1
|
Yokota K, Ohtake A, Yamazaki T, Tsuzuki-Wada T, Saito-Tsuruoka M, Fushimi T, Murayama K, Akiyama Y, Mimura T. Carbamoyl phosphate synthetase 1 deficiency manifested in an adult treated with prednisone for polymyositis, and cured by live-donor liver transplantation. Mol Genet Metab Rep 2025; 43:101200. [PMID: 40125546 PMCID: PMC11928813 DOI: 10.1016/j.ymgmr.2025.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/25/2025] Open
Abstract
Carbamoyl phosphate synthetase 1 (CPS1) deficiency (OMIM#237300) is a rare inherited disorder due to complete or partial lack of the CPS1 enzyme. Polymyositis is a relatively rare systemic inflammatory autoimmune disease. Here, we report a 59-year-old Japanese woman diagnosed with late-onset CPS1 deficiency during polymyositis treatment. The polymyositis appeared two years before the diagnosis of CPS1 deficiency. Prednisolone (PSL) at 35 mg/day initial dosage, promptly alleviated the symptoms. However, the patient, without apparent cause, suddenly developed confusion progressing to unconsciousness and coma. Upon admission, the patient's plasma ammonia levels were 458 μg/dL (269 μM). Plasma amino acid analysis revealed decreased citrulline levels and elevated glutamine levels. Genetic analysis of CPS1 (OMIM *608307) showed homozygosity for the likely pathogenic variant c.2397G > A (p.Met799Ile), leading to the diagnosis of CPS1 deficiency. The patient responded to pharmacotherapy and continuous hemodialysis. However, the patient experienced hyperammonemia decompensation events while on pharmacotherapy at home, which were successfully managed with emergency treatment and/or hemodialysis. Subsequently, after liver transplantation, the patient's plasma ammonia levels consistently remained at normal. This case illustrates late-onset CPS1 deficiency manifested in an adult treated with PSL for polymyositis, and the cure of its enzyme deficiency by live-donor liver transplantation.
Collapse
Affiliation(s)
- Kazuhiro Yokota
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Taro Yamazaki
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takuma Tsuzuki-Wada
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Megumi Saito-Tsuruoka
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Takuya Fushimi
- Department of Metabolism, Chiba Children 's Hospital, Chiba, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children 's Hospital, Chiba, Japan
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuji Akiyama
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| |
Collapse
|
2
|
Ye W, Bai X, Zhao Y, Du Z, Liu F, Wang YD, Chen WD. Farnesoid X receptor activation alleviates hepatic encephalopathy by improving hepatic ammonia metabolism in murine models. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167750. [PMID: 40024449 DOI: 10.1016/j.bbadis.2025.167750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Hepatic encephalopathy (HE) is a mental and neurological complication induced by acute or chronic hepatic failure. Emerging evidence indicates that the farnesoid X receptor (FXR), a multifunctional nuclear receptor and transcription factor, plays a pivotal role in regulating the expression of key genes associated with ammonia metabolism. However, the effect of FXR activation on HE has remained largely uncharted. METHODS We established mouse models of HE by intraperitoneal injection of thioacetamide (TAA) and partial hepatectomy (PHx). Subsequently, we administered obeticholic acid (OCA) to activate FXR and investigated its effects on HE through comprehensive biochemical, biological, histological and behavioral analysis. Additionally, in vitro experiments were conducted to examine the impact of FXR activation on ammonia stress. FINDINGS In the animal model of HE, activation of FXR upregulated the expression of key enzymes involved in ammonia metabolism pathway within the liver, thereby enhancing urea cycle functionality, reducing plasma ammonia levels, and mitigating liver injury. Furthermore, FXR activation significantly improved behavioral activities in mice and mitigated inflammation in the brain. Finally, our findings demonstrated that activating FXR could enhance ammonia metabolism and ammonia tolerance of C3A cells. INTERPRETATION Our data provide novel evidence demonstrating that the activation of FXR by OCA exerts regulatory control over the expression of enzymes involved in ammonia metabolism, thereby effectively alleviating HE. Consequently, FXR could emerge as a promising novel target for HE treatment. FUNDING This study was supported by the National Natural Science Foundation of China No: 81970726 (to W-D Chen), and Henan Provincial Key Project of Medical Science and Technology Research No: SBGJ202102215 (to WL Ye).
Collapse
Affiliation(s)
- Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaojie Bai
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhiqun Du
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Fang Liu
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Larsen FS, Saliba F. Liver support systems and liver transplantation in acute liver failure. Liver Int 2025; 45:e15633. [PMID: 37288706 PMCID: PMC11815598 DOI: 10.1111/liv.15633] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Acute liver failure (ALF) results in a multitude of complications that result in multi-organ failure. This review focuses on the pathophysiological processes and how to manage with these with artificial liver support and liver transplantation (LT). The pathophysiological sequence of events behind clinical deterioration in ALF comes down to two profound consequences of the failing liver. The first is the development of hyperammonemia, as the liver can no longer synthesize urea. The result is that the splanchnic system instead of removing ammonia becomes an ammonia-producing organ system that causes hepatic encephalopathy (HE) and cerebral oedema. The second complication is caused by the necrotic liver cells that release large molecules that originate from degrading proteins, that is damage associated molecular patterns (DAMPs) which causes inflammatory activation of intrahepatic macrophages and an overflow of DAMPs molecules into the systemic circulation resulting in a clinical picture that resembles septic shock. In this context the combined use of continuous renal replacement therapy (CRRT) and plasma exchange are rational and simple ways to remove ammonia and DAMPS molecules. This combination improve survival for ALF patients deemed not appropriate for LT, despite poor prognostic criteria, but also ensure a better stability of vital organs while awaiting LT. The combination of CRRT with albumin dialysis tends to have a similar effect. Currently, the selection criteria for LT for non-paracetamol cases appear robust while the criteria for paracetamol-intoxicated patients have become more unreliable and now consist of more dynamic prognostic systems. For patients that need LT for survival, a tremendous improvement in the post-LT results has been achieved during the last decade with a survival that now reach merely 90% which is mirroring the results seen after LT for chronic liver disease.
Collapse
Affiliation(s)
- Fin S. Larsen
- Department of Intestinal Failure and Liver DiseasesRigshospitalet, University Hospital CopenhagenCopenhagenDenmark
| | - Faouzi Saliba
- AP‐HP Hôpital Paul Brousse, Hepato‐Biliary Center and Liver Transplant ICUUniversity Paris Saclay, INSERM unit N°1193VillejuifFrance
| |
Collapse
|
4
|
Abdullatif HM, Weigel K, Verma A, Deep A, Dhawan A. Practical Utility of Serum Ammonia in Children With Acute Liver Failure: A Biomarker of Outcome. Transplant Direct 2025; 11:e1755. [PMID: 39995961 PMCID: PMC11850043 DOI: 10.1097/txd.0000000000001755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 02/26/2025] Open
Abstract
Background Hyperammonemia is a recognized biochemical abnormality in acute liver failure (ALF). Our aim was to determine a cutoff value for serum ammonia in children with ALF to predict their outcomes while conventional UK liver transplant (LT) listing criteria were applied. Methods We reviewed and analyzed the data of 68 patients with ALF who presented to our center from January 2014 to December 2018; inherited defects of ammonia metabolism were excluded. Patients were divided into 3 groups: Gr 1, LT (30 patients); Gr2, native liver survival (27 patients); and Gr 3, mortality (11 patients). Results Highest ammonia levels during admission before intervention were higher in the LT and mortality group than in the native liver survival group (P = 0.011) with levels of 140 µmol/L showing a specificity of 100% as a predictor for LT/mortality. Sixty-two percent of patients with ALF developed encephalopathy; grades 3 and 4 in almost one-third. Encephalopathy was more common in Gr1 patients, followed by Gr3, whereas Gr2 were the least likely to develop encephalopathy. Ammonia levels were significantly higher in encephalopathic patients than in nonencephalopathic (P = 0.001). Serum ammonia of 80.5 µmol/L predicted encephalopathy with 80% sensitivity and 75% specificity. Conclusions Serum ammonia level of >80 µmol/L can be used as an alert to ongoing encephalopathy although encephalopathy signs may be missing or subtle and a surrogate marker for earlier interventions for extracorporeal therapies. Moreover, levels >140 µmol/L predict the need for LT or death.
Collapse
Affiliation(s)
- Hala Mohsen Abdullatif
- Paediatric Liver, GI and Nutrition Center, King’s College Hospital, London, United Kingdom
- Paediatric Department, Cairo University, Faculty of Medicine, Cairo, Egypt
| | - Katharina Weigel
- Paediatric Liver, GI and Nutrition Center, King’s College Hospital, London, United Kingdom
| | - Anita Verma
- Paediatric Liver, GI and Nutrition Center, King’s College Hospital, London, United Kingdom
| | - Akash Deep
- Paediatric Intensive Care Unit, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Center and Mowat Labs, King’s College Hospital, London, United Kingdom
| |
Collapse
|
5
|
Zielińska M, Popek M, Albrecht J. Neuroglia in hepatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:191-212. [PMID: 40148045 DOI: 10.1016/b978-0-443-19102-2.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia contribute to the pathophysiology of hepatic encephalopathy (HE) either beneficially or detrimentally. Pathogenesis of HE is linked to damage triggered by blood-derived toxins, with ammonia being the main causative factor. Neuroglial cells, especially astrocytes and microglia, respond to HE-associated systemic and central signals and undergo complex and variable changes in their metabolism, morphology, and function, which include ion and water dyshomeostasis in conjunction with neurotransmission imbalance and neuroinflammation. HE-induced alterations of astrocytes are defined as astrocytopathy, with aberrant astrocytes resulting in either gain or loss of functions. In the chronic HE, the presence of Alzheimer type II cells is a histologic hallmark, with asthenic astrocytes emerging as a newcomer. In acute HE, rapid swelling of astrocytes is a primary cause of cerebral edema and mortality. This chapter reviews the dominant role of astrocytes in the pathogenesis of HE resulting from acute and chronic liver failure, mainly in experimental models. The focus is on the loss of homeostatic function bearing upon the functioning of the glymphatic system, aberrant neurotransmission as a consequence of astrocyte-neuron miscommunication, and the concordant neuroinflammatory response of astrocytes and microglia. The chapter concludes with a delineation of concepts for future research.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Ott P, Eriksen PL, Kjærgaard K, Sørensen M, Thomsen KL, Vilstrup H. Down the road towards hepatic encephalopathy. The elusive ammonia- what determines the arterial concentration? Metab Brain Dis 2024; 40:48. [PMID: 39621139 PMCID: PMC11611965 DOI: 10.1007/s11011-024-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024]
Abstract
Elevated arterial ammonia is associated with several complications of liver disease as it predicts mortality for in-patients and decompensation, hospitalization and death in out-patients with cirrhosis. In this review, our aim was to estimate how the individual organs contribute to arterial ammonia based on published data from human studies. The brain removes ammonia from arterial blood in a concentration-dependent fashion. Ammonia that is released from the gut to portal blood is mainly from metabolism of glutamine in the enterocytes using this as a source of energy. Ammonia produced by bacterial metabolism of urea and proteins only partially reach portal blood and is likely recycled into bacterial proteins. In general, the liver efficiently removes ammonia from arterial or portal blood in proportion to the delivered concentration. As a result,- and in some contrast to conventional wisdom-, the hepato-splanchnic region only contributes marginally to arterial ammonia; even during a simulated upper GI bleed. The only exception is acute liver failure where hepatocyte necrosis allows large quantities of portal ammonia to pass. The kidneys release ammonia from glutamine metabolism into systemic blood. The renal ammonia release increases during a simulated upper GI bleed or hypokalemia where it becomes a major source of elevated arterial ammonia. In the resting state, muscles remove ammonia in a concentration-dependent manner and muscles are the primary ammonia lowering organ in most situations with elevated arterial ammonia. During strenuous exercise, muscles produce large amounts of ammonia into systemic blood. Thus, the complete pattern of ammonia metabolism is very dynamic and illustrates the difficulties in designing ammonia lowering therapies.
Collapse
Affiliation(s)
- Peter Ott
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, DK-8200, Denmark.
