1
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
2
|
Zhao YD, Huang YC, Li WS. Searching for the optimal precondition procedure for mesenchymal stem/stromal cell treatment: Facts and perspectives. World J Stem Cells 2024; 16:615-618. [PMID: 38948100 PMCID: PMC11212554 DOI: 10.4252/wjsc.v16.i6.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
Mesenchymal stem/stromal cells are potential optimal cell sources for stem cell therapies, and pretreatment has proven to enhance cell vitality and function. In a recent publication, Li et al explored a new combination of pretreatment conditions. Here, we present an editorial to comment on their work and provide our view on mesenchymal stem/stromal cell precondition.
Collapse
Affiliation(s)
- Yu-Dong Zhao
- Department of Orthopedic, Peking University Third Hospital, Beijing 100191, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Wei-Shi Li
- Department of Orthopedic, Peking University Third Hospital, Beijing 100191, China. puh3
| |
Collapse
|
3
|
Hoang VT, Le DS, Hoang DM, Phan TTK, Ngo LAT, Nguyen TK, Bui VA, Nguyen Thanh L. Impact of tissue factor expression and administration routes on thrombosis development induced by mesenchymal stem/stromal cell infusions: re-evaluating the dogma. Stem Cell Res Ther 2024; 15:56. [PMID: 38414067 PMCID: PMC10900728 DOI: 10.1186/s13287-023-03582-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/22/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Hyperactive coagulation might cause dangerous complications such as portal vein thrombosis and pulmonary embolism after mesenchymal stem/stromal cell (MSC) therapy. Tissue factor (TF), an initiator of the extrinsic coagulation pathway, has been suggested as a predictor of this process. METHODS The expression of TF and other pro- and anticoagulant genes was analyzed in xeno- and serum-free manufactured MSCs. Furthermore, culture factors affecting its expression in MSCs were investigated. Finally, coagulation tests of fibrinogen, D-dimer, aPPTs, PTs, and TTs were measured in patient serum after umbilical cord (UC)-MSC infusions to challenge a potential connection between TF expression and MSC-induced coagulant activity. RESULTS: Xeno- and serum-free cultured adipose tissue and UC-derived MSCs expressed the highest level of TF, followed by those from dental pulp, and the lowest expression was observed in MSCs of bone marrow origin. Environmental factors such as cell density, hypoxia, and inflammation impact TF expression, so in vitro analysis might fail to reflect their in vivo behaviors. MSCs also expressed heterogeneous levels of the coagulant factor COL1A1 and surface phosphatidylserine and anticoagulant factors TFPI and PTGIR. MSCs of diverse origins induced fibrin clots in healthy plasma that were partially suppressed by an anti-TF inhibitory monoclonal antibody. Furthermore, human umbilical vein endothelial cells exhibited coagulant activity in vitro despite their negative expression of TF and COL1A1. Patients receiving intravenous UC-MSC infusion exhibited a transient increase in D-dimer serum concentration, while this remained stable in the group with intrathecal infusion. There was no correlation between TF expression and D-dimer or other coagulation indicators. CONCLUSIONS The study suggests that TF cannot be used as a solid biomarker to predict MSC-induced hypercoagulation. Local administration, prophylactic intervention with anticoagulation drugs, and monitoring of coagulation indicators are useful to prevent thrombogenic events in patients receiving MSCs. Trial registration NCT05292625. Registered March 23, 2022, retrospectively registered, https://www. CLINICALTRIALS gov/ct2/show/NCT05292625?term=NCT05292625&draw=2&rank=1 . NCT04919135. Registered June 9, 2021, https://www. CLINICALTRIALS gov/ct2/show/NCT04919135?term=NCT04919135&draw=2&rank=1 .
Collapse
Affiliation(s)
- Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam.
| | - Duc Son Le
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Trang Thi Kieu Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Lan Anh Thi Ngo
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
- Center of Applied Science and Regenerative Medicine, Vinmec Health Care System, 458 Minh Khai, Hanoi, 10000, Vietnam
| | - Trung Kien Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam
| | - Viet Anh Bui
- Center of Applied Science and Regenerative Medicine, Vinmec Health Care System, 458 Minh Khai, Hanoi, 10000, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, 458 Minh Khai, Hai Ba Trung District, Hanoi, 100000, Vietnam.
- Vinmec International Hospital - Times City, Vinmec Health Care System, 458 Minh Khai, Hanoi, 11622, Vietnam.
- College of Health Science, VinUniversity, Vinhomes Ocean Park, Gia Lam District, Hanoi, 1310, Vietnam.
| |
Collapse
|
4
|
Yang Z, Peng Y, Yuan J, Xia H, Luo L, Wu X. Mesenchymal Stem Cells: A Promising Treatment for Thymic Involution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:29-38. [PMID: 37421539 DOI: 10.1007/5584_2023_780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
The thymus is the main immune organ in the body. However, the thymus gradually degenerates in early life, leading to a reduction in T-cell production and a decrease in immune function. Mesenchymal stem cells (MSCs) are a promising alternative for the treatment of thymus senescence due to their homing ability to the site of inflammation and their paracrine, anti-inflammatory, and antioxidant properties. However, the heterogeneity, difficulty of survival in vivo, short residence time, and low homing efficiency of the injected MSCs affect the clinical therapeutic effect. This article reviews strategies to improve the efficacy of mesenchymal stem cell therapy, including the selection of appropriate cell doses, transplantation frequency, and interval cycles. The survival rate of MSCs can be improved to some extent by improving the infusion mode of MSCs, such as simulating the in vivo environment, applying the biological technology of hydrogels and microgels, and iron oxide labeling technology, which can improve the curative effect and homing of MSCs, promote the regeneration of thymic epithelial cells, and restore the function of the thymus.
