINION While combination therapies hold promise, their real-world feasibility depends on patient selection, combination regimens, costs, and global accessibility. A successful HBV cure strategy must integrate scientific innovation with public health policies to ensure equitable access to effective treatments. Future research should identify key immune mechanisms, optimize combination regimens, and improve global treatment infrastructure.
Collapse
Affiliation(s)
- Shang-Chin Huang
- Department of Internal Medicine, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
4
|
Xu ZY, Gao JS, He Y, Xiao XQ, Gong GZ, Zhang M. Hepatitis B virus confers innate immunity evasion through hepatitis B virus-miR-3 down-regulation of cGAS-Sting-IFN signaling. World J Hepatol 2025; 17:99292. [PMID: 40027574 PMCID: PMC11866139 DOI: 10.4254/wjh.v17.i2.99292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/05/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) evades the innate immunity and leads to persistent chronic infection, but the molecular mechanism is still not well known. AIM To investigate whether HBV-miR-3 is involved in HBV immune evasion. METHODS HBV-miR-3 agomir and antagomir were employed to verify the effectiveness of HBV-miR-3 on cGAS-Sting-IFN pathway through the experiments on relative luciferase activity, cGAS protein expression, Sting phosphorylation and interferon (IFN) production. RESULTS HBV-miR-3 down-regulates cGAS protein expression post-transcriptionally by inhibition of cGAS 3'-untranslated region (3'-UTR) activity, which results in lower Sting phosphorylation and IFN production. HBV-miR-3 antagomir rescued cGAS protein expression, Sting phosphorylation and IFN-β production. CONCLUSION HBV-miR-3 plays an important role in HBV immunity evasion by targeting cGAS 3'-UTR and interfering with cGAS-Sting-IFN pathway.
Collapse
Affiliation(s)
- Zhen-Yu Xu
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Jia-Shi Gao
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ying He
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Xin-Qiang Xiao
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Guo-Zhong Gong
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| | - Min Zhang
- Institute of Hepatology and Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
5
|
Frericks N, Klöhn M, Lange F, Pottkämper L, Carpentier A, Steinmann E. Host-targeting antivirals for chronic viral infections of the liver. Antiviral Res 2025; 234:106062. [PMID: 39716667 DOI: 10.1016/j.antiviral.2024.106062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Infection with one or several of the five known hepatitis viruses is a leading cause of liver disease and poses a high risk of developing hepatocellular carcinoma upon chronic infection. Chronicity is primarily caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) and poses a significant health burden worldwide. Co-infection of chronic HBV infected patients with hepatitis D virus (HDV) is less common but is marked as the most severe form of chronic viral hepatitis. Hepatitis A virus (HAV) and hepatitis E virus (HEV) primarily cause self-limiting acute hepatitis. However, studies have also reported chronic progression of HEV disease in immunocompromised patients. While considerable progress has been made in the treatment of HCV and HBV through the development of direct-acting antivirals (DAAs), challenges including drug resistance, incomplete viral suppression resulting in failure to achieve clearance and the lack of effective treatment options for HDV and HEV remain. Host-targeting antivirals (HTAs) have emerged as a promising alternative approach to DAAs and aim to disrupt virus-host interactions by modulating host cell pathways that are hijacked during the viral replication cycle. The aim of this review is to provide a comprehensive overview about the major milestones in research and development of HTAs for chronic HBV/HDV and HCV infections. It also summarizes the current state of knowledge on promising host-targeting therapeutic options against HEV infection.
Collapse
Affiliation(s)
- Nicola Frericks
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Frauke Lange
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Lilli Pottkämper
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
6
|
Yu F, Zhu Y, Li S, Hao L, Li N, Ye F, Jiang Z, Hu X. Dysfunction and regulatory interplay of T and B cells in chronic hepatitis B: immunotherapy and emerging antiviral strategies. Front Cell Infect Microbiol 2024; 14:1488527. [PMID: 39717542 PMCID: PMC11663751 DOI: 10.3389/fcimb.2024.1488527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity. Humoral immunity, mediated by B-cell subpopulations, and cellular immunity, dominated by T-cell subpopulations show varying degrees of dysfunction during chronic hepatitis B (CHB). Notably, not all T- and B-cells produce positive immune responses. This review examine the most recent developments in the mutual regulation of T-B cells during chronic HBV infection. Our focus is on the prevailing immunotherapeutic strategies, such as T cell engineering, HBV-related vaccines, PD-1 inhibitors, and Toll-like receptor agonists. While nucleos(t)ide analogues (NUCs) and interferons have notable limitations, including inadequate viral suppression, drug resistance, and adverse reactions, several HBV entry inhibitors have shown promising clinical efficacy. To overcome the challenges posed by NUCs or monotherapy, the combination of immunotherapy and novel antiviral agents presents a promising avenue for future CHB treatment and potential cure.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Li J, Liu S, Zang Q, Yang R, Zhao Y, He Y. Current trends and advances in antiviral therapy for chronic hepatitis B. Chin Med J (Engl) 2024; 137:2821-2832. [PMID: 38945693 PMCID: PMC11649291 DOI: 10.1097/cm9.0000000000003178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Indexed: 07/02/2024] Open
Abstract
ABSTRACT Chronic hepatitis B virus (HBV) infection is a global public health concern. Existing antiviral drugs, including nucleos(t)ide analogs and interferon-α, can suppress HBV replication and improve the prognosis. However, the persistence of covalently closed circular DNA (cccDNA), the integration of HBV-DNA into the host genome, and compromised immune responses impede the successful treatment of hepatitis B. While achieving a functional cure of HBV remains elusive with the current treatment methods, this is the goal of new therapeutic approaches. Therefore, developing novel antiviral drugs is necessary for achieving a functional or complete cure for chronic hepatitis B. In recent years, substantial progress has been made in drug discovery and development for HBV infection. Direct-acting antiviral agents such as entry inhibitors, capsid assembly modulators, subviral particle release inhibitors, cccDNA silencers, and RNA interference molecules have entered clinical trials. In addition, several immunomodulatory agents, including toll-like receptor agonists, therapeutic vaccines, checkpoint inhibitors, and monoclonal antibodies, are also making their way toward clinical use. In this review, we summarize the recent progress and limitations of chronic hepatitis B treatment and discuss perspectives on approaches to achieving functional cure. Although it will take some time for these new antiviral drugs to be widely used in clinical practice, combination therapy may become a preferable treatment option in the future.
Collapse
Affiliation(s)
- Juan Li
- Department of Infectious Diseases, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Siyi Liu
- Department of Infectious Diseases, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Qijuan Zang
- Department of Infectious Diseases, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Ruijie Yang
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yingren Zhao
- Department of Infectious Diseases, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Shaanxi Clinical Research Center of Infectious Diseases, Xi’an, Shaanxi 710061, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yingli He
- Department of Infectious Diseases, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Shaanxi Clinical Research Center of Infectious Diseases, Xi’an, Shaanxi 710061, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
8
|
Baumert T, Urbanek-Quaing M, Cornberg M. Immunomodulation and entry inhibition: selgantolimod's double punch against hepatitis B virus. Gut 2024; 73:1925-1926. [PMID: 38969491 PMCID: PMC7616862 DOI: 10.1136/gutjnl-2024-332679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Thomas Baumert
- Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
- Hepatology-Gastroenterology Service, Strasbourg University Hospitals, Strasbourg, France
- Institute for Translational Medicine and Liver Disease, University of Strasbourg, Strasbourg, France
| | - Melanie Urbanek-Quaing
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), Hannover, Germany
| |
Collapse
|
9
|
Roca Suarez AA, Plissonnier ML, Grand X, Michelet M, Giraud G, Saez-Palma M, Dubois A, Heintz S, Diederichs A, Van Renne N, Vanwolleghem T, Daffis S, Li L, Kolhatkar N, Hsu YC, Wallin JJ, Lau AH, Fletcher SP, Rivoire M, Levrero M, Testoni B, Zoulim F. TLR8 agonist selgantolimod regulates Kupffer cell differentiation status and impairs HBV entry into hepatocytes via an IL-6-dependent mechanism. Gut 2024; 73:2012-2022. [PMID: 38697771 DOI: 10.1136/gutjnl-2023-331396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE Achieving HBV cure will require novel combination therapies of direct-acting antivirals and immunomodulatory agents. In this context, the toll-like receptor 8 (TLR8) agonist selgantolimod (SLGN) has been investigated in preclinical models and clinical trials for chronic hepatitis B (CHB). However, little is known regarding its action on immune effectors within the liver. Our aim was to characterise the transcriptomic changes and intercellular communication events induced by SLGN in the hepatic microenvironment. DESIGN We identified TLR8-expressing cell types in the human liver using publicly available single-cell RNA-seq data and established a method to isolate Kupffer cells (KCs). We characterised transcriptomic and cytokine KC profiles in response to SLGN. SLGN's indirect effect was evaluated by RNA-seq in hepatocytes treated with SLGN-conditioned media (CM) and quantification of HBV parameters following infection. Pathways mediating SLGN's effect were validated using transcriptomic data from HBV-infected patients. RESULTS Hepatic TLR8 expression takes place in the myeloid compartment. SLGN treatment of KCs upregulated monocyte markers (eg, S100A12) and downregulated genes associated with the KC identity (eg, SPIC). Treatment of hepatocytes with SLGN-CM downregulated NTCP and impaired HBV entry. Cotreatment with an interleukin 6-neutralising antibody reverted the HBV entry inhibition. CONCLUSION Our transcriptomic characterisation of SLGN sheds light into the programmes regulating KC activation. Furthermore, in addition to its previously described effect on established HBV infection and adaptive immunity, we show that SLGN impairs HBV entry. Altogether, SLGN may contribute through KCs to remodelling the intrahepatic immune microenvironment and may thus represent an important component of future combinations to cure HBV infection.