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, DK-8200, Denmark
| | - Kristoffer Kjærgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, DK-8200, Denmark
| | - Michael Sørensen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, DK-8200, Denmark
- Department of Internal Medicine, Viborg Regional Hospital, Viborg, Denmark
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, DK-8200, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Panackel C, Raja K, Fawas M, Jacob M. Prognostic models in acute liver failure-historic evolution and newer updates "prognostic models in acute liver failure". Best Pract Res Clin Gastroenterol 2024; 73:101957. [PMID: 39709212 DOI: 10.1016/j.bpg.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/22/2024] [Indexed: 12/23/2024]
Abstract
Acute liver failure (ALF) is a rare and dynamic syndrome occurring as a sequela of severe acute liver injury (ALI). Its mortality ranges from 50% to 75% based on the aetiology, patients age and severity of encephalopathy at admission. With improvement in intensive care techniques, transplant-free survival in ALF has improved over time. Timely recognition of patients who are unlikely to survive with medical intervention alone is crucial since these individuals may rapidly develop multiorgan failure and render liver transplantation futile. Various predictive models, biomarkers and AI-based models are currently used in clinical practice, each with its fallacies. The King's College Hospital criteria (KCH) were initially established in 1989 to identify patients with acute liver failure (ALF) caused by paracetamol overdose or other causes who are unlikely to improve with conventional treatment and would benefit from a liver transplant. Since then, various models have been developed and validated worldwide. Most models include age, aetiology of liver disease, encephalopathy grade, and liver injury markers like INR, lactate, factor V level, factor VIII/V ratio and serum bilirubin. But none of the currently available models are dynamic and lack accuracy in predicting transplant free survival. There is an increasing interest in developing prognostic serum biomarkers that when used alone or in combination with clinical models enhance the accuracy of predicting outcomes in ALF. Genomics, transcriptomics, proteomics, and metabolomics as well as machine learning and artificial intelligence (AI) algorithms are areas of interest for developing higher-precision predictive models. Overall, the future of prognostic models in ALF is promising, with ongoing research paving the way for more accurate, personalized, and dynamic risk assessment tools that can potentially save lives in this challenging condition. This article summarizes the history of prognostic models in ALF and future trends.
Collapse
Affiliation(s)
| | | | - Mohammed Fawas
- Aster Integrated Liver Care, Aster Medcity, Kochi, India
| | - Mathew Jacob
- Aster Integrated Liver Care, Aster Medcity, Kochi, India
| |
Collapse
|
8
|
Auzinger G. Basic concepts in the management of Acute Liver Failure. Best Pract Res Clin Gastroenterol 2024; 73:101960. [PMID: 39709220 DOI: 10.1016/j.bpg.2024.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/29/2024] [Indexed: 12/23/2024]
Affiliation(s)
- Georg Auzinger
- King's College Hospital, Liver Intensive Care Unit, London, UK; Cleveland Clinic London, Department of Critical Care, London, UK.
| |
Collapse
|
9
|
Ntuli Y, Shawcross DL. Infection, inflammation and hepatic encephalopathy from a clinical perspective. Metab Brain Dis 2024; 39:1689-1703. [PMID: 39212845 PMCID: PMC11535002 DOI: 10.1007/s11011-024-01402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Hepatic encephalopathy (HE) is a syndrome that is associated with both acute and chronic liver injury. It manifests as a wide spectrum of neuropsychological abnormalities, ranging from subtle impairments in executive higher functions observed in cirrhosis, through to coma in acute liver failure. In acute liver failure, the central role of ammonia in the development of brain oedema has remained undisputed for 130 years. It latterly became apparent that infection and inflammation were profound determinants for the development of severe hepatic encephalopathy, associated with the development of cerebral oedema and intracranial hypertension. The relationship of the development of hepatic encephalopathy with blood ammonia levels in cirrhosis is less clear cut and the synergistic interplay of inflammation and infection with ammonia has been identified as being fundamental in the development and progression of hepatic encephalopathy. A perturbed gut microbiome and the presence of an impaired gut epithelial barrier that facilitates translocation of bacteria and bacterial degradation products into the systemic circulation, inducing systemic inflammation and innate and adaptive immune dysfunction, has now become the focus of therapies that treat hepatic encephalopathy in cirrhosis, and may explain why the prebiotic lactulose and rifaximin are efficacious. This review summarises the current clinical perspective on the roles of inflammation and infection in hepatic encephalopathy and presents the evidence base for existing therapies and those in development in the setting of acute and chronic liver failure.
Collapse
Affiliation(s)
- Yevedzo Ntuli
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, 125 Coldharbour Lane, London, SE5 9NU, UK
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Debbie L Shawcross
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, 125 Coldharbour Lane, London, SE5 9NU, UK.
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9RS, UK.
| |
Collapse
|
10
|
Dong V, Karvellas CJ. Liver assistive devices in acute liver failure: Current use and future directions. Best Pract Res Clin Gastroenterol 2024; 73:101964. [PMID: 39709218 DOI: 10.1016/j.bpg.2024.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024]
Abstract
Acute liver failure (ALF) is a rare syndrome where rapid deterioration of liver function occurs after an acute insult in a patient without prior chronic liver disease and leads to jaundice, hepatic encephalopathy (HE), and oftentimes multiorgan failure (MOF). At this time, the only definitive treatment for ALF is LT but some patients, particularly APAP-induced ALF patients, may have ongoing regenerative capacity of the liver and may not require LT with ongoing supportive management. As a result, extracorporeal liver support (ECLS) has been a topic of interest both as a bridge to LT and as a bridge to spontaneous recovery and aims to remove damaging toxins that further aggravate liver failure, stimulate regeneration of the liver, and improve pathophysiologic consequences of liver failure. There are currently two categories of ECLS (artificial and bioartificial). Artificial ECLS does not incorporate active hepatocytes and are based on the principles of filtration and adsorption and includes renal replacement therapy (RRT), plasma adsorption including plasma exchange and Prometheus (Fractionated Plasma Separation and Adsorption), and albumin dialysis including MARS (Molecular Adsorbent Recirculating System) and SPAD (Single Pass Albumin Dialysis). Bioartificial ECLS incorporates active hepatocytes (human or porcine in origin) to improve liver detoxification capacity and to support hepatic synthetic function and includes ELAD (Extracorporeal Liver Assist Device) and HepatAssist.
Collapse
Affiliation(s)
- Victor Dong
- Department of Critical Care Medicine, University of Calgary, Calgary, Canada; Division of Gastroenterology, University of Calgary, Calgary, Canada.
| | - Constantine J Karvellas
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada; Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Canada.
| |
Collapse
|
11
|
Weiss N, Pflugrad H, Kandiah P. Altered Mental Status in the Solid-Organ Transplant Recipient. Semin Neurol 2024; 44:670-694. [PMID: 39181120 DOI: 10.1055/s-0044-1789004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Patients undergoing solid-organ transplantation (SOT) face a tumultuous journey. Prior to transplant, their medical course is characterized by organ dysfunction, diminished quality of life, and reliance on organ support, all of which are endured in hopes of reaching the haven of organ transplantation. Peritransplant altered mental status may indicate neurologic insults acquired during transplant and may have long-lasting consequences. Even years after transplant, these patients are at heightened risk for neurologic dysfunction from a myriad of metabolic, toxic, and infectious causes. This review provides a comprehensive examination of causes, diagnostic approaches, neuroimaging findings, and management strategies for altered mental status in SOT recipients. Given their complexity and the numerous etiologies for neurologic dysfunction, liver transplant patients are a chief focus in this review; however, we also review lesser-known contributors to neurological injury across various transplant types. From hepatic encephalopathy to cerebral edema, seizures, and infections, this review highlights the importance of recognizing and managing pre- and posttransplant neurological complications to optimize patient outcomes.
Collapse
Affiliation(s)
- Nicolas Weiss
- Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Neurological ICU, Paris, France
| | - Henning Pflugrad
- Department of Neurology, Agaplesion Ev. Klinikum Schaumburg, Obernkirchen, Germany
| | - Prem Kandiah
- Department of Neurology, Emory University Hospital, Atlanta, Georgia
| |
Collapse
|
12
|
Chaba A, Warrillow SJ, Fisher C, Spano S, Maeda A, Phongphithakchai A, Pattamin N, Hikasa Y, Kitisin N, Warming S, Michel C, Eastwood GM, Bellomo R. Severely Hyperammonemic Acute Liver Failure due to Paracetamol Overdose: The Impact of High-Intensity Continuous Renal Replacement Therapy. Blood Purif 2024; 54:111-121. [PMID: 39561725 DOI: 10.1159/000542556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
INTRODUCTION Paracetamol (acetaminophen)-induced acute liver failure (ALF) with severe hyperammonemia (ammonia >100 µmol⋅L-1) is a life-threatening condition. A strategy based on high-intensity continuous renal replacement therapy (CRRT) without early (up to day seven) transplantation may enable clinicians to safely identify which patients can recover and survive and which patients require transplantation. METHODS We conducted a single-center, retrospective cohort study of patients with severely hyperammonemic paracetamol-induced ALF. The primary outcome was early transplant-free survival. RESULTS We studied 84 patients (median age: 38; female sex: 79 [85%]) over a 12-year period (median ammonia level at ICU admission: 153 µmol⋅L-1; median peak aspartate aminotransferase (AST): 10,029 U⋅L-1; median lactate: 5.0 mmol⋅L-1; and median INR: 4.4) and 55 (65%) with King's College criteria for transplantation. Overall, 87% received high-intensity CRRT (92% in 2020-2023). Median CRRT intensity was 54 mL⋅kg-1⋅hr-1 within the first 48 h and increased by 1.8 mL⋅kg-1⋅hr-1 per year during the study period (p = 0.002). Transplant-free survival to day 7 was 86% in 2011-2023 and 96% in 2020-2023. Overall, only 4 patients were transplanted and only 1 (4%) in 2020-2023. On multivariable Cox analysis, factors independently associated with failure to achieve day seven transplant-free survival were higher APACHE III score (HR = 1.05, 95% CI: 1.02-1.08), higher lactate (HR = 1.27, 95% CI: 1.12-1.44), and lower platelet count at ICU admission (HR = 0.85, 95% CI: 0.78-0.93) and the median effluent dose applied within the first 48 h of ICU admission (HR = 0.67, 95% CI: 0.46-0.98). CONCLUSIONS Early transplant-free survival is achievable in most patients with paracetamol-induced ALF and severe hyperammonemia with a treatment based on high-intensity CRRT. Such transplant-free survival increased over time together with increased CRRT dose.
Collapse
Affiliation(s)
- Anis Chaba
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia,
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia,
| | - Stephen Joseph Warrillow
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine and Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Caleb Fisher
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sofia Spano
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Akinori Maeda
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | | | - Nuttapol Pattamin
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Yukiko Hikasa
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Nuanprae Kitisin
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Scott Warming
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Claire Michel
- Department of Intensive Care, Peninsula Health, Melbourne, Victoria, Australia
| | - Glenn M Eastwood
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine and Surgery, The University of Melbourne, Melbourne, Victoria, Australia
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Dong V, Durkalski V, Lee WM, Karvellas CJ. Outcomes of patients with acute liver failure not listed for liver transplantation: A cohort analysis. Hepatol Commun 2024; 8:e0575. [PMID: 39470433 PMCID: PMC11524736 DOI: 10.1097/hc9.0000000000000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/06/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a rare condition leading to morbidity and mortality. Liver transplantation (LT) is often required, but patients are not always listed for LT. There is a lack of data regarding outcomes in these patients. Our aim is to describe outcomes of patients with ALF not listed for LT and to compare this with those listed for LT. METHODS Retrospective analysis of all nonlisted patients with ALF enrolled in the Acute Liver Failure Study Group (ALFSG) registry between 1998 and 2018. The primary outcome was 21-day mortality. Multivariable logistic regression was done to identify factors associated with 21-day mortality. The comparison was then made with patients with ALF listed for LT. RESULTS A total of 1672 patients with ALF were not listed for LT. The median age was 41 (IQR: 30-54). Three hundred seventy-one (28.9%) patients were too sick to list. The most common etiology was acetaminophen toxicity (54.8%). Five hundred fifty-eight (35.7%) patients died at 21 days. After adjusting for relevant covariates, King's College Criteria (adjusted odds ratio: 3.17, CI 2.23-4.51), mechanical ventilation (adjusted odds ratio: 1.53, CI: 1.01-2.33), and vasopressors (adjusted odds ratio: 2.10, CI: 1.43-3.08) (p < 0.05 for all) were independently associated with 21-day mortality. Compared to listed patients, nonlisted patients had higher mortality (35.7% vs. 24.3%). Patients deemed not sick enough had greater than 95% survival, while those deemed too sick still had >30% survival. CONCLUSIONS Despite no LT, the majority of patients were alive at 21 days. Survival was lower in nonlisted patients. Clinicians are more accurate in deeming patients not sick enough to require LT as opposed to deeming patients too sick to survive.