Collapse
Affiliation(s)
- Zailing Yang
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China
| | - Yunxiao Peng
- The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Jun Yuan
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China
| | - Haixiong Xia
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China
| | - Li Luo
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China
| | - Xijun Wu
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China.
| |
Collapse
|
5
|
Huang C, Zhao Y, Ye Q, Gleason J, Rousseva V, Stout B, Lin S, Hariri R, Zhang X, He S. Characterization of CRISPR/Cas9-edited human placental allogenic stromal cells with low tissue factor expression and reduced thrombotic effects. Cytotherapy 2023; 25:1265-1270.e2. [PMID: 37256239 DOI: 10.1016/j.jcyt.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023]
Abstract
The tissue factor (TF/CD142) expressed by mesenchymal stromal cells (MSCs) has been regarded as a safety concern in clinical applications as it may trigger thrombosis when MSCs administered intravenously. Human placental allogenic stromal cells (ASCs) are culture-expanded, undifferentiated MSC-like cells derived from full-term postpartum placenta and possess immunomodulatory and pro-angiogenic activities, however, express TF. Here we performed CRISPR/Cas9-mediated TF gene knock out (TFKO) in ASCs, leading to significantly lower TF expression, activity and thrombotic effects. ASCs' characteristics including expansion, expression of phenotypic markers and secretory profile remained unchanged in edited cells, and their immunomodulatory activities, which are functionally relevant to therapeutic applications, were not affected upon TFKO. Taken together, this study provides a feasible strategy which could improve the clinical safety features of MSC-based cell therapy by CRISRP/Cas9-mediated TF gene knock out.
Collapse
Affiliation(s)
| | | | - Qian Ye
- Celularity Inc., Florham Park, New Jersey, USA
| | | | | | | | | | | | | | - Shuyang He
- Celularity Inc., Florham Park, New Jersey, USA
| |
Collapse
|
6
|
Li H, Ji XQ, Zhang SM, Bi RH. Hypoxia and inflammatory factor preconditioning enhances the immunosuppressive properties of human umbilical cord mesenchymal stem cells. World J Stem Cells 2023; 15:999-1016. [PMID: 38058960 PMCID: PMC10696190 DOI: 10.4252/wjsc.v15.i11.999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have great potential for the treatment of various immune diseases due to their unique immunomodulatory properties. However, MSCs exposed to the harsh inflammatory environment of damaged tissue after intravenous transplantation cannot exert their biological effects, and therefore, their therapeutic efficacy is reduced. In this challenging context, an in vitro preconditioning method is necessary for the development of MSC-based therapies with increased immunomodulatory capacity and transplantation efficacy. AIM To determine whether hypoxia and inflammatory factor preconditioning increases the immunosuppressive properties of MSCs without affecting their biological characteristics. METHODS Umbilical cord MSCs (UC-MSCs) were pretreated with hypoxia (2% O2) exposure and inflammatory factors (interleukin-1β, tumor necrosis factor-α, interferon-γ) for 24 h. Flow cytometry, polymerase chain reaction, enzyme-linked immunosorbent assay and other experimental methods were used to evaluate the biological characteristics of pretreated UC-MSCs and to determine whether pretreatment affected the immunosuppressive ability of UC-MSCs in coculture with immune cells. RESULTS Pretreatment with hypoxia and inflammatory factors caused UC-MSCs to be elongated but did not affect their viability, proliferation or size. In addition, pretreatment significantly decreased the expression of coagulation-related tissue factors but did not affect the expression of other surface markers. Similarly, mitochondrial function and integrity were retained. Although pretreatment promoted UC-MSC apoptosis and senescence, it increased the expression of genes and proteins related to immune regulation. Pretreatment increased peripheral blood mononuclear cell and natural killer (NK) cell proliferation rates and inhibited NK cell-induced toxicity to varying degrees. CONCLUSION In summary, hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics.
Collapse
Affiliation(s)
- Hang Li
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xiao-Qing Ji
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Shu-Ming Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ri-Hui Bi
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Hospital Affiliated to Shanxi Medical University, The Third Hospital of Shanxi Medical University, Taiyuan 030002, Shanxi Province, China.
| |
Collapse
|
7
|
Zaripova LN, Midgley A, Christmas SE, Beresford MW, Pain C, Baildam EM, Oldershaw RA. Mesenchymal Stem Cells in the Pathogenesis and Therapy of Autoimmune and Autoinflammatory Diseases. Int J Mol Sci 2023; 24:16040. [PMID: 38003230 PMCID: PMC10671211 DOI: 10.3390/ijms242216040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs) modulate immune responses and maintain self-tolerance. Their trophic activities and regenerative properties make them potential immunosuppressants for treating autoimmune and autoinflammatory diseases. MSCs are drawn to sites of injury and inflammation where they can both reduce inflammation and contribute to tissue regeneration. An increased understanding of the role of MSCs in the development and progression of autoimmune disorders has revealed that MSCs are passive targets in the inflammatory process, becoming impaired by it and exhibiting loss of immunomodulatory activity. MSCs have been considered as potential novel cell therapies for severe autoimmune and autoinflammatory diseases, which at present have only disease modifying rather than curative treatment options. MSCs are emerging as potential therapies for severe autoimmune and autoinflammatory diseases. Clinical application of MSCs in rare cases of severe disease in which other existing treatment modalities have failed, have demonstrated potential use in treating multiple diseases, including rheumatoid arthritis, systemic lupus erythematosus, myocardial infarction, liver cirrhosis, spinal cord injury, multiple sclerosis, and COVID-19 pneumonia. This review explores the biological mechanisms behind the role of MSCs in autoimmune and autoinflammatory diseases. It also covers their immunomodulatory capabilities, potential therapeutic applications, and the challenges and risks associated with MSC therapy.