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Marie-Laure Plissonnier
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Xavier Grand
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Maud Michelet
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Guillaume Giraud
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Maria Saez-Palma
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Anaëlle Dubois
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Sarah Heintz
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Audrey Diederichs
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Nicolaas Van Renne
- Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
| | - Thomas Vanwolleghem
- Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | | | - Li Li
- Gilead Sciences Inc, 324 Lakeside Dr, Foster City, CA, USA
| | | | - Yao-Chun Hsu
- Center for Liver Diseases, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | | | - Audrey H Lau
- Gilead Sciences Inc, 324 Lakeside Dr, Foster City, CA, USA
| | | | | | - Massimo Levrero
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
- Department of Hepatology, Croix Rousse hospital, Hospices Civils de Lyon, Lyon, France
- Department of Internal Medicine - DMISM and the IIT Center for Life Nanoscience (CLNS), Sapienza University, Rome, Italy
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
- Department of Hepatology, Croix Rousse hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
10
|
Li S, Yang L, Xu Q, Li X, Zhao J, Tan Z, Gu X, Qiu J. Exploration of 1-(indolin-1-yl)-2-(thiazol-2-yl)ethan-1-one derivatives as novel anti-HBV agent with potential TLR7-agonistic effect. Eur J Med Chem 2024; 275:116575. [PMID: 38865744 DOI: 10.1016/j.ejmech.2024.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Hepatitis B virus (HBV) infection, as a serious global public health issue, is closely related to the immune dysfunction. Herein, thirty-seven 1-(indolin-1-yl)-2-(thiazol-4-yl)ethan-1-one derivatives were prepared as potential immunomodulatory anti-HBV agents. Anti-HBV activity evaluation confirmed compound 11a could significantly suppress the HBV DNA replication in both wild and resistant HBV stains, with IC50 values of 0.13 μM and 0.36 μM, respectively. Preliminary action mechanism studies showed that 11a had an inhibitory effect on cellular HBsAg secretion and could effectively activate TLR7, thereby inducing the secretion of TLR7-regulated cytokines IL-12, TNF-α and IFN-α in human PBMC cells. SPR analysis confirmed that 11a could bind to TLR7 protein with an affinity of 7.06 μM. MD simulation predicted that 11a could form tight interactions with residues in the binding pocket of TLR7. Physicochemical parameters perdition and pharmacokinetic analysis indicated that 11a displayed relatively favorable drug-like properties. Considering all the results, compound 11a might be a promising lead for developing novel immunomodulatory anti-HBV agents.
Collapse
Affiliation(s)
- Shuqiong Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Lihua Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Qiuting Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xincheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jiangyan Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zhoupeng Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| | - Jingying Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
11
|
Li H, Huang Y, Yang Q, Zhang Z, Shen S, Guo H, Wei W. Pharmacological activation of TLR7 exerts inhibition on the replication of EV-D68 in respiratory cells. J Virol 2024; 98:e0043424. [PMID: 38690875 PMCID: PMC11237570 DOI: 10.1128/jvi.00434-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024] Open
Abstract
The globally reemerging respiratory pathogen enterovirus D68 (EV-D68) is implicated in outbreaks of severe respiratory illness and associated with acute flaccid myelitis. However, there remains a lack of effective treatments for EV-D68 infection. In this work, we found that the host Toll-like receptor 7 (TLR7) proteins, which function as powerful innate immune sensors, were selectively elevated in expression in response to EV-D68 infection. Subsequently, we investigated the impact of Vesatolimod (GS-9620), a Toll-like receptor 7 agonist, on EV-D68 replication. Our findings revealed that EV-D68 infection resulted in increased mRNA levels of TLR7. Treatment with Vesatolimod significantly inhibited EV-D68 replication [half maximal effective concentration (EC50) = 0.1427 µM] without inducing significant cytotoxicity at virucidal concentrations. Although Vesatolimod exhibited limited impact on EV-D68 attachment, it suppressed RNA replication and viral protein synthesis after virus entry. Vesatolimod broadly inhibited the replication of circulating isolated strains of EV-D68. Furthermore, our findings demonstrated that treatment with Vesatolimod conferred resistance to both respiratory and neural cells against EV-D68 infection. Overall, these results present a promising strategy for drug development by pharmacologically activating TLR7 to initiate an antiviral state in EV-D68-infected cells selectively.IMPORTANCEConventional strategies for antiviral drug development primarily focus on directly targeting viral proteases or key components, as well as host proteins involved in viral replication. In this study, based on our intriguing discovery that enterovirus D68 (EV-D68) infection specifically upregulates the expression of immune sensor Toll-like receptor 7 (TLR7) protein, which is either absent or expressed at low levels in respiratory cells, we propose a potential antiviral approach utilizing TLR7 agonists to activate EV-D68-infected cells into an anti-viral defense state. Notably, our findings demonstrate that pharmacological activation of TLR7 effectively suppresses EV-D68 replication in respiratory tract cells through a TLR7/MyD88-dependent mechanism. This study not only presents a promising drug candidate and target against EV-D68 dissemination but also highlights the potential to exploit unique alterations in cellular innate immune responses induced by viral infections, selectively inducing a defensive state in infected cells while safeguarding uninfected normal cells from potential adverse effects associated with therapeutic interventions.
Collapse
Affiliation(s)
- Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yuehan Huang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Qingran Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhe Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Siyu Shen
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Gehring AJ, Salimzadeh L. Current and future use of antibody-based passive immunity to prevent or control HBV/HDV infections. Antiviral Res 2024; 226:105893. [PMID: 38679166 DOI: 10.1016/j.antiviral.2024.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
With the increasing momentum and success of monoclonal antibody therapy in conventional medical practices, there is a revived emphasis on the development of monoclonal antibodies targeting the hepatitis B surface antigen (anti-HBs) for the treatment of chronic hepatitis B (HBV) and hepatitis D (HDV). Combination therapies of anti-HBs monoclonal antibodies, and novel anti-HBV compounds and immunomodulatory drugs presenting a promising avenue to enhanced therapeutic outcomes in HBV/HDV cure regimens. In this review, we will cover the role of antibodies in the protection and clearance of HBV infection, the association of anti-HBV surface antigen antibodies (anti-HBs) in protection against HBV and how antibody effector functions, beyond neutralization, are likely necessary. Lastly, we will review clinical data from previous and ongoing clinical trials of passive antibody therapy to provide a state-of-the-are perspective on passive antibody therapies in combinations with additional novel agents.
Collapse
Affiliation(s)
- Adam J Gehring
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Loghman Salimzadeh
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
13
|
Yu X, Gao Y, Zhang X, Ji L, Fang M, Li M, Gao Y. Hepatitis B: Model Systems and Therapeutic Approaches. J Immunol Res 2024; 2024:4722047. [PMID: 38745751 PMCID: PMC11093688 DOI: 10.1155/2024/4722047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health issue and ranks among the top causes of liver cirrhosis and hepatocellular carcinoma. Although current antiviral medications, including nucleot(s)ide analogs and interferons, could inhibit the replication of HBV and alleviate the disease, HBV cannot be fully eradicated. The development of cellular and animal models for HBV infection plays an important role in exploring effective anti-HBV medicine. During the past decades, advancements in several cell culture systems, such as HepG2.2.15, HepAD38, HepaRG, hepatocyte-like cells, and primary human hepatocytes, have propelled the research in inhibiting HBV replication and expression and thus enriched our comprehension of the viral life cycle and enhancing antiviral drug evaluation efficacy. Mouse models, in particular, have emerged as the most extensively studied HBV animal models. Additionally, the present landscape of HBV therapeutics research now encompasses a comprehensive assessment of the virus's life cycle, targeting numerous facets and employing a variety of immunomodulatory approaches, including entry inhibitors, strategies aimed at cccDNA, RNA interference technologies, toll-like receptor agonists, and, notably, traditional Chinese medicine (TCM). This review describes the attributes and limitations of existing HBV model systems and surveys novel advancements in HBV treatment modalities, which will offer deeper insights toward discovering potentially efficacious pharmaceutical interventions.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yating Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Longshan Ji
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| |
Collapse
|
14
|
He J, Miao R, Chen Y, Wang H, Liu M. The dual role of regulatory T cells in hepatitis B virus infection and related hepatocellular carcinoma. Immunology 2024; 171:445-463. [PMID: 38093705 DOI: 10.1111/imm.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/27/2023] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to cancer-related deaths worldwide. Hepatitis B virus (HBV) infection is a major etiologic factor leading to HCC. While there have been significant advancements in controlling HBV replication, achieving a complete cure for HBV-related HCC (HBV-HCC) remains an intricate challenge. HBV persistence is attributed to a myriad of mechanisms, encompassing both innate and adaptive immune responses. Regulatory T cells (Tregs) are pivotal in upholding immune tolerance and modulating excessive immune activation. During HBV infection, Tregs mediate specific T cell suppression, thereby contributing to both persistent infection and the mitigation of liver inflammatory responses. Studies have demonstrated an augmented expression of circulating and intrahepatic Tregs in HBV-HCC, which correlates with impaired CD8+ T cell function. Consequently, Tregs play a dual role in the context of HBV infection and the progression of HBV-HCC. In this comprehensive review, we discuss pertinent studies concerning Tregs in HBV infection, HBV-related cirrhosis and HCC. Furthermore, we summarize Treg responses to antiviral therapy and provide Treg-targeted therapies specific to HBV and HCC.
Collapse
Affiliation(s)
- Jinan He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Miao
- Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yao Chen
- Department of Internal Medicine, Northeast Yunnan Regional Central Hospital, Zhaotong, Yunan, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Ide M, Tabata N, Yonemura Y, Murai K, Wang Y, Ishida A, Honda M, Kaneko S, Ito S, Yanagawa H. Hepatitis B virus evades the immune system by suppressing the NF-κB signaling pathway with DENND2A. Microbiol Spectr 2024; 12:e0378523. [PMID: 38240571 PMCID: PMC10913737 DOI: 10.1128/spectrum.03785-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/08/2023] [Indexed: 03/06/2024] Open
Abstract
Overcoming hepatitis B virus (HBV) is a challenging problem because HBV deceives the host immune system. We have found that DENN domain-containing 2A (DENND2A) was essential for HBV maintenance, although its role remains unclear. In this study, we elucidate its function by screening a novel DENND2A-binding peptide, DENP4-3S. DENP4-3S exhibits homology to SAM and SH3 domain-containing protein 1 (SASH1), a scaffold protein involved in Toll-like receptor signaling that promotes proinflammatory cytokine production. We confirmed that DENND2A interacts with SASH1 specifically. Overexpression and knockdown experiments showed that overexpression of DENND2A suppressed the transcriptional activity of NF-κB, and the knockdown of DENND2A promoted it and the production of cytokines and interferons. Here, we constructed a fusion protein (10M-DEN3SN) consisting of an anti-asialoglycoprotein receptor antibody and DENP4-3S to deliver the peptide to hepatocytes specifically. 10M-DEN3SN inhibited the interaction between DENND2A and SASH1, and rescued SASH1 trapped by DENND2A, leading to the upregulation of NF-κB and its downstream signaling. In addition, 10M-DEN3SN suppressed HBV proliferation in PXB chimeric mice. These results with the DENND2A-binding peptide delivered into hepatocytes suggested the involvement of DENND2A, SASH, and NF-κB signaling pathway in the HBV infection and onset of hepatitis. In conclusion, this study indicates that HBV utilizes DENND2A and SASH1 to evade the immune system.IMPORTANCEHepatitis B virus (HBV) is a serious liver infection with no established cure, causing an abnormal host immune response. Here, we identified a novel peptide that interacts with DENN domain-containing 2A (DENND2A), a host factor essential for HBV maintenance. The resulting peptide showed sequence homology, revealing an interaction between DENND2A and the immune system regulator SASH1. This study suggests that DENND2A contributes to HBV infection by suppressing the cellular immune system by inhibiting SASH1. The DENND2A-binding peptide, incorporated into our hepatocyte-specific peptide delivery system, inhibited the DENND2A-SASH1 interaction and promoted the production of cytokines and interferons in cultured hepatocytes. As a consequence, the peptide suppressed HBV proliferation in humanized mice. We report new insights into the role of DENND2A and SASH1 in HBV maintenance and highlight the importance of the immune system.