Collapse
Affiliation(s)
- Victor Dong
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada
| | - Valerie Durkalski
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - William M. Lee
- Department of medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Constantine J. Karvellas
- Department of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada
- Department of medicine, Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
14
|
Gallego-Durán R, Hadjihambi A, Ampuero J, Rose CF, Jalan R, Romero-Gómez M. Ammonia-induced stress response in liver disease progression and hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 2024; 21:774-791. [PMID: 39251708 DOI: 10.1038/s41575-024-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Ammonia levels are orchestrated by a series of complex interrelated pathways in which the urea cycle has a central role. Liver dysfunction leads to an accumulation of ammonia, which is toxic and is strongly associated with disruption of potassium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation, hypoxaemia and dysregulation of neurotransmission. Hyperammonaemia is a hallmark of hepatic encephalopathy and has been strongly associated with liver-related outcomes in patients with cirrhosis and liver failure. In addition to the established role of ammonia as a neurotoxin in the pathogenesis of hepatic encephalopathy, an increasing number of studies suggest that it can lead to hepatic fibrosis progression, sarcopenia, immune dysfunction and cancer. However, elevated systemic ammonia levels are uncommon in patients with metabolic dysfunction-associated steatotic liver disease. A clear causal relationship between ammonia-induced immune dysfunction and risk of infection has not yet been definitively proven. In this Review, we discuss the mechanisms by which ammonia produces its diverse deleterious effects and their clinical relevance in liver diseases, the importance of measuring ammonia levels for the diagnosis of hepatic encephalopathy, the prognosis of patients with cirrhosis and liver failure, and how our knowledge of inter-organ ammonia metabolism is leading to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rocío Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Javier Ampuero
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Manuel Romero-Gómez
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
15
|
Lal BB, Khanna R, Sood V, Alam S, Nagral A, Ravindranath A, Kumar A, Deep A, Gopan A, Srivastava A, Maria A, Pawaria A, Bavdekar A, Sindwani G, Panda K, Kumar K, Sathiyasekaran M, Dhaliwal M, Samyn M, Peethambaran M, Sarma MS, Desai MS, Mohan N, Dheivamani N, Upadhyay P, Kale P, Maiwall R, Malik R, Koul RL, Pandey S, Ramakrishna SH, Yachha SK, Lal S, Shankar S, Agarwal S, Deswal S, Malhotra S, Borkar V, Gautam V, Sivaramakrishnan VM, Dhawan A, Rela M, Sarin SK. Diagnosis and management of pediatric acute liver failure: consensus recommendations of the Indian Society of Pediatric Gastroenterology, Hepatology, and Nutrition (ISPGHAN). Hepatol Int 2024; 18:1343-1381. [DOI: https:/doi.org/10.1007/s12072-024-10720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/08/2024] [Indexed: 04/16/2025]
|
16
|
Rajajee V. Noninvasive Intracranial Pressure Monitoring: Are We There Yet? Neurocrit Care 2024; 41:332-338. [PMID: 38429611 PMCID: PMC11377479 DOI: 10.1007/s12028-024-01951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
There is an urgent unmet need for a reliable noninvasive tool to detect elevations in intracranial pressure (ICP) above guideline-recommended thresholds for treatment. Gold standard invasive ICP monitoring is unavailable in many settings, including resource-limited environments, and in situations such as liver failure in which coagulopathy increases the risk of invasive monitoring. Although a large number of noninvasive techniques have been evaluated, this article reviews the potential clinical role, if any, of the techniques that have undergone the most extensive evaluation and are already in clinical use. Elevations in ICP transmitted through the subarachnoid space result in distension of the optic nerve sheath. The optic nerve sheath diameter (ONSD) can be measured with ultrasound, and an ONSD threshold can be used to detect elevated ICP. Although many studies suggest this technique accurately detects elevated ICP, there is concern for risk of bias and variations in ONSD thresholds across studies that preclude routine use of this technique in clinical practice. Multiple transcranial Doppler techniques have been used to assess ICP, but the best studied are the pulsatility index and the Czosnyka method to estimate cerebral perfusion pressure and ICP. Although there is inconsistency in the literature, recent prospective studies, including an international multicenter study, suggest the estimated ICP technique has a high negative predictive value (> 95%) but a poor positive predictive value (≤ 30%). Quantitative pupillometry is a sensitive and objective method to assess pupillary size and reactivity. Proprietary indices have been developed to quantify the pupillary light response. Limited data suggest these quantitative measurements may be useful for the early detection of ICP elevation. No current noninvasive technology can replace invasive ICP monitoring. Where ICP monitoring is unavailable, multimodal noninvasive assessment may be useful. Further innovation and research are required to develop a reliable, continuous technique of noninvasive ICP assessment.
Collapse
Affiliation(s)
- Venkatakrishna Rajajee
- Departments of Neurosurgery and Neurology, University of Michigan, 3552 Taubman Health Care Center, SPC 5338, 1500 E. Medial Center Drive, Ann Arbor, MI, 48109-5338, USA.
| |
Collapse
|
17
|
Lal BB, Khanna R, Sood V, Alam S, Nagral A, Ravindranath A, Kumar A, Deep A, Gopan A, Srivastava A, Maria A, Pawaria A, Bavdekar A, Sindwani G, Panda K, Kumar K, Sathiyasekaran M, Dhaliwal M, Samyn M, Peethambaran M, Sarma MS, Desai MS, Mohan N, Dheivamani N, Upadhyay P, Kale P, Maiwall R, Malik R, Koul RL, Pandey S, Ramakrishna SH, Yachha SK, Lal S, Shankar S, Agarwal S, Deswal S, Malhotra S, Borkar V, Gautam V, Sivaramakrishnan VM, Dhawan A, Rela M, Sarin SK. Diagnosis and management of pediatric acute liver failure: consensus recommendations of the Indian Society of Pediatric Gastroenterology, Hepatology, and Nutrition (ISPGHAN). Hepatol Int 2024; 18:1343-1381. [PMID: 39212863 DOI: 10.1007/s12072-024-10720-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Timely diagnosis and management of pediatric acute liver failure (PALF) is of paramount importance to improve survival. The Indian Society of Pediatric Gastroenterology, Hepatology, and Nutrition invited national and international experts to identify and review important management and research questions. These covered the definition, age appropriate stepwise workup for the etiology, non-invasive diagnosis and management of cerebral edema, prognostic scores, criteria for listing for liver transplantation (LT) and bridging therapies in PALF. Statements and recommendations based on evidences assessed using the modified Grading of Recommendations Assessment, Development and Evaluation (GRADE) system were developed, deliberated and critically reappraised by circulation. The final consensus recommendations along with relevant published background information are presented here. We expect that these recommendations would be followed by the pediatric and adult medical fraternity to improve the outcomes of PALF patients.
Collapse
Affiliation(s)
- Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Rajeev Khanna
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India.
| | - Aabha Nagral
- Department of Gastroenterology, Jaslok Hospital and Research Center, Mumbai, India
- Apollo Hospital, Navi Mumbai, India
| | - Aathira Ravindranath
- Department of Pediatric Gastroenterology, Apollo BGS Hospital, Mysuru, Karnataka, India
| | - Aditi Kumar
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Akash Deep
- Department of Pediatric Intensive Care, King's College Hospital, London, UK
| | - Amrit Gopan
- Department of Pediatric Gastroenterology and Hepatology, Sir H.N Reliance Foundation Hospital, Mumbai, India
| | - Anshu Srivastava
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Arjun Maria
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Arti Pawaria
- Department of Pediatric Hepatology and Gastroenterology, Amrita Institute of Medical Sciences, Faridabad, India
| | - Ashish Bavdekar
- Department of Pediatrics, KEM Hospital and Research Centre, Pune, India
| | - Gaurav Sindwani
- Department of Organ Transplant Anesthesia and Critical Care, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Kalpana Panda
- Department of Pediatrics, Institute of Medical Sciences & SUM Hospital, Bhubaneshwar, India
| | - Karunesh Kumar
- Department of Pediatric Gastroenterology and Liver Transplantation, Indraprastha Apollo Hospitals, New Delhi, India
| | | | - Maninder Dhaliwal
- Department of Pediatric Intensive Care, Amrita Institute of Medical Sciences, Faridabad, India
| | - Marianne Samyn
- Department of Pediatric Hepatology, King's College Hospital, London, UK
| | - Maya Peethambaran
- Department of Pediatric Gastroenterology and Hepatology, VPS Lakeshore Hospital, Kochi, Kerala, India
| | - Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Moreshwar S Desai
- Department of Paediatric Critical Care and Liver ICU, Baylor College of Medicine &Texas Children's Hospital, Houston, TX, USA
| | - Neelam Mohan
- Department of Pediatric Gastroenterology and Hepatology, Medanta the Medicity Hospital, Gurugram, India
| | - Nirmala Dheivamani
- Department of Paediatric Gastroenterology, Institute of Child Health and Hospital for Children, Egmore, Chennai, India
| | - Piyush Upadhyay
- Department of Pediatrics, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Pratibha Kale
- Department of Microbiology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rohan Malik
- Department of Pediatric Gastroenterology and Hepatology, All India Institute of Medical Sciences, New Delhi, India
| | - Roshan Lal Koul
- Department of Neurology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Snehavardhan Pandey
- Department of Pediatric Hepatology and Liver Transplantation, Sahyadri Superspeciality Hospital Pvt Ltd Pune, Pune, India
| | | | - Surender Kumar Yachha
- Department of Pediatric Gastroenterology, Hepatology and Liver Transplantation, Sakra World Hospital, Bangalore, India
| | - Sadhna Lal
- Division of Pediatric Gastroenterology and Hepatology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sahana Shankar
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Sajan Agarwal
- Department of Pediatric Gastroenterology and Hepatology, Gujarat Gastro Hospital, Surat, Gujarat, India
| | - Shivani Deswal
- Department of Pediatric Gastroenterology, Hepatology and Liver Transplant, Narayana Health, DLF Phase 3, Gurugram, India
| | - Smita Malhotra
- Department of Pediatric Gastroenterology and Hepatology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Vibhor Borkar
- Department of Paediatric Hepatology and Gastroenterology, Nanavati Max Super Speciality Hospital, Mumbai, Maharashtra, India
| | - Vipul Gautam
- Department of Pediatric Gastroenterology, Hepatology and Liver Transplantation, Max Superspeciality Hospital, New Delhi, India
| | | | - Anil Dhawan
- Department of Pediatric Hepatology, King's College Hospital, London, UK
| | - Mohamed Rela
- Department of Liver Transplantation and HPB (Hepato-Pancreatico-Biliary) Surgery, Dr. Rela Institute & Medical Center, Chennai, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
18
|
Cardoso FS, Toapanta D, Jimenez N, Fidalgo P, Figueiredo A, Valdivieso M, Germano N, Rule JA, Lee WM, Abraldes JG, Reverter E, Karvellas CJ. Ammonia and urea metabolism in acute liver failure: A multicentre cohort study. Liver Int 2024; 44:2651-2659. [PMID: 39016195 PMCID: PMC11610480 DOI: 10.1111/liv.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/29/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND & AIMS Ammonia is metabolized into urea in the liver. In acute liver failure (ALF), ammonia has been associated with survival. However, urea variation has been poorly studied. METHODS Observational cohort including ALF patients from Curry Cabral Hospital (Lisbon, Portugal) and Clinic Hospital (Barcelona, Spain) between 10/2010 and 01/2023. The United States ALF Study Group cohort was used for external validation. Primary exposures were serum ammonia and urea on ICU admission. Primary endpoint was 30-day transplant-free survival (TFS). Secondary endpoint was explanted liver weight. RESULTS Among 191 ALF patients, median (IQR) age was 46 (32; 57) years and 85 (44.5%) were males. Overall, 86 (45.0%) patients were transplanted and 75 (39.3%) died. Among all ALF patients, following adjustment for age, sex, body weight, and aetiology, higher ammonia or lower urea was independently associated with higher INR on ICU admission (p < .009). Among all ALF patients, following adjustment for sex, aetiology, and lactate, higher ammonia was independently associated with lower TFS (adjusted odds ratio (95% confidence interval [CI]) = 0.991 (0.985; 0.997); p = .004). This model predicted TFS with good discrimination (area under receiver operating curve [95% CI] = 0.78 [0.75; 0.82]) and reasonable calibration (R2 of 0.43 and Brier score of 0.20) after external validation. Among transplanted patients, following adjustment for age, sex, actual body weight, and aetiology, higher ammonia (p = .024) or lower (p < .001) urea was independently associated with lower explanted liver weight. CONCLUSIONS Among ALF patients, serum ammonia and urea were associated with ALF severity. A score incorporating serum ammonia predicted TFS reasonably well.