Collapse
Affiliation(s)
- Lina N. Zaripova
- Institute of Fundamental and Applied Medicine, National Scientific Medical Center, 42 Abylai Khan Avenue, Astana 010000, Kazakhstan;
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Angela Midgley
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
| | - Stephen E. Christmas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, UK;
| | - Michael W. Beresford
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, East Prescott Road, Liverpool L14 5AB, UK
| | - Clare Pain
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, East Prescott Road, Liverpool L14 5AB, UK
| | - Eileen M. Baildam
- Department of Paediatric Rheumatology, The Alexandra Hospital, Mill Lane, Cheadle SK8 2PX, UK;
| | - Rachel A. Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
8
|
Dehnavi S, Sadeghi M, Tavakol Afshari J, Mohammadi M. Interactions of mesenchymal stromal/stem cells and immune cells following MSC-based therapeutic approaches in rheumatoid arthritis. Cell Immunol 2023; 393-394:104771. [PMID: 37783061 DOI: 10.1016/j.cellimm.2023.104771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Rheumatoid arthritis (RA) is considered to be a degenerative and progressive autoimmune disorder. Although several medicinal regimens are used to treat RA, potential adverse events such as metabolic disorders and increased risk of infection, as well as drug resistance in some patients, make it essential to find an effective and safe therapeutic approach. Mesenchymal stromal/stem cells (MSCs) are a group of non-hematopoietic stromal cells with immunomodulatory and inhibitory potential. These cells exert their regulatory properties through direct cell-to-cell interactions and paracrine effects on various immune and non-immune cells. As conventional therapeutic approaches for RA are limited due to their side effects, and some patients became refractory to the treatment, MSCs are considered as a promising alternative treatment for RA. In this review, we introduced various experimental and clinical studies conducted to evaluate the therapeutic effects of MSCs on animal models of arthritis and RA patients. Then, possible modulatory and suppressive effects of MSCs on different innate and adaptive immune cells, including dendritic cells, neutrophils, macrophages, natural killer cells, B lymphocytes, and various subtypes of T cells, were categorized and summarized. Finally, limitations and future considerations for the efficient application of MSCs as a therapeutic approach in RA patients were presented.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Wright A, Snyder OL, He H, Christenson LK, Fleming S, Weiss ML. Procoagulant Activity of Umbilical Cord-Derived Mesenchymal Stromal Cells' Extracellular Vesicles (MSC-EVs). Int J Mol Sci 2023; 24:ijms24119216. [PMID: 37298168 DOI: 10.3390/ijms24119216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Many cell types, including cancer cells, release tissue factor (TF)-exposing extracellular vesicles (EVs). It is unknown whether MSC-EVs pose a thromboembolism risk due to TF expression. Knowing that MSCs express TF and are procoagulant, we hypothesize that MSC-EVs also might. Here, we examined the expression of TF and the procoagulant activity of MSC-EVs and the impact of EV isolation methods and cell culture expansion on EV yield, characterization, and potential risk using a design of experiments methodology. MSC-EVs were found to express TF and have procoagulant activity. Thus, when MSC-derived EVs are employed as a therapeutic agent, one might consider TF, procoagulant activity, and thromboembolism risk and take steps to prevent them.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Orman Larry Snyder
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Hong He
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Lane K Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sherry Fleming
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
10
|
Yan TT, Xiao R, Wang Y, Lin GA, Zheng Y, Zhao H, Li WJ, Shang XZ, Meng JS, Hu DS, Li S, Wang C, Lin ZC, Chen HC, Zhao DY, Tang D. [A prospective study on application of human umbilical cord mesenchymal stem cells combined with autologous Meek microskin transplantation in patients with extensive burns]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:114-121. [PMID: 36878520 DOI: 10.3760/cma.j.cn501225-20220728-00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Objective: To investigate the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) combined with autologous Meek microskin transplantation on patients with extensive burns. Methods: The prospective self-controlled study was conducted. From May 2019 to June 2022, 16 patients with extensive burns admitted to the 990th Hospital of PLA Joint Logistics Support Force met the inclusion criteria, while 3 patients were excluded according to the exclusion criteria, and 13 patients were finally selected, including 10 males and 3 females, aged 24-61 (42±13) years. A total of 20 trial areas (40 wounds, with area of 10 cm×10 cm in each wound) were selected. Two adjacent wounds in each trial area were divided into hUCMSC+gel group applied with hyaluronic acid gel containing hUCMSCs and gel only group applied with hyaluronic acid gel only according to the random number table, with 20 wounds in each group. Afterwards the wounds in two groups were transplanted with autologous Meek microskin grafts with an extension ratio of 1∶6. In 2, 3, and 4 weeks post operation, the wound healing was observed, the wound healing rate was calculated, and the wound healing time was recorded. The specimen of wound secretion was collected for microorganism culture if there was purulent secretion on the wound post operation. In 3, 6, and 12 months post operation, the scar hyperplasia in wound was assessed using the Vancouver scar scale (VSS). In 3 months post operation, the wound tissue was collected for hematoxylin-eosin (HE) staining to observe the morphological changes and for immunohistochemical staining to observe the positive expressions of Ki67 and vimentin and to count the number of positive cells. Data were statistically analyzed with paired samples t test and Bonferronni correction. Results: In 2, 3, and 4 weeks post operation, the wound healing rates in hUCMSC+gel group were (80±11)%, (84±12)%, and (92±9)%, respectively, which were significantly higher than (67±18)%, (74±21)%, and (84±16)% in gel only group (with t values of 4.01, 3.52, and 3.66, respectively, P<0.05). The wound healing time in hUCMSC+gel group was (31±11) d, which was significantly shorter than (36±13) d in gel only group (t=-3.68, P<0.05). The microbiological culture of the postoperative wound secretion specimens from the adjacent wounds in 2 groups was identical, with negative results in 4 trial areas and positive results in 16 trial areas. In 3, 6, and 12 months post operation, the VSS scores of wounds in gel only group were 7.8±1.9, 6.7±2.1, and 5.4±1.6, which were significantly higher than 6.8±1.8, 5.6±1.6, and 4.0±1.4 in hUCMSC+gel group, respectively (with t values of -4.79, -4.37, and -5.47, respectively, P<0.05). In 3 months post operation, HE staining showed an increase in epidermal layer thickness and epidermal crest in wound in hUCMSC+gel group compared with those in gel only group, and immunohistochemical staining showed a significant increase in the number of Ki67 positive cells in wound in hUCMSC+gel group compared with those in gel only group (t=4.39, P<0.05), with no statistically significant difference in the number of vimentin positive cells in wound between the 2 groups (P>0.05). Conclusions: The application of hyaluronic acid gel containing hUCMSCs to the wound is simple to perform and is therefore a preferable route. Topical application of hUCMSCs can promote healing of the autologous Meek microskin grafted area in patients with extensive burns, shorten wound healing time, and alleviate scar hyperplasia. The above effects may be related to the increased epidermal thickness and epidermal crest, and active cell proliferation.