Collapse
Affiliation(s)
- Mayuko Ide
- Research Department, Purotech Bio Inc, Yokohama, Kanagawa, Japan
| | - Noriko Tabata
- Research Department, Purotech Bio Inc, Yokohama, Kanagawa, Japan
| | - Yuko Yonemura
- Research Department, Purotech Bio Inc, Yokohama, Kanagawa, Japan
| | - Kazuhisa Murai
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Ishikawa, Japan
| | - Ying Wang
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Ishikawa, Japan
| | - Atsuya Ishida
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Ishikawa, Japan
| | - Masao Honda
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Ishikawa, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa, Japan
| | - Satoru Ito
- Research Department, Purotech Bio Inc, Yokohama, Kanagawa, Japan
| | - Hiroshi Yanagawa
- Research Department, Purotech Bio Inc, Yokohama, Kanagawa, Japan
| |
Collapse
|
16
|
Janssen HL, Lim YS, Kim HJ, Sowah L, Tseng CH, Coffin CS, Elkhashab M, Ahn SH, Nguyen AH, Chen D, Wallin JJ, Fletcher SP, McDonald C, Yang JC, Gaggar A, Brainard DM, Fung S, Kim YJ, Kao JH, Chuang WL, Brooks AE, Dunbar PR. Safety, pharmacodynamics, and antiviral activity of selgantolimod in viremic patients with chronic hepatitis B virus infection. JHEP Rep 2024; 6:100975. [PMID: 38274492 PMCID: PMC10808922 DOI: 10.1016/j.jhepr.2023.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND & AIMS Novel finite therapies for chronic hepatitis B (CHB) are needed, since lifelong treatment is usually required with current available oral antivirals. This phase II study (NCT03615066) evaluated the safety, pharmacodynamics, and antiviral activity of selgantolimod (a Toll-like receptor 8 agonist [TLR8]) with tenofovir alafenamide (TAF). METHODS Viremic patients with CHB not receiving treatment were stratified by HBeAg status and randomized 2:2:1 to TAF 25 mg/day with selgantolimod 3 mg orally once weekly (QW), selgantolimod 1.5 mg QW, or placebo. Combination therapy continued until week (W)24, followed by TAF monotherapy until W48; patients then discontinued TAF and were followed until W96 (treatment-free follow-up [TFFU] period). The primary efficacy endpoint was the proportion with ≥1 log10 IU/ml HBsAg decline at W24. RESULTS Sixty-seven patients received study drug; 27 were followed during TFFU. Nausea, headache, vomiting, fatigue, and dizziness were the most common adverse events. Most adverse events were grade 1. Alanine aminotransferase flares were not observed up to W48. Four patients experienced alanine aminotransferase and hepatitis flares during TFFU; all had HBV DNA increases. Selgantolimod increased serum cytokines and chemokines and redistributed several circulating immune cell subsets. No patients achieved the primary efficacy endpoint. Mean HBsAg changes were -0.12, -0.16, and -0.12 log10 IU/ml in the selgantolimod 3 mg, selgantolimod 1.5 mg, and placebo groups, respectively, at W48; HBV DNA declined in all groups by ≥2 log10 IU/ml as early as W2, with all groups rebounding to baseline during TFFU. No HBsAg or HBeAg loss or seroconversion was observed throughout TFFU. CONCLUSIONS Selgantolimod up to 3 mg was safe and well tolerated. Pharmacodynamics and antiviral activity in viremic patients support continued study of selgantolimod in combination CHB therapies. IMPACT AND IMPLICATIONS Novel therapeutics for chronic HBV infection are needed to achieve a functional cure. In this study, we confirmed the safety and tolerability of selgantolimod (formerly GS-9688, a TLR8) when administered with tenofovir alafenamide over 24 weeks in viremic patients with chronic HBV infection. Overall, declines in HBsAg levels with selgantolimod treatment were modest; subgroup analysis indicated that patients with alanine aminotransferase levels greater than the upper limit of normal had significantly greater declines compared to those with normal alanine aminotransferase levels (-0.20 vs. -0.03 log10 IU/ml; p <0.001). These findings suggest a potential differential response to selgantolimod based on patients' baseline HBV-specific immune response, which should be considered in future investigations characterizing the underlying mechanisms of selgantolimod treatment and in HBV cure studies using similar immunomodulatory pathways. CLINICAL TRIAL NUMBER NCT03615066 be found at https://www.gileadclinicaltrials.com/transparency-policy/.
Collapse
Affiliation(s)
- Harry L. Janssen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Young-Suk Lim
- Asan Medical Centre, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyung Joon Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | | | - Cheng-Hao Tseng
- Division of Gastroenterology and Hepatology, E-Da Cancer Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Carla S. Coffin
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Sang Hoon Ahn
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Diana Chen
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | | | | | | | - Scott Fung
- Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Anna E. Brooks
- School of Biological Sciences, and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - P. Rod Dunbar
- School of Biological Sciences, and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Hu JL, Huang AL. Classifying hepatitis B therapies with insights from covalently closed circular DNA dynamics. Virol Sin 2024; 39:9-23. [PMID: 38110037 PMCID: PMC10877440 DOI: 10.1016/j.virs.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
The achievement of a functional cure for chronic hepatitis B (CHB) remains limited to a minority of patients treated with currently approved drugs. The primary objective in developing new anti-HBV drugs is to enhance the functional cure rates for CHB. A critical prerequisite for the functional cure of CHB is a substantial reduction, or even eradication of covalently closed circular DNA (cccDNA). Within this context, the changes in cccDNA levels during treatment become as a pivotal concern. We have previously analyzed the factors influencing cccDNA dynamics and introduced a preliminary classification of hepatitis B treatment strategies based on these dynamics. In this review, we employ a systems thinking perspective to elucidate the fundamental aspects of the HBV replication cycle and to rationalize the classification of treatment strategies according to their impact on the dynamic equilibrium of cccDNA. Building upon this foundation, we categorize current anti-HBV strategies into two distinct groups and advocate for their combined use to significantly reduce cccDNA levels within a well-defined timeframe.
Collapse
Affiliation(s)
- Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
18
|
Zhang C, Sui Y, Liu S, Yang M. The Roles of Myeloid-Derived Suppressor Cells in Liver Disease. Biomedicines 2024; 12:299. [PMID: 38397901 PMCID: PMC10886773 DOI: 10.3390/biomedicines12020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Liver disease-related mortality is a major cause of death worldwide. Hepatic innate and adaptive immune cells play diverse roles in liver homeostasis and disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells. MDSCs can be broadly divided into monocytic MDSCs and polymorphonuclear or granulocytic MDSCs, and they functionally interact with both liver parenchymal and nonparenchymal cells, such as hepatocytes and regulatory T cells, to impact liver disease progression. The infiltration and activation of MDSCs in liver disease can be regulated by inflammatory chemokines and cytokines, tumor-associated fibroblasts, epigenetic regulation factors, and gut microbiota during liver injury and cancer. Given the pivotal roles of MDSCs in advanced liver diseases, they can be targeted to treat primary and metastatic liver cancer, liver generation, alcoholic and nonalcoholic liver disease, and autoimmune hepatitis. Currently, several treatments such as the antioxidant and anti-inflammatory agent berberine are under preclinical and clinical investigation to evaluate their therapeutic efficacy on liver disease and their effect on MDSC infiltration and function. Phenotypic alteration of MDSCs in different liver diseases that are in a model-dependent manner and lack special markers for distinct MDSCs are challenges for targeting MDSCs to treat liver disease. Multi-omics study is an option to uncover the features of disease-specific MDSCs and potential gene or protein targets for liver disease treatment. In summary, MDSCs play important roles in the pathogenesis and progression of liver disease by regulating both intrahepatic innate and adaptive immune responses.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
19
|
Furutani Y, Hirano Y, Toguchi M, Higuchi S, Qin XY, Yanaka K, Sato-Shiozaki Y, Takahashi N, Sakai M, Kongpracha P, Suzuki T, Dohmae N, Kukimoto-Niino M, Shirouzu M, Nagamori S, Suzuki H, Kobayashi K, Masaki T, Koyama H, Sekiba K, Otsuka M, Koike K, Kohara M, Kojima S, Kakeya H, Matsuura T. A small molecule iCDM-34 identified by in silico screening suppresses HBV DNA through activation of aryl hydrocarbon receptor. Cell Death Discov 2023; 9:467. [PMID: 38135680 PMCID: PMC10746708 DOI: 10.1038/s41420-023-01755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
IFN-alpha have been reported to suppress hepatitis B virus (HBV) cccDNA via APOBEC3 cytidine deaminase activity through interferon signaling. To develop a novel anti-HBV drug for a functional cure, we performed in silico screening of the binding compounds fitting the steric structure of the IFN-alpha-binding pocket in IFNAR2. We identified 37 compounds and named them in silico cccDNA modulator (iCDM)-1-37. We found that iCDM-34, a new small molecule with a pyrazole moiety, showed anti-HCV and anti-HBV activities. We measured the anti-HBV activity of iCDM-34 dependent on or independent of entecavir (ETV). iCDM-34 suppressed HBV DNA, pgRNA, HBsAg, and HBeAg, and also clearly exhibited additive inhibitory effects on the suppression of HBV DNA with ETV. We confirmed metabolic stability of iCDM-34 was stable in human liver microsomal fraction. Furthermore, anti-HBV activity in human hepatocyte-chimeric mice revealed that iCDM-34 was not effective as a single reagent, but when combined with ETV, it suppressed HBV DNA compared to ETV alone. Phosphoproteome and Western blotting analysis showed that iCDM-34 did not activate IFN-signaling. The transcriptome analysis of interferon-stimulated genes revealed no increase in expression, whereas downstream factors of aryl hydrocarbon receptor (AhR) showed increased levels of the expression. CDK1/2 and phospho-SAMHD1 levels decreased under iCDM-34 treatment. In addition, AhR knockdown inhibited anti-HCV activity of iCDM-34 in HCV replicon cells. These results suggest that iCDM-34 decreases the phosphorylation of SAMHD1 through CDK1/2, and suppresses HCV replicon RNA, HBV DNA, and pgRNA formation.