Collapse
Affiliation(s)
- Filipe S. Cardoso
- Transplant Unit, Intensive Care Unit, Curry Cabral Hospital, Nova Medical School, Lisbon, Portugal
- Intensive Care Unit, Curry Cabral Hospital, Lisbon, Portugal
| | - David Toapanta
- Liver ICU, Liver Unit, Clinic Hospital, Barcelona, Spain
| | | | - Pedro Fidalgo
- Intensive Care Unit, São Francisco Xavier Hospital, Lisbon, Portugal
| | - António Figueiredo
- Pathological Anatomy Department, Curry Cabral Hospital, Lisbon, Portugal
| | | | - Nuno Germano
- Intensive Care Unit, Curry Cabral Hospital, Lisbon, Portugal
| | - Jody A. Rule
- Department of Internal Medicine, University of Texas Southwestern Medical Center, TX, US
| | - William M. Lee
- Department of Internal Medicine, University of Texas Southwestern Medical Center, TX, US
| | | | - Enric Reverter
- Liver ICU, Liver Unit, Clinic Hospital, Barcelona, Spain
| | | |
Collapse
|
19
|
Berg T, Aehling NF, Bruns T, Welker MW, Weismüller T, Trebicka J, Tacke F, Strnad P, Sterneck M, Settmacher U, Seehofer D, Schott E, Schnitzbauer AA, Schmidt HH, Schlitt HJ, Pratschke J, Pascher A, Neumann U, Manekeller S, Lammert F, Klein I, Kirchner G, Guba M, Glanemann M, Engelmann C, Canbay AE, Braun F, Berg CP, Bechstein WO, Becker T, Trautwein C. S2k-Leitlinie Lebertransplantation der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV). ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:1397-1573. [PMID: 39250961 DOI: 10.1055/a-2255-7246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Affiliation(s)
- Thomas Berg
- Bereich Hepatologie, Medizinischen Klinik II, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Niklas F Aehling
- Bereich Hepatologie, Medizinischen Klinik II, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Tony Bruns
- Medizinische Klinik III, Universitätsklinikum Aachen, Aachen, Deutschland
| | - Martin-Walter Welker
- Medizinische Klinik I Gastroent., Hepat., Pneum., Endokrin. Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - Tobias Weismüller
- Klinik für Innere Medizin - Gastroenterologie und Hepatologie, Vivantes Humboldt-Klinikum, Berlin, Deutschland
| | - Jonel Trebicka
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Deutschland
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Berlin, Deutschland
| | - Pavel Strnad
- Medizinische Klinik III, Universitätsklinikum Aachen, Aachen, Deutschland
| | - Martina Sterneck
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Hamburg, Hamburg, Deutschland
| | - Utz Settmacher
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Universitätsklinikum Jena, Jena, Deutschland
| | - Daniel Seehofer
- Klinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Eckart Schott
- Klinik für Innere Medizin II - Gastroenterologie, Hepatologie und Diabetolgie, Helios Klinikum Emil von Behring, Berlin, Deutschland
| | | | - Hartmut H Schmidt
- Klinik für Gastroenterologie und Hepatologie, Universitätsklinikum Essen, Essen, Deutschland
| | - Hans J Schlitt
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Johann Pratschke
- Chirurgische Klinik, Charité Campus Virchow-Klinikum - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Andreas Pascher
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Münster, Münster, Deutschland
| | - Ulf Neumann
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Essen, Essen, Deutschland
| | - Steffen Manekeller
- Klinik und Poliklinik für Allgemein-, Viszeral-, Thorax- und Gefäßchirurgie, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Frank Lammert
- Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Ingo Klein
- Chirurgische Klinik I, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Gabriele Kirchner
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg und Innere Medizin I, Caritaskrankenhaus St. Josef Regensburg, Regensburg, Deutschland
| | - Markus Guba
- Klinik für Allgemeine, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Universitätsklinikum München, München, Deutschland
| | - Matthias Glanemann
- Klinik für Allgemeine, Viszeral-, Gefäß- und Kinderchirurgie, Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - Cornelius Engelmann
- Charité - Universitätsmedizin Berlin, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Berlin, Deutschland
| | - Ali E Canbay
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Deutschland
| | - Felix Braun
- Klinik für Allgemeine Chirurgie, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, Universitätsklinikum Schlewswig-Holstein, Kiel, Deutschland
| | - Christoph P Berg
- Innere Medizin I Gastroenterologie, Hepatologie, Infektiologie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Wolf O Bechstein
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - Thomas Becker
- Klinik für Allgemeine Chirurgie, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, Universitätsklinikum Schlewswig-Holstein, Kiel, Deutschland
| | | |
Collapse
|
20
|
Maiwall R, Kulkarni AV, Arab JP, Piano S. Acute liver failure. Lancet 2024; 404:789-802. [PMID: 39098320 DOI: 10.1016/s0140-6736(24)00693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 08/06/2024]
Abstract
Acute liver failure (ALF) is a life-threatening disorder characterised by rapid deterioration of liver function, coagulopathy, and hepatic encephalopathy in the absence of pre-existing liver disease. The cause of ALF varies across the world. Common causes of ALF in adults include drug toxicity, hepatotropic and non-hepatotropic viruses, herbal and dietary supplements, antituberculosis drugs, and autoimmune hepatitis. The cause of liver failure affects the management and prognosis, and therefore extensive investigation for cause is strongly suggested. Sepsis with multiorgan failure and cerebral oedema remain the leading causes of death in patients with ALF and early identification and appropriate management can alter the course of ALF. Liver transplantation is the best current therapy, although the role of artificial liver support systems, particularly therapeutic plasma exchange, can be useful for patients with ALF, especially in non-transplant centres. In this Seminar, we discuss the cause, prognostic models, and management of ALF.
Collapse
Affiliation(s)
- Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Juan Pablo Arab
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine, University and Hospital of Padova, Padova, Italy
| |
Collapse
|
21
|
Jackson C, Carlin K, Blondet N, Jordan I, Yalon L, Healey PJ, Symons JM, Menon S. Continuous renal replacement therapy and therapeutic plasma exchange in pediatric liver failure. Eur J Pediatr 2024; 183:3289-3297. [PMID: 38717620 DOI: 10.1007/s00431-024-05587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 07/23/2024]
Abstract
Patients with acute liver failure (ALF) and acute on chronic liver failure (ACLF) have significant morbidity and mortality. They require extracorporeal blood purification modalities like continuous renal replacement therapy (CRRT) and therapeutic plasma exchange (TPE) as a bridge to recovery or liver transplantation. Limited data are available on the outcomes of patients treated with these therapies. This is a retrospective single-center study of 23 patients from 2015 to 2022 with ALF/ACLF who underwent CRRT and TPE. We aimed to describe the clinical characteristics and outcomes of these patients. Median (IQR) age was 0.93 years (0.57, 9.88), range 16 days to 20 years. Ten (43%) had ALF and 13 (57%) ACLF. Most (n = 19, 82%) started CRRT for hyperammonemia and/or hepatic encephalopathy and all received TPE for refractory coagulopathy. CRRT was started at a median of 2 days from ICU admission, and TPE started on the same day in most. The liver transplant was done in 17 (74%), and 2 recovered native liver function. Four patients, all with ACLF, died prior to ICU discharge without a liver transplant. The median peak ammonia pre-CRRT was 131 µmol/L for the whole cohort. The mean (SD) drop in ammonia after 48 h of CRRT was 95.45 (43.72) µmol/L in those who survived and 69.50 (21.70) µmol/L in those who did not (p 0.26). Those who survived had 0 median co-morbidities compared to 2.5 in non-survivors (aOR (95% CI) for mortality risk of 2.5 (1.1-5.7), p 0.028). Conclusion: In this cohort of 23 pediatric patients with ALF or ACLF who received CRRT and TPE, 83% survived with a liver transplant or recovered with their native liver. Survival was worse in those who had ACLF and those with co-morbid conditions. What is Known: • Pediatric acute liver failure is associated with high mortality. • Patients may require extracorporeal liver assist therapies (like CRRT, TPE, MARS, SPAD) to bridge them over to a transplant or recovery of native liver function. What is New: • Standard volume plasma exhange has not been evaluated against high volume plasma exchange for ALF. • The role, dose, and duration of therapeutic plasma exchange in patients with acute on chronic liver failure is not well described.
Collapse
Affiliation(s)
- Caroline Jackson
- Division of Nephrology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | | - Niviann Blondet
- Division of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Ian Jordan
- Seattle Children's Hospital, Seattle, WA, USA
| | | | - Patrick J Healey
- Department of Surgery, Seattle Children's Hospital, Seattle, WA, USA
| | - Jordan M Symons
- Division of Nephrology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Shina Menon
- Division of Nephrology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA.
- Division of Nephrology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.
- Center for Academic Medicine, Pediatric Nephrology/MC-5660, 453 Quarry Rd, Palo Alto, CA, 94304, USA.
| |
Collapse
|
22
|
Anand AC, Acharya SK. The Story of Ammonia in Liver Disease: An Unraveling Continuum. J Clin Exp Hepatol 2024; 14:101361. [PMID: 38444405 PMCID: PMC10910335 DOI: 10.1016/j.jceh.2024.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024] Open
Abstract
Hyperammonemia and liver disease are closely linked. Most of the ammonia in our body is produced by transamination and deamination activities involving amino acid, purine, pyrimidines, and biogenic amines, and from the intestine by bacterial splitting of urea. The only way of excretion from the body is by hepatic conversion of ammonia to urea. Hyperammonemia is associated with widespread toxicities such as cerebral edema, hepatic encephalopathy, immune dysfunction, promoting fibrosis, and carcinogenesis. Over the past two decades, it has been increasingly utilized for prognostication of cirrhosis, acute liver failure as well as acute on chronic liver failure. The laboratory assessment of hyperammonemia has certain limitations, despite which its value in the assessment of various forms of liver disease cannot be negated. It may soon become an important tool to make therapeutic decisions about the use of prophylactic and definitive treatment in various forms of liver disease.
Collapse
|
23
|
Catumbela CSG, Morales R. Elderly mice with history of acetaminophen intoxication display worsened cognitive impairment and persistent elevation of astrocyte and microglia burden. Sci Rep 2024; 14:14205. [PMID: 38902507 PMCID: PMC11190293 DOI: 10.1038/s41598-024-65185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Acetaminophen (APAP) is a leading cause of acute liver failure. The effect of APAP metabolite's effects in the periphery are well characterized; however, associated consequences in the brain remain poorly understood. Animal studies on this subject are few and reveal that frequent APAP intake can trigger cerebral abnormalities that vary depending on the subject's age. Alarmingly, experimental efforts have yet to examine associated consequences in elderly hosts, who correspond to the highest risk of medication overload, impaired drug clearance, and cognitive deficits. Here, we interrogated the cerebral and peripheral pathology of elderly mice submitted to monthly episodes of APAP intoxication since a young adult age. We found that weeks after the final episode of recurrent APAP exposure, mice exhibited worsened non-spatial memory deficit whereas spatial memory performance was unaltered. Interestingly, one month after the period of APAP intoxication, these mice showed increased glial burden without associated drivers, namely, blood-brain barrier disruption, cholesterol accumulation, and elevation of inflammatory molecules in the brain and/or periphery. Our experimental study reveals how recurrent APAP exposure affects the cognitive performance and cellular events in elderly brains. These data suggest that APAP-containing pharmacological interventions may foreshadow the elevated risk of neuropsychiatric disorders that afflict elderly populations.
Collapse
Affiliation(s)
- Celso S G Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
24
|
Duarte T, Fidalgo P, Karvellas CJ, Cardoso FS. What every Intensivist should know about ... Ammonia in liver failure. J Crit Care 2024; 81:154456. [PMID: 37945461 DOI: 10.1016/j.jcrc.2023.154456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE Acute liver failure (ALF) or acute-on-chronic liver failure (ACLF) patients have high short-term mortality and morbidity. In the context of liver failure, increased serum ammonia is associated with worse neurological outcomes, including high-grade hepatic encephalopathy (HE), cerebral edema, and intracranial hypertension. Besides its neurotoxicity, hyperammonemia may contribute to immune dysfunction and the risk of infection, a frequent trigger for multi-organ failure in these patients. MATERIAL AND METHODS We performed a literature-based narrative review. Publications available in PubMed® up to June 2023 were considered. RESULTS In the ICU management of liver failure patients, serum ammonia may play an important role. Accordingly, in this review, we focus on recent insights about ammonia metabolism, serum ammonia measurement strategies, hyperammonemia prognostic value, and ammonia-targeted therapeutic strategies. CONCLUSIONS Serum ammonia may have prognostic value in liver failure. Effective ammonia targeted therapeutic strategies are available, such as laxatives, rifaximin, L-ornithine-l-aspartate, and continuous renal replacement therapy.
Collapse
Affiliation(s)
- Tiago Duarte
- Intensive Care Unit, Curry Cabral Hospital, Lisbon, Portugal
| | - Pedro Fidalgo
- Intensive Care Unit, São Francisco Xavier Hospital, Lisbon, Portugal
| | | | - Filipe S Cardoso
- Transplant Unit, Intensive Care Unit, Curry Cabral Hospital, Nova Medical School, Lisbon, Portugal.
| |
Collapse
|
25
|
Dong V, Robinson AM, Dionne JC, Cardoso FS, Rewa OG, Karvellas CJ. Continuous renal replacement therapy and survival in acute liver failure: A systematic review and meta-analysis. J Crit Care 2024; 81:154513. [PMID: 38194760 DOI: 10.1016/j.jcrc.2023.154513] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVE Acute liver failure (ALF) is a rare syndrome leading to significant morbidity and mortality. An important cause of mortality is cerebral edema due to hyperammonemia. Different therapies for hyperammonemia have been assessed including continuous renal replacement therapy (CRRT). We conducted a systematic review and meta-analysis to determine the efficacy of CRRT in ALF patients. MATERIALS AND METHODS We searched MEDLINE, EMBASE, Cochrane Library, and Web of Science. Inclusion criteria included adult patients admitted to an ICU with ALF. Intervention was the use of CRRT for one or more indications with the comparator being standard care without the use of CRRT. Outcomes of interest were overall survival, transplant-free survival (TFS), mortality and changes in serum ammonia levels. RESULTS In total, 305 patients underwent CRRT while 1137 patients did not receive CRRT. CRRT was associated with improved overall survival [risk ratio (RR) 0.83, 95% confidence interval (CI) 0.70-0.99, p-value 0.04, I2 = 50%] and improved TFS (RR 0.65, 95% CI 0.49-0.85, p-value 0.002, I2 = 25%). There was a trend towards higher mortality with no CRRT (RR 1.24, 95% CI 0.84-1.81, p-value 0.28, I2 = 37%). Ammonia clearance data was unable to be pooled and was not analyzable. CONCLUSION Use of CRRT in ALF patients is associated with improved overall and transplant-free survival compared to no CRRT.