Collapse
Affiliation(s)
- T T Yan
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - R Xiao
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - Y Wang
- Beijing Zhongjing Hi-Tech Biotechnology Co., Beijing 100089, China
| | - G A Lin
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - Y Zheng
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - H Zhao
- Henan Cellular Industry Technology Research Institute Co., Zhengzhou 450121, China
| | - W J Li
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - X Z Shang
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - J S Meng
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - D S Hu
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - S Li
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - C Wang
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - Z C Lin
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - H C Chen
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - D Y Zhao
- Military Burn Center, the 990th Hospital of PLA Joint Logistics Support Force, Zhumadian 463002, China
| | - D Tang
- Department of Burns & Plastic Surgery, PLA General Hospital of Central Theater Command, Wuhan 430012, China
| |
Collapse
|
11
|
Transcription Factors STAT3 and MYC Are Key Players of Human Platelet Lysate-Induced Cell Proliferation. Int J Mol Sci 2022; 23:ijms232415782. [PMID: 36555426 PMCID: PMC9781157 DOI: 10.3390/ijms232415782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Human platelet lysate (HPL) is an efficient alternative for animal serum supplements, significantly enhancing stromal cell proliferation. However, the molecular mechanism behind this growth-promoting effect remains elusive. The aim of this study was to investigate the effect of HPL on cell cycle gene expression in different human stromal cells and to identify the main key players that mediate HPL's growth-enhancing effect. RT-qPCR and an antibody array revealed significant upregulation of cell cycle genes in stromal cells cultured in HPL. As HPL is rich in growth factors that are ligands of tyrosine kinase receptor (TKR) pathways, we used TKR inhibitors and could significantly reduce cell proliferation. Genome profiling, RT-qPCR and Western blotting revealed an enhanced expression of the transcription factors signal transducer and activator of transcription 3 (STAT3) and MYC, both known TKR downstream effectors and stimulators of cell proliferation, in response to HPL. In addition, specifically blocking STAT3 resulted in reduced cell proliferation and expression of cell cycle genes. Our data indicate that HPL-enhanced cell proliferation can, at least in part, be explained by the TKR-enhanced expression of STAT3 and MYC, which in turn induce the expression of genes being involved in the promotion and control of the cell cycle.
Collapse
|
12
|
Pooled evidence from preclinical and clinical studies for stem cell-based therapy in ARDS and COVID-19. Mol Cell Biochem 2022; 478:1487-1518. [PMID: 36394787 DOI: 10.1007/s11010-022-04601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
|
13
|
Extra-hematopoietic immunomodulatory role of the guanine-exchange factor DOCK2. Commun Biol 2022; 5:1246. [DOI: 10.1038/s42003-022-04078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractStromal cells interact with immune cells during initiation and resolution of immune responses, though the precise underlying mechanisms remain to be resolved. Lessons learned from stromal cell-based therapies indicate that environmental signals instruct their immunomodulatory action contributing to immune response control. Here, to the best of our knowledge, we show a novel function for the guanine-exchange factor DOCK2 in regulating immunosuppressive function in three human stromal cell models and by siRNA-mediated DOCK2 knockdown. To identify immune function-related stromal cell molecular signatures, we first reprogrammed mesenchymal stem/progenitor cells (MSPCs) into induced pluripotent stem cells (iPSCs) before differentiating these iPSCs in a back-loop into MSPCs. The iPSCs and immature iPS-MSPCs lacked immunosuppressive potential. Successive maturation facilitated immunomodulation, while maintaining clonogenicity, comparable to their parental MSPCs. Sequential transcriptomics and methylomics displayed time-dependent immune-related gene expression trajectories, including DOCK2, eventually resembling parental MSPCs. Severe combined immunodeficiency (SCID) patient-derived fibroblasts harboring bi-allelic DOCK2 mutations showed significantly reduced immunomodulatory capacity compared to non-mutated fibroblasts. Conditional DOCK2 siRNA knockdown in iPS-MSPCs and fibroblasts also immediately reduced immunomodulatory capacity. Conclusively, CRISPR/Cas9-mediated DOCK2 knockout in iPS-MSPCs also resulted in significantly reduced immunomodulation, reduced CDC42 Rho family GTPase activation and blunted filopodia formation. These data identify G protein signaling as key element devising stromal cell immunomodulation.
Collapse
|
14
|
Guillamat-Prats R. Role of Mesenchymal Stem/Stromal Cells in Coagulation. Int J Mol Sci 2022; 23:ijms231810393. [PMID: 36142297 PMCID: PMC9499599 DOI: 10.3390/ijms231810393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely used in disease models in order to control several phases in the response to injuries, immune reaction, wound healing, and regeneration. MSCs can act upon both the innate and adaptive immune systems and target a broad number of functions, such as the secretion of cytokines, proteolytic enzymes, angiogenic factors, and the regulating of cell proliferation and survival. The role of MSCs in coagulation has been less studied. This review evaluates the properties and main functions of MSCs in coagulation. MSCs can regulate coagulation in a wide range of pathways. MSCs express and release tissue factors (TF), one of the key regulators of the extrinsic coagulation pathways; MSCs can trigger platelet production and contribute to platelet activation. Altogether, MSCs seem to have a pro-thrombotic role and their superior characterization prior to their administration is necessary in order to prevent adverse coagulation events.
Collapse
Affiliation(s)
- Raquel Guillamat-Prats
- Lung Immunity Translational Research Group in Respiratory Diseases, Germans Trias i Pujol Research Institute (IGTP), 08914 Badalona, Spain
| |
Collapse
|
15
|
Yan K, Zhang J, Yin W, Harding JN, Ma F, Wu D, Deng H, Han P, Li R, Peng H, Song X, Kang YJ. Transcriptomic heterogeneity of cultured ADSCs corresponds to embolic risk in the host. iScience 2022; 25:104822. [PMID: 35992088 PMCID: PMC9389247 DOI: 10.1016/j.isci.2022.104822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Stem cell therapy emerges as an effective approach for treating various currently untreatable diseases. However, fatal and unknown risks caused by their systemic use remain to be a major obstacle to clinical application. We developed a functional single-cell RNA sequencing (scRNA-seq) procedure and identified that transcriptomic heterogeneity of adipose-derived stromal cells (ADSCs) in cultures is responsible for a fatal embolic risk of these cells in the host. The pro-embolic subpopulation of ADSCs in cultures was sorted by gene set enrichment analysis (GSEA) and verified by a supervised machine learning analysis. A mathematical model was developed and validated for the prediction of embolic risk of cultured ADSCs in animal models and further confirmed by its application to public data. Importantly, modification of culture conditions prevented the embolic risk. This novel procedure can be applied to other aspects of risk assessment and would help further the development of stem cell clinical applications.