Collapse
Affiliation(s)
- Yutaka Furutani
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan.
| | - Yoshinori Hirano
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa, 223-8522, Japan
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Mariko Toguchi
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shoko Higuchi
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaori Yanaka
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Yumi Sato-Shiozaki
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Nobuaki Takahashi
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Marina Sakai
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Pornparn Kongpracha
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaoru Kobayashi
- Laboratory of Biopharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroo Koyama
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
- Sasaki Institute Shonan Medical Examination Center, 10-4 Takarachou, Hiratsuka-shi, Kanagawa, 254-0034, Japan
| |
Collapse
|
20
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. TLR agonists as vaccine adjuvants in the prevention of viral infections: an overview. Front Microbiol 2023; 14:1249718. [PMID: 38179453 PMCID: PMC10764465 DOI: 10.3389/fmicb.2023.1249718] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Tol-like receptor (TLR) agonists, as potent adjuvants, have gained attention in vaccine research for their ability to enhance immune responses. This study focuses on their application in improving vaccine efficacy against key viral infections, including hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and flaviviruses, including West Nile virus, dengue virus, and chikungunya virus. Vaccines are crucial in preventing microbial infections, including viruses, and adjuvants play a vital role in modulating immune responses. However, there are still many diseases for which effective vaccines are lacking or have limited immune response, posing significant threats to human health. The use of TLR agonists as adjuvants in viral vaccine formulations holds promise in improving vaccine effectiveness. By tailoring adjuvants to specific pathogens, such as HBV, HCV, HIV, SARS-CoV-2, influenza virus, and flavivirus, protective immunity against chronic and emerging infectious disease can be elicited.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
21
|
Korkmaz P, Asan A, Karakeçili F, Tekin S, Demirtürk N. New Treatment Options in Chronic Hepatitis B: How Close Are We to Cure? INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2023; 5:267-280. [PMID: 38633851 PMCID: PMC10986727 DOI: 10.36519/idcm.2023.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 04/19/2024]
Abstract
Hepatitis B virus (HBV) infection is the leading cause of chronic liver disease worldwide. HBV-infected patients are at a lifetime risk of developing liver cirrhosis and hepatocellular carcinoma (HCC). Today, pegylated interferon (Peg-IFN) and nucleos(t)ide analogs (NAs) are used in the treatment of patients with chronic hepatitis B (CHB). Both treatment options have limitations. Despite effective viral suppression, NAs have little effect on covalently closed circular DNA (cccDNA), the stable episomal form of the HBV genome in hepatocytes. Therefore, the cure rate with NAs is low, and long-term treatment is required. Although the cure rate is better with Peg-IFN, it is difficult to tolerate due to drug side effects. Therefore, new treatment options are needed in the treatment of HBV infection. We can group new treatments under two headings: those that interfere with the viral life cycle and spread and those that modulate the immune response. Clinical studies show that combinations of treatments that directly target the viral life cycle and treatments that regulate the host immune system will be among the important treatment strategies in the future. As new direct-acting antiviral (DAA) and immunomodulatory therapies continue to emerge and evolve, functional cures in HBV treatment may be an achievable goal.
Collapse
Affiliation(s)
- Pınar Korkmaz
- Department of Infectious Diseases and Clinical Microbiology, Kütahya Health Sciences University School of Medicine, Kütahya, Türkiye
| | - Ali Asan
- Department of Infectious Diseases and Clinical Microbiology, Bursa Health Sciences University School of Medicine, Bursa, Türkiye
| | - Faruk Karakeçili
- Department of Infectious Diseases and Clinical Microbiology, Erzincan Binali Yıldırım University School of Medicine, Erzincan, Türkiye
| | - Süda Tekin
- Department of Infectious Diseases and Clinical Microbiology, Koç University School of Medicine, İstanbul, Türkiye
| | - Neşe Demirtürk
- Department of Infectious Diseases and Clinical Microbiology, Afyonkarahisar Health Sciences University, School of Medicine, Afyonkarahisar, Türkiye
| |
Collapse
|
22
|
Liu J, Liu J, Qin G, Li J, Fu Z, Li J, Li M, Guo C, Zhao M, Zhang Z, Li F, Zhao X, Wang L, Zhang Y. MDSCs-derived GPR84 induces CD8 + T-cell senescence via p53 activation to suppress the antitumor response. J Immunother Cancer 2023; 11:e007802. [PMID: 38016719 PMCID: PMC10685939 DOI: 10.1136/jitc-2023-007802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUNDS G-protein-coupled receptor 84 (GPR84) marks a subset of myeloid-derived suppressor cells (MDSCs) with stronger immunosuppression in the tumor microenvironment. Yet, how GPR84 endowed the stronger inhibition of MDSCs to CD8+ T cells function is not well established. In this study, we aimed to identify the underlying mechanism behind the immunosuppression of CD8+ T cells by GPR84+ MDSCs. METHODS The role and underlying mechanism that MDSCs or exosomes (Exo) regulates the function of CD8+ T cells were investigated using immunofluorescence, fluorescence activating cell sorter (FACS), quantitative real-time PCR, western blot, ELISA, Confocal, RNA-sequencing (RNA-seq), etc. In vivo efficacy and mechanistic studies were conducted with wild type, GPR84 and p53 knockout C57/BL6 mice. RESULTS Here, we showed that the transfer of GPR84 from MDSCs to CD8+ T cells via the Exo attenuated the antitumor response. This inhibitory effect was also observed in GPR84-overexpressed CD8+ T cells, whereas depleting GPR84 elevated CD8+ T cells proliferation and function in vitro and in vivo. RNA-seq analysis of CD8+ T cells demonstrated the activation of the p53 signaling pathway in CD8+ T cells treated with GPR84+ MDSCs culture medium. While knockout p53 did not induce senescence in CD8+ T cells treated with GPR84+ MDSCs. The per cent of GPR84+ CD8+ T cells work as a negative indicator for patients' prognosis and response to chemotherapy. CONCLUSIONS These data demonstrated that the transfer of GPR84 from MDSCs to CD8+ T cells induces T-cell senescence via the p53 signaling pathway, which could explain the strong immunosuppression of GPR84 endowed to MDSCs.
Collapse
Affiliation(s)
- Jinyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiayin Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiahui Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziyi Fu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Miaomiao Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Caijuan Guo
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuan Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & and Treatment, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Rossi M, Vecchi A, Tiezzi C, Barili V, Fisicaro P, Penna A, Montali I, Daffis S, Fletcher SP, Gaggar A, Medley J, Graupe M, Lad L, Loglio A, Soffredini R, Borghi M, Pollicino T, Musolino C, Alfieri A, Brillo F, Laccabue D, Massari M, Boarini C, Abbati G, Pedrazzi G, Missale G, Lampertico P, Ferrari C, Boni C. Phenotypic CD8 T cell profiling in chronic hepatitis B to predict HBV-specific CD8 T cell susceptibility to functional restoration in vitro. Gut 2023; 72:2123-2137. [PMID: 36717219 PMCID: PMC10579518 DOI: 10.1136/gutjnl-2022-327202] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Exhausted hepatitis B virus (HBV)-specific CD8 T cells in chronic HBV infection are broadly heterogeneous. Characterisation of their functional impairment may allow to distinguish patients with different capacity to control infection and reconstitute antiviral function. DESIGN HBV dextramer+CD8 T cells were analysed ex vivo for coexpression of checkpoint/differentiation markers, transcription factors and cytokines in 35 patients with HLA-A2+chronic hepatitis B (CHB) and in 29 control HBsAg negative CHB patients who seroconverted after NUC treatment or spontaneously. Cytokine production was also evaluated in HBV peptide-stimulated T cell cultures, in the presence or absence of antioxidant, polyphenolic, PD-1/PD-L1 inhibitor and TLR-8 agonist compounds and the effect on HBV-specific responses was further validated on additional 24 HLA-A2 negative CHB patients. RESULTS Severely exhausted HBV-specific CD8 T cell subsets with high expression of inhibitory receptors, such as PD-1, TOX and CD39, were detected only in a subgroup of chronic viraemic patients. Conversely, a large predominance of functionally more efficient HBV-specific CD8 T cell subsets with lower expression of coinhibitory molecules and better response to in vitro immune modulation, typically detected after resolution of infection, was also observed in a proportion of chronic viraemic HBV patients. Importantly, the same subset of patients who responded more efficiently to in vitro immune modulation identified by HBV-specific CD8 T cell analysis were also identified by staining total CD8 T cells with PD-1, TOX, CD127 and Bcl-2. CONCLUSIONS The possibility to distinguish patient cohorts with different capacity to respond to immune modulatory compounds in vitro by a simple analysis of the phenotypic CD8 T cell exhaustion profile deserves evaluation of its clinical applicability.
Collapse
Affiliation(s)
- Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Anuj Gaggar
- Gilead Sciences Inc, Foster City, California, USA
| | | | | | - Latesh Lad
- Gilead Sciences Inc, Foster City, California, USA
| | - Alessandro Loglio
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Roberta Soffredini
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marta Borghi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Teresa Pollicino
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Cristina Musolino
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Arianna Alfieri
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Federica Brillo
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marco Massari
- Unit of Infectious Diseases, IRCCS, Reggio Emilia, Italy
| | - Chiara Boarini
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Abbati
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Pedrazzi
- Department of Neuroscience - Biophysics and Medical Physics Unit, University of Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milano, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
24
|
Lok J, Guerra Veloz MF, Agarwal K. Overview of New Targets for Hepatitis B Virus: Immune Modulators, Interferons, Bifunctional Peptides, Therapeutic Vaccines and Beyond. Clin Liver Dis 2023; 27:857-876. [PMID: 37778774 DOI: 10.1016/j.cld.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Nucleos(t)ide analogs are the cornerstone of treatment against hepatitis B virus; however, they have no direct effect on its transcriptional template (ie, covalently closed circular DNA) and so functional cure is rarely achieved. Over recent years, there has been a significant improvement in our understanding of the viral life cycle and its mechanisms of immune evasion. In this review article, we will explore novel therapeutic targets, discuss the latest data from clinical trials, and highlight future research priorities.