Collapse
Affiliation(s)
- Victor Dong
- Department of Critical Care Medicine, University of Calgary, 3134 Hospital Drive NW, Calgary, Alberta T2N 2T9, Canada.
| | - Andrea M Robinson
- Department of Critical Care Medicine, University of Alberta, 2-124 Clinical Sciences Building, Edmonton, Alberta T6G 2G3, Canada.
| | - Joanna C Dionne
- Department of Medicine, Division of Critical Care, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada.
| | - Filipe S Cardoso
- Intensive Care Unit and Transplant Unit, Nova University, R. da Beneficência 8, Lisbon 1050-099, Portugal.
| | - Oleksa G Rewa
- Department of Critical Care Medicine, University of Alberta, 2-124 Clinical Sciences Building, Edmonton, Alberta T6G 2G3, Canada.
| | - Constantine J Karvellas
- Department of Critical Care Medicine, University of Alberta, 2-124 Clinical Sciences Building, Edmonton, Alberta T6G 2G3, Canada; Department of Medicine, Division of Gastroenterology, University of Alberta, 8540 112 St NW, Edmonton, Alberta T6G 2P8, Canada.
| |
Collapse
|
26
|
Lee F, Frederick RT. Hepatic Encephalopathy-A Guide to Laboratory Testing. Clin Liver Dis 2024; 28:225-236. [PMID: 38548435 DOI: 10.1016/j.cld.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Hepatic encephalopathy (HE) remains both a clinical diagnosis and one of exclusion. Laboratory testing is largely focused on identifying precipitating factors. Ammonia levels in the blood can be helpful for the diagnosis of HE but are not required for confirmation. More recent literature is lending support to the prognostic capabilities of ammonia in cirrhosis, both in predicting future HE events and in determining outcomes in hospitalized patients. Accurate ammonia testing requires strict protocols to avoid common pitfalls in the measurement of this labile analyte. Future studies investigating the utility of other laboratory testing to diagnose, stage, or predict HE are encouraged.
Collapse
Affiliation(s)
- Frances Lee
- Department of Gastroenterology, California Pacific Medical Center
| | - R Todd Frederick
- Division of Hepatology, Department of Advanced Organ Therapies, California Pacific Medical Center.
| |
Collapse
|
27
|
Shaji Mathew J, Shingina A, Khan MQ, Wilson E, Syn N, Rammohan A, Alconchel F, Hakeem AR, Shankar S, Patel D, Keskin O, Liu J, Nasralla D, Mazzola A, Patel MS, Tanaka T, Victor D, Yoon U, Yoon YI, Vinaixa C, Kirchner V, De Martin E, Ghobrial RM, Chadha R. Proceedings of the 28th Annual Congress of the International Liver Transplantation Society. Liver Transpl 2024; 30:544-554. [PMID: 38240602 DOI: 10.1097/lvt.0000000000000330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/09/2023] [Indexed: 02/16/2024]
Abstract
The 2023 Joint International Congress of the International Liver Transplantation Society (ILTS), the European Liver and Intestine Transplant Association (ELITA), and the Liver Intensive Care Group of Europe (LICAGE) held in Rotterdam, the Netherlands, marked a significant recovery milestone for the liver transplant community after COVID-19. With 1159 participants and a surge in abstract submissions, the event focused on "Liver Disorders and Transplantation: Innovations and Evolving Indications." This conference report provides a comprehensive overview of the key themes discussed during the event, encompassing Hepatology, Anesthesia and Critical Care, Acute Liver Failure, Infectious Disease, Immunosuppression, Pediatric Liver Transplantation, Living Donor Liver Transplantation, Transplant Oncology, Surgical Approaches, and Machine Perfusion. The congress provided a platform for extensive discussions on a wide range of topics, reflecting the continuous advancements and collaborative efforts within the liver transplant community.
Collapse
Affiliation(s)
- Johns Shaji Mathew
- Department of GI, HPB & Multi-Organ Transplant Surgery, Rajagiri Hospital, Kochi, Kerala, India
| | - Alexandra Shingina
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mohammad Qasim Khan
- Division of Gastroenterology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Elizabeth Wilson
- Department of Anesthesiology, Emory University Hospital, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas Syn
- Division of Biomedical Informatics, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ashwin Rammohan
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | - Abdul Rahman Hakeem
- Department of Hepatobiliary and Liver Transplant Surgery, St James's University Hospital NHS Trust, Leeds, UK
| | - Sadhana Shankar
- Institute of Liver Studies, King's College Hospital, London, UK
| | | | - Onur Keskin
- Department of Gastroenterology, Hacettepe University Medical School, Ankara, Turkey
| | - Jiang Liu
- Hepato-Pancreato-Biliary Center, Department of Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - David Nasralla
- Department of HPB and Liver Transplant Surgery, The Royal Free Hospital, London, UK
| | - Alessandra Mazzola
- Sorbonne Université, Unité médicale de transplantation hépatique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Madhukar S Patel
- Division of Surgical Transplantation, Department of Surgery, University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - Tomohiro Tanaka
- Department of Internal Medicine, Gastroenterology and Hepatology, University of Iowa, Iowa City, Iowa, USA
| | - David Victor
- Sherrie and Alan Conover Center for Liver Disease and Transplantation. Houston Methodist Hospital, Houston, Texas, USA
| | - Uzung Yoon
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | | | - Carmen Vinaixa
- Hepatology Unit, Digestive Diseases Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Varvara Kirchner
- Department of Surgery, Division of Abdominal Transplantation, Stanford University, Stanford, California, USA
| | - Eleonora De Martin
- AP-HP, Hôpital Paul-Brousse, Centre Hépato- Biliaire, Unité INSERM 1193, Villejuif, France
| | - R Mark Ghobrial
- J.C. Walter Jr, Transplant Center, Department of Surgery, Weill Cornell Medical College, Houston Methodist Institute for Academic Medicine, Houston, Texas, USA
| | - Ryan Chadha
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
28
|
Motamedi-Tehrani J, Peyghan R, Shahriari A, Razijalali M, Ebrahimi E. Combined effects of ammonia-N exposure and salinity changes on hematological and serum biochemical factors and thyroid hormones in Nile tilapia ( Oreochromis niloticus). Heliyon 2024; 10:e29103. [PMID: 38601621 PMCID: PMC11004645 DOI: 10.1016/j.heliyon.2024.e29103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
The aim of this research was to evaluate the interaction effects of ammonia-N levels and salinity on hematological and serum biochemical parameters in Nile tilapia (Oreochromis niloticus). The fish were randomly divided into 12 treatments including the levels of salinity (0, 4, 8 and 12 ppt) and 0, 50% of LC50-96 h of ammonia-N and 30% of LC50-96 h of ammonia-N in a factorial design (4 salinity levels x 3 ammonia levels). Hemoglobin value in all treatments, except for salinity treatments, namely 2, 3, 4, showed a significant decrease than the control (0 ppt and no poisoning). Also, red blood cells in treatment ammonia-N levels were significantly less than the control. Serum protein concentration, in treatments 9 (50% of LC50-96 h of ammonia-N) and 5 and also with increasing salinity (treatments 2, 3 and 4) had a significant decrease compared to the control. There is a significant increase in serum glucose, cortisol, ammonia and urea levels in 50% and 30% of LC50-96 h of ammonia-N treatments compared to the control, meanwhile these parameters were significantly increased with increasing salinity. Serum thyroid stimulating hormone (TSH), T3 and T4 levels in acute and sub-acute ammonia-N treatments were significantly lower than the control. Moreover, with increasing salinity in 50% and 30% of LC50-96 h of ammonia-N treatments, TSH showed a decreasing pattern. According to the results, fluctuations in blood biochemical factors, increase of stress and decrease of thyroid hormones show that the salinity, ammonia, and their interaction caused adverse effects on fish health during the 96 h of testing.
Collapse
Affiliation(s)
- Javad Motamedi-Tehrani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Rahim Peyghan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Shahriari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Razijalali
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Eisa Ebrahimi
- Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
29
|
Rao PN, Madan K. Indian Journal of Gastroenterology-March-April 2024 issue highlights. Indian J Gastroenterol 2024; 43:281-284. [PMID: 38748382 DOI: 10.1007/s12664-024-01602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Affiliation(s)
- P N Rao
- Department of Hepatology, Asian Institute of Gastroenterology-AIG Hospitals, Hyderabad, 500 082, India.
| | - Kaushal Madan
- Department of Clinical Hepatology, Max Hospitals, Saket, New Delhi, 110 017, India
| |
Collapse
|
30
|
Samanta A, Poddar U. Pediatric acute liver failure: Current perspective in etiology and management. Indian J Gastroenterol 2024; 43:349-360. [PMID: 38466551 DOI: 10.1007/s12664-024-01520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 03/13/2024]
Abstract
Pediatric acute liver failure (PALF) is a catastrophic clinical condition with very high morbidity and mortality without early detection and intervention. It is characterized by the acute onset of massive hepatocellular injury that releases circulating inflammatory mediators, resulting in metabolic disturbances, coagulopathy, hepatic encephalopathy and multi-organ failure. The etiological spectrum is dominated by hepatotropic viruses, drug-induced liver injury, metabolic and genetic disorders and immune-mediated diseases. Unlike adults, indeterminate causes for acute liver failure constitute a considerable proportion of cases of acute liver failure in children in the west. The heterogeneity of age and etiology in PALF has led to difficulties in developing prognostic scoring. The recent guidelines emphasize prompt identification of PALF, age-appropriate evaluation for hepatic encephalopathy and laboratory evaluation with careful monitoring. Current therapy focuses on supporting the failing liver and other organs, pending either spontaneous recovery or liver transplantation. Targeted therapy is available for a select group of etiologies. Liver transplantation can be lifesaving and a plan for the same should be organized, whenever indicated. The aim of this review is to define PALF, understand its etiopathogenesis, address the challenges encountered during the management and update the latest advances in liver transplantation and non-transplant treatment options in PALF.
Collapse
Affiliation(s)
- Arghya Samanta
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India
| | - Ujjal Poddar
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India.
| |
Collapse
|
31
|
Sehrawat SS, Premkumar M. Critical care management of acute liver failure. Indian J Gastroenterol 2024; 43:361-376. [PMID: 38578565 DOI: 10.1007/s12664-024-01556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
The management of acute liver failure (ALF) in modern hepatology intensive care units (ICU) has improved patient outcomes. Critical care management of hepatic encephalopathy, cerebral edema, fluid and electrolytes; prevention of infections and organ support are central to improved outcomes of ALF. In particular, the pathogenesis of encephalopathy is multifactorial, with ammonia, elevated intra-cranial pressure and systemic inflammation playing a central role. Although ALF remains associated with high mortality, the availability of supportive care, including organ failure support such as plasma exchange, timely mechanical ventilation or continuous renal replacement therapy, either conservatively manages patients with ALF or offers bridging therapy until liver transplantation. Thus, appropriate critical care management has improved the likelihood of patient recovery in ALF. ICU care interventions such as monitoring of cerebral edema, fluid status assessment and interventions for sepsis prevention, nutritional support and management of electrolytes can salvage a substantial proportion of patients. In this review, we discuss the key aspects of critical care management of ALF.
