1
|
Tang W, Xiao Y, Kuang S, Rong D, He B, Grazioli L, Hussain SM, Wang J. Intraindividual crossover comparison of gadobenate dimeglumine-enhanced and gadoxetate disodium-enhanced MRI for characterizing focal liver lesions. Eur Radiol Exp 2025; 9:23. [PMID: 39966271 PMCID: PMC11836252 DOI: 10.1186/s41747-025-00551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Gadobenate and gadoxetate are hepatobiliary magnetic resonance imaging (MRI) contrast agents. We intraindividually compared these two agents for the characterization of focal liver lesions (FLLs). METHODS A total of 140 adult subjects were randomized to undergo two 3-T MRI exams separated by 7-14 days, one with 0.05 mmol/kg gadobenate and one with 0.025 mmol/kg gadoxetate. For both exams, we acquired the same unenhanced T1-weighted, T2-weighted, and diffusion-weighted sequences, followed by contrast-enhanced T1-weighted sequences during the dynamic and hepatobiliary phases (HBP) (at 20 min for gadoxetate, at 120 min for gadobenate). Three experienced unaffiliated readers independently evaluated each exam in blinded, randomized order for lesion nature (benign/malignant) and specific lesion diagnosis. McNemar test, Wald tests. paired t-tests and κ statistics were used. RESULTS A total of 208 FLLs (108 malignant and 100 benign) were confirmed at final diagnosis. Sensitivity and specificity for malignant/benign differentiation ranged from 91.6% to 99.1% and from 87.5% to 90.5% for gadobenate, and from 86.0% to 91.6% and from 79.7% to 83.6% for gadoxetate. Significantly (p ≤ 0.025) higher values for gadobenate were determined for all diagnostic performance parameters except for sensitivity and negative predictive value for one reader. Significantly (p < 0.001) greater accuracy and confidence for specific lesion diagnosis was achieved with gadobenate for two of three blinded readers. Interreader agreement for malignant/benign differentiation was better with gadobenate (κ = 0.91 versus κ = 0.72). CONCLUSION Gadobenate was superior to gadoxetate for the differentiation and diagnosis of malignant and benign FLLs for two of three readers. Further confirmatory studies that include a wider representation of different types of FLLs are warranted. RELEVANCE STATEMENT Better diagnostic performance and greater confidence in the characterization of FLLs with gadobenate might improve patient management decisions and timings, and potentially lead to better patient outcomes. KEY POINTS Better diagnostic performance for the differentiation of FLLs was achieved with gadobenate for two of three readers. Reader confidence for lesion diagnosis was greater with gadobenate. Superior dynamic phase imaging with gadobenate was crucial for accurate lesion diagnosis.
Collapse
Affiliation(s)
- Wenjie Tang
- Department of Radiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Yuanqiang Xiao
- Department of Radiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Sichi Kuang
- Department of Radiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Dailin Rong
- Department of Radiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Bingjun He
- Department of Radiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Luigi Grazioli
- Department of Radiology, University of Brescia, Ospedale "Spedali Civili", Brescia, Italy
| | - Shahid M Hussain
- Department of Radiology, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Jin Wang
- Department of Radiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
2
|
Sangro B, Argemi J, Ronot M, Paradis V, Meyer T, Mazzaferro V, Jepsen P, Golfieri R, Galle P, Dawson L, Reig M. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma. J Hepatol 2025; 82:315-374. [PMID: 39690085 DOI: 10.1016/j.jhep.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Liver cancer is the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) accounting for approximately 90% of primary liver cancers. Advances in diagnostic and therapeutic tools, along with improved understanding of their application, are transforming patient treatment. Integrating these innovations into clinical practice presents challenges and necessitates guidance. These clinical practice guidelines offer updated advice for managing patients with HCC and provide a comprehensive review of pertinent data. Key updates from the 2018 EASL guidelines include personalised surveillance based on individual risk assessment and the use of new tools, standardisation of liver imaging procedures and diagnostic criteria, use of minimally invasive surgery in complex cases together with updates on the integrated role of liver transplantation, transitions between surgical, locoregional, and systemic therapies, the role of radiation therapies, and the use of combination immunotherapies at various stages of disease. Above all, there is an absolute need for a multiparametric assessment of individual risks and benefits, considering the patient's perspective, by a multidisciplinary team encompassing various specialties.
Collapse
|
3
|
Matteini F, Cannella R, Dioguardi Burgio M, Torrisi C, Sartoris R, Brancatelli G, Vilgrain V, Ronot M, Vernuccio F. Discontinuous peripheral enhancement of focal liver lesions on CT and MRI: outside the box of typical cavernous hemangioma. Abdom Radiol (NY) 2025; 50:693-709. [PMID: 39192088 PMCID: PMC11794645 DOI: 10.1007/s00261-024-04522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
The discontinuous peripheral enhancement is a pattern of enhancement usually attributed to typical cavernous hemangioma, that is the most common benign solid lesion of the liver. The discontinuous peripheral enhancement, however, may be encountered in many other benign and malignant focal liver lesions as an atypical presentation or evolution, and hemangiomas with discontinuous peripheral hyperenhancement on hepatic arterial phase may not always have the typical post-contrast pattern on portal venous and delayed phases. Therefore, abdominal radiologists may be challenged in their practice by lesions with discontinuous peripheral enhancement. This pictorial essay aims to review the spectrum of benign and malignant focal liver lesions that may show discontinuous peripheral enhancement. A particular point of interest is the diagnostic tree pathway that may guide the radiologists in the differential diagnosis.
Collapse
Affiliation(s)
- Francesco Matteini
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 129, 90127, Palermo, Italy.
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Marco Dioguardi Burgio
- Department of Radiology, Hôpital Beaujon, AP-HP.Nord, Paris, France
- INSERM U1149 Centre de Recherche sur l'Inflammation (CRI), Université Paris Cité, Paris, France
| | - Chiara Torrisi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Riccardo Sartoris
- Department of Radiology, Hôpital Beaujon, AP-HP.Nord, Paris, France
- INSERM U1149 Centre de Recherche sur l'Inflammation (CRI), Université Paris Cité, Paris, France
| | - Giuseppe Brancatelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Valérie Vilgrain
- Department of Radiology, Hôpital Beaujon, AP-HP.Nord, Paris, France
- INSERM U1149 Centre de Recherche sur l'Inflammation (CRI), Université Paris Cité, Paris, France
| | - Maxime Ronot
- Department of Radiology, Hôpital Beaujon, AP-HP.Nord, Paris, France
- INSERM U1149 Centre de Recherche sur l'Inflammation (CRI), Université Paris Cité, Paris, France
| | - Federica Vernuccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University Hospital of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
4
|
Burenina OY, Lazarevich NL, Kustova IF, Shavochkina DA, Moroz EA, Kudashkin NE, Patyutko YI, Rubtsova MP, Dontsova OA. Upregulation of long noncoding RNAs LINC00941 and ABHD11-AS1 is associated with intrahepatic cholangiocarcinoma. Sci Prog 2025; 108:368504251330019. [PMID: 40151866 DOI: 10.1177/00368504251330019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
ObjectiveMany long noncoding RNAs (lncRNAs) are associated with liver cancers, mainly hepatocellular carcinoma (HCC) and to a smaller extent intrahepatic cholangiocarcinoma (CCA). Most of such lncRNAs show similar dysregulation patterns when the two types of tumors are compared, suggesting that these aberrations are characteristic features of these liver tumor types. In the present study, we aimed to identify some candidate lncRNAs that are associated specifically with CCA.MethodsAccording to The Cancer Genome Atlas data, we chose LINC00941, ABHD11-AS1, and CASC8 as promising biomarkers dysregulated in CCA but unaffected in HCC. We first verified their upregulation in an existing transcriptomic dataset for CCA patients. Next, we estimated expression levels of these three lncRNAs by reverse-transcription quantitative PCR in a group of paired (tumorous/adjacent) postsurgery tissue samples from 110 patients with various liver lesions: CCA, HCC, combined HCC-CCA, or benign liver tumors.ResultsSignificant upregulation of LINC00941 and ABHD11-AS1 was noted in most of the investigated CCA samples, whereas in HCC samples, increased expression of these two lncRNAs was observed only in some types of cases (mainly characterized by an advanced tumor stage). In contrast, CASC8 manifested extremely low expression and no diagnostic potential in all the tested liver samples. Analyzing expression correlations of lncRNAs with candidate genes, we obtained strong evidence for LINC00941-mediated upregulation of CAPRIN2 in CCA.ConclusionsFor the first time, we show the upregulation of LINC00941 and ABHD11-AS1 in CCA and report their good potential as diagnostic biomarkers for this type of liver tumor.
Collapse
Affiliation(s)
- Olga Y Burenina
- Center of Molecular and Cellular Biology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia L Lazarevich
- Biology Department, Lomonosov Moscow State University, Moscow, Russia
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Inna F Kustova
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Daria A Shavochkina
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Ekaterina A Moroz
- Institute of Clinical Oncology, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Nikolay E Kudashkin
- Institute of Clinical Oncology, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Yuriy I Patyutko
- Institute of Clinical Oncology, Blokhin National Medical Research Center of Oncology (affiliated with Russian Ministry of Health), Moscow, Russia
| | - Maria P Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Dontsova
- Center of Molecular and Cellular Biology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Moga TV, Lupusoru R, Danila M, Ghiuchici AM, Popescu A, Miutescu B, Ratiu I, Burciu C, Bizerea-Moga T, Voron A, Sporea I, Sirli R. Challenges in Diagnosing Focal Liver Lesions Using Contrast-Enhanced Ultrasound. Diagnostics (Basel) 2024; 15:46. [PMID: 39795574 PMCID: PMC11720322 DOI: 10.3390/diagnostics15010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Contrast-enhanced ultrasound (CEUS) has become the preferred method for many clinicians in evaluating focal liver lesions (FLLs) initially identified through standard ultrasound. However, in clinical practice, certain lesions may deviate from the typical enhancement patterns outlined in EFSUMB guidelines. Methods: This study aims to assess FLLs that remained inconclusive or misdiagnosed after CEUS evaluation, spanning eight years of single-center experience. Following CEUS, all FLLs underwent secondary imaging (CT, MRI) or histopathological analysis for diagnostic confirmation. Results: From the initial 979 FLLs, 350 lesions (35.7%) were either inconclusive or misdiagnosed by CEUS, with hepatocellular carcinoma (HCC) and liver metastases constituting the majority of these cases. The most frequent enhancement pattern in inconclusive lesions at CEUS was hyper-iso-iso. Factors such as advanced liver fibrosis, adenomas, and cholangiocarcinoma were significantly associated with higher rates of diagnostic inaccuracies. Conclusions: Advanced liver fibrosis, adenomas, and cholangiocarcinoma were significantly associated with increased diagnostic challenges, emphasizing the need for supplementary imaging techniques.
Collapse
Affiliation(s)
- Tudor Voicu Moga
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (T.V.M.); (R.L.); (A.M.G.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania (A.V.)
| | - Raluca Lupusoru
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (T.V.M.); (R.L.); (A.M.G.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania (A.V.)
| | - Mirela Danila
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (T.V.M.); (R.L.); (A.M.G.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania (A.V.)
| | - Ana Maria Ghiuchici
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (T.V.M.); (R.L.); (A.M.G.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania (A.V.)
| | - Alina Popescu
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (T.V.M.); (R.L.); (A.M.G.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania (A.V.)
| | - Bogdan Miutescu
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (T.V.M.); (R.L.); (A.M.G.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania (A.V.)
| | - Iulia Ratiu
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (T.V.M.); (R.L.); (A.M.G.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania (A.V.)
| | - Calin Burciu
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania (A.V.)
- Department of Gastroenterology, Faculty of Medicine, Pharmacy and Dental Medicine, “Vasile Goldis” West University of Arad, 310414 Arad, Romania
| | - Teofana Bizerea-Moga
- Department of Pediatrics-1st Pediatric Discipline, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Anca Voron
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania (A.V.)
| | - Ioan Sporea
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (T.V.M.); (R.L.); (A.M.G.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania (A.V.)
| | - Roxana Sirli
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (T.V.M.); (R.L.); (A.M.G.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania (A.V.)