Collapse
Affiliation(s)
- Kaijing Yan
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610044, China
- Stem Cell Biology Laboratory, Tasly Pharmaceutical Co. Ltd, Tianjin 300410, China
| | - Jinlai Zhang
- Stem Cell Biology Laboratory, Tasly Pharmaceutical Co. Ltd, Tianjin 300410, China
| | - Wen Yin
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610044, China
| | - Jeffrey N. Harding
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610044, China
| | - Fei Ma
- Stem Cell Biology Laboratory, Tasly Pharmaceutical Co. Ltd, Tianjin 300410, China
| | - Di Wu
- Stem Cell Biology Laboratory, Tasly Pharmaceutical Co. Ltd, Tianjin 300410, China
| | - Haibo Deng
- Stem Cell Biology Laboratory, Tasly Pharmaceutical Co. Ltd, Tianjin 300410, China
| | - Pengfei Han
- Stem Cell Biology Laboratory, Tasly Pharmaceutical Co. Ltd, Tianjin 300410, China
| | - Rui Li
- Stem Cell Biology Laboratory, Tasly Pharmaceutical Co. Ltd, Tianjin 300410, China
| | - Hongxu Peng
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610044, China
| | - Xin Song
- Stem Cell Biology Laboratory, Tasly Pharmaceutical Co. Ltd, Tianjin 300410, China
| | - Y. James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610044, China
- Stem Cell Biology Laboratory, Tasly Pharmaceutical Co. Ltd, Tianjin 300410, China
| |
Collapse
|
16
|
Li C, Wang B. Mesenchymal Stem/Stromal Cells in Progressive Fibrogenic Involvement and Anti-Fibrosis Therapeutic Properties. Front Cell Dev Biol 2022; 10:902677. [PMID: 35721482 PMCID: PMC9198494 DOI: 10.3389/fcell.2022.902677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrosis refers to the connective tissue deposition and stiffness usually as a result of injury. Fibrosis tissue-resident mesenchymal cells, including fibroblasts, myofibroblast, smooth muscle cells, and mesenchymal stem/stromal cells (MSCs), are major players in fibrogenic processes under certain contexts. Acknowledging differentiation potential of MSCs to the aforementioned other types of mesenchymal cell lineages is essential for better understanding of MSCs’ substantial contributions to progressive fibrogenesis. MSCs may represent a potential therapeutic option for fibrosis resolution owing to their unique pleiotropic functions and therapeutic properties. Currently, clinical trial efforts using MSCs and MSC-based products are underway but clinical data collected by the early phase trials are insufficient to offer better support for the MSC-based anti-fibrotic therapies. Given that MSCs are involved in the coagulation through releasing tissue factor, MSCs can retain procoagulant activity to be associated with fibrogenic disease development. Therefore, MSCs’ functional benefits in translational applications need to be carefully balanced with their potential risks.
Collapse
Affiliation(s)
- Chenghai Li
- Stem Cell Program of Clinical Research Center, People’s Hospital of Zhengzhou University and Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan University, Zhengzhou, China
- *Correspondence: Chenghai Li, ; Bin Wang,
| | - Bin Wang
- Department of Neurosurgery, People’s Hospital of Zhengzhou University and Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Chenghai Li, ; Bin Wang,
| |
Collapse
|
17
|
Brachtl G, Poupardin R, Hochmann S, Raninger A, Jürchott K, Streitz M, Schlickeiser S, Oeller M, Wolf M, Schallmoser K, Volk HD, Geissler S, Strunk D. Batch Effects during Human Bone Marrow Stromal Cell Propagation Prevail Donor Variation and Culture Duration: Impact on Genotype, Phenotype and Function. Cells 2022; 11:946. [PMID: 35326396 PMCID: PMC8946746 DOI: 10.3390/cells11060946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Donor variation is a prominent critical issue limiting the applicability of cell-based therapies. We hypothesized that batch effects during propagation of bone marrow stromal cells (BMSCs) in human platelet lysate (hPL), replacing fetal bovine serum (FBS), can affect phenotypic and functional variability. We therefore investigated the impact of donor variation, hPL- vs. FBS-driven propagation and exhaustive proliferation, on BMSC epigenome, transcriptome, phenotype, coagulation risk and osteochondral regenerative function. Notably, propagation in hPL significantly increased BMSC proliferation, created significantly different gene expression trajectories and distinct surface marker signatures, already after just one passage. We confirmed significantly declining proliferative potential in FBS-expanded BMSC after proliferative challenge. Flow cytometry verified the canonical fibroblastic phenotype in culture-expanded BMSCs. We observed limited effects on DNA methylation, preferentially in FBS-driven cultures, irrespective of culture duration. The clotting risk increased over culture time. Moreover, expansion in xenogenic serum resulted in significant loss of function during 3D cartilage disk formation and significantly increased clotting risk. Superior chondrogenic function under hPL-conditions was maintained over culture. The platelet blood group and isoagglutinins had minor impact on BMSC function. These data demonstrate pronounced batch effects on BMSC transcriptome, phenotype and function due to serum factors, partly outcompeting donor variation after just one culture passage.
Collapse
Affiliation(s)
- Gabriele Brachtl
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Sarah Hochmann
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Anna Raninger
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Karsten Jürchott
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
| | - Mathias Streitz
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, 17493 Greifswald, Germany
| | - Stephan Schlickeiser
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
| | - Michaela Oeller
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Martin Wolf
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| | - Katharina Schallmoser
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Hans-Dieter Volk
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
- Berlin Center for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Sven Geissler
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (K.J.); (M.S.); (S.S.); (H.-D.V.); (S.G.)