Collapse
Affiliation(s)
- Surender Singh Sehrawat
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Madhumita Premkumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| |
Collapse
|
32
|
Wijdicks EFM. Brain Swelling in Acute Liver Failure: From an Autopsy "Artifact" to a Treatable Complication. Neurocrit Care 2024; 40:791-794. [PMID: 35112220 DOI: 10.1007/s12028-022-01445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Eelco F M Wijdicks
- Division of Neurocritical Care and Hospital Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
| |
Collapse
|
33
|
Felgendreff P, Hosseiniasl SM, Felgendreff L, Amiot BP, Minshew A, Ahmadzada B, Qu Z, Wilken S, Arribas Gomez I, Nyberg SL, Cook CN. Comprehensive analysis of brain injury parameters in a preclinical porcine model of acute liver failure. Front Med (Lausanne) 2024; 11:1363979. [PMID: 38606159 PMCID: PMC11007081 DOI: 10.3389/fmed.2024.1363979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction Acute liver failure (ALF) is defined as acute loss of liver function leading to hepatic encephalopathy associated with a high risk of patient death. Brain injury markers in serum and tissue can help detect and monitor ALF-associated brain injury. This study compares different brain injury parameters in plasma and tissue along with the progression of ALF. Method ALF was induced by performing an 85% liver resection. Following the resection, animals were recovered and monitored for up to 48 h or until reaching the predefined endpoint of receiving standard medical therapy (SMT). Blood and serum samples were taken at Tbaseline, T24, and upon reaching the endpoint (Tend). Control animals were euthanized by exsanguination following plasma sampling. Postmortem brain tissue samples were collected from the frontal cortex (FCTx) and cerebellum (Cb) of all animals. Glial fibrillary acidic protein (GFAP) and tau protein and mRNA levels were quantified using ELISA and qRT-PCR in all plasma and brain samples. Plasma neurofilament light (NFL) was also measured using ELISA. Results All ALF animals (n = 4) were euthanized upon showing signs of brain herniation. Evaluation of brain injury biomarkers revealed that GFAP was elevated in ALF animals at T24h and Tend, while Tau and NFL concentrations were unchanged. Moreover, plasma glial fibrillary acidic protein (GFAP) levels were negatively correlated with total protein and positively correlated with both aspartate transaminase (AST) and alkaline phosphatase (AP). Additionally, lower GFAP and tau RNA expressions were observed in the FCTx of the ALF group but not in the CB tissue. Conclusion The current large animal study has identified a strong correlation between GFAP concentration in the blood and markers of ALF. Additionally, the protein and gene expression analyses in the FCTx revealed that this area appears to be susceptible, while the CB is protected from the detrimental impacts of ALF-associated brain swelling. These results warrant further studies to investigate the mechanisms behind this process.
Collapse
Affiliation(s)
- Philipp Felgendreff
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department of General, Visceral, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | | | - Lisa Felgendreff
- Department of Journalism and Communication Research, Hannover University of Music, Drama, and Media, Hanover, Germany
| | - Bruce P. Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Anna Minshew
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Zhi Qu
- Transplant Center, Hannover Medical School, Hannover, Germany
| | - Silvana Wilken
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ines Arribas Gomez
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
34
|
Forsah SF, Ugwendum D, Arrey Agbor DB, Ndemazie NB, Kankeu Tonpouwo G, Ndema N, Taylor AA, Nfonoyim J. Severe Sepsis Associated With Multiorgan Failure and Precipitating Nonhepatic Hyperammonemia Crisis in Late-Onset Ornithine Transcarbamylase Deficiency: A Case Report and Literature Review. Cureus 2024; 16:e55711. [PMID: 38586796 PMCID: PMC10998436 DOI: 10.7759/cureus.55711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Sepsis is characterized by a dysregulated immune response to an infection. It is a major public health problem owing to its high mortality and morbidity. Sepsis is a medical emergency and requires aggressive and timely management. It can cause multiorgan failure, unmask an existing but undiagnosed disease such as ornithine transcarbamylase deficiency (OTCD), or make a known well-controlled disease worse. We present the case of a 52-year-old male who was brought to the emergency department unresponsive. He was diagnosed with severe sepsis which was associated with multiorgan failure and hyperammonemia crisis. Hyperammonemia was due to a newly diagnosed, late-onset OTCD which was unmasked by severe sepsis. This case will enable physicians to be aware and consider OTCD in a patient presenting with severe sepsis, altered mentation, and seizures, with no obvious cause of hyperammonemia.
Collapse
Affiliation(s)
- Sabastain F Forsah
- Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Derek Ugwendum
- Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | | | | | | | - Nancelle Ndema
- Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Akua Aboah Taylor
- Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Jay Nfonoyim
- Pulmonary and Critical Care, Richmond University Medical Center, Staten Island, USA
| |
Collapse
|
35
|
Kaliciński P, Grenda R, Szymczak M, Pietraszek E, Pawłowska J. Multidisciplinary management of children with acute liver failure - Report on 104 children treated in single center. Pediatr Transplant 2024; 28:e14654. [PMID: 37983943 DOI: 10.1111/petr.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Pediatric acute liver failure (PALF) is one of the most demanding emergencies in hepatology, intensive care, and for transplant team. This report describes the clinical pattern, diagnostic and therapeutic modalities in children with ALF considered at risk of death without liver transplantation, basing on a long-term experience of the pediatric transplant center. MATERIALS AND METHODS Between 1990 and 2022, 104 children aged 7 days-17 years (median 8 years), with body weight 3.1 to 77 kg (median 32 kg), were qualified for LT due to ALF, and finally 81 (78%) of them were transplanted (9% of all 899 LT performed in children in the same period). RESULTS A total of 23 children were not transplanted: 15 (14.4%) died while awaiting transplantation. In 8 (7.7%) patients liver function recovered. Before transplantation 45 (43.3%) children developed circulatory failure, in 66 (63.5%) mechanical ventilation was necessary, 18 patients presented acute kidney injury (17.3%), and encephalopathy higher than stage I was present in 60 (57.7%) patients. In 63 children, various kidney/liver assist procedures were performed: CVVHD (continuous veno-venous hemodiafiltration in 22 (21.2%) patients, albumin dialysis (MARS; molecular adsorbent recirculating system) in 39 (37.5%) patients, therapeutic plasma exchange (TPE) in 13 (12.5%) patients. Twenty (24.7%) children died after LT including 15 (18.5%) in the early posttransplant period, and 5 (6.1%) in the late follow-up. CONCLUSIONS Treatment of children with ALF in the peritransplant period is very difficult and require an experienced, multidisciplinary team. Despite continued advances in the care of children with ALF, patient survival remains lower than for elective indications for liver transplantation, and timely qualification and transplantation still are the most important factors of survival of these children.
Collapse
Affiliation(s)
- Piotr Kaliciński
- Department of Pediatric Surgery and Organ Transplantation, The Children's Memorial Health Institute, Warsaw, Poland
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Marek Szymczak
- Department of Pediatric Surgery and Organ Transplantation, The Children's Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Pietraszek
- Department of Anaesthesiology and Intensive Care, The Children's Memorial Health Institute, Warsaw, Poland
| | - Joanna Pawłowska
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
36
|
Paine C, Pichler R. How We Treat Hyperammonemia in Acute Liver Failure. Clin J Am Soc Nephrol 2024; 19:254-256. [PMID: 37847521 PMCID: PMC10861096 DOI: 10.2215/cjn.0000000000000350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Affiliation(s)
- Cary Paine
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | | |
Collapse
|
37
|
Mittal S, Bhardwaj M, Shekhrajka P, Goyal VK, Nimje GR, Kanoji S, Danduri SK, Vishnoi A. An overview of unresolved issues in the perioperative management of liver transplant patients. KOREAN JOURNAL OF TRANSPLANTATION 2023; 37:221-228. [PMID: 38115164 PMCID: PMC10772275 DOI: 10.4285/kjt.23.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Over the past decade, the field of solid organ transplantation has undergone significant changes, with some of the most notable advancements occurring in liver transplantation. Recent years have seen substantial progress in preoperative patient optimization protocols, anesthesia monitoring, coagulation management, and fluid management, among other areas. These improvements have led to excellent perioperative outcomes for all surgical patients, including those undergoing liver transplantation. In the last few decades, there have been numerous publications in the field of liver transplantation, but controversies related to perioperative management of liver transplant recipients persist. In this review article, we address the unresolved issues surrounding the anesthetic management of patients scheduled for liver transplantation.
Collapse
Affiliation(s)
- Saurabh Mittal
- Department of Organ Transplant Anaesthesiology and Critical Care, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Medha Bhardwaj
- Department of Neuro-Anaesthesia, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | | | - Vipin Kumar Goyal
- Department of Organ Transplant Anaesthesiology and Critical Care, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Ganesh Ramaji Nimje
- Department of Organ Transplant Anaesthesiology and Critical Care, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Sakshi Kanoji
- Department of Organ Transplant Anaesthesiology and Critical Care, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Suma Katyaeni Danduri
- Department of Organ Transplant Anaesthesiology and Critical Care, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Anshul Vishnoi
- Department of Organ Transplant Anaesthesiology and Critical Care, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| |
Collapse
|
38
|
Cai YJ, Dong JJ, Chen RC, Xiao QQ, Li XM, Chen DY, Cai C, Lin XL, Shi KQ, Lu MQ. Serum ammonia variation predicts mortality in patients with hepatitis B virus-related acute-on-chronic liver failure. Front Microbiol 2023; 14:1282106. [PMID: 38111648 PMCID: PMC10725913 DOI: 10.3389/fmicb.2023.1282106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Background Hyperammonemia is critical to the development of hepatic encephalopathy (HE) and is associated with mortality in end-stage liver disease. This study investigated the clinical value of ammonia variation in hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) patients. Methods A total of 276 patients with HBV-ACLF were retrospectively recruited. Patients' ammonia levels were serially documented. Baseline ammonia, Peak ammonia (highest level), and Trough ammonia (lowest level) were particularly corrected to the upper limit of normal (AMM-ULN). The primary endpoint was 28-day mortality. Results The 28-day, 3-month, and 12-month mortality rates were 19.2, 25.7, and 28.2%, respectively. A total of 51 (18.4%) patients had overt HE (grade 2/3/4). Peak AMM-ULN was significantly higher in patients with overt HE and non-survivors compared with their counterparts (P < 0.001). Following adjustment for significant confounders, high Peak AMM-ULN was an independent predictor of overt HE (hazard ratio, 1.031, P < 0.001) and 28-day mortality (hazard ratio, 1.026, P < 0.001). The cut-off of Peak AMM-ULN was 1.8, determined by using the X-tile. Patients with Peak AMM-ULN appearing on days 1-3 after admission had a higher proportion of overt HE and mortality compared to other groups. Patients with decreased ammonia levels within 7 days had better clinical outcomes than those with increased ammonia. Conclusion Serum Peak ammonia was independently associated with overt HE and mortality in HBV-ACLF patients. Serial serum ammonia may have prognostic value.
Collapse
Affiliation(s)
- Yi-Jing Cai
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia-Jia Dong
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui-Cong Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian-Qian Xiao
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu-Mei Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - De-Yuan Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Cai
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu-Li Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke-Qing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming-Qin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
39
|
Li Y, Yao Z, Li Y, Yang Z, Li M, Chen Z, Liu S, Gong J, Huang L, Xu P, Li Y, Li H, Liu X, Zhang L, Zhang G, Wang H. Prognostic value of serum ammonia in critical patients with non-hepatic disease: A prospective, observational, multicenter study. J Transl Int Med 2023; 11:401-409. [PMID: 38130646 PMCID: PMC10732347 DOI: 10.2478/jtim-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background and Objectives Non-hepatic hyperammonemia can damage the central nervous system (CNS), and possible prognostic factors are lacking. This study aimed to investigate the prognostic and risk factors for patients admitted to the intensive care unit (ICU). Materials and Methods This prospective, observational, multicenter study was conducted between November and December 2019 at 11 ICUs in the Chinese Heilongjiang province. Changes in blood ammonia level during and after ICU admission were continuously monitored and expressed as the high level (H-), mean level (M-), and initial level (I-) of ammonia. The risk factors of poor prognosis were investigated by conducting univariate and multivariate logistic regression analyses. Receiver operating characteristic (ROC) curve analysis was conducted to compare the predictive ability of Acute Physiologic Assessment and Chronic Health Evaluation II (APACHE-II) score, lactic acid, total bilirubin (TBil), and M-ammonia. Results A total of 1060 patients were included in this study, of which 707 (67%) had a favorable prognosis and 353 (33%) had a poor prognosis. As shown by univariate models, a poor prognosis was associated with elevated serum levels of lactic acid, TBil, and ammonia (P < 0.05) and pathologic scores from three assessments: APACHE-II, Glasgow Coma Scale (GCS), and Sequential Organ Failure Assessment (SOFA). Multivariate analysis revealed that circulating mean ammonia levels in ICU patients were independently associated with a poor prognosis (odds ratio [OR] = 1.73, 95% confidence interval [CI]: 1.07-2.80, P = 0.02). However, the APACHE-II score (area under the curve [AUC]: 0.714, sensitivity: 0.86, specificity: 0.68, P < 0.001) remained the most predictive factor for patient prognosis by ROC analysis. Conclusion Elevated serum levels of ammonia in the blood were independently prognostic for ICU patients without liver disease.