| |
Collapse
|
6
|
Huang Z, Zhu RH, Li SS, Luo HC, Li KY. Diagnostic performance of Sonazoid-enhanced CEUS in identifying definitive hepatocellular carcinoma in cirrhotic patients according to KLCA-NCC 2022 and APASL 2017 guidelines. Insights Imaging 2024; 15:263. [PMID: 39480596 PMCID: PMC11528081 DOI: 10.1186/s13244-024-01838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/05/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVE This study aims to assess the diagnostic performance of Sonazoid-contrast-enhanced ultrasound (CEUS) in identifying definitive HCC within hepatic nodules in cirrhotic patients, comparing the KLCA-NCC 2022 and APASL 2017 diagnostic guidelines. MATERIALS AND METHODS This retrospective study analyzed cirrhotic patients who underwent Sonazoid-CEUS for liver lesion evaluation between October 2019 and October 2023. HCC diagnosis was based on the KLCA-NCC 2022 and APASL 2017 guidelines. Inter-reader agreement on CEUS imaging features and the diagnostic accuracy of the guidelines were evaluated. Sensitivity and specificity comparisons were made using McNemar's test. RESULTS Among 400 patients with 432 lesions, CEUS showed excellent inter-reader consistency in detecting arterial phase hyperenhancement and Kupffer defects. The KLCA-NCC 2022 criteria notably enhanced sensitivity to 96.2%, with specificity and accuracy of 93.8% and 95.8%, respectively. APASL 2017 achieved the highest sensitivity at 97.8%, although specificity dropped to 46.9%, resulting in an accuracy of 90.3%. The KLCA-NCC 2022 guidelines demonstrated significantly higher specificity than APASL 2017 (p < 0.001), while APASL 2017 exhibited the highest sensitivity at 97.8%. Notably, the KLCA-NCC 2022 guidelines also demonstrated an impressive positive predictive value of 98.9%. CONCLUSION Sonazoid-enhanced CEUS, particularly when applied using the KLCA-NCC 2022 guidelines, is an effective diagnostic tool for HCC. CRITICAL RELEVANCE STATEMENT Perfluorobutane CEUS, particularly in accordance with the KLCA-NCC 2022 guidelines, emerges as a valuable adjunct for diagnosing HCC in cirrhotic patients. It demonstrates superior positive predictive value and specificity compared to APASL 2017, underscoring its potential as an effective diagnostic tool. KEY POINTS Contrast-enhanced (CE)US using Sonazoid with KLCA-NCC 2022 guidelines is highly effective for HCC diagnosis. KLCA-NCC 2022 criteria showed high accuracy, 96.2% sensitivity, and 98.9% PPV. CEUS demonstrated excellent inter-reader consistency in detecting arterial phase hyperenhancement and Kupffer defects.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong-Hua Zhu
- Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Shan-Shan Li
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Chang Luo
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kai-Yan Li
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Teng W, Wang HW, Lin SM. Management Consensus Guidelines for Hepatocellular Carcinoma: 2023 Update on Surveillance, Diagnosis, Systemic Treatment, and Posttreatment Monitoring by the Taiwan Liver Cancer Association and the Gastroenterological Society of Taiwan. Liver Cancer 2024; 13:468-486. [PMID: 39435274 PMCID: PMC11493393 DOI: 10.1159/000537686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/02/2024] [Indexed: 10/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality in Taiwan. The Taiwan Liver Cancer Association and the Gastroenterological Society of Taiwan established HCC management consensus guidelines in 2016 and updated them in 2023. Current recommendations focus on addressing critical issues in HCC management, including surveillance, diagnosis, systemic treatment, and posttreatment monitoring. For surveillance and diagnosis, we updated the guidelines to include the role of protein induced by vitamin K absence or antagonist II (PIVKA-II) and gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) in detecting HCCs. For systemic treatment, the updated guidelines summarize the multiple choices available for targeted therapy, immune checkpoint inhibitors, and a combination of both, especially for those carcinomas refractory to or unsuitable for transarterial chemoembolization. We have added a new section, posttreatment monitoring, that describes the important roles of PIVKA-II and EOB-MRI after HCC therapy, including surgery, locoregional therapy, and systemic treatment. Through this update of the management consensus guidelines, patients with HCC may benefit from optimal diagnosis, therapeutic modalities, and posttreatment monitoring.
Collapse
Affiliation(s)
- Wei Teng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Wei Wang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Shi-Ming Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - On Behalf of Diagnosis Group and Systemic Therapy Group of TLCA
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Qiu S, Ding J, Wang Y, Zhou H, Zhao L, Zhao L, Zhou Y, Fu Y, Jing X. Dynamic Contrast-Enhanced Ultrasonography Combined With LR-M Classification Criteria for Differentiating Malignant Liver Nodules at High Risk for Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1028-1033. [PMID: 38632025 DOI: 10.1016/j.ultrasmedbio.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE We aimed to investigate the value of quantitative parameters derived from dynamic contrast-enhanced ultrasonography (DCE-US) and a combination of these quantitative parameters with the LR-M classification criteria in distinguishing hepatocellular carcinoma (HCC) nodules and non-HCC malignancies. METHODS HCC and non-HCC malignant nodules were grouped using pathologic results, and each nodule was classified using CEUS LI-RADS 2017. Quantitative CEUS analysis of each nodule was performed using VueBox, and quantitative parameters were compared between the HCC and non-HCC groups. The diagnostic efficacy of the LR-5 category for HCC was analyzed using the LR-M classification criteria along with time-related quantitative parameters. RESULTS Of the 190 malignant liver nodules, 137 and 53 were HCCs and non-HCC malignancies, respectively. The median values of quantitative parameters RT (rise time), TTP (time to peak), mTTl (mean transit time local), and FT (fall time) in the non-HCC malignant group were lower than those in the HCC group, with p < 0.05. There was a statistically significant difference in WiAUC (wash-in area under the curve), WoAUC (wash-out area under the curve), WiWoAUC (wash-in and wash-out area under the curve), and WoR (wash-out rate) values between HCC and non-HCC malignant groups, with p < 0.05. Using LR-M washout time <60 s and FT ≤21.2 s as the new diagnostic standard, the LR-5 category showed a sensitivity of 83.9%, specificity of 96.2%, and positive predictive value of 98.3% for HCC diagnosis. CONCLUSION DCE-US can facilitate the distinction of HCCs and non-HCC malignancies. Non-HCC malignancies present with earlier peak enhancement and more rapid and marked washout than HCC nodules. The combination of the LR-M classification criteria and FT ≤21.2 s can significantly improve the diagnostic sensitivity of the LR-5 category for HCC.
Collapse
Affiliation(s)
- Shibo Qiu
- Department of Ultrasound, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Jianmin Ding
- Department of Ultrasound, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China.
| | - Yandong Wang
- Department of Ultrasound, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Hongyu Zhou
- Department of Ultrasound, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Lin Zhao
- Department of Ultrasound, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Lei Zhao
- Department of Ultrasound, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yan Zhou
- Department of Ultrasound, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yaling Fu
- Department of Ultrasound, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Xiang Jing
- Department of Ultrasound, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
9
|
Kallenbach M, Qvartskhava N, Weigel C, Dörffel Y, Berger J, Kunze G, Luedde T. [Contrast-enhanced ultrasound (CEUS) for characterisation of focal liver lesions]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:952-970. [PMID: 37798924 PMCID: PMC11211032 DOI: 10.1055/a-2145-7461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/21/2023] [Indexed: 10/07/2023]
Abstract
Due to the trend towards increased use of imaging and rising awareness among high-risk patients, gastroenterologists and hepatologists are more frequently confronted with patients with focal liver lesions. In the differentiation of these lesions, CT and MRI have increasingly found their way into primary diagnostic steps in everyday clinical practice. Contrast-enhanced sonography, on the other hand, is a very effective and cost-efficient method for assessing focal liver lesions. The success of the method is not only based on the visualisation of microvascularisation in real time. If sonography is performed by the treating physician, he can use the exact knowledge of history and clinical findings to specifically adapt the examination procedure and to interpret the sonographic findings with greater accuracy ("clinical sonography"). At the same time, the method enables the practitioner to combine diagnostics and management decisions in his or her own hands. To achieve excellent results with contrast-enhanced sonography-as with any other imaging method-it is necessary that the examiner is sufficiently qualified.This article systematically presents the sonographic characteristics of the most common liver lesions and clearly shows their contrast patterns using videos (available via QR code). The article illustrates that CEUS could-and from the authors' point of view, should-have an even greater significance in the future.
Collapse
Affiliation(s)
- Michael Kallenbach
- Department of Gastroenterology Hepatology and Infectious Diseases, University Hospital of Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Natalia Qvartskhava
- Department of Gastroenterology Hepatology and Infectious Diseases, University Hospital of Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Christian Weigel
- Department of Gastroenterology Hepatology and Infectious Diseases, University Hospital of Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Yvonne Dörffel
- Medical Outpatient Department, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Berger
- Ernst von Bergmann Klinikum, Department of Gastroenterology, Hepatology, Infectious Diseases and Rheumatology, Potsdam, Germany
| | - Georg Kunze
- Schwarzwald-Baar Klinikum Villingen-Schwenningen GmbH, Villingen-Schwenningen, Germany
| | - Tom Luedde
- Department of Gastroenterology Hepatology and Infectious Diseases, University Hospital of Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| |
Collapse
|
10
|
Shao LJ, Wang YJ, Yin SS, Jiang BB, Liu YH, Wang JC, Yang W, Wu W, Yan K. Evaluation of the Time Difference Method in Identifying Hepatocellular Carcinoma in Current CEUS LR-M Category Nodules. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:502-508. [PMID: 38246805 DOI: 10.1016/j.ultrasmedbio.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVE The aim of the work described here was to explore a potential method for improving the diagnostic detection of hepatocellular carcinoma (HCC) based on the contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS) Version 2017. METHODS We retrospectively evaluated 585 liver nodules in 427 patients at risk for HCC from December 2020 to March 2023. The nodules were categorized as LR-1 to LR-M based on CEUS LI-RADS Version 2017 and were randomly subclassified into a developmental cohort (DC) and a validation cohort (VC) at 3:1. In the DC, the cutoff value of the time difference (∆T) for differentiating HCC from other malignancies by LR-M was calculated and used to reclassify nodules in the VC. The diagnostic effect on HCC detection before and after reclassification was further assessed. RESULTS According to the current CEUS LI-RADS, 140 of 426 (32.9%) confirmed HCC nodules were misclassified as LR-M. In the DC (439 nodules), the receiver operating characteristic (ROC) curve revealed that the cutoff value of ∆T (wash-out onset time minus contrast arrival time) recommended for HCC diagnosis was greater than 21 s. In the VC (146 nodules), 34 HCCs were correctly categorized as LR-5 according to the cutoff value, and after reclassification, LR-5 had higher accuracy (67.1% vs. 89.0%, p < 0.001) and sensitivity (56.0% vs. 87.2%, p < 0.001) for HCC diagnosis with high specificity (100% vs. 94.6%, p = 0.500). CONCLUSION Using the time difference method could identify HCC nodules misdiagnosed as LR-M and improve the diagnostic performance of current CEUS LI-RADS.
Collapse
Affiliation(s)
- Li-Jin Shao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasonography, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yan-Jie Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasonography, Peking University Cancer Hospital and Institute, Beijing, China
| | - Shan-Shan Yin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasonography, Peking University Cancer Hospital and Institute, Beijing, China
| | - Bin-Bin Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasonography, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yu-Hui Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasonography, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ji-Chen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasonography, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasonography, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wei Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasonography, Peking University Cancer Hospital and Institute, Beijing, China
| | - Kun Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasonography, Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
11
|
Barr RG, Bolondi L. Contrast-enhanced US for HCC: Finally out from the waiting list? Hepatology 2024; 79:267-268. [PMID: 37722132 DOI: 10.1097/hep.0000000000000595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Affiliation(s)
- Richard G Barr
- Northeastern Ohio Medical University, Southwoods Imaging, Youngstown, Ohio, USA
| | - Luigi Bolondi
- University of Bologna, Bologna, Italy
- Academy of Sciences of Bologna, Bologna, Italy
| |
Collapse
|
12
|
McEneaney LJ, Vithayathil M, Khan S. Screening, Surveillance, and Prevention of Hepatocellular Carcinoma. GASTROINTESTINAL ONCOLOGY ‐ A CRITICAL MULTIDISCIPLINARY TEAM APPROACH 2E 2024:271-290. [DOI: 10.1002/9781119756422.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Wilson SR, Burrowes DP, Merrill C, Caine BA, Gupta S, Burak KW. Unique portal venous phase imaging discordance between CEUS and MRI: a valuable predictor of intrahepatic cholangiocarcinoma? Abdom Radiol (NY) 2024; 49:11-20. [PMID: 37804423 DOI: 10.1007/s00261-023-04031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 10/09/2023]
Abstract
PURPOSE We have long noted unique portal venous phase (PVP) imaging discordance of focal liver masses between CEUS, showing rapid marked washout, and MRI, showing progressive or sustained enhancement. We postulate association of this unique discordance with intrahepatic cholangiocarcinoma (ICC) and causal relationship to different contrast agent behavior. We investigate this unique discordance, propose its clinical significance for ICC diagnosis, and confirm further histologic associations. METHODS Cases were collected within our CEUS department and from pathology records over a ten-year interval. This retrospective review includes 99 patients, 73 with confirmed ICC and 26 other diagnoses, showing unique PVP discordance. The CEUS and MRI enhancement characteristics were compared for all patients. RESULTS Unique discordance is identified in 67/73 (92%) ICC and difference between the PVP appearance on MRI and CEUS is statistically significant (p < 0.0001). Arterial phase enhancement did not show statistically significant difference between CEUS and MRI, p > 0.05. Other diagnoses showing unique discordance include especially lymphoma (n = 7), sclerosed hemangioma (n = 6), HCC (n = 4), metastases (n = 2), and other rare entities. CONCLUSION ICC shows this discrepant intermodality enhancement pattern in a statistically significant number of cases and should be considered along with other LR-M features in at-risk patients. Discordance is also rarely seen in a number of other liver lesions.