Collapse
Affiliation(s)
- James Lok
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK
| | | | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK.
| |
Collapse
|
25
|
Zhou J, He X, Ou Y, Peng S, Li D, Zhou Q, Fu J, Long Y, Tan Y. Role of CXCR5 + CD8 + T cells in human hepatitis B virus infection. J Viral Hepat 2023; 30:638-645. [PMID: 37129474 DOI: 10.1111/jvh.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The replication of HBV in hepatocytes can be effectively inhibited by lifelong antiviral therapy. Because of the long-term presence of HBV reservoirs, the virus rebound frequently occurs once the treatment is stopped, which poses a considerable obstacle to the complete removal of the virus. In terms of gene composition, regulation of B cell action and function, CXCR5+ CD8+ T cells are similar to CXCR5+ CD4+ T follicular helper cells, while these cells are characterized by elevated programmed cell death 1 and cytotoxic-related proteins. CXCR5+ CD8+ T cells are strongly associated with progression in inflammatory and autoimmune diseases. In addition, CXCR5 expression on the surface of CD8+ T cells is mostly an indicator of memory stem cell-like failure in progenitor cells in cancer that are more responsive to immune checkpoint blocking therapy. Furthermore, the phenomena have also been demonstrated in some viral infections, highlighting the duality of the cellular immune response of CXCR5+ CD8+ T cells. This mini-review will focus on the function of CXCR5+ CD8+ T cells in HBV infection and discuss the function of these CD8+ T cells and the potential of associated co-stimulators or cytokines in HBV therapeutic strategies.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Xiaojing He
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yangjing Ou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Shuang Peng
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Dan Li
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Qing Zhou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Jingli Fu
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yunzhu Long
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yingzheng Tan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| |
Collapse
|
26
|
Yi Q, Yang J, Wu Y, Wang Y, Cao Q, Wen W. Immune microenvironment changes of liver cirrhosis: emerging role of mesenchymal stromal cells. Front Immunol 2023; 14:1204524. [PMID: 37539053 PMCID: PMC10395751 DOI: 10.3389/fimmu.2023.1204524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
Cirrhosis is a progressive and diffuse liver disease characterized by liver tissue fibrosis and impaired liver function. This condition is brought about by several factors, including chronic hepatitis, hepatic steatosis, alcohol abuse, and other immunological injuries. The pathogenesis of liver cirrhosis is a complex process that involves the interaction of various immune cells and cytokines, which work together to create the hepatic homeostasis imbalance in the liver. Some studies have indicated that alterations in the immune microenvironment of liver cirrhosis are closely linked to the development and prognosis of the disease. The noteworthy function of mesenchymal stem cells and their paracrine secretion lies in their ability to promote the production of cytokines, which in turn enhance the self-repairing capabilities of tissues. The objective of this review is to provide a summary of the alterations in liver homeostasis and to discuss intercellular communication within the organ. Recent research on MSCs is yielding a blueprint for cell typing and biomarker immunoregulation. Hopefully, as MSCs researches continue to progress, novel therapeutic approaches will emerge to address cirrhosis.
Collapse
Affiliation(s)
- Qiuyun Yi
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jinxian Yang
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Wu
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Ying Wang
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiqi Cao
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Wen
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
27
|
Feld JJ, Lok AS, Zoulim F. New Perspectives on Development of Curative Strategies for Chronic Hepatitis B. Clin Gastroenterol Hepatol 2023; 21:2040-2050. [PMID: 37080262 DOI: 10.1016/j.cgh.2023.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 04/22/2023]
Abstract
A functional cure of chronic hepatitis B defined as sustained hepatitis B surface antigen loss after finite course of therapy is rarely achieved with current therapy but is the goal of novel treatments. Understanding the virological and immunological mechanisms of hepatitis B virus persistence has enabled the identification of novel treatment targets, drug discovery, and the evaluation of novel agents in clinical trials. Lessons were learned from early phase 1 and phase 2 trials regarding the antiviral activity and safety profile of these agents. There is a strong rationale to combine agents to reduce viral replication, reduce viral antigen load, invigorate immune responses, and induce specific adaptive immune responses. Nucleos(t)ide analogs will likely remain an essential backbone of future combinations to control viral replication and prevent resistance to antiviral drugs. In this review, we discuss perspectives on approaches to achieving functional cure, with a review of virological and immunological strategies, highlighting challenges and unresolved questions with the various attempts to achieve cure, as well as exploring alternative endpoints such as partial cure and new noninvasive viral and immunological biomarkers to stratify patients and predict/monitor antiviral response.
Collapse
Affiliation(s)
- Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan
| | - Fabien Zoulim
- INSERM Unit 1052 - Cancer Research Center of Lyon, Lyon Hepatology Institute, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
28
|
Lin N, Yin W, Miller H, Byazrova MG, Herrada AA, Benlagha K, Lee P, Guan F, Lei J, Gong Q, Yan Y, Filatov A, Liu C. The role of regulatory T cells and follicular T helper cells in HBV infection. Front Immunol 2023; 14:1169601. [PMID: 37275865 PMCID: PMC10235474 DOI: 10.3389/fimmu.2023.1169601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatitis B has become one of the major global health threats, especially in developing countries and regions. Hepatitis B virus infection greatly increases the risk for liver diseases such as cirrhosis and cancer. However, treatment for hepatitis B is limited when considering the huge base of infected people. The immune response against hepatitis B is mediated mainly by CD8+ T cells, which are key to fighting invading viruses, while regulatory T cells prevent overreaction of the immune response process. Additionally, follicular T helper cells play a key role in B-cell activation, proliferation, differentiation, and formation of germinal centers. The pathogenic process of hepatitis B virus is generally the result of a disorder or dysfunction of the immune system. Therefore, we present in this review the critical functions and related biological processes of regulatory T cells and follicular T helper cells during HBV infection.
Collapse
Affiliation(s)
- Nengqi Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Research and Development, BD Biosciences, San Jose, CA, United States
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Youqing Yan
- Department of Infectious Disease, Wuhan No.7 Hospital, Wuhan, China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Vlaming KE, van Wijnbergen K, Kaptein TM, Nijhuis M, Kootstra NJ, de Bree GJ, Geijtenbeek TB. Crosstalk between TLR8 and RIG-I-like receptors enhances antiviral immune responses. Front Med (Lausanne) 2023; 10:1146457. [PMID: 37261119 PMCID: PMC10227620 DOI: 10.3389/fmed.2023.1146457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Background Toll-like receptor (TLR) agonists have been investigated due to their potential dual effects as latency reverting agents and immune modulatory compounds in people living with HIV (PLWH). Here, we investigated whether co-stimulation of TLR7/8 agonists with RIG-I-like receptor (RLR) agonists enhances antiviral immunity. Methods Peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (DCs) were incubated with TLR and RLR-agonists for 24 h and innate and adaptive immune responses were determined (maturation markers, cytokines in supernatant, ISG expression). Results Both TLR7 and TLR8 agonists induced pro-inflammatory cytokines in DCs as well as PBMCs. TLR8 agonists were more potent in inducing cytokine responses and had a stronger effect on DC-induced immunity. Notably, while all compounds induced IL-12p70, co-stimulation with TLR8 agonists and RLR agonist polyI: C induced significantly higher levels of IL-12p70 in PBMCs. Moreover, crosstalk between TLR8 and RLR agonists induced a strong type I Interferon (IFN) response as different antiviral IFN-stimulated genes were upregulated by the combination compared to the agonists alone. Conclusion Our data strongly suggest that TLR crosstalk with RLRs leads to strong antiviral immunity as shown by induction of IL-12 and type I IFN responses in contrast to TLRs alone. Thus, co-stimulation of TLRs and RLRs might be a powerful strategy to induce reactivation of latent reservoir as well as antiviral immunity that eliminates the reactivated cells.
Collapse
Affiliation(s)
- Killian E. Vlaming
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Kelly van Wijnbergen
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Tanja M. Kaptein
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Neeltje J. Kootstra
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
30
|
Khan N, Almajed MR, Fitzmaurice MG, Jafri SM. Developments in pharmacotherapeutic agents for hepatitis B - how close are we to a functional cure? Expert Opin Pharmacother 2023; 24:1001-1011. [PMID: 37163255 DOI: 10.1080/14656566.2023.2211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Hepatitis B virus (HBV) remains a public health concern given its global prevalence and potential complications including hepatocellular carcinoma (HCC). Current therapies, including nucleos(t)ide analogs (NA) and interferons (IFN), are effective in chronic treatment of HBV but rarely provide a functional cure due to inadequate host response and the presence of viral DNA. Therefore, novel therapies that enhance the innate immune response while suppressing DNA transcription may provide definitive treatment of HBV. AREAS COVERED In this review, the authors provide a brief overview of commonly used agents and their efficacy in treatment of HBV. Newer therapies with direct antiviral agents such as bepirovirsen (antisense oligonucleotide (ASO)) and entry inhibitors such as bulevirtide have shown efficacy in reducing viral load but demonstrate further reductions in conjunction with immune modulators such as therapeutic vaccines. EXPERT OPINION Combination therapy is far superior to monotherapy alone, necessitating the need for both immunomodulators and direct antiviral agents in chronic treatment of HBV. Therapies that target covalently closed circular (cccDNA) with immunomodulators like therapeutic vaccines have shown promising results and may ultimately achieve functional cure. However, therapies need to be evaluated in the context of the patient, considering both financial and socioeconomic factors.
Collapse
Affiliation(s)
- Naoshin Khan
- Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | - Mohamed Ramzi Almajed
- Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | - Mary Grace Fitzmaurice
- Pharmacy Department and Transplant Institute, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | - Syed-Mohammed Jafri
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| |
Collapse
|
31
|
Yang M, Vanderwert E, Kimchi ET, Staveley-O’Carroll KF, Li G. The Important Roles of Natural Killer Cells in Liver Fibrosis. Biomedicines 2023; 11:1391. [PMID: 37239062 PMCID: PMC10216436 DOI: 10.3390/biomedicines11051391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Liver fibrosis accompanies the development of various chronic liver diseases and promotes their progression. It is characterized by the abnormal accumulation of extracellular matrix proteins (ECM) and impaired ECM degradation. Activated hepatic stellate cells (HSCs) are the major cellular source of ECM-producing myofibroblasts. If liver fibrosis is uncontrolled, it may lead to cirrhosis and even liver cancer, primarily hepatocellular carcinoma (HCC). Natural killer (NK) cells are a key component of innate immunity and have miscellaneous roles in liver health and disease. Accumulating evidence shows that NK cells play dual roles in the development and progression of liver fibrosis, including profibrotic and anti-fibrotic functions. Regulating NK cells can suppress the activation of HSCs and improve their cytotoxicity against activated HSCs or myofibroblasts to reverse liver fibrosis. Cells such as regulatory T cells (Tregs) and molecules such as prostaglandin E receptor 3 (EP3) can regulate the cytotoxic function of NK cells. In addition, treatments such as alcohol dehydrogenase 3 (ADH3) inhibitors, microRNAs, natural killer group 2, member D (NKG2D) activators, and natural products can enhance NK cell function to inhibit liver fibrosis. In this review, we summarized the cellular and molecular factors that affect the interaction of NK cells with HSCs, as well as the treatments that regulate NK cell function against liver fibrosis. Despite a lot of information about NK cells and their interaction with HSCs, our current knowledge is still insufficient to explain the complex crosstalk between these cells and hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, B cells, and T cells, as well as thrombocytes, regarding the development and progression of liver fibrosis.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Ethan Vanderwert
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.)