Collapse
Affiliation(s)
- Yue Li
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin150086, Heilongjiang Province, China
| | - Zhipeng Yao
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin150086, Heilongjiang Province, China
| | - Yunlong Li
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin150086, Heilongjiang Province, China
| | - Zhenyu Yang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin150086, Heilongjiang Province, China
| | - Ming Li
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin150086, Heilongjiang Province, China
| | - Zhendong Chen
- Department of Intensive Care Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi154004, Heilongjiang Province, China
| | - Shujie Liu
- Department of Intensive Care Medicine, Mudanjiang City Second People’s Hospital, Mudanjiang157199, Heilongjiang Province, China
| | - Jianguo Gong
- Department of Intensive Care Medicine, The Fifth Affiliated Hospital of Harbin Medical University, Daqing163711, Heilongjiang Province, China
| | - Libin Huang
- Department of Intensive Care Medicine, Harbin Fifth Hospital, Harbin150001, Heilongjiang Province, China
| | - Ping Xu
- Department of Intensive Care Medicine, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin150001, Heilongjiang Province, China
| | - Yan Li
- Department of Intensive Care Medicine, The First Hospital of Harbin, Harbin150001, Heilongjiang Province, China
| | - Haihong Li
- Department of Intensive Care Medicine, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang157000, Heilongjiang Province, China
| | - Xuan Liu
- Department of Intensive Care Medicine, Jiamusi Central Hospital, Jiamusi154003, Heilongjiang Province, China
| | - Li Zhang
- Department of Intensive Care Medicine, Daqing Oilfield General Hospital, Daqing163001, Heilongjiang Province, China
| | - Guixia Zhang
- Department of Intensive Care Medicine, The Longnan Hospital of Daqing, Daqing163458, Heilongjiang Province, China
| | - Hongliang Wang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin150086, Heilongjiang Province, China
| |
Collapse
|
40
|
Hannah N, Vasic D, Kansal A, Al-Ani A, Hebbard G, Sood S. Serum ammonia does not guide management and is overutilised in patients with cirrhosis in hospital settings. Intern Med J 2023; 53:2057-2064. [PMID: 36891668 DOI: 10.1111/imj.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/12/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Hepatic encephalopathy is a confusional state associated with cirrhosis. Serum ammonia levels are neither sensitive nor specific for the diagnosis. AIMS We audited the ordering location and hospital unit whilst assessing the impact on management at a major Australian tertiary centre. METHODS We conducted a single-centre retrospective chart review of the ordering of serum ammonia levels between 1 March 2019 and 29 February 2020 at The Royal Melbourne Hospital, a tertiary-referral centre in Melbourne, Victoria. Demographic, medication and pathology results, including serum ammonia measurements, were collected. The main outcomes assessed were ordering location, sensitivity, specificity and impact on management. RESULTS A total of 1007 serum ammonia tests were ordered in 425 patients. Nearly all ammonia ordering was by non-gastroenterologists, 24.2% by the intensive care unit, 23.1% by general medicine and 19.5% by the emergency department (ED). Only 21.6% of patients had a history of cirrhosis, with hepatic encephalopathy diagnosed in 13.6%. On subgroup analysis, 217 ammonia tests were performed in 92 patients with cirrhosis. Cirrhotic patients were older (64 vs 59 years, P = 0.012) and had higher median ammonia levels (64.46 vs 59 μmol/L, P < 0.001) compared with non-cirrhotic patients. In cirrhotic patients, the sensitivity and specificity for serum ammonia and diagnosis of hepatic encephalopathy were 75% and 52.3% respectively. CONCLUSION We affirm the poor utility of serum ammonia levels for guiding management of hepatic encephalopathy within the Australian context. ED and general medical units account for the majority of test ordering within the hospital. Understanding where ordering occurs provides a target for targeted education.
Collapse
Affiliation(s)
- Nicholas Hannah
- Department of Gastroenterology and Hepatology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Dubravka Vasic
- Department of Gastroenterology and Hepatology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Abhik Kansal
- Department of Gastroenterology and Hepatology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Aysha Al-Ani
- Department of Gastroenterology and Hepatology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Geoff Hebbard
- Department of Gastroenterology and Hepatology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Siddharth Sood
- Department of Gastroenterology and Hepatology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Ramírez-Guerrero G, Husain-Syed F, Ponce D, Torres-Cifuentes V, Ronco C. Peritoneal dialysis and acute kidney injury in acute brain injury patients. Semin Dial 2023; 36:448-453. [PMID: 36913952 DOI: 10.1111/sdi.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/21/2023] [Accepted: 02/18/2023] [Indexed: 03/14/2023]
Abstract
Acute kidney injury (AKI) is a heterogeneous syndrome with multiple etiologies. It occurs frequently in the neurocritical intensive care unit and is associated with greater morbidity and mortality. In this scenario, AKI alters the kidney-brain axis, exposing patients who receive habitual dialytic management to greater injury. Various therapies have been designed to mitigate this risk. Priority has been placed by KDIGO guidelines on the use of continuous over intermittent acute kidney replacement therapies (AKRT). On this background, continuous therapies have a pathophysiological rationale in patients with acute brain injury. A low-efficiency therapy such as PD and CRRT could achieve optimal clearance control and potentially reduce the risk of secondary brain injury. Therefore, this work will review the evidence on peritoneal dialysis as a continuous AKRT in neurocritical patients, describing its benefits and risks so it may be considered as an option when deciding among available therapeutic options.
Collapse
Affiliation(s)
- Gonzalo Ramírez-Guerrero
- Critical Care Unit, Carlos Van Buren Hospital, Valparaíso, Chile
- Dialysis and Renal Transplant Unit, Carlos Van Buren Hospital, Valparaíso, Chile
- Department of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Faeq Husain-Syed
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus-Liebig-University Giessen, Giessen, Germany
| | - Daniela Ponce
- Department of Internal Medicine, University Hospital, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vicente Torres-Cifuentes
- Critical Care Unit, Carlos Van Buren Hospital, Valparaíso, Chile
- Dialysis and Renal Transplant Unit, Carlos Van Buren Hospital, Valparaíso, Chile
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
- International Renal Research Institute of Vicenza, Vicenza, Italy
| |
Collapse
|
42
|
Kwan R, Chen L, Park MJ, Su Z, Weerasinghe SVW, Lee WM, Durkalski-Mauldin VL, Fontana RJ, Omary MB. The Role of Carbamoyl Phosphate Synthetase 1 as a Prognostic Biomarker in Patients With Acetaminophen-induced Acute Liver Failure. Clin Gastroenterol Hepatol 2023; 21:3060-3069.e8. [PMID: 37054752 PMCID: PMC10656042 DOI: 10.1016/j.cgh.2023.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/04/2023] [Accepted: 03/01/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND & AIMS Carbamoyl phosphate synthetase 1 (CPS1) is a highly abundant mitochondrial urea cycle enzyme that is expressed primarily in hepatocytes. CPS1 is constitutively and physiologically secreted into bile but is released into the bloodstream upon acute liver injury (ALI). Given its abundance and known short half-life, we tested the hypothesis that it may serve as a prognostic serum biomarker in the setting of acute liver failure (ALF). METHODS CPS1 levels were determined using enzyme-linked immunosorbent assay and immunoblotting of sera collected by the ALF Study Group (ALFSG) from patients with ALI and ALF (103 patients with acetaminophen and 167 non-acetaminophen ALF etiologies). A total of 764 serum samples were examined. The inclusion of CPS1 was compared with the original ALFSG Prognostic Index by area under the receiver operating characteristic curve analysis. RESULTS CPS1 values for acetaminophen-related patients were significantly higher than for non-acetaminophen patients (P < .0001). Acetaminophen-related patients who received a liver transplant or died within 21 days of hospitalization exhibited higher CPS1 levels than patients who spontaneously survived (P = .01). Logistic regression and area under the receiver operating characteristic analysis of CPS1 enzyme-linked immunosorbent assay values improved the accuracy of the ALFSG Prognostic Index, which performed better than the Model for End-Stage Liver Disease, in predicting 21-day transplant-free survival for acetaminophen- but not non-acetaminophen-related ALF. An increase of CPS1 but not alanine transaminase or aspartate transaminase, when comparing day 3 with day 1 levels was found in a higher percentage of acetaminophen transplanted/dead patients (P < .05). CONCLUSION Serum CPS1 determination provides a new potential prognostic biomarker to assess patients with acetaminophen-induced ALF.
Collapse
Affiliation(s)
- Raymond Kwan
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ; Switch Therapeutics, Inc, San Francisco, CA
| | - Lu Chen
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ; Department of Infectious Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Zemin Su
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | | | - William M Lee
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Robert J Fontana
- Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI
| | - M Bishr Omary
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ; Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI.
| |
Collapse
|
43
|
Stravitz RT, Fontana RJ, Karvellas C, Durkalski V, McGuire B, Rule JA, Tujios S, Lee WM. Future directions in acute liver failure. Hepatology 2023; 78:1266-1289. [PMID: 37183883 PMCID: PMC10521792 DOI: 10.1097/hep.0000000000000458] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Acute liver failure (ALF) describes a clinical syndrome of rapid hepatocyte injury leading to liver failure manifested by coagulopathy and encephalopathy in the absence of pre-existing cirrhosis. The hallmark diagnostic features are a prolonged prothrombin time (ie, an international normalized ratio of prothrombin time of ≥1.5) and any degree of mental status alteration (HE). As a rare, orphan disease, it seemed an obvious target for a multicenter network. The Acute Liver Failure Study Group (ALFSG) began in 1997 to more thoroughly study and understand the causes, natural history, and management of ALF. Over the course of 22 years, 3364 adult patients were enrolled in the study registry (2614 ALF and 857 acute liver injury-international normalized ratio 2.0 but no encephalopathy-ALI) and >150,000 biosamples collected, including serum, plasma, urine, DNA, and liver tissue. Within the Registry study sites, 4 prospective substudies were conducted and published, 2 interventional ( N -acetylcysteine and ornithine phenylacetate), 1 prognostic [ 13 C-methacetin breath test (MBT)], and 1 mechanistic (rotational thromboelastometry). To review ALFSG's accomplishments and consider next steps, a 2-day in-person conference was held at UT Southwestern Medical Center, Dallas, TX, entitled "Acute Liver Failure: Science and Practice," in May 2022. To summarize the important findings in the field, this review highlights the current state of understanding of ALF and, more importantly, asks what further studies are needed to improve our understanding of the pathogenesis, natural history, and management of this unique and dramatic condition.
Collapse
Affiliation(s)
| | | | | | - Valerie Durkalski
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Jody A. Rule
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Shannan Tujios
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - William M. Lee
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
44
|
Cardoso FS, Kim M, Pereira R, Bagulho L, Fidalgo P, Pawlowski A, Wunderink R, Germano N, Bagshaw SM, Abraldes JG, Karvellas CJ. Early serum ammonia variation in critically ill patients with cirrhosis: A multicentre cohort study. Aliment Pharmacol Ther 2023; 58:715-724. [PMID: 37470277 DOI: 10.1111/apt.17650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Serum ammonia variation in critically ill patients with cirrhosis has been poorly studied. AIM To describe and assess the impact of serum ammonia variation in these patients' outcomes. METHODS We studied patients ≥18 years old admitted to the intensive care units (ICUs) at University of Alberta Hospital (Edmonton, Canada) and Curry Cabral Hospital (Lisbon, Portugal; derivation cohort, n = 492) and Northwestern University Hospital (Chicago, USA; validation cohort, n = 600) between January 2010 and December 2021. Primary exposure was ICU days 1-3 serum ammonia. Primary endpoint was all-cause hospital mortality. RESULTS In the derivation cohort, 330 (67.1%) patients were male and median (IQR) age was 57 (50-63) years. On ICU day 1, median ammonia was higher in patients with grade 3/4 hepatic encephalopathy (HE) than those with grade 2 HE or grade 0/1 HE (112 vs. 88 vs. 77 μmoL/L, respectively; p < 0.001). Furthermore, medium ammonia was higher in hospital non-survivors than survivors (99 vs. 86 μmol/L; p < 0.030). Following adjustment for significant confounders (age, HE, vasopressor use and renal replacement therapy delivery), higher ICU day 2 ammonia was independently associated with higher hospital mortality (adjusted OR per each 10 μmoL/L increment [95% CI] = 1.11 [1.01-1.21]; p = 0.024). In the validation cohort, this model with serial ammonia (ICU days 1 and 3) predicted hospital mortality with reasonably good discrimination (c-statistic = 0.73) and calibration (R2 = 0.19 and Brier score = 0.17). CONCLUSIONS Among patients with cirrhosis in the ICU, early serum ammonia variation was independently associated with hospital mortality. In this context, serial serum ammonia may have prognostic value.