Collapse
Affiliation(s)
- Stephanie R Wilson
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Division of Gastroenterology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Foothills Medical Centre (FMC), 1403-29 Street NW, Calgary, AB, T2N 2T9, Canada.
| | - David P Burrowes
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Foothills Medical Centre (FMC), 1403-29 Street NW, Calgary, AB, T2N 2T9, Canada
| | - Christina Merrill
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Foothills Medical Centre (FMC), 1403-29 Street NW, Calgary, AB, T2N 2T9, Canada
| | - Benjamin A Caine
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Foothills Medical Centre (FMC), 1403-29 Street NW, Calgary, AB, T2N 2T9, Canada
| | - Saransh Gupta
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Foothills Medical Centre (FMC), 1403-29 Street NW, Calgary, AB, T2N 2T9, Canada
| | - Kelly W Burak
- Division of Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Foothills Medical Centre (FMC), 1403-29 Street NW, Calgary, AB, T2N 2T9, Canada
| |
Collapse
|
14
|
Wu Y, Xia C, Chen J, Qin Q, Ye Z, Song B. Diagnostic performance of magnetic resonance imaging and contrast-enhanced ultrasound in differentiating intrahepatic cholangiocarcinoma from hepatocellular carcinoma: a meta-analysis. Abdom Radiol (NY) 2024; 49:34-48. [PMID: 37823913 DOI: 10.1007/s00261-023-04064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE To compare the diagnostic ability between magnetic resonance imaging (MRI) and contrast-enhanced ultrasound (CEUS) in distinguishing intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC). METHODS Original studies reporting the diagnostic accuracy of MRI and CEUS in differentiating ICC from HCC were identified in PubMed and EMBASE databases. Histopathological examination was used as the reference standard for tumor diagnosis. Study quality was assessed using QUADAS-2 scale. Data were extracted to calculate the pooled diagnostic sensitivity, specificity, and diagnostic odds ratio (DOR) using a bivariate random-effects model, as well as the area under the curve (AUC). Sensitivity analysis, subgroup analysis, meta-regression, and investigation of publication bias were also performed. RESULTS A total of 26 studies with 28 data subsets (18 on MRI, 10 on CEUS) were included, consisting of 4169 patients with 1422 ICC lesions and 2747 HCC lesions. Most MRI studies were performed at 3T with hepatobiliary agents, and most CEUS studies used SonoVue as the contrast agent. In MRI, the pooled sensitivity, specificity, DOR, and AUC in distinguishing ICC from HCC were 0.81 (0.79, 0.84), 0.90 (0.88, 0.91), 41.47 (24.07, 71.44), and 0.93 (0.90, 0.96), respectively. The pooled sensitivity, specificity, DOR, and AUC of CEUS were 0.88 (0.84, 0.90), 0.80 (0.78, 0.83), 42.06 (12.38, 133.23), and 0.93 (0.87, 0.99), respectively. Subgroup analysis and meta-regression analysis demonstrated significant heterogeneity among the studies associated with the type of contrast agent in MRI studies. No publication bias was found. CONCLUSION Both MRI and CEUS showed excellent diagnostic performance in differentiating ICC from HCC. CEUS showed higher pooled sensitivity and MRI showed higher pooled specificity.
Collapse
Affiliation(s)
- Yingyi Wu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qin Qin
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
15
|
Yang Q, Zheng R, Zhou J, Tang L, Zhang R, Jiang T, Jing X, Liao J, Cheng W, Zhao C, Liu C, Dietrich CF, Cui X, Cai W, Wu J, Yu F, Cheng Z, Liu F, Han Z, Yu X, Yu J, Liang P. On-Site Diagnostic Ability of CEUS/CT/MRI for Hepatocellular Carcinoma (2019-2022): A Multicenter Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2825-2838. [PMID: 37713625 DOI: 10.1002/jum.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVES To compare the on-site diagnostic performance of contrast-enhanced ultrasound (CEUS), computed tomography (CECT), and magnetic resonance imaging (CEMRI) for hepatocellular carcinoma (HCC) across diverse practice settings. METHODS Between May 2019 and April 2022, a total of 2085 patients with 2320 pathologically confirmed focal liver lesions (FLLs) were enrolled. Imaging reports were compared with results from pathology analysis. Diagnostic performance was analyzed in defined size, high-risk factors for HCC, and hospital volume categories. RESULTS Three images achieved similar diagnostic performance in classifying HCC from 16 types of FLLs, including HCC ≤2.0 cm. For HCC diagnosis at low-volume hospitals and HCC with high-risk factors, the accuracy and specificity of CEUS were comparable to CECT and CEMRI, while the sensitivity of CEUS (77.4 and 89.5%, respectively) was inferior to CEMRI (87.0 and 92.8%, respectively). The diagnostic accuracy of CEUS + CEMRI and CEUS + CECT increased by 7.8 and 6.2% for HCC ≤2.0 cm, 8.0 and 5.0% for HCC with high-risk factors, and 7.4 and 5.5% for HCC at low-volume hospitals, respectively, compared with CEMRI/CECT alone. CONCLUSIONS Compared with CECT and CEMRI, CEUS provides adequate diagnostic performance in clinical first-line applications at high-volume hospitals. Moreover, a higher diagnostic performance for HCC is achieved by combining CEUS with CECT/CEMRI compared with any single imaging technique.
Collapse
Affiliation(s)
- Qi Yang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
- Department of Medical Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Rongqin Zheng
- Department of Ultrasound, Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianhua Zhou
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lina Tang
- Department of Diagnostic Ultrasound, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Ruifang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianan Jiang
- Department of Ultrasound Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China
| | - Jintang Liao
- Department of Diagnostic Ultrasound, Xiangya Hospital Central South University, Changsha, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Cheng Zhao
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cun Liu
- Department of Ultrasound, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chirstoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Bern, Switzerland
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjia Cai
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - JiaPeng Wu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Fei Yu
- Department of Medical Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhigang Cheng
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Fangyi Liu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Zhiyu Han
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Huang W, Wen R, Wu Y, Lin P, Guo D, Peng Y, Liu D, Mou M, Chen F, Huang F, Yang H, He Y. Can Modifications of LR-M Criteria Improve the Diagnostic Performance of Contrast-Enhanced Ultrasound LI-RADS for Small Hepatic Lesions up to 3 cm? JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2403-2413. [PMID: 37269201 DOI: 10.1002/jum.16267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/21/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVE To assess the diagnostic performance of the contrast-enhanced ultrasound liver imaging reporting and data system (CEUS LI-RADS) version 2017 for small hepatic lesions of ≤3 cm before and after changing the LR-M criteria. METHODS We retrospectively analyzed the CEUS examination of 179 patients who were at high risk of hepatocellular carcinoma (HCC) with focal hepatic lesions ≤3 cm (194 lesions in total) and evaluated the diagnostic capability of the American College of Radiology and modified CEUS LI-RADS algorithms. RESULTS Revision of the early washout time to 45 seconds increased the sensitivity of LR-5 in predicting HCC (P = .004), with no significant decrease in specificity (P = .118). It also made better the specificity of LR-M in predicting non-HCC malignancies (P = .001), with no significant decrease in sensitivity (P = .094). However, using within 3 minutes as the criterion for marked washout time improved the LR-5 sensitivity (P < .001) but decreased its specificity (P = .009) in predicting HCC, whereas the specificity of LR-M in predicting non-HCC malignancies increased (P < .001), but the sensitivity decreased (P = .027). CONCLUSIONS CEUS LI-RADS (v2017) is a valid method for predicting HCC risk in high-risk patients. The diagnostic performance of LR-5 and LR-M could boost when the early washout time is revised to 45 seconds.
Collapse
Affiliation(s)
- Weiche Huang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong Wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuquan Wu
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Lin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danxia Guo
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuye Peng
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dun Liu
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meiyan Mou
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fenghuan Chen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fen Huang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Kang HJ, Lee JM, Kim SW. Sonazoid-enhanced ultrasonography for noninvasive imaging diagnosis of hepatocellular carcinoma: special emphasis on the 2022 KLCA-NCC guideline. Ultrasonography 2023; 42:479-489. [PMID: 37423603 PMCID: PMC10555687 DOI: 10.14366/usg.23051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Contrast-enhanced ultrasonography (CEUS) is a noninvasive imaging modality used to diagnose hepatocellular carcinoma (HCC) based on specific imaging features, without the need for pathologic confirmation. Two types of ultrasound contrast agents are commercially available: pure intravascular agents (such as SonoVue) and Kupffer agents (such as Sonazoid). Major guidelines recognize CEUS as a reliable imaging method for HCC diagnosis, although they differ depending on the contrast agents used. The Korean Liver Cancer Association-National Cancer Center guideline includes CEUS with either SonoVue or Sonazoid as a second-line diagnostic technique. However, Sonazoid-enhanced ultrasound is associated with several unresolved issues. This review provides a comparative overview of these contrast agents regarding pharmacokinetic features, examination protocols, diagnostic criteria for HCC, and potential applications in the HCC diagnostic algorithm.
Collapse
Affiliation(s)
- Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Se Woo Kim
- Department of Radiology, Armed Forces Daejeon Hospital, Daejeon, Korea
| |
Collapse
|
18
|
Zhou H, Li J, Huang J, Yue Z. A histopathological image classification method for cholangiocarcinoma based on spatial-channel feature fusion convolution neural network. Front Oncol 2023; 13:1237816. [PMID: 37664021 PMCID: PMC10471887 DOI: 10.3389/fonc.2023.1237816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Histopathological image analysis plays an important role in the diagnosis and treatment of cholangiocarcinoma. This time-consuming and complex process is currently performed manually by pathologists. To reduce the burden on pathologists, this paper proposes a histopathological image classification method for cholangiocarcinoma based on spatial-channel feature fusion convolutional neural networks. Specifically, the proposed model consists of a spatial branch and a channel branch. In the spatial branch, residual structural blocks are used to extract deep spatial features. In the channel branch, a multi-scale feature extraction module and some multi-level feature extraction modules are designed to extract channel features in order to increase the representational ability of the model. The experimental results of the Multidimensional Choledoch Database show that the proposed method performs better than other classical CNN classification methods.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Network Engineering, College of Computer and Software, Nanjing Vocational University of Industry Technology, Nanjing, China
| | - Jingyan Li
- The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Jue Huang
- Department of Network Engineering, College of Computer and Software, Nanjing Vocational University of Industry Technology, Nanjing, China
| | - Zhaoxin Yue
- Department of Network Engineering, College of Computer and Software, Nanjing Vocational University of Industry Technology, Nanjing, China
| |
Collapse
|
19
|
Jeong WK, Kang HJ, Choi SH, Park MS, Yu MH, Kim B, You MW, Lim S, Cho YS, Lee MW, Hwang JA, Lee JY, Kim JH, Joo I, Bae JS, Kim SY, Chung YE, Kim DH, Lee JM. Diagnosing Hepatocellular Carcinoma Using Sonazoid Contrast-Enhanced Ultrasonography: 2023 Guidelines From the Korean Society of Radiology and the Korean Society of Abdominal Radiology. Korean J Radiol 2023; 24:482-497. [PMID: 37271203 DOI: 10.3348/kjr.2023.0324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 06/06/2023] Open
Abstract
Sonazoid, a second-generation ultrasound contrast agent, was introduced for the diagnosis of hepatic nodules. To clarify the issues with Sonazoid contrast-enhanced ultrasonography for the diagnosis of hepatocellular carcinoma (HCC), the Korean Society of Radiology and Korean Society of Abdominal Radiology collaborated on the guidelines. The guidelines are de novo, evidence-based, and selected using an electronic voting system for consensus. These include imaging protocols, diagnostic criteria for HCC, diagnostic value for lesions that are inconclusive on other imaging results, differentiation from non-HCC malignancies, surveillance of HCC, and treatment response after locoregional and systemic treatment for HCC.
Collapse
Affiliation(s)
- Woo Kyoung Jeong
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyo-Jin Kang
- Department of Radiology and Research Institute of Radiological Science, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi-Suk Park
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Hye Yu
- Department of Radiology, Konkuk University Hospital, Konkuk University College of Medicine, Seoul, Korea
| | - Bohyun Kim
- Department of Radiology, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myung-Won You
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| | - Sanghyeok Lim
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Young Seo Cho
- Department of Radiology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Min Woo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Ah Hwang
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Young Lee
- Department of Radiology and Research Institute of Radiological Science, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Hoon Kim
- Department of Radiology and Research Institute of Radiological Science, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ijin Joo
- Department of Radiology and Research Institute of Radiological Science, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Seok Bae
- Department of Radiology and Research Institute of Radiological Science, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Eun Chung
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Hwan Kim
- Department of Radiology, Seoul St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology and Research Institute of Radiological Science, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Li L, Mao S, Wang J, Zheng W, Shen J, Clevert DA, Zhou J. Intraindividual Comparison of Contrast-Enhanced Ultrasound Using Perfluorobutane With Modified Criteria Versus CT/MRI LI-RADS Version 2018 for Diagnosing HCC in High-Risk Patients. AJR Am J Roentgenol 2023; 220:682-691. [PMID: 36382914 DOI: 10.2214/ajr.22.28420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND. Previously proposed modifications to LI-RADS criteria for contrast-enhanced ultrasound (CEUS) performed using perfluorobutane contrast agent yielded increased sensitivity for hepatocellular carcinoma (HCC) without a significant decrease in specificity. OBJECTIVE. The purpose of our study was to compare the diagnostic performance of CEUS with perfluorobutane using modified LI-RADS criteria versus contrast-enhanced CT or MRI using LI-RADS version 2018 (v2018) for characterizing lesions as HCC in high-risk patients. METHODS. This retrospective study included 171 patients (140 men, 31 women; mean age, 54 ± 12 [SD] years) at high-risk for HCC with a pathologically confirmed liver observation evaluated by both CEUS using perfluorobutane and contrast-enhanced CT or MRI between March 2020 and May 2021. A matching algorithm was used to select two patients with HCC for each patient with a non-HCC lesion. Two readers evaluated observations using previously proposed modifications to CEUS LI-RADS version 2017 that classify certain observations as LR-5 rather than as LR-4 or LR-M on the basis of the presence of Kupffer phase defect after perfluorobutane administration; two different readers evaluated observations using CT/MRI LI-RADS v2018. Each reader pair reached consensus. Diagnostic performance was evaluated. RESULTS. A total of 114 patients had HCC, 43 had a non-HCC malignancy, and 14 had a benign lesion. Modified CEUS criteria using perfluorobutane and CT/MRI LI-RADS v2018 showed no significant difference (p > .05) in sensitivity (92.1% vs 89.5%), specificity (87.7% vs 84.2%), or accuracy (90.6% vs 87.7%) of LR-5 for diagnosis of HCC. Of six observations assessed as LR-4 only by CT/MRI LI-RADS v2018, modified CEUS criteria using perfluorobutane assessed one as LR-3 (benign lesion) and five as LR-5 (all HCC). Of seven observations assessed as LR-M only by CT/MRI LI-RADS v2018, modified CEUS criteria using perfluorobutane assessed one as LR-3 (non-HCC malignancy) and six as LR-5 (all HCC). Eight of 12 observations assessed as LR-5 only by CT/MRI LI-RADS v2018 and 11 of 13 observations assessed as LR-5 only by modified CEUS criteria using perfluorobutane were HCC. CONCLUSION. The diagnostic performance of LR-5 for HCC diagnosis was not significantly different between modified CEUS criteria using perfluorobutane and CT/MRI LI-RADS v2018. CLINICAL IMPACT. The findings support the application of modified CEUS criteria using perfluorobutane for diagnosing HCC in high-risk patients.