- Berlin Center for Advanced Therapies (BeCAT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (G.B.); (R.P.); (S.H.); (A.R.); (M.W.)
| |
Collapse
|
18
|
Wu X, Darlington DN, Christy BA, Liu B, Keesee JD, Salgado CL, Bynum JA, Cap AP. Intravenous administration of mesenchymal stromal cells leads to a dose-dependent coagulopathy and is unable to attenuate acute traumatic coagulopathy in rats. J Trauma Acute Care Surg 2022; 92:542-552. [PMID: 34797814 PMCID: PMC8860226 DOI: 10.1097/ta.0000000000003476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) express surface tissue factor (TF), which may affect hemostasis and detract from therapeutic outcomes of MSCs if administered intravenously. In this study, we determine a safe dose of MSCs for intravenous (IV) administration and further demonstrate the impact of IV-MSC on acute traumatic coagulopathy (ATC) in rats. METHODS Tissue factor expression of rat bone marrow-derived mesenchymal stromal cell (BMSC) or adipose-derived mesenchymal stromal cell (AMSC) was detected by immunohistochemistry and enzyme-linked immunosorbent assay. The coagulation properties were measured in MSC-treated rat whole blood, and blood samples were collected from rats after IV administration of MSCs. Acute traumatic coagulopathy rats underwent polytrauma and 40% hemorrhage, followed by IV administration of 5 or 10 million/kg BMSCs (BMSC-5, BMSC-10), or vehicle at 1 hour after trauma. RESULTS Rat MSCs expressed TF, and incubation of rat BMSCs or AMSCs with whole blood in vitro led to a significantly shortened clotting time. However, a dose-dependent prolongation of prothrombin time with reduction in platelet counts and fibrinogen was found in healthy rat treated with IV-MSCs. Bone marrow-derived mesenchymal stromal cells at 5 million/kg or less led to minimal effect on hemostasis. Mesenchymal stromal cells were not found in circulation but in the lungs after IV administration regardless of the dosage. Acute traumatic coagulopathy with prolonged prothrombin time was not significantly affected by 5 or 10 million/kg BMSCs. Intravenous administration of 10 million/kg BMSCs led to significantly lower fibrinogen and platelet counts, while significantly higher levels of lactate, wet/dry weight ratio, and leukocyte infiltration in the lung were present compared with BMSC-5 or vehicle. No differences were seen in immune or inflammatory profiles with BMSC treatment in ATC rats, at least in the acute timeframe. CONCLUSION Intravenous administration of MSCs leads to a risk of coagulopathy associated with a dose-dependent reduction in platelet counts and fibrinogen and is incapable of restoring hemostasis of rats with ATC after polytrauma and hemorrhagic shock.
Collapse
|
19
|
Najar M, Melki R, Khalife F, Lagneaux L, Bouhtit F, Moussa Agha D, Fahmi H, Lewalle P, Fayyad-Kazan M, Merimi M. Therapeutic Mesenchymal Stem/Stromal Cells: Value, Challenges and Optimization. Front Cell Dev Biol 2022; 9:716853. [PMID: 35096805 PMCID: PMC8795900 DOI: 10.3389/fcell.2021.716853] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular therapy aims to replace damaged resident cells by restoring cellular and molecular environments suitable for tissue repair and regeneration. Among several candidates, mesenchymal stem/stromal cells (MSCs) represent a critical component of stromal niches known to be involved in tissue homeostasis. In vitro, MSCs appear as fibroblast-like plastic adherent cells regardless of the tissue source. The therapeutic value of MSCs is being explored in several conditions, including immunological, inflammatory and degenerative diseases, as well as cancer. An improved understanding of their origin and function would facilitate their clinical use. The stemness of MSCs is still debated and requires further study. Several terms have been used to designate MSCs, although consensual nomenclature has yet to be determined. The presence of distinct markers may facilitate the identification and isolation of specific subpopulations of MSCs. Regarding their therapeutic properties, the mechanisms underlying their immune and trophic effects imply the secretion of various mediators rather than direct cellular contact. These mediators can be packaged in extracellular vesicles, thus paving the way to exploit therapeutic cell-free products derived from MSCs. Of importance, the function of MSCs and their secretome are significantly sensitive to their environment. Several features, such as culture conditions, delivery method, therapeutic dose and the immunobiology of MSCs, may influence their clinical outcomes. In this review, we will summarize recent findings related to MSC properties. We will also discuss the main preclinical and clinical challenges that may influence the therapeutic value of MSCs and discuss some optimization strategies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Rahma Melki
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Ferial Khalife
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fatima Bouhtit
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Douaa Moussa Agha
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Hadath, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Lebanon
| | - Makram Merimi
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
20
|
Laner-Plamberger S, Oeller M, Rohde E, Schallmoser K, Strunk D. Heparin and Derivatives for Advanced Cell Therapies. Int J Mol Sci 2021; 22:12041. [PMID: 34769471 PMCID: PMC8584295 DOI: 10.3390/ijms222112041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/27/2022] Open
Abstract
Heparin and its derivatives are saving thousands of human lives annually, by successfully preventing and treating thromboembolic events. Although the mode of action during anticoagulation is well studied, their influence on cell behavior is not fully understood as is the risk of bleeding and other side effects. New applications in regenerative medicine have evolved supporting production of cell-based therapeutics or as a substrate for creating functionalized matrices in biotechnology. The currently resurgent interest in heparins is related to the expected combined anti-inflammatory, anti-thrombotic and anti-viral action against COVID-19. Based on a concise summary of key biochemical and clinical data, this review summarizes the impact for manufacturing and application of cell therapeutics and highlights the need for discriminating the different heparins.