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| |
Collapse
|
32
|
Khanam A, Ghosh A, Chua JV, Kottilil S. Blockade of CCR4 breaks immune tolerance in chronic hepatitis B patients by modulating regulatory pathways. J Transl Med 2023; 21:271. [PMID: 37081509 PMCID: PMC10120209 DOI: 10.1186/s12967-023-04104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Immunotargets including checkpoint inhibitors and toll-like receptor 8 agonists have recently gained attention for the recovery of hepatitis B virus (HBV)-specific T cell exhaustion in chronic hepatitis B(CHB). Chemokine receptors have a similar significant role during viral infections; however, their role in CHB remains poorly understood. Therefore, in this study we evaluated the role of chemokine receptor 4 (CCR4) in deriving immunosuppression during CHB. METHODS We characterized CCR4+CD8+ T cells in CHB and identified their involvement in immunosuppression. Further, we examined if CCR4 blockade with mogamulizumab antibody can recover the functional exhaustion in HBsAg-specific T cells. RESULTS CHB patients exhibit higher frequency of CCR4+CD8+ T cells that increase with higher HBsAg levels and fibrosis scores. In vitro, HBs antigen triggers CCR4 expression. These cells express multiple inhibitory receptors and exhibit immunosuppressive functions by producing excessive immunoregulatory cytokines IL-4, IL-5, IL-10 and TGF-β1. CCR4 Blockade significantly boosted HBsAg-specific antiviral-cytokine production(IFN-γ, TNF-α and IL-21) in T cells through enhancing their proliferation capacity and polarizing these cells towards T helper 1(Th1) and T follicular helper cells(TFH) in case of CD4 cells, and cytotoxic T cell 1(TC1) and cytotoxic T follicular(TCF) cells in case of CD8. Cytotoxic potential was improved, while no induction of immunosuppressive-cytokines was seen after anti-CCR4 treatment thereby eliminating the risk of treatment-induced immunosuppression. CCR4 blockade inhibited the development and effector function of Tregs by controlling their expansion and TGF-β1 production preventing Tregs-induced immunotolearance. CONCLUSIONS CCR4 blockade reconstitutes antiviral immune response in T cells and limits the immunosuppressive functions of Tregs, representing them as a promising immunotherapeutic target for functional cure of CHB.
Collapse
Affiliation(s)
- Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alip Ghosh
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joel V Chua
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Pan Y, Xia H, He Y, Zeng S, Shen Z, Huang W. The progress of molecules and strategies for the treatment of HBV infection. Front Cell Infect Microbiol 2023; 13:1128807. [PMID: 37009498 PMCID: PMC10053227 DOI: 10.3389/fcimb.2023.1128807] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023] Open
Abstract
Hepatitis B virus infections have always been associated with high levels of mortality. In 2019, hepatitis B virus (HBV)-related diseases resulted in approximately 555,000 deaths globally. In view of its high lethality, the treatment of HBV infections has always presented a huge challenge. The World Health Organization (WHO) came up with ambitious targets for the elimination of hepatitis B as a major public health threat by 2030. To accomplish this goal, one of the WHO's strategies is to develop curative treatments for HBV infections. Current treatments in a clinical setting included 1 year of pegylated interferon alpha (PEG-IFNα) and long-term nucleoside analogues (NAs). Although both treatments have demonstrated outstanding antiviral effects, it has been difficult to develop a cure for HBV. The reason for this is that covalently closed circular DNA (cccDNA), integrated HBV DNA, the high viral burden, and the impaired host immune responses all hinder the development of a cure for HBV. To overcome these problems, there are clinical trials on a number of antiviral molecules being carried out, all -showing promising results so far. In this review, we summarize the functions and mechanisms of action of various synthetic molecules, natural products, traditional Chinese herbal medicines, as clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR/Cas)-based systems, zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), all of which could destroy the stability of the HBV life cycle. In addition, we discuss the functions of immune modulators, which can enhance or activate the host immune system, as well some representative natural products with anti-HBV effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Gane EJ, Dunbar PR, Brooks AE, Zhang F, Chen D, Wallin JJ, van Buuren N, Arora P, Fletcher SP, Tan SK, Yang JC, Gaggar A, Kottilil S, Tang L. Safety and efficacy of the oral TLR8 agonist selgantolimod in individuals with chronic hepatitis B under viral suppression. J Hepatol 2023; 78:513-523. [PMID: 38133554 DOI: 10.1016/j.jhep.2022.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND & AIMS Selgantolimod (GS-9688) is a Toll-like receptor 8 (TLR8) agonist that suppresses HBV in vitro. In a phase II study, we evaluated the safety and efficacy of weekly selgantolimod treatment in virally suppressed individuals with chronic HBV taking oral antiviral treatment. METHODS Forty-eight patients were randomized into two cohorts (hepatitis B e antigen [HBeAg]-positive and -negative [n = 24 each]) to receive oral selgantolimod 3 mg, 1.5 mg, or placebo (2:2:1) once weekly for 24 weeks while maintaining oral antivirals. The primary efficacy endpoint was the percentage of patients with a ≥1 log10 IU/ml decline in hepatitis B surface antigen (HBsAg) from baseline to week 24. Post-treatment, patients continued on oral antivirals for 24 weeks. RESULTS The primary endpoint was reached by one participant, who was HBeAg-negative and received selgantolimod 1.5 mg. In contrast with placebo-treated patients (n = 9), only selgantolimod-treated patients (n = 39 total) had HBsAg declines greater than 0.1 log10 IU/ml at weeks 24 (18%, 7/39) and 48 (26%, 10/39), HBsAg loss (5%, 2/39 through 48 weeks), or HBeAg loss (16%, 3/19 through 48 weeks). The most common adverse events in selgantolimod-treated groups were nausea (46%), upper respiratory tract infection (23%), and vomiting (23%). Gastrointestinal disorders were mostly mild and transient. Selgantolimod induced transient dose-dependent increases in serum cytokines, including IL-12p40, IFN-γ, and IL-1RA, as well as rapid redistribution of some circulating immune cell subsets. CONCLUSION Oral selgantolimod up to 3 mg once weekly for 24 weeks was generally safe and well tolerated and led to serologic changes associated with progression to durable cure in two individuals by week 48. CLINICALTRIALS GOV IDENTIFIER NCT03491553. IMPACT AND IMPLICATIONS The only robust criterion for stopping treatment in chronic hepatitis B is loss of hepatitis B surface antigen (known as functional cure), which is rare during nucleos(t)ide analogue therapy. It is likely that novel antiviral and immunomodulatory therapies will be needed to achieve finite functional cure. Selgantolimod is an oral Toll-like receptor 8 agonist that has shown antiviral activity in vitro as well as safety in a phase I clinical trial with weekly dosing. In this phase II study, selgantolimod therapy was associated with transient increases in serum cytokines, rapid redistribution of circulating immune cell subsets, modest reductions in HBsAg and HBeAg levels, and occasional loss of HBsAg (5%) and HBeAg (16%) among participants with chronic hepatitis B on nucleos(t)ide analogue therapy with viral suppression. Our results support continued development of selgantolimod as a component of a future hepatitis B cure regimen.
Collapse
Affiliation(s)
| | - P Rod Dunbar
- School of Biological Sciences, Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Anna E Brooks
- School of Biological Sciences, Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | | | - Diana Chen
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | | - Jenny C Yang
- Gilead Sciences, Inc., Foster City, California, USA
| | - Anuj Gaggar
- Gilead Sciences, Inc., Foster City, California, USA
| | - Shyamasundaran Kottilil
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, USA
| | - Lydia Tang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, USA
| |
Collapse
|
35
|
Ao X, Gan Q, Huang X, Bao D, Wu X, Lin Q, Lin A, Ding Y, Wang L, Chen Y, Huang Z. TLR8 agonist partially improves IFN-γ deficiency of NK cells in chronic hepatitis B through the synergy of monocytes. Aliment Pharmacol Ther 2023; 57:387-398. [PMID: 36585909 DOI: 10.1111/apt.17382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Natural killer (NK) cells exhibit a selective deficiency of IFN-γ production in chronic hepatitis B (CHB). Toll-like receptor 8 (TLR8) agonists could induce IFN-γ production in immune cells, although their effects on the deficiency in NK cells remain unclear. AIMS To investigate TLR8 expression in NK cells and the effect of TLR8 agonists in patients with CHB METHODS: We enrolled 32 patients with CHB and 19 healthy controls to assess TLR8 expression and IFN-γ production in NK cells. The sorted NK cells and monocytes were co-cultured to compare the extent of IFN-γ and IL-10 production after TLR8 agonist ssRNA40 stimulation. The synergic effect of NK cells and monocytes was assessed by blocking IL-12 and IL-18. We recruited another 22 patients with CHB undergoing nucleotide analogue (NA) therapy to explore the impact of antiviral treatment on the ssRNA40-mediated response of NK cells. RESULTS In patients with CHB, TLR8 expression in NK cells was up-regulated, accompanied by insufficient IFN-γ production. The enhanced IFN-γ secretion by ssRNA40 in NK cells depended on monocyte-derived IL-12 and IL-18. NK cells displayed an imbalanced response to ssRNA40 in patients with CHB with a weak increase in IFN-γ despite a higher IL-10 production. The response was improved in patients with CHB undergoing NA therapy. CONCLUSIONS In patients with CHB, targeting TLR8 partially rescues the IFN-γ insufficiency in NK cells. However, NK cells show an inhibitory response to TLR8 agonist stimulation. TLR8 agonist combined with NA may enhance the antiviral effect of NK cells.
Collapse
Affiliation(s)
- Xiulan Ao
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Hepatology, Affiliated Infectious Disease Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qiaorong Gan
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Hepatology, Affiliated Infectious Disease Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xuan Huang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongpeng Bao
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Hepatology, Affiliated Infectious Disease Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xuwei Wu
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Hepatology, Affiliated Infectious Disease Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qiuxiang Lin
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Hepatology, Affiliated Infectious Disease Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Aifang Lin
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Hepatology, Affiliated Infectious Disease Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yating Ding
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Hepatology, Affiliated Infectious Disease Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lingxia Wang
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Hepatology, Affiliated Infectious Disease Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yanping Chen
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Hepatology, Affiliated Infectious Disease Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zuxiong Huang
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Hepatology, Affiliated Infectious Disease Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
36
|
The scientific basis of combination therapy for chronic hepatitis B functional cure. Nat Rev Gastroenterol Hepatol 2023; 20:238-253. [PMID: 36631717 DOI: 10.1038/s41575-022-00724-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 01/13/2023]
Abstract
Functional cure of chronic hepatitis B (CHB) - or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy - is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available.