Collapse
Affiliation(s)
- Lingling Li
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd E, Guangzhou, 510060 China
| | - Siyue Mao
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jianwei Wang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd E, Guangzhou, 510060 China
| | - Wei Zheng
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd E, Guangzhou, 510060 China
| | - Jingxian Shen
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dirk-André Clevert
- Department of Radiology, Interdisciplinary Ultrasound Center, University of Munich Grosshadern Campus, Munich, Germany
| | - Jianhua Zhou
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd E, Guangzhou, 510060 China
| |
Collapse
|
21
|
Giangregorio F, Garolfi M, Mosconi E, Ricevuti L, Debellis MG, Mendozza M, Esposito C, Vigotti E, Cadei D, Abruzzese D. High frame-rate contrast enhanced ultrasound (HIFR-CEUS) in the characterization of small hepatic lesions in cirrhotic patients. J Ultrasound 2023; 26:71-79. [PMID: 36227456 PMCID: PMC10063709 DOI: 10.1007/s40477-022-00724-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To show the effectiveness of plane wave HighFrame-Rate CEUS (HiFR-CEUS) compared with "conventional" (plane wave) CEUS (C-CEUS) in the characterization of small (< 2 cm) focal liver lesions (FLLs) not easily detected by CT in cirrhotic patients. HiFR-CEUS exploit an ultra-wideband nonlinear process to combine fundamental, second and higher-order harmonic signals generated by ultrasound contrast agents to increase the frame rate. C-CEUS is limited by the transmission principle, and its frame-rate is around 10 FPS. With HiFR-CEUS (Shenzhen Mindray Bio-Medical Electronics Co., China), the frame-rate reached 60 FPS. MATERIAL AND METHODS Ultrasound detected small FLLs (< 2 cm) in 63 cirrhotic patients during follow-up (June 2019-February 2020); (7 nodules < 1 cm and were not evaluable by spiral CT). Final diagnosis was obtained with MRI (47) or fine needle aspiration (16 cases) C-CEUS was performed and HiFR-CEUS was repeated after 5 min; 0.8-1.2 ml of contrast media (SonoVue, Bracco, Italy) was used. 57 nodules were better evaluable with HiFR-CEUS; 6 nodules were equally evaluable by both techniques; final diagnosis was: 44 benign lesions (29 hemangiomas, 1 amartoma, 2 hepatic cysts; 2 focal nodular hyperplasias, 3 regenerative macronodules, 3 AV-shunts, 3 hepatic sparing areas and 1 focal steatosis) and 19 malignant one (17 HCCs, 1 cholangioca, 1 metastasis); statistical evaluation for better diagnosis with X2 test (SPSS vers. 26); we used LI-RADS classification for evaluating sensitivity, specificity PPV, NPV and diagnostic accuracy of C- and HFR-CEUS. Corrispective AU-ROC were calculated. RESULTS C-CEUS and HiFR-CEUS reached the same diagnosis in 29 nodules (13 nodules > 1 < 1.5 cm; 16 nodules > 1.5 < 2 cm); HiFR-CEUS reached a correct diagnosis in 32 nodules where C-CEUS was not diagnostic (6 nodules < 1 cm; 17 nodules > 1 < 1.5 cm; 9 nodules > 1.5 < 2 cm); C-CEUS was better in 2 nodules (1 < 1 cm and 1 > 1 < 1.5 cm). Some patient's (sex, BMI, age) and nodule's characteristics (liver segment, type of diagnosis, nodule's dimensions (p = 0.65)) were not correlated with better diagnosis (p ns); only better visualization (p 0.004) was correlated; C-CEUS obtained the following LI-RADS: type-1: 18 Nodules, type-2: 21; type-3: 7, type-4: 7; type-5: 8; type-M: 2; HiFR-CEUS: type-1: 38 Nodules, type-2: 2; type-3:4, type-4: 2; type-5: 15; type-M: 2; In comparison with final diagnosis: C-CEUS: TP: 17; TN: 39; FP: 5; FN:2; HIFR-CEUS: TP: 18; TN: 41; FP: 3; FN:1; C-CEUS: sens: 89.5%; Spec: 88.6%, PPV: 77.3%; NPV: 95.1%; Diagn Acc: 88.6% (AU-ROC: 0.994 ± SEAUC: 0.127; CI: 0.969-1.019); HiHFR CEUS: sens: 94.7%; Spec: 93.2%, PPV: 85.7%; NPV: 97.6%; Diagn Acc: 93.2% (AU-ROC: 0.9958 ± SEAUC: 0.106; CI: 0.975-1.017) FLL vascularization in the arterial phase was more visible with HiFR-CEUS than with C-CEUS, capturing the perfusion details in the arterial phase due to a better temporal resolution. With a better temporal resolution, the late phase could be evaluated longer with HiFR-CEUS (4 min C-CEUS vs. 5 min HiFR-CEUS). CONCLUSION Both C-CEUS and HIFR-CEUS are good non invasive imaging system for the characterization of small lesions detected during follow up of cirrhotic patients. HiFR-CEUS allowed better FLL characterization in cirrhotic patients with better temporal and spatial resolution capturing the perfusion details that cannot be easily observed with C-CEUS.
Collapse
Affiliation(s)
| | - M Garolfi
- Ospedale Civico di Codogno, Lodi, Italy
| | - E Mosconi
- Ospedale Civico di Codogno, Lodi, Italy
| | | | | | | | | | - E Vigotti
- Ospedale Civico di Codogno, Lodi, Italy
| | - D Cadei
- Ospedale Civico di Codogno, Lodi, Italy
| | | |
Collapse
|
22
|
Fraquelli M, Nadarevic T, Colli A, Manzotti C, Giljaca V, Miletic D, Štimac D, Casazza G. Contrast-enhanced ultrasound for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease. Cochrane Database Syst Rev 2022; 9:CD013483. [PMID: 36053210 PMCID: PMC9438628 DOI: 10.1002/14651858.cd013483.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma occurs mostly in people with chronic liver disease. Worldwide, it ranks sixth in terms of incidence of cancer, and fourth in terms of cancer-related deaths. Contrast-enhanced ultrasound (CEUS) is used as an add-on test to confirm the presence of focal liver lesions suspected as hepatocellular carcinoma after prior diagnostic tests such as abdominal ultrasound or measurement of alpha-foetoprotein, or both. According to guidelines, a single contrast-enhanced imaging investigation, with either computed tomography (CT) or magnetic resonance imaging (MRI), may show the typical hepatocellular carcinoma hallmarks in people with cirrhosis, which will be sufficient to diagnose hepatocellular carcinoma. However, a significant number of hepatocellular carcinomas show atypical imaging features, and therefore, are missed at imaging. Dynamic CEUS images are obtained similarly to CT and MRI images. CEUS differentiates between arterial and portal venous phases, in which sonographic hepatocellular carcinoma hallmarks, such as arterial hyperenhancement and subsequent washout appearance, are investigated. The advantages of CEUS over CT and MRI include real-time imaging, use of contrast agents that do not contain iodine and are not nephrotoxic, and quick image acquisition. Despite the advantages, the use of CEUS in the diagnostic algorithm for HCC remains controversial, with disagreement on relevant guidelines. There is no clear evidence of the benefit of surveillance programmes in terms of overall survival as the conflicting results can be a consequence of an inaccurate detection, ineffective treatment, or both. Therefore, assessing the diagnostic accuracy of CEUS may clarify whether the absence of benefit could be related to underdiagnosis. Furthermore, an assessment of the accuracy of CEUS for the diagnosis of hepatocellular carcinoma is needed for either diagnosing hepatocellular carcinoma or ruling it out in people with chronic liver disease who are not included in surveillance programmes. OBJECTIVES 1. To assess the diagnostic accuracy of contrast-enhanced ultrasound (CEUS) for the diagnosis of hepatocellular carcinoma of any size and at any stage in adults with chronic liver disease, in a surveillance programme or in a clinical setting. 2. To assess the diagnostic accuracy of CEUS for the diagnosis of resectable hepatocellular carcinoma in people with chronic liver disease and identify potential sources of heterogeneity in the results. SEARCH METHODS We used standard, extensive Cochrane search methods. The last date of search was 5 November 2021. SELECTION CRITERIA We included studies assessing the diagnostic accuracy of CEUS for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease, with cross-sectional designs, using one of the acceptable reference standards, such as pathology of the explanted liver, and histology of resected or biopsied focal liver lesion with at least a six-month follow-up. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods to screen studies, extract data, and assess the risk of bias and applicability concerns, using the QUADAS-2 checklist. We used the bivariate model and provided estimates of summary sensitivity and specificity. We assessed the certainty of the evidence using GRADE. We presented uncertainty-of-the-accuracy estimates using 95% confidence intervals (CIs). MAIN RESULTS We included 23 studies with 6546 participants. Studies were published between 2001 and 2021. We judged all 23 studies at high-risk of bias in at least one domain, and 13/23 studies at high concern for applicability. Most studies used different reference standards to exclude the presence of the target condition. The time interval between the index test and the reference standard was rarely defined. We also had major concerns on their applicability due to the characteristics of the participants. - CEUS for hepatocellular carcinoma of any size and stage: sensitivity 77.8% (95% CI 69.4% to 84.4%) and specificity 93.8% (95% CI 89.1% to 96.6%) (23 studies, 6546 participants; very low-certainty evidence). - CEUS for resectable hepatocellular carcinoma: sensitivity 77.5% (95% CI 62.9% to 87.6%) and specificity 92.7% (95% CI 86.8% to 96.1%) (13 studies, 1257 participants; low-certainty evidence). The observed heterogeneity in the results remains unexplained. The sensitivity analyses, including only studies with clearly prespecified positivity criteria and only studies in which the reference standard results were interpreted with no knowledge of the results about the index test, showed no differences in the results. AUTHORS' CONCLUSIONS We found that by using CEUS, as an add-on test following abdominal ultrasound, to diagnose hepatocellular carcinoma of any size and stage, 22% of people with hepatocellular carcinoma would be missed, and 6% of people without hepatocellular carcinoma would unnecessarily undergo further testing or inappropriate treatment. As to resectable hepatocellular carcinoma, we found that 23% of people with resectable hepatocellular carcinoma would incorrectly be unresected, while 8% of people without hepatocellular carcinoma would undergo further inappropriate testing or treatment. The uncertainty resulting from the high risk of bias of the included studies, heterogeneity, and imprecision of the results and concerns on their applicability limit our ability to draw confident conclusions.
Collapse
Affiliation(s)
- Mirella Fraquelli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca´ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Tin Nadarevic
- Department of Radiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Agostino Colli
- Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Cristina Manzotti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca´ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Vanja Giljaca
- Department of Gastroenterology, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Damir Miletic
- Department of Radiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Davor Štimac
- Department of Gastroenterology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Giovanni Casazza
- Department of Clinical Sciences and Community Health - Laboratory of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
Vidili G, Arru M, Solinas G, Calvisi DF, Meloni P, Sauchella A, Turilli D, Fabio C, Cossu A, Madeddu G, Babudieri S, Zocco MA, Iannetti G, Di Lembo E, Delitala AP, Manetti R. Contrast-enhanced ultrasound Liver Imaging Reporting and Data System: Lights and shadows in hepatocellular carcinoma and cholangiocellular carcinoma diagnosis. World J Gastroenterol 2022; 28:3488-3502. [PMID: 36158272 PMCID: PMC9346460 DOI: 10.3748/wjg.v28.i27.3488] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/10/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Contrast-enhanced ultrasound (CEUS) is considered a secondary examination compared to computed tomography (CT) and magnetic resonance imaging (MRI) in the diagnosis of hepatocellular carcinoma (HCC), due to the risk of misdiagnosing intrahepatic cholangiocarcinoma (ICC). The introduction of CEUS Liver Imaging Reporting and Data System (CEUS LI-RADS) might overcome this limitation. Even though data from the literature seems promising, its reliability in real-life context has not been well-established yet.
AIM To test the accuracy of CEUS LI-RADS for correctly diagnosing HCC and ICC in cirrhosis.
METHODS CEUS LI-RADS class was retrospectively assigned to 511 nodules identified in 269 patients suffering from liver cirrhosis. The diagnostic standard for all nodules was either biopsy (102 nodules) or CT/MRI (409 nodules). Common diagnostic accuracy indexes such as sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were assessed for the following associations: CEUS LR-5 and HCC; CEUS LR-4 and 5 merged class and HCC; CEUS LR-M and ICC; and CEUS LR-3 and malignancy. The frequency of malignant lesions in CEUS LR-3 subgroups with different CEUS patterns was also determined. Inter-rater agreement for CEUS LI-RADS class assignment and for major CEUS pattern identification was evaluated.