Collapse
Affiliation(s)
- Sandra Laner-Plamberger
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (S.L.-P.); (M.O.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Michaela Oeller
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (S.L.-P.); (M.O.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Eva Rohde
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (S.L.-P.); (M.O.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Katharina Schallmoser
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (S.L.-P.); (M.O.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
- Cell Therapy Institute, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
21
|
Yang L, Qian J, Yang B, He Q, Wang J, Weng Q. Challenges and Improvements of Novel Therapies for Ischemic Stroke. Front Pharmacol 2021; 12:721156. [PMID: 34658860 PMCID: PMC8514732 DOI: 10.3389/fphar.2021.721156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Stroke is the third most common disease all over the world, which is regarded as a hotspot in medical research because of its high mortality and morbidity. Stroke, especially ischemic stroke, causes severe neural cell death, and no effective therapy is currently available for neuroregeneration after stroke. Although many therapies have been shown to be effective in preclinical studies of ischemic stroke, almost none of them passed clinical trials, and the reasons for most failures have not been well identified. In this review, we focus on several novel methods, such as traditional Chinese medicine, stem cell therapy, and exosomes that have not been used for ischemic stroke till recent decades. We summarize the proposed basic mechanisms underlying these therapies and related clinical results, discussing advantages and current limitations for each therapy emphatically. Based on the limitations such as side effects, narrow therapeutic window, and less accumulation at the injury region, structure transformation and drug combination are subsequently applied, providing a deep understanding to develop effective treatment strategies for ischemic stroke in the near future.
Collapse
Affiliation(s)
- Lijun Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Qian
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Center for Drug and Cosmetic Evaluation, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Merimi M, El-Majzoub R, Lagneaux L, Moussa Agha D, Bouhtit F, Meuleman N, Fahmi H, Lewalle P, Fayyad-Kazan M, Najar M. The Therapeutic Potential of Mesenchymal Stromal Cells for Regenerative Medicine: Current Knowledge and Future Understandings. Front Cell Dev Biol 2021; 9:661532. [PMID: 34490235 PMCID: PMC8416483 DOI: 10.3389/fcell.2021.661532] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
In recent decades, research on the therapeutic potential of progenitor cells has advanced considerably. Among progenitor cells, mesenchymal stromal cells (MSCs) have attracted significant interest and have proven to be a promising tool for regenerative medicine. MSCs are isolated from various anatomical sites, including bone marrow, adipose tissue, and umbilical cord. Advances in separation, culture, and expansion techniques for MSCs have enabled their large-scale therapeutic application. This progress accompanied by the rapid improvement of transplantation practices has enhanced the utilization of MSCs in regenerative medicine. During tissue healing, MSCs may exhibit several therapeutic functions to support the repair and regeneration of injured tissue. The process underlying these effects likely involves the migration and homing of MSCs, as well as their immunotropic functions. The direct differentiation of MSCs as a cell replacement therapeutic mechanism is discussed. The fate and behavior of MSCs are further regulated by their microenvironment, which may consequently influence their repair potential. A paracrine pathway based on the release of different messengers, including regulatory factors, chemokines, cytokines, growth factors, and nucleic acids that can be secreted or packaged into extracellular vesicles, is also implicated in the therapeutic properties of MSCs. In this review, we will discuss relevant outcomes regarding the properties and roles of MSCs during tissue repair and regeneration. We will critically examine the influence of the local microenvironment, especially immunological and inflammatory signals, as well as the mechanisms underlying these therapeutic effects. Importantly, we will describe the interactions of local progenitor and immune cells with MSCs and their modulation during tissue injury. We will also highlight the crucial role of paracrine pathways, including the role of extracellular vesicles, in this healing process. Moreover, we will discuss the therapeutic potential of MSCs and MSC-derived extracellular vesicles in the treatment of COVID-19 (coronavirus disease 2019) patients. Overall, this review will provide a better understanding of MSC-based therapies as a novel immunoregenerative strategy.
Collapse
Affiliation(s)
- Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
- LBBES Laboratory, Genetics and Immune-Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Rania El-Majzoub
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Beirut, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
- LBBES Laboratory, Genetics and Immune-Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
23
|
Krisch L, Brachtl G, Hochmann S, Andrade AC, Oeller M, Ebner-Peking P, Schallmoser K, Strunk D. Improving Human Induced Pluripotent Stem Cell-Derived Megakaryocyte Differentiation and Platelet Production. Int J Mol Sci 2021; 22:8224. [PMID: 34360992 PMCID: PMC8348107 DOI: 10.3390/ijms22158224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Several protocols exist for generating megakaryocytes (MKs) and platelets from human induced pluripotent stem cells (hiPSCs) with limited efficiency. We observed previously that mesoderm induction improved endothelial and stromal differentiation. We, therefore, hypothesized that a protocol modification prior to hemogenic endothelial cell (HEC) differentiation will improve MK progenitor (MKP) production and increase platelet output. We further asked if basic media composition affects MK maturation. In an iterative process, we first compared two HEC induction protocols. We found significantly more HECs using the modified protocol including activin A and CHIR99021, resulting in significantly increased MKs. MKs released comparable platelet amounts irrespective of media conditions. In a final validation phase, we obtained five-fold more platelets per hiPSC with the modified protocol (235 ± 84) compared to standard conditions (51 ± 15; p < 0.0001). The regenerative potency of hiPSC-derived platelets was compared to adult donor-derived platelets by profiling angiogenesis-related protein expression. Nineteen of 24 angiogenesis-related proteins were expressed equally, lower or higher in hiPSC-derived compared to adult platelets. The hiPSC-platelet's coagulation hyporeactivity compared to adult platelets was confirmed by thromboelastometry. Further stepwise improvement of hiPSC-platelet production will, thus, permit better identification of platelet-mediated regenerative mechanisms and facilitate manufacture of sufficient amounts of functional platelets for clinical application.
Collapse
Affiliation(s)
- Linda Krisch
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Gabriele Brachtl
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| | - Sarah Hochmann
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| | - André Cronemberger Andrade
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| | - Michaela Oeller
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Patricia Ebner-Peking
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| | - Katharina Schallmoser
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| |
Collapse
|
24
|
Oeller M, Laner-Plamberger S, Krisch L, Rohde E, Strunk D, Schallmoser K. Human Platelet Lysate for Good Manufacturing Practice-Compliant Cell Production. Int J Mol Sci 2021; 22:ijms22105178. [PMID: 34068404 PMCID: PMC8153614 DOI: 10.3390/ijms22105178] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Numerous cell-based therapeutics are currently being tested in clinical trials. Human platelet lysate (HPL) is a valuable alternative to fetal bovine serum as a cell culture medium supplement for a variety of different cell types. HPL as a raw material permits animal serum-free cell propagation with highly efficient stimulation of cell proliferation, enabling humanized manufacturing of cell therapeutics within a reasonable timeframe. Providers of HPL have to consider dedicated quality issues regarding identity, purity, potency, traceability and safety. Release criteria have to be defined, characterizing the suitability of HPL batches for the support of a specific cell culture. Fresh or expired platelet concentrates from healthy blood donors are the starting material for HPL preparation, according to regulatory requirements. Pooling of individual platelet lysate units into one HPL batch can balance donor variation with regard to essential platelet-derived growth factors and cytokines. The increasingly applied pathogen reduction technologies will further increase HPL safety. In this review article, aspects and regulatory requirements of whole blood donation and details of human platelet lysate manufacturing are presented. International guidelines for raw materials are discussed, and defined quality controls, as well as release criteria for safe and GMP-compliant HPL production, are summarized.