Collapse
|
37
|
Glover A, Zhang Z, Shannon-Lowe C. Deciphering the roles of myeloid derived suppressor cells in viral oncogenesis. Front Immunol 2023; 14:1161848. [PMID: 37033972 PMCID: PMC10076641 DOI: 10.3389/fimmu.2023.1161848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Myeloid derived suppressor cells (MDSCs) are a heterogenous population of myeloid cells derived from monocyte and granulocyte precursors. They are pathologically expanded in conditions of ongoing inflammation where they function to suppress both innate and adaptive immunity. They are subdivided into three distinct subsets: monocytic (M-) MDSC, polymorphonuclear (or neutrophilic) (PMN-) MDSC and early-stage (e-) MDSC that may exhibit differential function in different pathological scenarios. However, in cancer they are associated with inhibition of the anti-tumour immune response and are universally associated with a poor prognosis. Seven human viruses classified as Group I carcinogenic agents are jointly responsible for nearly one fifth of all human cancers. These viruses represent a large diversity of species, including DNA, RNA and retroviridae. They include the human gammaherpesviruses (Epstein Barr virus (EBV) and Kaposi's Sarcoma-Associated Herpesvirus (KSHV), members of the high-risk human papillomaviruses (HPVs), hepatitis B and C (HBV, HCV), Human T cell leukaemia virus (HTLV-1) and Merkel cell polyomavirus (MCPyV). Each of these viruses encode an array of different oncogenes that perturb numerous cellular pathways that ultimately, over time, lead to cancer. A prerequisite for oncogenesis is therefore establishment of chronic infection whereby the virus persists in the host cells without being eradicated by the antiviral immune response. Although some of the viruses can directly modulate the immune response to enable persistence, a growing body of evidence suggests the immune microenvironment is modulated by expansions of MDSCs, driven by viral persistence and oncogenesis. It is likely these MDSCs play a role in loss of immune recognition and function and it is therefore essential to understand their phenotype and function, particularly given the increasing importance of immunotherapy in the modern arsenal of anti-cancer therapies. This review will discuss the role of MDSCs in viral oncogenesis. In particular we will focus upon the mechanisms thought to drive the MDSC expansions, the subsets expanded and their impact upon the immune microenvironment. Importantly we will explore how MDSCs may modulate current immunotherapies and their impact upon the success of future immune-based therapies.
Collapse
|
38
|
Xu X, Zhang L, Liu J, Kong X, Yin Y, Jia Z, Zhang X, Peng B, Ji M, Pan W. Exosomal HBV-DNA for diagnosis and treatment monitoring of chronic hepatitis B. Open Life Sci 2023; 18:20220585. [PMID: 37077344 PMCID: PMC10106972 DOI: 10.1515/biol-2022-0585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 04/21/2023] Open
Abstract
This study examined exosomal hepatitis B virus (HBV)-DNA levels in chronic HBV infection (CHB). Patients were grouped according to the European Association for the Study of the Liver classification (1: HBV-DNA-positive CHB, normal alanine aminotransferase [ALT]; 2: HBV-DNA-positive CHB, elevated ALT; 3: HBV-DNA-negative HBeAb-positive CHB, normal ALT; 4: HBV-DNA-positive HBeAg-negative HBeAb-positive CHB, elevated ALT; 5: HBV-DNA-negative, HBcAb-positive; 6: HBV-negative, normal ALT). Exosomes were isolated, comparative analysis of exosomes and serum HBV-DNA. The HBV-DNA content was lower in exosomes than in serum for groups 1, 2, and 4 (all P < 0.05). In the groups negative for serum HBV-DNA (groups 3 and 5), the exosomal HBV-DNA levels were higher than the serum HBV-DNA levels (all P < 0.05). The exosomal and serum HBV-DNA levels were correlated in groups 2 (R 2 = 0.84) and 4 (R 2 = 0.98). The exosomal HBV-DNA levels were correlated with total bilirubin (R 2 = 0.94), direct bilirubin (R 2 = 0.82), and indirect bilirubin (R 2 = 0.81) in group 5 (all P < 0.05). In patients with CHB and negative for serum HBV-DNA, exosomal HBV-DNA was detectable and could be used to monitor the treatment effects. Exosomal HBV-DNA could be used in patients with a high suspicion of HBV infection but negative for serum HBV-DNA.
Collapse
Affiliation(s)
- Xu Xu
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong, Sichuan, 637100, China
- Emergency Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Li Zhang
- Department of Intensive Care Medicine, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
| | - Jiamin Liu
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong, Sichuan, 637100, China
| | - Xiangxin Kong
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong, Sichuan, 637100, China
| | - Yu Yin
- Emergency Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Zhiwei Jia
- Emergency Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xiaoqin Zhang
- Emergency Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Bin Peng
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637100, China
| | - Min Ji
- People’s Hospital of Jianyang, Chengdu, Sichuan, 641400, China
| | - Wanlong Pan
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong, Sichuan, 637100, China
| |
Collapse
|
39
|
Chen X, Liu X, Jiang Y, Xia N, Liu C, Luo W. Abnormally primed CD8 T cells: The Achilles' heel of CHB. Front Immunol 2023; 14:1106700. [PMID: 36936922 PMCID: PMC10014547 DOI: 10.3389/fimmu.2023.1106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a significant public health challenge, and more than 250 million people around world are infected with HBV. The clearance of HBV with virus-specific CD8 T cells is critical for a functional cure. However, naïve HBV-specific CD8 T cells are heavily hindered during the priming process, and this phenomenon is closely related to abnormal cell and signal interactions in the complex immune microenvironment. Here, we briefly summarize the recent progress in understanding the abnormal priming of HBV-specific CD8 T cells and some corresponding immunotherapies to facilitate their functional recovery, which provides a novel perspective for the design and development of immunotherapy for chronic HBV infection (CHB). Finally, we also highlight the balance between viral clearance and pathological liver injury induced by CD8 T-cell activation that should be carefully considered during drug development.
Collapse
Affiliation(s)
- Xiaoqing Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- The Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| |
Collapse
|
40
|
Veneziani I, Alicata C, Moretta L, Maggi E. The Latest Approach of Immunotherapy with Endosomal TLR Agonists Improving NK Cell Function: An Overview. Biomedicines 2022; 11:biomedicines11010064. [PMID: 36672572 PMCID: PMC9855813 DOI: 10.3390/biomedicines11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are the most well-defined pattern recognition receptors (PRR) of several cell types recognizing pathogens and triggering innate immunity. TLRs are also expressed on tumor cells and tumor microenvironment (TME) cells, including natural killer (NK) cells. Cell surface TLRs primarily recognize extracellular ligands from bacteria and fungi, while endosomal TLRs recognize microbial DNA or RNA. TLR engagement activates intracellular pathways leading to the activation of transcription factors regulating gene expression of several inflammatory molecules. Endosomal TLR agonists may be considered as new immunotherapeutic adjuvants for dendritic cell (DC) vaccines able to improve anti-tumor immunity and cancer patient outcomes. The literature suggests that endosomal TLR agonists modify TME on murine models and human cancer (clinical trials), providing evidence that locally infused endosomal TLR agonists may delay tumor growth and induce tumor regression. Recently, our group demonstrated that CD56bright NK cell subset is selectively responsive to TLR8 engagement. Thus, TLR8 agonists (loaded or not to nanoparticles or other carriers) can be considered a novel strategy able to promote anti-tumor immunity. TLR8 agonists can be used to activate and expand in vitro circulating or intra-tumoral NK cells to be adoptively transferred into patients.
Collapse
Affiliation(s)
- Irene Veneziani
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
41
|
Sun H, Li Y, Zhang P, Xing H, Zhao S, Song Y, Wan D, Yu J. Targeting toll-like receptor 7/8 for immunotherapy: recent advances and prospectives. Biomark Res 2022; 10:89. [PMID: 36476317 PMCID: PMC9727882 DOI: 10.1186/s40364-022-00436-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are a large family of proteins that are expressed in immune cells and various tumor cells. TLR7/8 are located in the intracellular endosomes, participate in tumor immune surveillance and play different roles in tumor growth. Activation of TLRs 7 and 8 triggers induction of a Th1 type innate immune response in the highly sophisticated process of innate immunity signaling with the recent research advances involving the small molecule activation of TLR 7 and 8. The wide range of expression and clinical significance of TLR7/TLR8 in different kinds of cancers have been extensively explored. TLR7/TLR8 can be used as novel diagnostic biomarkers, progression and prognostic indicators, and immunotherapeutic targets for various tumors. Although the mechanism of action of TLR7/8 in cancer immunotherapy is still incomplete, TLRs on T cells are involved in the regulation of T cell function and serve as co-stimulatory molecules and activate T cell immunity. TLR agonists can activate T cell-mediated antitumor responses with both innate and adaptive immune responses to improve tumor therapy. Recently, novel drugs of TLR7 or TLR8 agonists with different scaffolds have been developed. These agonists lead to the induction of certain cytokines and chemokines that can be applied to the treatment of some diseases and can be used as good adjutants for vaccines. Furthermore, TLR7/8 agonists as potential therapeutics for tumor-targeted immunotherapy have been developed. In this review, we summarize the recent advances in the development of immunotherapy strategies targeting TLR7/8 in patients with various cancers and chronic hepatitis B.
Collapse
Affiliation(s)
- Hao Sun
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yingmei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Haizhou Xing
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Dingming Wan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004 Henan China
| |
Collapse
|
42
|
Qiu J, Zou Y, Li S, Yang L, Qiu Z, Kong F, Gu X. Discovery of benzimidazole substituted 1, 2, 4-oxadiazole compounds as novel anti-HBV agents with TLR8-agonistic activities. Eur J Med Chem 2022; 244:114833. [DOI: 10.1016/j.ejmech.2022.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
|
43
|
Zheng JR, Wang ZL, Feng B. Hepatitis B functional cure and immune response. Front Immunol 2022; 13:1075916. [PMID: 36466821 PMCID: PMC9714500 DOI: 10.3389/fimmu.2022.1075916] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus, which damage to hepatocytes is not direct, but through the immune system. HBV specific CD4+ T cells can induce HBV specific B cells and CD8+ T cells. HBV specific B cells produce antibodies to control HBV infection, while HBV specific CD8+ T cells destroy infected hepatocytes. One of the reasons for the chronicity of HBV infection is that it cannot effectively activate adoptive immunity and the function of virus specific immune cells is exhausted. Among them, virus antigens (including HBV surface antigen, e antigen, core antigen, etc.) can inhibit the function of immune cells and induce immune tolerance. Long term nucleos(t)ide analogues (NAs) treatment and inactive HBsAg carriers with low HBsAg level may "wake up" immune cells with abnormal function due to the decrease of viral antigen level in blood and liver, and the specific immune function of HBV will recover to a certain extent, thus becoming the "dominant population" for functional cure. In turn, the functional cure will further promote the recovery of HBV specific immune function, which is also the theoretical basis for complete cure of hepatitis B. In the future, the complete cure of chronic HBV infection must be the combination of three drugs: inhibiting virus replication, reducing surface antigen levels and specific immune regulation, among which specific immunotherapy is indispensable. Here we review the relationship, mechanism and clinical significance between the cure of hepatitis B and immune system.