RESULTS CEUS LR-5 predicted HCC with a 67.6% sensitivity, 97.7% specificity, and 99.3% PPV (P < 0.001). The merging of LR-4 and 5 offered an improved 93.9% sensitivity in HCC diagnosis with a 94.3% specificity and 98.8% PPV (P < 0.001). CEUS LR-M predicted ICC with a 91.3% sensitivity, 96.7% specificity, and 99.6% NPV (P < 0.001). CEUS LR-3 predominantly included benign lesions (only 28.8% of malignancies). In this class, the hypo-hypo pattern showed a much higher rate of malignant lesions (73.3%) than the iso-iso pattern (2.6%). Inter-rater agreement between internal raters for CEUS-LR class assignment was almost perfect (n = 511, k = 0.94, P < 0.001), while the agreement among raters from separate centres was substantial (n = 50, k = 0.67, P < 0.001). Agreement was stronger for arterial phase hyperenhancement (internal k = 0.86, P < 2.7 × 10-214; external k = 0.8, P < 0.001) than washout (internal k = 0.79, P < 1.6 × 10-202; external k = 0.71, P < 0.001).
CONCLUSION CEUS LI-RADS is effective but can be improved by merging LR-4 and 5 to diagnose HCC and by splitting LR-3 into two subgroups to differentiate iso-iso nodules from other patterns.
Collapse
Affiliation(s)
- Gianpaolo Vidili
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Marco Arru
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Giuliana Solinas
- Department of Biomedical Sciences, Public Health-Laboratory of Biostatistics, University of Sassari, Sassari 07100, Italy
| | - Diego Francesco Calvisi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Pierluigi Meloni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Assunta Sauchella
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Davide Turilli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Claudio Fabio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Antonio Cossu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Giordano Madeddu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Sergio Babudieri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome 00168, Italy
| | | | - Enza Di Lembo
- Ultrasound Unit, Ospedale S. Spirito, Pescara 65123, Italy
| | | | - Roberto Manetti
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
24
|
Liu L, Tang C, Li L, Chen P, Tan Y, Hu X, Chen K, Shang Y, Liu D, Liu H, Liu H, Nie F, Tian J, Zhao M, He W, Guo Y. Deep learning radiomics for focal liver lesions diagnosis on long-range contrast-enhanced ultrasound and clinical factors. Quant Imaging Med Surg 2022; 12:3213-3226. [PMID: 35655832 PMCID: PMC9131334 DOI: 10.21037/qims-21-1004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/18/2022] [Indexed: 11/15/2023]
Abstract
BACKGROUND Routine clinical factors play an important role in the clinical diagnosis of focal liver lesions (FLLs); however, they are rarely used in computer-assisted diagnosis. Therefore, we developed a deep learning (DL) radiomics model, and investigated its effectiveness in diagnosing FLLs using long-range contrast-enhanced ultrasound (CEUS) cines and clinical factors. METHODS Herein, 303 patients with pathologically confirmed FLLs after surgery at three hospitals were retrospectively enrolled and divided into a training cohort (n=203), internal validation (IV) cohort (n=50) from one hospital with the ratio of 4:1, and external validation (EV) cohort (n=50) from the other two hospitals. Four DL radiomics models, namely Four Stream 3D convolutional neural network (FS3DU) (trained with CEUS cines only), FS3DU+A (trained with CEUS cines and alpha fetoprotein), FS3DU+H (trained with CEUS cines and hepatitis), and FS3DU+A+H (trained with CEUS cines, alpha fetoprotein, and hepatitis), were formed based on 3D convolutional neural networks (CNNs). They used approximately 20-s preoperative CEUS cines and/or clinical factors to extract spatiotemporal features for the classification of FLLs and the location of the region of interest. The area under curve of the receiver operating characteristic and diagnosis speed were calculated to evaluate the models in the IV and EV cohorts, and they were compared with those of two radiologists. Two-sided Delong tests were used to calculate the statistical differences between the models and radiologists. RESULTS FS3DU+A+H, which incorporated CEUS cines, hepatitis, and alpha fetoprotein, achieved the highest area under curve of 0.969 (95% CI: 0.901-1.000) and 0.957 (95% CI: 0.894-1.000) among radiologists and other models in IV and EV cohorts, respectively. A significant difference was observed when comparing FS3DU and radiologist 2 (all P<0.05). The diagnosis speed of all the models was the same (10.76 s per patient), and it was two times faster than those of the radiologists (radiologist 1: 23.74 and 27.75 s; radiologist 2: 25.95 and 29.50 s in IV and EV cohorts, respectively). CONCLUSIONS The proposed DL radiomics demonstrated excellent performance on the benign and malignant diagnosis of FLLs by combining CEUS cines and clinical factors. It could help the individualized characterization of FLLs, and enhance the accuracy of diagnosis in the future.
Collapse
Affiliation(s)
- Li Liu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunlin Tang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lu Li
- CHISON Medical Technologies Co., LTD, Wuxi, China
| | - Ping Chen
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Tan
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kaixuan Chen
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yongning Shang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Deng Liu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - He Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongjun Liu
- Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fang Nie
- Department of Ultrasound, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiawei Tian
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
25
|
Huang Z, Zhou P, Li S, Li K. Evaluation of contrast-enhanced ultrasound LI-RADS version 2017: application on 271 liver nodules in individuals with non-alcoholic steatohepatitis. Eur Radiol 2022; 32:7146-7154. [PMID: 35639147 DOI: 10.1007/s00330-022-08872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To evaluate the diagnostic performance of contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS) version 2017 in a population with non-alcoholic steatohepatitis (NASH). METHODS Between January 2013 and December 2020, consecutive patients diagnosed with NASH with untreated liver nodules were enrolled in this retrospective study. A prospective evaluation was performed between January 2021 and August 2021 as a validation set. Diagnostic performance was assessed. RESULTS We included 217 nodules in 211 patients (mean age, 49.7 ± 21.7 years; male, 156) in the retrospective study. The positive predictive value (PPV) of CEUS LR-5 in the diagnosis of hepatocellular carcinoma (HCC) was 70.8% (56/79). In total, 28 of 217 (12.9%) nodules were classified as LR-M, of which 12 showed arterial phase hyper-enhancement, early washout, and absence of a punched-out appearance within 5 min; 10 of the 12 (83%) were HCC. When these nodules were reclassified as LR-5, the specificity of LR-M as a predictor of non-HCC malignancy increased from 91.0 (181/199) to 96.5% (192/199) (p = .023). Despite the reclassification, LR-5 specificity and PPV remained high (80.6% and 72.5%, respectively). Following reclassification, LR-M specificity increased from 90.0 (45/50) to 100% (50/50) (p = .022) in the validation set. CONCLUSION CEUS LI-RADS category LR-5 is effective in predicting the presence of HCC. In NASH patients, diagnostic performance can be further improved by reclassifying LR-M nodules with arterial phase hyper-enhancement, early washout, and punched-out appearance as LR-5. KEY POINTS • The LI-RADS classification of CEUS has a high application value for differentiation of HCC in NASH patients. • When LR-M nodules with arterial phase hyperenhancement and early washout but not punched-out appearance at < 5 min are reclassified as LR-5; the modification of LI-RADS has a better performance. • The PPV of modified LR-5 in the non-cirrhotic group was better than that of LR-5. The PPV of modified CEUS LR-5 in the non-cirrhotic group was comparable to that in the cirrhotic group (p both = 0.065).
Collapse
Affiliation(s)
- Zhe Huang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan City, 430030, Hubei Province, China
| | - PingPing Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan City, 430030, Hubei Province, China
| | - ShanShan Li
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan City, 430030, Hubei Province, China
| | - Kaiyan Li
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan City, 430030, Hubei Province, China.
| |
Collapse
|
26
|
Guo HL, Zheng X, Cheng MQ, Zeng D, Huang H, Xie XY, Lu MD, Kuang M, Wang W, Xian MF, Chen LD. Contrast-Enhanced Ultrasound for Differentiation Between Poorly Differentiated Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1213-1225. [PMID: 34423864 DOI: 10.1002/jum.15812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the diagnostic performance of LR-5 for diagnosing poorly differentiated hepatocellular carcinoma (p-HCC). To build a contrast-enhanced ultrasound (CEUS) signature for improving the differential diagnostic performance between p-HCC and intrahepatic cholangiocarcinoma (ICC). METHODS The B-mode ultrasound (BUS) and CEUS features of 60 p-HCCs and 56 ICCs were retrospectively analyzed. The CEUS LI-RADS category was assigned according to CEUS LI-RADS v2017. A diagnostic CEUS signature was built based on the independent significant features. An ultrasound (US) signature combining both BUS and CEUS features was also built. The diagnostic performances of the CEUS signature, US signature, and LR-5 were evaluated by receiver operating characteristic (ROC) analysis. RESULTS One (1.7%) p-HCC and 26 (46.4%) ICC patients presented cholangiectasis or cholangiolithiasis (P < .001). Fifty-four (90.0%) p-HCCs and 8 (14.3%) ICCs showed clear boundaries in the artery phase (P < .001). The washout times of p-HCCs and ICCs were 81.0 ± 42.5 s and 34.7 ± 8.6 s, respectively (P < .001). The AUC, sensitivity, and specificity of the CEUS signature, US signature, and LR-5 were 0.955, 91.67%, and 90.57% versus 0.976, 96.67%, and 92.45% versus 0.758, 51.67%, and 100%, respectively. The AUC and sensitivity of CEUS LI-RADS were much lower than those of the CEUS and US signatures (P < .001). CONCLUSION LR-5 had high specificity but low sensitivity in diagnosing p-HCC. When the washout time and tumor boundary were included in the CEUS signature, the sensitivity and AUC were remarkably increased in the differentiation between p-HCC and ICC.
Collapse
Affiliation(s)
- Huan-Ling Guo
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xin Zheng
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Mei-Qing Cheng
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dan Zeng
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hui Huang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming-De Lu
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming Kuang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Departments of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Wang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng-Fei Xian
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Da Chen
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
27
|
Bartolotta TV, Randazzo A, Bruno E, Taibbi A. Focal liver lesions in cirrhosis: Role of contrast-enhanced ultrasonography. World J Radiol 2022; 14:70-81. [PMID: 35646291 PMCID: PMC9124982 DOI: 10.4329/wjr.v14.i4.70] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Contrast-enhanced ultrasound (CEUS) represents a great innovation for the evaluation of focal liver lesions (FLLs). The main advantage of CEUS is the real-time imaging examination and the very low toxicity in patients with renal failure. Liver cirrhosis has been recognized as a major risk factor for the onset of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). HCC in liver cirrhosis develops as the last step of a complex that leads to the gradual transformation from regenerative nodule through dysplastic nodule to HCC. In patients with liver cirrhosis, a surveillance program is recommended consisting of ultrasound (US) for detecting small focal lesions. A wide spectrum of benign and malignant lesions other than HCC may be found in the cirrhotic liver and their differentiation is important to avoid errors in staging diseases that may preclude potentially curative therapies. Several published studies have explored the value of CEUS in liver cirrhosis and they have been shown to have excellent diagnostic and prognostic performances for the evaluation of non-invasive and efficient diagnosis of FLLs in patients at high risk for liver malignancies. The purpose of this article is to describe and discuss CEUS imaging findings of FLLs including HCC and ICC, all of which occur in cirrhotic livers with varying prevalence.
Collapse
Affiliation(s)
- Tommaso Vincenzo Bartolotta
- Department of Radiology, University Hospital "Paolo Giaccone", Palermo 90127, Italy
- Department of Radiology, Fondazione Istituto G. Giglio Hospital, Cefalù 90015, Italy
| | - Angelo Randazzo
- Department of Radiology, University Hospital "Paolo Giaccone", Palermo 90127, Italy
| | - Eleonora Bruno
- Department of Radiology, University Hospital "Paolo Giaccone", Palermo 90127, Italy
| | - Adele Taibbi
- Department of Radiology, University Hospital "Paolo Giaccone", Palermo 90127, Italy
| |
Collapse
|
28
|
Abstract
The American College of Radiology has released the Liver Imaging Reporting and Data System (LI-RADS) scheme which categorizes focal liver lesions (FLLs) in patients at risk for hepatocellular carcinoma (HCC) according to the degree of risk of nodules to be HCC. It subgroups FLL in LR-1 (definitely benign), LR-2 (probably benign), LR-3 (intermediate probability of malignancy), LR-4 (probably HCC), LR-5 (definitely HCC), and LR-M (probable malignancy not specific for HCC). Computed tomography/magnetic resonance imaging (CT/MRI) and contrast enhanced ultrasound (CEUS) LI-RADS diagnostic algorithm have the goal to standardize the acquisition, interpretation, reporting, and data collection for imaging examinations in patients at risk for HCC. Nevertheless, there remain controversial issues that should be dealt with. The aim of this review is to discuss the pros and cons of the interpretation and reporting part of CT/MRI and CEUS LI-RADS diagnostic algorithm to permit future refinements of the scheme and optimize patient and nodule management.
Collapse
|
29
|
Park J, Lee JM, Kim TH, Yoon JH. Imaging Diagnosis of HCC: Future directions with special emphasis on hepatobiliary MRI and contrast-enhanced ultrasound. Clin Mol Hepatol 2021; 28:362-379. [PMID: 34955003 PMCID: PMC9293611 DOI: 10.3350/cmh.2021.0361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a unique cancer entity that can be noninvasively diagnosed using imaging modalities without pathologic confirmation. In 2018, several major guidelines for HCC were updated to include hepatobiliary contrast agent magnetic resonance imaging (HBA-MRI) and contrast-enhanced ultrasound (CEUS) as major imaging modalities for HCC diagnosis. HBA-MRI enables the achievement of high sensitivity in HCC detection using the hepatobiliary phase (HBP). CEUS is another imaging modality with real-time imaging capability, and it is reported to be useful as a second-line modality to increase sensitivity without losing specificity for HCC diagnosis. However, until now, there is an unsolved discrepancy among guidelines on whether to accept “HBP hypointensity” as a definite diagnostic criterion for HCC or include CEUS in the diagnostic algorithm for HCC diagnosis. Furthermore, there is variability in terminology and inconsistencies in the definition of imaging findings among guidelines; therefore, there is an unmet need for the development of a standardized lexicon. In this article, we review the performance and limitations of HBA-MRI and CEUS after guideline updates in 2018 and briefly introduce some future aspects of imaging-based HCC diagnosis.