Collapse
Affiliation(s)
- Filipe S Cardoso
- Transplant Unit and Intensive Care Unit, Curry Cabral Hospital, Nova Medical School, Lisbon, Portugal
| | - Minjee Kim
- Division of Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rui Pereira
- Intensive Care Unit, Curry Cabral Hospital, Nova Medical School, Lisbon, Portugal
| | - Luís Bagulho
- Transplant Unit and Intensive Care Unit, Curry Cabral Hospital, Lisbon, Portugal
| | - Pedro Fidalgo
- Intensive Care Unit, São Francisco Xavier Hospital, Lisbon, Portugal
| | - Anna Pawlowski
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard Wunderink
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nuno Germano
- Intensive Care Unit, Curry Cabral Hospital, Nova Medical School, Lisbon, Portugal
| | - Sean M Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta and Alberta Health Services, Edmonton, Alberta, Canada
| | - Juan G Abraldes
- Liver Unit, Faculty of Medicine and Dentistry, University of Alberta and Alberta Health Services, Edmonton, Alberta, Canada
| | - Constantine J Karvellas
- Department of Critical Care Medicine, Liver Unit, Faculty of Medicine and Dentistry, University of Alberta and Alberta Health Services, Edmonton, Alberta, Canada
| |
Collapse
|
45
|
Ding Y, Koda Y, Shashni B, Takeda N, Zhang X, Tanaka N, Nishikawa Y, Nagasaki Y. An orally deliverable ornithine-based self-assembling polymer nanomedicine ameliorates hyperammonemia in acetaminophen-induced acute liver injury. Acta Biomater 2023; 168:515-528. [PMID: 37433359 DOI: 10.1016/j.actbio.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
l-Ornithine (Orn) is a core amino acid responsible for ammonia detoxification in the body via the hepatic urea cycle. Clinical studies in Orn therapy have focused on interventions for hyperammonemia-associated diseases, such as hepatic encephalopathy (HE), a life-threatening neurological symptom affecting more than 80% of patients with liver cirrhosis. However, its low molecular weight (LMW) causes Orn to diffuse nonspecifically and be rapidly eliminated from the body after oral administration, resulting in unfavorable therapeutic efficacy. Hence, Orn is constantly supplied by intravenous infusion in many clinical settings; however, this treatment inevitably decreases patient compliance and limits its application in long-term management. To improve the performance of Orn, we designed self-assembling polyOrn-based nanoparticles for oral administration through ring-opening polymerization of Orn-N-carboxy anhydride initiated with amino-ended poly(ethylene glycol), followed by acylation of free amino groups in the main chain of the polyOrn segment. The obtained amphiphilic block copolymers, poly(ethylene glycol)-block-polyOrn(acyl) (PEG-block-POrn(acyl)), enabled the formation of stable nanoparticles (NanoOrn(acyl)) in aqueous media. We employed the isobutyryl (iBu) group for acyl derivatization in this study (NanoOrn(iBu)). In the healthy mice, daily oral administration of NanoOrn(iBu) for one week did not induce any abnormalities. In the mice exhibiting acetaminophen (APAP)-induced acute liver injury, oral pretreatment with NanoOrn(iBu) effectively reduced systemic ammonia and transaminases levels compared to the LMW Orn and untreated groups. The results suggest that the application of NanoOrn(iBu) is of significant clinical value with the feasibility of oral delivery and improvement in APAP-induced hepatic pathogenesis. STATEMENT OF SIGNIFICANCE: Liver injury is often accompanied by hyperammonemia, a life-threatening condition characterized by elevated blood ammonia levels. Current clinical treatments for reducing ammonia typically entail the invasive approach of intravenous infusion, involving the administration of l-ornithine (Orn) or a combination of Orn and L-aspartate. This method is employed due to the poor pharmacokinetics associated with these compounds. In our pursuit of enhancing therapy, we have developed an orally administrable nanomedicine based on Orn-based self-assembling nanoparticle (NanoOrn(iBu)), which provides sustained Orn supply to the injured liver. Oral administration of NanoOrn(iBu) to healthy mice did not cause any toxic effects. In a mouse model of acetaminophen-induced acute liver injury, oral administration of NanoOrn(iBu) surpassed Orn in reducing systemic ammonia levels and liver damage, thereby establishing NanoOrn(iBu) as a safe and effective therapeutic option.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yuta Koda
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Naoki Takeda
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | - Xuguang Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, 1 Chome-1-1, Midorigaoka Higashi 2 Jo, Asahikawa, Hokkaido 078-8510, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Radiation, Isotope and Earth System Sciences (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
46
|
Bohorquez H, Koyner JL, Jones CR. Intraoperative Renal Replacement Therapy in Orthotopic Liver Transplantation. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:378-386. [PMID: 37657884 DOI: 10.1053/j.akdh.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 09/03/2023]
Abstract
Acute kidney injury in patients admitted to the hospital for liver transplantation is common, with up to 80% of pretransplant patients having some form of acute kidney injury. Many of these patients start on dialysis prior to their transplant and have it continued intraoperatively during their surgery. This review discusses the limited existing literature and expert opinion around the indications and outcomes around intraoperative dialysis (intraoperative renal replacement therapy) during liver transplantation. More specifically, we discuss which patients may benefit from intraoperative renal replacement therapy and the impact of hyponatremia and hyperammonemia on the dialysis prescription. Additionally, we discuss the complex interplay between anesthesia and intraoperative renal replacement therapy and how the need for clearance and ultrafiltration changes throughout the different phases of the transplant (preanhepatic, anhepatic, and postanhepatic). Lastly, this review will cover the limited data around patient outcomes following intraoperative renal replacement therapy during liver transplantation as well as the best evidence for when to stop dialysis.
Collapse
Affiliation(s)
- Humberto Bohorquez
- Surgical director, Pancreas Transplantation, Section of Abdominal Organ Transplantation, Department of Surgery, Ochsner Health, New Orleans, LA
| | - Jay L Koyner
- Medical Director Acute Dialysis Services, Section of Nephrology, Department of Medicine, University of Chicago, Chicago IL.
| | - Courtney R Jones
- Associate Professor of Anesthesiology and Critical Care, Director of Transplant Anesthesia, Division of Transplantation, Department of Anesthesia, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
47
|
Kawakami T, Fukaguchi K, Isogai N, Koyama H. Severe Hyperammonemia Due to Fecal Bowel Obstruction With a Congenital Portosystemic Shunt Resulting in Refractory Status Epilepticus and Cerebral Edema. Cureus 2023; 15:e42452. [PMID: 37637566 PMCID: PMC10449597 DOI: 10.7759/cureus.42452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Hyperammonemic encephalopathy is a neurological emergency that can lead to seizures and cerebral edema. Although early interventions have been suggested, no clear criteria have been established. Herein, we report a case of severe non-hepatic hyperammonemia resulting in refractory status epilepticus within a day. A 79-year-old woman presented with acute altered mental status. Initial evaluation revealed septic shock and hyperammonemia due to fecal bowel obstruction with congenital portosystemic shunt. The patient was unresponsive to medical treatment and developed refractory status epilepticus. After surgical drainage with colostomy and a decrease in ammonia level, the patient developed cerebral edema and did not recover from the coma. Severe hyperammonemia warrants early intervention, especially in critically ill patients, with treatment of the cause and augmented removal of ammonia with renal replacement therapy.
Collapse
Affiliation(s)
- Tetsuro Kawakami
- Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, JPN
| | | | - Naoko Isogai
- Department of Surgery, Shonan Kamakura General Hospital, Kanagawa, JPN
| | - Hiroshi Koyama
- Division of Critical Care, Shonan Kamakura General Hospital, Kanagawa, JPN
| |
Collapse
|
48
|
Mendoza Vasquez LE, Payne S, Zamper R. Intracranial pressure monitoring in the perioperative period of patients with acute liver failure undergoing orthotopic liver transplantation. World J Transplant 2023; 13:122-128. [PMID: 37388394 PMCID: PMC10303411 DOI: 10.5500/wjt.v13.i4.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 06/16/2023] Open
Abstract
Acute liver failure (ALF) may result in severe neurological complications caused by cerebral edema and elevated intracranial pressure (ICP). Multiple pathogenic mechanisms explain the elevated ICP, and newer hypotheses have been descri bed. While invasive ICP monitoring (ICPM) may have a role in ALF management, these patients are typically coagulopathic and at risk for intracranial hemorrhage. ICPM is the subject of much debate, and significant heterogeneity exists in clinical practice regarding its use. Contemporary ICPM techniques and coagulopathy reversal strategies may be associated with a lower risk of hemor rhage; however, most of the evidence is limited by its retrospective nature and relatively small sample size.
Collapse
Affiliation(s)
- Luis Eduardo Mendoza Vasquez
- Department of Anesthesia and Perioperative Medicine, London Health Science Centre, London N6A 5A5, Ontario, Canada
| | - Sonja Payne
- Department of Anesthesia and Perioperative Medicine, London Health Science Centre, London N6A 5A5, Ontario, Canada
| | - Raffael Zamper
- Department of Anesthesia and Perioperative Medicine, London Health Science Centre, London N6A 5A5, Ontario, Canada
| |
Collapse
|
49
|
Essam RM, Saadawy MA, Gamal M, Abdelsalam RM, El-Sahar AE. Lactoferrin averts neurological and behavioral impairments of thioacetamide-induced hepatic encephalopathy in rats via modulating HGMB1/TLR-4/MyD88/Nrf2 pathway. Neuropharmacology 2023; 236:109575. [PMID: 37201650 DOI: 10.1016/j.neuropharm.2023.109575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Hepatic encephalopathy (HE) is a life-threatening disease caused by acute or chronic liver failure manifested by aberrant CNS changes. In the present study, we aimed to explore the neuroprotective effect of lactoferrin (LF) against thioacetamide (TAA)-induced HE in rats. Animals were divided into four groups, control, LF control, TAA-induced HE, and LF treatment, where LF was administered (300 mg/kg, p.o.) for 15 days in groups 2 and 4 meanwhile, TAA (200 mg/kg, i.p.) was given as two injections on days 13 and 15 for the 3rd and 4th groups. Pretreatment with LF significantly improved liver function observed as a marked decline in serum AST, ALT, and ammonia, together with lowering brain ammonia and enhancing motor coordination as well as cognitive performance. Restoration of brain oxidative status was also noted in the LF-treated group, where lipid peroxidation was hampered, and antioxidant parameters, Nrf2, HO-1, and GSH, were increased. Additionally, LF downregulated HMGB1, TLR-4, MyD88, and NF-κB signaling pathways, together with reducing inflammatory cytokine, TNF-α, and enhancing brain BDNF levels. Moreover, the histopathology of brain and liver tissues revealed that LF alleviated TAA-induced liver and brain deficits. In conclusion, the promising results of LF in attenuating HMGB1/TLR-4/MyD88 signaling highlight its neuroprotective role against HE associated with acute liver injury via ameliorating neuroinflammation, oxidative stress, and stimulating neurogenesis.
Collapse
Affiliation(s)
- Reham M Essam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mariam A Saadawy
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mahitab Gamal
- Clinical Pharmacy Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ayman E El-Sahar
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
50
|
Nanchal R, Subramanian R, Alhazzani W, Dionne JC, Peppard WJ, Singbartl K, Truwit J, Al-Khafaji AH, Killian AJ, Alquraini M, Alshammari K, Alshamsi F, Belley-Cote E, Cartin-Ceba R, Hollenberg SM, Galusca DM, Huang DT, Hyzy RC, Junek M, Kandiah P, Kumar G, Morgan RL, Morris PE, Olson JC, Sieracki R, Steadman R, Taylor B, Karvellas CJ. Guidelines for the Management of Adult Acute and Acute-on-Chronic Liver Failure in the ICU: Neurology, Peri-Transplant Medicine, Infectious Disease, and Gastroenterology Considerations. Crit Care Med 2023; 51:657-676. [PMID: 37052436 DOI: 10.1097/ccm.0000000000005824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
OBJECTIVES To develop evidence-based recommendations for clinicians caring for adults with acute liver failure (ALF) or acute on chronic liver failure (ACLF) in the ICU. DESIGN The guideline panel comprised 27 members with expertise in aspects of care of the critically ill patient with liver failure or methodology. We adhered to the Society of Critical Care Medicine standard operating procedures manual and conflict-of-interest policy. Teleconferences and electronic-based discussion among the panel, as well as within subgroups, served as an integral part of the guideline development. INTERVENTIONS In part 2 of this guideline, the panel was divided into four subgroups: neurology, peri-transplant, infectious diseases, and gastrointestinal groups. We developed and selected Population, Intervention, Comparison, and Outcomes (PICO) questions according to importance to patients and practicing clinicians. For each PICO question, we conducted a systematic review and meta-analysis where applicable. The quality of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation approach. We used the evidence to decision framework to facilitate recommendations formulation as strong or conditional. We followed strict criteria to formulate best practice statements. MEASUREMENTS AND MAIN RESULTS We report 28 recommendations (from 31 PICO questions) on the management ALF and ACLF in the ICU. Overall, five were strong recommendations, 21 were conditional recommendations, two were best-practice statements, and we were unable to issue a recommendation for five questions due to insufficient evidence. CONCLUSIONS Multidisciplinary, international experts formulated evidence-based recommendations for the management ALF and ACLF patients in the ICU, acknowledging that most recommendations were based on low quality and indirect evidence.
Collapse
Affiliation(s)
- Rahul Nanchal
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI
| | | | - Waleed Alhazzani
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Joanna C Dionne
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | - David T Huang
- University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | - Mats Junek
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Gagan Kumar
- Northeast Georgia Medical Center, Gainesville, GA
| | - Rebecca L Morgan
- Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Peter E Morris
- University of Kentucky College of Medicine, Lexington, KY
| | - Jody C Olson
- Kansas University Medical Center, Kansas City, KS
| | | | - Randolph Steadman
- University of California Los Angeles Medical Center, Los Angeles, CA
| | | | - Constantine J Karvellas
- Department of Critical Care Medicine and Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, AB, Canada
| |
Collapse
|