Collapse
Affiliation(s)
| | | | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Peking University Hepatology Institute, Beijing, China
| |
Collapse
|
44
|
Nicolai M, Steinberg J, Obermann HL, Solis FV, Bartok E, Bauer S, Jung S. Identification of an Optimal TLR8 Ligand by Alternating the Position of 2′-O-Ribose Methylation. Int J Mol Sci 2022; 23:ijms231911139. [PMID: 36232437 PMCID: PMC9570189 DOI: 10.3390/ijms231911139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
Recognition of RNA by receptors of the innate immune system is regulated by various posttranslational modifications. Different single 2′-O-ribose (2′-O-) methylations have been shown to convert TLR7/TLR8 ligands into specific TLR8 ligands, so we investigated whether the position of 2′-O-methylation is crucial for its function. To this end, we designed different 2′-O-methylated RNA oligoribonucleotides (ORN), investigating their immune activity in various cell systems and analyzing degradation under RNase T2 treatment. We found that the 18S rRNA-derived TLR7/8 ligand, RNA63, was differentially digested as a result of 2′-O-methylation, leading to variations in TLR8 and TLR7 inhibition. The suitability of certain 2′-O-methylated RNA63 derivatives as TLR8 agonists was further demonstrated by the fact that other RNA sequences were only weak TLR8 agonists. We were thus able to identify specific 2′-O-methylated RNA derivatives as optimal TLR8 ligands.
Collapse
Affiliation(s)
- Marina Nicolai
- Institute for Immunology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Julia Steinberg
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | | | | | - Eva Bartok
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Stephanie Jung
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
45
|
Manan A, Pirzada RH, Haseeb M, Choi S. Toll-like Receptor Mediation in SARS-CoV-2: A Therapeutic Approach. Int J Mol Sci 2022; 23:10716. [PMID: 36142620 PMCID: PMC9502216 DOI: 10.3390/ijms231810716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 01/18/2023] Open
Abstract
The innate immune system facilitates defense mechanisms against pathogen invasion and cell damage. Toll-like receptors (TLRs) assist in the activation of the innate immune system by binding to pathogenic ligands. This leads to the generation of intracellular signaling cascades including the biosynthesis of molecular mediators. TLRs on cell membranes are adept at recognizing viral components. Viruses can modulate the innate immune response with the help of proteins and RNAs that downregulate or upregulate the expression of various TLRs. In the case of COVID-19, molecular modulators such as type 1 interferons interfere with signaling pathways in the host cells, leading to an inflammatory response. Coronaviruses are responsible for an enhanced immune signature of inflammatory chemokines and cytokines. TLRs have been employed as therapeutic agents in viral infections as numerous antiviral Food and Drug Administration-approved drugs are TLR agonists. This review highlights the therapeutic approaches associated with SARS-CoV-2 and the TLRs involved in COVID-19 infection.
Collapse
Affiliation(s)
- Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | | | - Muhammad Haseeb
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
46
|
Suresh M, Menne S. Recent Drug Development in the Woodchuck Model of Chronic Hepatitis B. Viruses 2022; 14:v14081711. [PMID: 36016334 PMCID: PMC9416195 DOI: 10.3390/v14081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
Infection with hepatitis B virus (HBV) is responsible for the increasing global hepatitis burden, with an estimated 296 million people being carriers and living with the risk of developing chronic liver disease and cancer. While the current treatment options for chronic hepatitis B (CHB), including oral nucleos(t)ide analogs and systemic interferon-alpha, are deemed suboptimal, the path to finding an ultimate cure for this viral disease is rather challenging. The lack of suitable laboratory animal models that support HBV infection and associated liver disease progression is one of the major hurdles in antiviral drug development. For more than four decades, experimental infection of the Eastern woodchuck with woodchuck hepatitis virus has been applied for studying the immunopathogenesis of HBV and developing new antiviral therapeutics against CHB. There are several advantages to this animal model that are beneficial for performing both basic and translational HBV research. Previous review articles have focused on the value of this animal model in regard to HBV replication, pathogenesis, and immune response. In this article, we review studies of drug development and preclinical evaluation of direct-acting antivirals, immunomodulators, therapeutic vaccines, and inhibitors of viral entry, gene expression, and antigen release in the woodchuck model of CHB since 2014 until today and discuss their significance for clinical trials in patients.
Collapse
|
47
|
Du Y, Wu J, Liu J, Zheng X, Yang D, Lu M. Toll-like receptor-mediated innate immunity orchestrates adaptive immune responses in HBV infection. Front Immunol 2022; 13:965018. [PMID: 35967443 PMCID: PMC9372436 DOI: 10.3389/fimmu.2022.965018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains to be a substantial global burden, especially for end-stage liver diseases. It is well accepted that HBV-specific T and B cells are essential for controlling HBV infection. Toll-like receptors (TLRs) represent one of the major first-line antiviral defenses through intracellular signaling pathways that induce antiviral inflammatory cytokines and interferons, thereby shaping adaptive immunity. However, HBV has evolved strategies to counter TLR responses by suppressing the expression of TLRs and blocking the downstream signaling pathways, thus limiting HBV-specific adaptive immunity and facilitating viral persistence. Recent studies have stated that stimulation of the TLR signaling pathway by different TLR agonists strengthens host innate immune responses and results in suppression of HBV replication. In this review, we will discuss how TLR-mediated responses shape HBV-specific adaptive immunity as demonstrated in different experimental models. This information may provide important insight for HBV functional cure based on TLR agonists as immunomodulators.
Collapse
Affiliation(s)
- Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Mengji Lu,
| |
Collapse
|
48
|
Fung S, Choi HSJ, Gehring A, Janssen HLA. Getting to HBV cure: The promising paths forward. Hepatology 2022; 76:233-250. [PMID: 34990029 DOI: 10.1002/hep.32314] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Chronic HBV infection is a global public health burden estimated to impact nearly 300 million persons worldwide. Despite the advent of potent antiviral agents that effectively suppress viral replication, HBV cure remains difficult to achieve because of the persistence of covalently closed circular DNA (cccDNA), HBV-DNA integration into the host genome, and impaired immune response. Indefinite treatment is necessary for most patients to maintain level of viral suppression. The success of direct-acting antivirals (DAAs) for hepatitis C treatment has rejuvenated the search for a cure for chronic hepatitis B (CHB), though an HBV cure likely requires an additional layer: immunomodulators for restoration of robust immune responses. DAAs such as entry inhibitors, capsid assembly modulators, inhibitors of subviral particle release, cccDNA silencers, and RNA interference molecules have reached clinical development. Immunomodulators, namely innate immunomodulators (Toll-like receptor agonists), therapeutic vaccines, checkpoint inhibitors, and monoclonal antibodies, are also progressing toward clinical development. The future of the HBV cure possibly lies in triple combination therapies with concerted action on replication inhibition, antigen reduction, and immune stimulation. Many obstacles remain, such as overcoming translational failures, choosing the right endpoint using the right biomarkers, and leveraging current treatments in combination regimens to enhance response rates. This review gives an overview of the current therapies for CHB, HBV biomarkers used to evaluate treatment response, and development of DAAs and immune-targeting drugs and discusses the limitations and unanswered questions on the journey to an HBV cure.
Collapse
Affiliation(s)
- Scott Fung
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Hannah S J Choi
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Adam Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Abstract
The last few years have seen a resurgence of activity in the hepatitis B drug pipeline, with many compounds in various stages of development. This review aims to provide a comprehensive overview of the latest advances in therapeutics for chronic hepatitis B (CHB). We will discuss the broad spectrum of direct-acting antivirals in clinical development, including capsids inhibitors, siRNA, HBsAg and polymerase inhibitors. In addition, host-targeted therapies (HTT) will be extensively reviewed, focusing on the latest progress in immunotherapeutics such as toll-like receptors and RIG-1 agonists, therapeutic vaccines and immune checkpoints modulators. A growing number of HTT in pre-clinical development directly target the key to HBV persistence, namely the covalently closed circular DNA (cccDNA) and hold great promise for HBV cure. This exciting area of HBV research will be highlighted, and molecules such as cyclophilins inhibitors, APOBEC3 deaminases and epigenetic modifiers will be discussed.
Collapse
Affiliation(s)
- Sandra Phillips
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Ravi Jagatia
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Shilpa Chokshi
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| |
Collapse
|
50
|
Loukachov VV, van Dort KA, Maurer I, Takkenberg RB, de Niet A, Reesink HW, Willemse SB, Kootstra NA. Identification of Liver and Plasma microRNAs in Chronic Hepatitis B Virus infection. Front Cell Infect Microbiol 2022; 12:790964. [PMID: 35719345 PMCID: PMC9201251 DOI: 10.3389/fcimb.2022.790964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/25/2022] [Indexed: 01/05/2023] Open
Abstract
Background and Aims With current standard of care a functional cure for Chronic Hepatitis B (CHB) is only achieved in 1-3% of patients and therefore novel therapies are needed. Disease activity during CHB can be determined by a broad range of virological biomarkers, however these biomarkers are also targets for novel treatment strategies. The aim of this study was to identify novel miRNAs that are differentially expressed in plasma and liver in CHB, and determine whether these miRNAs may serve as biomarkers of disease stage or treatment outcome. Methods miRNA Next-Generation-Sequencing of plasma and liver samples from CHB patient and controls was performed to identify differentially expressed miRNAs. The identified candidate miRNAs were validated by qPCR in additional plasma and liver samples from two CHB cohorts. Results Several miRNAs in plasma and liver were found to be differentially expressed between CHB patients and controls. Of the identified miRNAs expression levels of miR-122-5p in plasma were associated with plasma HBsAg, and plasma and liver HBV-DNA levels. Expression levels of miR-223-3p, miR-144-5p and miR-133a-3p in liver were associated with plasma alanine aminotransferase levels. No correlation was observed between miRNA expression levels at baseline and treatment outcome. Conclusions Limited overlap between plasma and liver miRNAs was found, indicating that plasma miRNAs could be useful as biomarkers for treatment outcome or viral activity during treatment. Whereas liver miRNAs are more likely to be regulated by HBV and could be potential therapeutic targets to control viral activity in liver.
Collapse
Affiliation(s)
- Vladimir V. Loukachov
- Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Karel A. van Dort
- Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Irma Maurer
- Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - R. Bart Takkenberg
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers , University of Amsterdam, Amsterdam, Netherlands
| | - Anniki de Niet
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers , University of Amsterdam, Amsterdam, Netherlands
| | - Henk W. Reesink
- Department of Gastroenterology and Hepatology, Leids University Medical Center, Leiden, Netherlands
| | - Sophie B. Willemse
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers , University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A. Kootstra
- Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- *Correspondence: Neeltje A. Kootstra,
| |
Collapse
|