Collapse
Affiliation(s)
- Junghoan Park
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Tae-Hyung Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
30
|
Ding J, Qin Z, Zhou Y, Zhou H, Zhang Q, Wang Y, Jing X, Wang F. Impact of Revision of the LR-M Criteria on the Diagnostic Performance of Contrast-Enhanced Ultrasound LI-RADS. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3403-3410. [PMID: 34598799 DOI: 10.1016/j.ultrasmedbio.2021.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
This study was aimed at revising the LI-RADS M category (LR-M) criteria to improve the diagnostic performance categories LR-5 and LR-M of the contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS) Version 2017. We enrolled 264 patients (264 nodules) with a risk for hepatocellular carcinoma (HCC). The nodules were assigned specific CEUS LI-RADS categories. Washout onset times for all nodules were noted. The diagnostic performance of LR-5 and LR-M was analyzed based on the different early washout criterion for the LR-M category. The positive predictive values in LR-5, LR-4 and LR-3 were 98.6%, 72.2% and 16.7%, respectively, and that for non-HCC malignancies in LR-M was 25.0%. Patients in the LR-M category were reclassified using 45 s as the early washout criterion. LR-5 had higher sensitivity (65.5% vs. 76.2%, p = 0.012) and area under the receiver operating characteristic curve (0.80 vs. 0.85, p = 0.001) for HCC diagnosis after reclassification. LR-M also had higher specificity (71.4% vs. 81.3%, p = 0.010) in diagnosing non-HCC malignancies after reclassification. Our findings suggest CEUS LR-5 is effective for HCC diagnosis. The use of 45 s as the time criterion of early washout for LR-M can improve LR-5 and LR-M performance in the diagnosis of HCC and non-HCC malignancies, respectively.
Collapse
Affiliation(s)
- Jianmin Ding
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China; Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Zhengyi Qin
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Yan Zhou
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Hongyu Zhou
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Qin Zhang
- Department of Pathology, Tianjin Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Yandong Wang
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China.
| | - Fengmei Wang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| |
Collapse
|
31
|
Zeng D, Xu M, Liang JY, Cheng MQ, Huang H, Pan JM, Huang Y, Tong WJ, Xie XY, Lu MD, Kuang M, Chen LD, Hu HT, Wang W. Using new criteria to improve the differentiation between HCC and non-HCC malignancies: clinical practice and discussion in CEUS LI-RADS 2017. Radiol Med 2021; 127:1-10. [PMID: 34665430 DOI: 10.1007/s11547-021-01417-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Using contrast-enhanced ultrasound (CEUS) to evaluate the diagnostic performance of liver imaging reporting and data system (LI-RADS) version 2017 and to explore potential ways to improve the efficacy. METHODS A total of 315 nodules were classified as LR-1 to LR-5, LR-M, and LR-TIV. New criteria were applied by adjusting the early washout onset (< 45 s) and the time of marked washout (within 3 min). Two subgroups of the LR-M nodules were recategorized as LR-5, respectively. The diagnostic performance was evaluated by calculating the accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). RESULTS By adjusting early washout onset to < 45 s, the LR-5 as a standard for diagnosing HCC had an improved sensitivity (74.1% vs. 56.1%, P < 0.001) without significant change in PPV (93.3% vs. 96.1%, P = 0.267), but the specificity was decreased (48.3% vs. 78.5%, P = 0.018). The LR-M as a standard for the diagnosis of non-HCC malignancies had an increase in specificity (89.2% vs. 66.2%, P < 0.001) but a decrease in sensitivity (31.5% vs. 68.4%, P = 0.023). After reclassification according to the time of marked washout, the sensitivity of the LR-5 increased (80% vs. 56.1%, P < 0.001) without a change in PPV (94.9% vs. 96.1%, P = 0.626) and specificity (80% vs. 78.5%, P = 0.879). For reclassified LR-M nodules, the specificity increased (87.5% versus 66.2%, P < 0.001) with a non-significant decrease in sensitivity (47.3% vs. 68.4%, P = 0.189). CONCLUSIONS The CEUS LI-RADS showed good confidence in diagnosing HCC while tended to misdiagnose HCC as non-HCC malignancies. Adjusting the marked washout time within 3 min would reduce the possibility of this misdiagnosis.
Collapse
Affiliation(s)
- Dan Zeng
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ming Xu
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jin-Yu Liang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Mei-Qing Cheng
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Hui Huang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jia-Ming Pan
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yang Huang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wen-Juan Tong
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ming-De Lu
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ming Kuang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Li-Da Chen
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Hang-Tong Hu
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Wei Wang
- Department of Medical Ultrasonics, Ultrasomics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| |
Collapse
|
32
|
Yang Y, Liu C, Yan J, Liu K. Perfluorobutane contrast-enhanced ultrasonography for the diagnosis of HCC: a systematic review and meta-analysis. Abdom Radiol (NY) 2021; 46:4619-4628. [PMID: 34086090 DOI: 10.1007/s00261-021-03141-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/06/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Perfluorobutane ultrasound contrast agent as a new type of contrast agent has a good performance in the diagnosis of hepatocellular carcinoma (HCC). This study aim to evaluate the accuracy and reliability of Perfluorobutane contrast-enhanced ultrasonography (P-CEUS) in the diagnosis of HCC with a systematic review and meta-analysis. METHODS Web of Science, EMBASE, Cochrane, Clinical Key, Wan Fang, CBM and CNKI databases were systematically searched and checked for studies using P-CEUS in HCC, from 2007 to 2020. Data necessary to construct 2 × 2 contingency tables were extracted from included studies. The QUADAS tool was utilized to assess the methodologic quality of the studies. Meta-analysis included data pooling, subgroup analyses, meta-regression and investigation of publication bias was comprehensively performed. RESULTS Nine studies were included in this meta-analysis and the overall diagnostic accuracy in characterization of HCC was as follows: pooled sensitivity, 0.90 (95% confidence interval: 0.82-0.95); pooled specificity, 0.97 (0.93-0.98); pooled positive likelihood ratio, 27.2 (14.1 to - 52.3); and pooled negative likelihood ratio, 0.10 (0.06-0.18). The area under the comprehensive receiving operation characteristic curve was 0.98 (0.97-0.99). CONCLUSION The sensitivity and specificity of P-CEUS are more valuable than other imaging techniques (such as computer tomography or magnetic resonance imaging). However, due to the large differences in the data samples collected in this study, statistical heterogeneity results. P-CEUS can significantly improve the diagnostic efficiency of previous contrast-enhanced ultrasound for HCC. PROSPERO registration number: PROSPERO (CRD42020200040).
Collapse
Affiliation(s)
- Yichun Yang
- Department of Ultrasound, Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, No. 16 Airport Road, Baiyun District, Guangzhou, 510000, China
| | - Chengkai Liu
- Department of Ultrasound, Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, No. 16 Airport Road, Baiyun District, Guangzhou, 510000, China
| | - Jin Yan
- Department of Ultrasound, Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, No. 16 Airport Road, Baiyun District, Guangzhou, 510000, China
| | - Kebing Liu
- Department of Ultrasound, Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, No. 16 Airport Road, Baiyun District, Guangzhou, 510000, China.
| |
Collapse
|
33
|
Brindley PJ, Bachini M, Ilyas SI, Khan SA, Loukas A, Sirica AE, Teh BT, Wongkham S, Gores GJ. Cholangiocarcinoma. Nat Rev Dis Primers 2021; 7:65. [PMID: 34504109 PMCID: PMC9246479 DOI: 10.1038/s41572-021-00300-2] [Citation(s) in RCA: 390] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Cholangiocarcinoma (CCA) is a highly lethal adenocarcinoma of the hepatobiliary system, which can be classified as intrahepatic, perihilar and distal. Each anatomic subtype has distinct genetic aberrations, clinical presentations and therapeutic approaches. In endemic regions, liver fluke infection is associated with CCA, owing to the oncogenic effect of the associated chronic biliary tract inflammation. In other regions, CCA can be associated with chronic biliary tract inflammation owing to choledocholithiasis, cholelithiasis, or primary sclerosing cholangitis, but most CCAs have no identifiable cause. Administration of the anthelmintic drug praziquantel decreases the risk of CCA from liver flukes, but reinfection is common and future vaccination strategies may be more effective. Some patients with CCA are eligible for potentially curative surgical options, such as resection or liver transplantation. Genetic studies have provided new insights into the pathogenesis of CCA, and two aberrations that drive the pathogenesis of non-fluke-associated intrahepatic CCA, fibroblast growth factor receptor 2 fusions and isocitrate dehydrogenase gain-of-function mutations, can be therapeutically targeted. CCA is a highly desmoplastic cancer and targeting the tumour immune microenvironment might be a promising therapeutic approach. CCA remains a highly lethal disease and further scientific and clinical insights are needed to improve patient outcomes.
Collapse
Affiliation(s)
- Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | | | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Shahid A. Khan
- Liver Unit, Division of Digestive Diseases, Imperial College London, London, UK
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alphonse E. Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, Singapore, Singapore
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA,
| |
Collapse
|
34
|
Lv K, Cao X, Dong Y, Geng D, Zhang J. CT/MRI LI-RADS version 2018 versus CEUS LI-RADS version 2017 in the diagnosis of primary hepatic nodules in patients with high-risk hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1076. [PMID: 34422988 PMCID: PMC8339865 DOI: 10.21037/atm-21-1035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
Background This study aimed to explore the application value of computed tomography/magnetic resonance imaging (CT/MRI) liver imaging reporting and data system (LI-RADS) version 2018 and contrast-enhanced ultrasound (CEUS) LI-RADS version 2017 in high-risk hepatocellular carcinoma (HCC) patients and to conduct a comparative analysis. Methods This study enrolled 250 high-risk HCC patients with 259 primary hepatic nodules from June 2017 to June 2020. Two investigators used a single-blind method to classify all nodules. The u-test, t-test, and Kappa test were performed. The sensitivity, specificity, positive predictive value (PPV), negative predictive value and receiver operating characteristic curves of LR-5 and LR-M in the diagnosis of HCC and non-HCC malignancy were respectively calculated. Results CT/MRI LI-RADS v2018 and CEUS LI-RADS v2017 showed substantial agreement inter-observers, and there was a moderate agreement inter-modality. The specificity and PPV of HCC and non-HCC malignancies in CT/MRI LR-5/M were higher than CEUS. The areas under the curve (AUC) of CT/MRI LR-5 and LR-M were 0.794 and 0.777, and the AUC of CEUS LR-5 and LR-M were 0.720 and 0.718, respectively. Conclusions Two modalities have substantial agreement inter-observers and moderate agreement inter-modalities. The diagnostic accuracy of HCC of CT/MRI LR-5 and non-HCC malignancy of CT/MRI LR-M are higher than CEUS.
Collapse
Affiliation(s)
- Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Xin Cao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China
| | - Yinlei Dong
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Abdominal Ultrasound and Treatment of Hepatocellular Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11071268. [PMID: 34359352 PMCID: PMC8303704 DOI: 10.3390/diagnostics11071268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
|
36
|
Reig M, Forner A, Ávila MA, Ayuso C, Mínguez B, Varela M, Bilbao I, Bilbao JI, Burrel M, Bustamante J, Ferrer J, Gómez MÁ, Llovet JM, De la Mata M, Matilla A, Pardo F, Pastrana MA, Rodríguez-Perálvarez M, Tabernero J, Urbano J, Vera R, Sangro B, Bruix J. Diagnosis and treatment of hepatocellular carcinoma. Update of the consensus document of the AEEH, AEC, SEOM, SERAM, SERVEI, and SETH. Med Clin (Barc) 2021; 156:463.e1-463.e30. [PMID: 33461840 DOI: 10.1016/j.medcli.2020.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver neoplasm and one of the most common causes of death in patients with cirrhosis of the liver. In parallel, with recognition of the clinical relevance of this cancer, major new developments have recently appeared in its diagnosis, prognostic assessment and in particular, in its treatment. Therefore, the Spanish Association for the Study of the Liver (AEEH) has driven the need to update the clinical practice guidelines, once again inviting all the societies involved in the diagnosis and treatment of this disease to participate in the drafting and approval of the document: Spanish Society for Liver Transplantation (SETH), Spanish Society of Diagnostic Radiology (SERAM), Spanish Society of Vascular and Interventional Radiology (SERVEI), Spanish Association of Surgeons (AEC) and Spanish Society of Medical Oncology (SEOM). The clinical practice guidelines published in 2016 and accepted as National Health System Clinical Practice Guidelines were taken as the reference documents, incorporating the most important recent advances. The scientific evidence and the strength of the recommendation is based on the GRADE system.
Collapse
Affiliation(s)
- María Reig
- Unidad de Oncología Hepática (Barcelona Clinic Liver Cancer), Servicio de Hepatología, Hospital Clínic, IDIBAPS, Universidad de Barcelona, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España
| | - Alejandro Forner
- Unidad de Oncología Hepática (Barcelona Clinic Liver Cancer), Servicio de Hepatología, Hospital Clínic, IDIBAPS, Universidad de Barcelona, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España
| | - Matías A Ávila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Programa de Hepatología, Centro de Investigación Médica Aplicada, Universidad de Navarra-IDISNA, Pamplona, España
| | - Carmen Ayuso
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Servicio de Radiodiagnóstico, Hospital Clínic Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, España
| | - Beatriz Mínguez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Servicio de Hepatología, Hospital Universitario Vall d́Hebron, Grupo de Investigación en Enfermedades Hepáticas (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universidad Autónoma de Barcelona. Barcelona, España
| | - María Varela
- Sección de Hepatología, Servicio de Aparato Digestivo, Hospital Universitario Central de Asturias. Oviedo, España
| | - Itxarone Bilbao
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Servicio de Cirugía Hepatobiliopancreática y Trasplantes Digestivos, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona. Barcelona, España
| | - José Ignacio Bilbao
- Unidad de Radiología Vascular e Intervencionista, Departamento de Radiodiagnóstico, Clínica Universidad de Navarra, Pamplona, España
| | - Marta Burrel
- Servicio de Radiodiagnóstico, Hospital Clínic Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, España
| | - Javier Bustamante
- Servicio de Gastroenterología y Hepatología, Sección de Hepatología y Trasplante, Hospital Universitario de Cruces, Baracaldo, España
| | - Joana Ferrer
- Unidad de Oncología Hepática (Barcelona Clinic Liver Cancer), Servicio de Cirugía Hepatobiliopancreática, Hospital Clínic, IDIBAPS, Universidad de Barcelona, Barcelona, España
| | - Miguel Ángel Gómez
- Unidad de Cirugía Hepatobiliopancreática y Trasplantes, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - Josep María Llovet
- Grupo de Investigación Traslacional en Oncología Hepática, Servicio de Hepatología, Hospital Clínic, IDIBAPS, Universidad de Barcelona, Barcelona, España
| | - Manuel De la Mata
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Unidad Clínica de Aparato Digestivo, Hospital Universitario Reina Sofía, Córdoba, España
| | - Ana Matilla
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Sección de Hepatología, Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - Fernando Pardo
- Servicio de Cirugía Hepatobiliopancreática y Trasplante, Clínica Universidad de Navarra, Pamplona, España
| | - Miguel A Pastrana
- Servicio de Radiodiagnóstico, Hospital Universitario Puerta de Hierro, Universidad Autónoma de Madrid, Madrid, España
| | - Manuel Rodríguez-Perálvarez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Unidad Clínica de Aparato Digestivo, Hospital Universitario Reina Sofía, Córdoba, España
| | - Josep Tabernero
- Servicio de Oncología Médica, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, España
| | - José Urbano
- Unidad de Radiología Vascular e Intervencionista, Servicio de Radiodiagnóstico, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Madrid, España
| | - Ruth Vera
- Servicio de Oncología Médica, Complejo hospitalario de Navarra, Navarrabiomed-IDISNA, Pamplona, España
| | - Bruno Sangro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Unidad de Hepatología y Área de Oncología HBP, Clínica Universidad de Navarra-IDISNA, Pamplona, España.
| | - Jordi Bruix
- Unidad de Oncología Hepática (Barcelona Clinic Liver Cancer), Servicio de Hepatología, Hospital Clínic, IDIBAPS, Universidad de Barcelona, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España.
| |
Collapse
|
37
|
Huang Z, Zhou P, Li S, Li K. MR versus CEUS LI-RADS for Distinguishing Hepatocellular Carcinoma from other Hepatic Malignancies in High-Risk Patients. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1244-1252. [PMID: 33610338 DOI: 10.1016/j.ultrasmedbio.2021.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Distinguishing between other hepatic malignancies (OMs) and hepatocellular carcinoma (HCC) is vital to allow clinicians to determine optimal treatment and assess prognosis in patients at high risk for HCC. This study evaluated the performance of the Liver Imaging Reporting and Data System (LI-RADS) using magnetic resonance imaging (MRI) versus contrast-enhanced ultrasonography (CEUS) for differentiating HCC from OMs in patients at high risk for HCC. This retrospective study consecutively enrolled 106 high-risk patients with HCC and 52 high-risk patients with OMs. Patients underwent both MRI and CEUS, with histologic diagnosis as a reference standard. The diagnostic performance of MR versus CEUS LI-RADS was calculated and compared. The performance of the modified CEUS LI-RADS criteria was also evaluated and compared. Our research found that MRI features significantly differed between patients with OMs and those with HCC (p < 0.05), with sensitivities of 34.6%-69.2% and specificities of 83.0%-95.3% for diagnosing OMs and an LI-RADS M (LR-M): definite or probable malignancy, not specific for hepatocellular carcinoma sensitivity of 90.4% and specificity of 83.0% for diagnosing OM. CEUS features also significantly differed between patients with OM and HCC (p < 0.05), with sensitivities of 11.5%-96.2% and specificities of 23.6%-100% for diagnosing OMs, and an LR-M sensitivity of 98.1% and specificity of 84.0% for diagnosing OMs. Accuracies of category LR-M did not significantly differ between MR and CEUS LI-RADS (85.4% vs. 88.6%, p = 0.724). After reclassification of category LR-M nodules to category LR-5 if they exhibited clear intratumoral non-enhanced area boundaries and no punched-out appearance before 5 min, accuracy increased from 88.6% to 96.8% for CEUS LR-M and from 84.8% to 91.1% for CEUS LR-5. LR-M accuracies were significantly higher for the modified version of the CEUS LI-RADS than for MR LI-RADS (96.8% vs. 85.4%, respectively, p = 0.04). CEUS LI-RADS and MR LI-RADS can effectively be used to distinguish HCC from OMs. In patients at high risk of HCC, performance may be further improved by using a modified CEUS LI-RADS classification system in which category LR-M lesions are considered LR-5 if they have clear intratumoral non-enhanced area boundaries and do not have a punched-out appearance.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - PingPing Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShanShan Li
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiyan Li
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
38
|
Nishimura T, Iijima H. The Standardization of Ultrasound-Based imaging findings for the screening of hepatocellular carcinoma and the diagnosis of hepatic tumors. KANZO 2021; 62:240-250. [DOI: 10.2957/kanzo.62.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Takashi Nishimura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine
- Ultrasound Imaging Center, Hyogo College of Medicine
| | - Hiroko Iijima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine
- Ultrasound Imaging Center, Hyogo College of Medicine
| |
Collapse
|
39
|
Chen Y, Wang W. Differentiation between hepatocellular carcinoma and intrahepatic cholangiocarcinoma using contrast-enhanced ultrasound: A systematic review and meta-analysis. Clin Hemorheol Microcirc 2021; 79:293-309. [PMID: 33935070 DOI: 10.3233/ch-211145] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM To explore the diagnostic ability of contrast-enhanced ultrasound (CEUS) in distinguishing intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC). MATERIALS AND METHODS PubMed, EMBASE, Cochrane Library, and Web of Science were systematically searched for studies reporting the diagnostic accuracy of CEUS in differentiating ICC from HCC. The diagnostic ability of CEUS was assessed based on the pooled sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and area under the curve (AUC) with 95% confidence intervals (CIs). The methodologic quality was assessed by the QUADAS-2 tool. Subgroup analyses, meta-regression and investigation of publication bias were performed to identify the source of heterogeneity. RESULTS A total of eight studies were included, consisting of 1,116 patients with HCC and 529 with ICC. The general diagnostic performance of CEUS in distinguishing ICC and HCC were as follows: pooled sensitivity, 0.92 (95% CI: 0.84-0.96); pooled specificity, 0.87 (95% CI: 0.79-0.92); pooled PLR, 7.1 (95% CI: 4.1-12.0); pooled NLR, 0.09 (95% CI: 0.05-0.19); pooled DOR, 76 (95% CI: 26-220) and AUC, 0.95(95% CI: 0.93-0.97). Different liver background may be a potential factor that influenced the diagnostic accuracy of CEUS according to the subgroup analysis, with the pooled DOR of 89.67 in the mixed liver background group and 46.87 in the cirrhosis group, respectively. Six informative CEUS features that may help differentiate HCC from ICC were extracted. The three CEUS features favoring HCC were arterial phase hyperenhancement(APHE), mild washout and late washout (>60s); the three CEUS favoring ICC were arterial rim enhancement, marked washout and early washout(<60s). No potential publication bias was observed. CONCLUSION CEUS showed great diagnostic ability in differentiating ICC from HCC, which may be promising for noninvasive evaluation of these diseases.
Collapse
Affiliation(s)
- Yanling Chen
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenping Wang
- Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Rodgers SK, Fetzer DT, Kono Y. Using LI-RADS With Contrast-Enhanced Ultrasound. Clin Liver Dis (Hoboken) 2021; 17:154-158. [PMID: 33868657 PMCID: PMC8043704 DOI: 10.1002/cld.1077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
- Shuchi K. Rodgers
- Department of RadiologyEinstein Healthcare NetworkSidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaPA
| | - David T. Fetzer
- Department of RadiologyUT Southwestern Medical CenterDallasTX
| | - Yuko Kono
- Division of Gastroenterology & HepatologyClinical Professor of RadiologyUniversity of California, San DiegoSan DiegoCA
| |
Collapse
|
41
|
Hu YX, Shen JX, Han J, Mao SY, Mao RS, Li Q, Li F, Guo ZX, Zhou JH. Diagnosis of Non-Hepatocellular Carcinoma Malignancies in Patients With Risks for Hepatocellular Carcinoma: CEUS LI-RADS Versus CT/MRI LI-RADS. Front Oncol 2021; 11:641195. [PMID: 33912456 PMCID: PMC8074676 DOI: 10.3389/fonc.2021.641195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Data regarding direct comparison of contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS) and Computed Tomography/Magnetic Resonance Imaging (CT/MR) LI-RADS in diagnosis of non-hepatocelluar carcinoma (non-HCC) malignancies remain limited. Our study aimed to compare the diagnostic performance of the CEUS LI-RADS version 2017 and CT/MRI LI-RADS v2018 for diagnosing non-HCC malignancies in patients with risks for HCC. Materials and Methods In this retrospective study, 94 liver nodules pathologically-confirmed as non-HCC malignancies in 92 patients at risks for HCC from January 2009 to December 2018 were enrolled. The imaging features and the LI-RADS categories on corresponding CEUS and CT/MRI within 1 month were retrospectively analyzed according to the ACR CEUS LI-RADS v2017 and ACR CT/MRI LI-RADS v2018 by two radiologists in consensus for each algorithm. The sensitivity of LR-M category, inter-reader agreement and inter-modality agreement was compared between these two standardized algorithms. Results Ninety-four nodules in 92 patients (mean age, 54 years ± 10 [standard deviation] with 65 men [54 years ± 11] and 27 women [54 years ± 8]), including 56 intrahepatic cholangiocarcinomas, 34 combined hepatocellular cholangiocarcinomas, two adenosquamous carcinomas of the liver, one primary hepatic neuroendocrine carcinoma and one hepatic undifferentiated sarcoma were included. On CEUS, numbers of lesions classified as LR-3, LR-4, LR-5 and LR-M were 0, 1, 10 and 83, and on CT/MRI, the corresponding numbers were 3, 0, 14 and 77. There was no significant difference in the sensitivity of LR-M between these two standardized algorithms (88.3% of CEUS vs 81.9% of CT/MRI, p = 0.210). Seventy-seven lesions (81.9%) were classified as the same LI-RADS categories by both standardized algorithms (five for LR-5 and 72 for LR-M, kappa value = 0.307). In the subgroup analysis for ICC and CHC, no significant differences were found in the sensitivity of LR-M category between these two standardized algorithms (for ICC, 94.6% of CEUS vs 89.3% of CT/MRI, p = 0.375; for CHC, 76.5% of CEUS vs 70.6% of CT/MRI, p = 0. 649). Conclusion CEUS LI-RADS v2017 and CT/MRI LI-RADS v2018 showed similar value for diagnosing non-HCC primary hepatic malignancies in patients with risks.
Collapse
Affiliation(s)
- Yi-Xin Hu
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing-Xian Shen
- Image and Minimally Invasive Intervention Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing Han
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Si-Yue Mao
- Image and Minimally Invasive Intervention Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ru-Shuang Mao
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qing Li
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fei Li
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhi-Xing Guo
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jian-Hua Zhou
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
42
|
Schwarze V, Marschner C, Völckers W, Grosu S, Negrão de Figueiredo G, Rübenthaler J, Clevert DA. Diagnostic value of contrast-enhanced ultrasound versus computed tomography for hepatocellular carcinoma: a retrospective, single-center evaluation of 234 patients. J Int Med Res 2021; 48:300060520930151. [PMID: 32529869 PMCID: PMC7294502 DOI: 10.1177/0300060520930151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is the most common cause of primary liver cancer. A major part of diagnostic HCC work-up is based on imaging findings from sonography, computed tomography (CT), or magnetic resonance imaging (MRI) scans. Contrast-enhanced ultrasound (CEUS) allows for the dynamic assessment of the microperfusion pattern of suspicious liver lesions. This study aimed to evaluate the diagnostic value of CEUS compared with CT scans for assessing HCC. METHODS We performed a retrospective, single-center study between 2004 and 2018 on 234 patients with suspicious liver lesions who underwent CEUS and CT examinations. All patients underwent native B-mode, color Doppler and CEUS after providing informed consent. Every CEUS examination was performed and interpreted by a single experienced radiologist (European Federation of Societies for Ultrasound in Medicine and Biology level 3). RESULTS CEUS was performed on all included patients without occurrence of any adverse effects. CEUS showed a sensitivity of 94%, a specificity of 70%, a positive predictive value of 93% and a negative predictive value of 72% for analyzing HCC compared with CT as the diagnostic gold standard. CONCLUSIONS CEUS has an excellent safety profile and shows a high diagnostic accuracy in assessing HCC compared with corresponding results from CT scans.
Collapse
Affiliation(s)
- Vincent Schwarze
- Vincent Schwarze, Department of Radiology, Ludwig-Maximilians-University Munich - Grosshadern Campus, Marchioninistrasse 15, 81379 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Shao YY, Wang SY, Lin SM. Management consensus guideline for hepatocellular carcinoma: 2020 update on surveillance, diagnosis, and systemic treatment by the Taiwan Liver Cancer Association and the Gastroenterological Society of Taiwan. J Formos Med Assoc 2021; 120:1051-1060. [PMID: 33199101 DOI: 10.1016/j.jfma.2020.10.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality in Taiwan. The Taiwan Liver Cancer Association and the Gastroenterological Society of Taiwan had established a management consensus guideline in 2016. The current recommendations focus on updating critical issues regarding the management of HCC, including surveillance, diagnosis, and systemic treatment. For surveillance, the updated guideline suggests the role of dynamic computed tomography or magnetic resonance imaging and contrast-enhanced ultrasound (CEUS) in selected patients. For diagnosis, this update incorporates CEUS and recognizes the role of gadoxetic acid-enhanced magnetic resonance imaging. For systemic therapy, the updated guideline summarizes the multiple choices of targeted therapy, immune checkpoint inhibitors, and the combination of both. Through this update of the management consensus guideline, patients with HCC can benefit from receiving optimal diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Yu-Yun Shao
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shen-Yung Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shi-Ming Lin
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
44
|
Huang C, Xu X, Wang M, Xiao X, Cheng C, Ji J, Fang M, Gao C. Serum N-glycan fingerprint helps to discriminate intrahepatic cholangiocarcinoma from hepatocellular carcinoma. Electrophoresis 2021; 42:1187-1195. [PMID: 33570803 DOI: 10.1002/elps.202000392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are two main types of primary liver cancer, and reliable discrimination is important for optimal treatment. Aberrant glycosylation was detected in HCC and ICC. Both cross-sectional and follow-up studies were performed to establish a differential diagnosis model using N-glycans. A total of 420 participants were enrolled, with 310 patients in training cohort and 110 patients in validation cohort. The follow-up cohort was used to assess the prognosis of ICC. As the results, the diagnostic efficacy of the model was superior to alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) when identifying ICC from HCC (AUC of the nomogram: 0.845, 95%CI: 0.788-0.902; AFP: 0.793, 95%CI: 0.732-0.854; CEA: 0.592, 95%CI: 0.496-0.687; CA 19-9: 0.674, 95%CI: 0.582-0.767) in training cohort. In validation cohort, this model (AUC: 0.810, 95% CI: 0.728-0.891) also demonstrated high efficacy in distinguishing ICC from HCC. Furthermore, the nomogram helps to stratify ICC into two subgroups with high or low risk of survival and recurrence. Therefore, a nomogram integrating six N-glycans [NGA2FB(Peak2), NG1A2F (Peak3), NA2 (Peak5), NA2F (Peak6), NA3 (Peak8) and NA4 (Peak11)] was established for ICC and HCC differentiation, and for prognosis assessment in ICC patients.
Collapse
Affiliation(s)
- Chenjun Huang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Xuewen Xu
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P. R. China
| | - Xiao Xiao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Cheng Cheng
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Jun Ji
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| |
Collapse
|
45
|
Sparchez Z, Craciun R, Caraiani C, Horhat A, Nenu I, Procopet B, Sparchez M, Stefanescu H, Mocan T. Ultrasound or Sectional Imaging Techniques as Screening Tools for Hepatocellular Carcinoma: Fall Forward or Move Forward? J Clin Med 2021; 10:903. [PMID: 33668839 PMCID: PMC7956684 DOI: 10.3390/jcm10050903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is probably the epitome of a screening target, with a well-defined high-risk population, accessible screening methods, and multiple curative-intent treatments available for early disease. Per major societies guideline consensus, biannual ultrasound (US) surveillance of the at-risk patients is the current standard of care worldwide. Yet, despite its documented success in the past decades, this standard is far from perfect. While the whole community is working to further tighten the knots, a worrying number of cases still slip through this safety net. Consequently, these patients lose their chance to a curative solution which leads to a high disease burden with disproportionate mortality. While US will probably remain the fundamental staple in the screening strategy, key questions are seeking better answers. How can its caveats be addressed, and the technique be improved? When are further steps needed? How to increase accuracy without giving up on accessibility? This narrative review discusses the place of US surveillance in the bigger HCC picture, trying to navigate through its strengths and limits based on the most recent available evidence.
Collapse
Affiliation(s)
- Zeno Sparchez
- 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (Z.S.); (A.H.); (I.N.); (B.P.); (T.M.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Rares Craciun
- 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (Z.S.); (A.H.); (I.N.); (B.P.); (T.M.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Cosmin Caraiani
- Department of Medical Imaging, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Adelina Horhat
- 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (Z.S.); (A.H.); (I.N.); (B.P.); (T.M.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Iuliana Nenu
- 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (Z.S.); (A.H.); (I.N.); (B.P.); (T.M.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Bogdan Procopet
- 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (Z.S.); (A.H.); (I.N.); (B.P.); (T.M.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Mihaela Sparchez
- Paediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Horia Stefanescu
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Tudor Mocan
- 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (Z.S.); (A.H.); (I.N.); (B.P.); (T.M.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| |
Collapse
|
46
|
Li L, Hu Y, Han J, Li Q, Peng C, Zhou J. Clinical Application of Liver Imaging Reporting and Data System for Characterizing Liver Neoplasms: A Meta-Analysis. Diagnostics (Basel) 2021; 11:diagnostics11020323. [PMID: 33671158 PMCID: PMC7921912 DOI: 10.3390/diagnostics11020323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023] Open
Abstract
The Liver Imaging Reporting and Data System (LI-RADS) is a comprehensive system for standardizing liver imaging in patients at risk of developing hepatocellular carcinoma (HCC). We aimed to determine the diagnostic performance of LI-RADS category 5 (LR5) for diagnosing HCC and LI-RADS category M (LRM) for characterizing other non-HCC malignancies (OM) using contrast-enhanced ultrasound (CEUS) and computed tomography (CT)/magnetic resonance imaging (MRI). Multiple databases were searched for articles evaluating the diagnostic accuracy of CEUS LI-RADS and/or CT/MRI LI-RADS. A random-effects model was adopted to synthesize the summary estimates of the diagnostic accuracy of LR5 for diagnosing HCC and LRM for characterizing OM using CEUS and CT/MRI. The pooled sensitivity and specificity of CEUS LR5 for the diagnosis of HCC were 69% and 93%, respectively. The pooled sensitivity was 67% and the specificity, 93% of CT/MRI LR5 for HCC diagnosis. There was no significant difference between the overall diagnostic accuracy for HCC diagnosis of CEUS LR5 and that of CT/MRI LR5 in terms of diagnostic odds ratio (DOR) (p = 0.55). The sensitivity was 84% with a specificity of 90% in the CEUS LRM for characterizing OM, while the sensitivity and specificity of CT/MRI LRM for characterizing OM was 63% and 95%. The DOR of CEUS LRM for characterizing OM was higher than that of CT/MRI LRM without significant difference (50.59 vs. 36.06, p = 0.34). This meta-analysis indicated that CEUS LI-RADS is qualified to characterize HCC and OM and may provide complementary information on liver nodules to CT/MRI LI-RADS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianhua Zhou
- Correspondence: ; Tel.: +86-13711757623; Fax: +86-87343211
| |
Collapse
|
47
|
Abstract
Cholangiocarcinoma is the second most common primary malignancy of the liver. This review will focus on the mass-forming intrahepatic type of this disease and discuss the role of medical, surgical, and radiation oncology in managing this difficult disease. A global understanding to the management of intrahepatic cholangiocarcinoma (ICC) can help the interventional radiologist understand the role of locoregional therapies such as ablation, transarterial chemoembolization, and radioembolization in the management of ICC.
Collapse
Affiliation(s)
- Pouya Entezari
- Section of Interventional Radiology, Department of Radiology, Northwestern Memorial Hospital, Chicago, Illinois
| | - Ahsun Riaz
- Section of Interventional Radiology, Department of Radiology, Northwestern Memorial Hospital, Chicago, Illinois
| |
Collapse
|
48
|
Schwarze V, Marschner C, Völckers W, de Figueiredo GN, Rübenthaler J, Clevert DA. The diagnostic performance of contrast-enhanced ultrasound (CEUS) for evaluating hepatocellular carcinoma (HCC) juxtaposed to MRI findings; a retrospective single-center analysis of 292 patients. Clin Hemorheol Microcirc 2020; 76:155-160. [PMID: 32925017 DOI: 10.3233/ch-209213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND HCC is the most frequent primary liver cancer entity. Major risk factors comprise chronic HBC and HCV infections, ALD or NAFLD. Apart from the anamnesis, the clinical examination and serologic analysis, an essential part of the diagnostic HCC work-up is due to imaging findings from sonography, CT or MRI scans. HCC lesions feature a distinct vascularization pattern: hyperenhancement during early arterial and hypoenhancement/wash-out during portal venous or delayed phases. CEUS facilitates dynamic assessment of microperfusion patterns of suspicious liver lesions. PURPOSE The purpose of the present retrospective single-center study was to determine the diagnostic value of CEUS for assessing HCC by comparison with findings from MRI scans. MATERIALS AND METHODS Between 2004-2018 292 patients with suspicious liver lesions underwent CEUS and MRI. All patients underwent native B-mode, Color Doppler and CEUS after given informed consent. The applied contrast agent was a second-generation blood pool agent (SonoVue®, Bracco, Milan, Italy). Every CEUS examination was performed and interpreted by a single experienced radiologist (EFSUMB Level 3). RESULTS CEUS was performed on all included patients without occurrence of any adverse effects. CEUS showed a sensitivity of 96%, a specificity of 91%, a PPV of 95% and a NPV of 94% for analyzing HCC in comparison with MRI as the diagnostic gold standard. CONCLUSION With a distinguished safety profile CEUS shows a high diagnostic accuracy in assessing HCC compared to corresponding results from MRI scans.
Collapse
Affiliation(s)
- V Schwarze
- Department of Radiology, University Hospital LMU, Munich, Germany
| | - C Marschner
- Department of Radiology, University Hospital LMU, Munich, Germany
| | - W Völckers
- Department of Radiology, University Hospital LMU, Munich, Germany
| | | | - J Rübenthaler
- Department of Radiology, University Hospital LMU, Munich, Germany
| | - D-A Clevert
- Department of Radiology, University Hospital LMU, Munich, Germany
| |
Collapse
|
49
|
Yang CM, Shu J. Cholangiocarcinoma Evaluation via Imaging and Artificial Intelligence. Oncology 2020; 99:72-83. [PMID: 33147583 DOI: 10.1159/000507449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a relatively rare malignant biliary system tumor, and yet it represents the second most common primary hepatic neoplasm, following hepatocellular carcinoma. Regardless of the type, location, or etiology, the survival prognosis of these tumors remains poor. The only method of cure for CCA is complete surgical resection, but part of patients with complete resection are still subject to local recurrence or distant metastasis. SUMMARY Over the last several decades, our understanding of the molecular biology of CCA has increased tremendously, diagnostic and evaluative techniques have evolved, and novel therapeutic approaches have been established. Key Messages: This review provides an overview of preoperative imaging evaluations of CCA. Furthermore, relevant information about artificial intelligence (AI) in medical imaging is discussed, as well as the development of AI in CCA treatment.
Collapse
Affiliation(s)
- Chun Mei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China,
| |
Collapse
|
50
|
Kang HJ, Lee JM, Yoon JH, Han JK. Role of Contrast-Enhanced Ultrasound as a Second-Line Diagnostic Modality in Noninvasive Diagnostic Algorithms for Hepatocellular Carcinoma. Korean J Radiol 2020; 22:354-365. [PMID: 33236540 PMCID: PMC7909851 DOI: 10.3348/kjr.2020.0973] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/03/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To investigate the diagnostic performance of contrast-enhanced ultrasound (CEUS) and its role as a second-line imaging modality after gadoxetate-enhanced MRI (Gd-EOB-MRI) in the diagnosis of hepatocellular carcinoma (HCC) among at risk observations. MATERIALS AND METHODS We prospectively enrolled participants at risk of HCC with treatment-naïve solid hepatic observations (≥ 1 cm) of Liver Imaging Reporting and Data System (LR)-3/4/5/M during surveillance and performed Gd-EOB-MRI. A total of one hundred and three participants with 103 hepatic observations (mean size, 28.2 ± 24.5 mm; HCCs [n = 79], non-HCC malignancies [n = 15], benign [n = 9]; diagnosed by pathology [n = 57], or noninvasive method [n = 46]) were included in this study. The participants underwent CEUS with sulfur hexafluoride. Arterial phase hyperenhancement (APHE) and washout on Gd-EOB-MRI and CEUS were evaluated. The distinctive washout in CEUS was defined as mild washout 60 seconds after contrast injection. The diagnostic ability of Gd-EOB-MRI and of CEUS as a second-line modality for HCC were determined according to the European Association for the Study of the Liver (EASL) and the Korean Liver Cancer Association and National Cancer Center (KLCA-NCC) guidelines. The diagnostic abilities of both imaging modalities were compared using the McNemar's test. RESULTS The sensitivity of CEUS (60.8%) was lower than that of Gd-EOB-MRI (72.2%, p = 0.06 by EASL; 86.1%, p < 0.01 by KLCA-NCC); however, the specificity was 100%. By performing CEUS on the inconclusive observations in Gd-EOB-MRI, HCCs without APHE (n = 10) or washout (n = 12) on Gd-EOB-MRI further presented APHE (80.0%, 8/10) or distinctive washout (66.7%, 8/12) on CEUS, and more HCCs were diagnosed than with Gd-EOB-MRI alone (sensitivity: 72.2% vs. 83.5% by EASL, p < 0.01; 86.1% vs. 91.1% by KCLA-NCC, p = 0.04). There were no false-positive cases for HCC on CEUS. CONCLUSION The addition of CEUS to Gd-EOB-MRI as a second-line diagnostic modality increases the frequency of HCC diagnosis without changing the specificities.
Collapse
Affiliation(s)
- Hyo Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|