Collapse
Affiliation(s)
- Michaela Oeller
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.O.); (S.L.-P.); (L.K.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Sandra Laner-Plamberger
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.O.); (S.L.-P.); (L.K.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Linda Krisch
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.O.); (S.L.-P.); (L.K.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
- Cell Therapy Institute, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| | - Eva Rohde
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.O.); (S.L.-P.); (L.K.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
- GMP Laboratory, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
- Cell Therapy Institute, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| | - Katharina Schallmoser
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.O.); (S.L.-P.); (L.K.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
- GMP Laboratory, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
25
|
Shahani P, Datta I. Mesenchymal stromal cell therapy for coronavirus disease 2019: which? when? and how much? Cytotherapy 2021; 23:861-873. [PMID: 34053857 PMCID: PMC8084615 DOI: 10.1016/j.jcyt.2021.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/27/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
Mesenchymal stromal cells (MSCs) are under active consideration as a treatment strategy for controlling the hyper-inflammation and slow disease progression associated with coronavirus disease 2019 (COVID-19). The possible mechanism of protection through their immunoregulatory and paracrine action has been reviewed extensively. However, the importance of process control in achieving consistent cell quality, maximum safety and efficacy—for which the three key questions are which, when and how much—remains unaddressed. Any commonality, if it exists, in ongoing clinical trials has yet to be analyzed and reviewed. In this review, the authors have therefore compiled study design data from ongoing clinical trials to address the key questions of “which” with regard to tissue source, donor profile, isolation technique, culture conditions, long-term culture and cryopreservation of MSCs; “when” with regard to defining the transplantation window by identifying and staging patients based on their pro-inflammatory profile; and “how much” with regard to the number of cells in a single administration, number of doses and route of transplantation. To homogenize MSC therapy for COVID-19 on a global scale and to make it readily available in large numbers, a shared understanding and uniform agreement with respect to these fundamental issues are essential.
Collapse
Affiliation(s)
- Pradnya Shahani
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
26
|
Positively Correlated CD47 Activation and Autophagy in Umbilical Cord Blood-Derived Mesenchymal Stem Cells during Senescence. Stem Cells Int 2021; 2021:5582792. [PMID: 33936211 PMCID: PMC8062176 DOI: 10.1155/2021/5582792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy plays a critical role in stem cell maintenance and is related to cell growth and cellular senescence. It is important to find a quality-control marker for predicting senescent cells. This study verified that CD47 could be a candidate to select efficient mesenchymal stem cells (MSCs) to enhance the therapeutic effects of stem cell therapy by analyzing the antibody surface array. CD47 expression was significantly decreased during the expansion of MSCs in vitro (p < 0.01), with decreased CD47 expression correlated with accelerated senescence phenotype, which affected cell growth. UCB-MSCs transfected with CD47 siRNA significantly triggered the downregulation of pRB and upregulation of pp38, which are senescence-related markers. Additionally, autophagy-related markers, ATG5, ATG12, Beclin1, and LC3B, revealed significant downregulation with CD47 siRNA transfection. Furthermore, autophagy flux following treatment with an autophagy inducer, rapamycin, has shown that CD47 is a key player in autophagy and senescence to maintain and regulate the growth of MSCs, suggesting that CD47 may be a critical key marker for the selection of effective stem cells in cell therapy.
Collapse
|
27
|
Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Chang HC, Huang YH, Ling TY. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci 2021; 28:28. [PMID: 33849537 PMCID: PMC8043779 DOI: 10.1186/s12929-021-00725-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a promising resource for cell-based therapy because of their high immunomodulation ability, tropism towards inflamed and injured tissues, and their easy access and isolation. Currently, there are more than 1200 registered MSC clinical trials globally. However, a lack of standardized methods to characterize cell safety, efficacy, and biodistribution dramatically hinders the progress of MSC utility in clinical practice. In this review, we summarize the current state of MSC-based cell therapy, focusing on the systemic safety and biodistribution of MSCs. MSC-associated risks of tumor initiation and promotion and the underlying mechanisms of these risks are discussed. In addition, MSC biodistribution methodology and the pharmacokinetics and pharmacodynamics of cell therapies are addressed. Better understanding of the systemic safety and biodistribution of MSCs will facilitate future clinical applications of precision medicine using stem cells.
Collapse
Affiliation(s)
- Wei-Zhan Zhuang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yi-Heng Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, 10041, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital Yunlin Branch, Yunlin, 64041, Taiwan
| | - Long-Jyun Su
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Meng-Shiue Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Yin Jeng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Comprehensive Cancer Center of Taipei Medical University, Taipei, 11031, Taiwan. .,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
28
|
Rangasami VK, Nawale G, Asawa K, Kadekar S, Samanta S, Nilsson B, Ekdahl KN, Miettinen S, Hilborn J, Teramura Y, Varghese OP, Oommen OP. Pluronic Micelle-Mediated Tissue Factor Silencing Enhances Hemocompatibility, Stemness, Differentiation Potential, and Paracrine Signaling of Mesenchymal Stem Cells. Biomacromolecules 2021; 22:1980-1989. [PMID: 33813822 PMCID: PMC8154246 DOI: 10.1021/acs.biomac.1c00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Mesenchymal stem/stromal
cells (MSCs) evoke great excitement for
treating different human diseases due to their ability to home inflamed
tissues, suppress inflammation, and promote tissue regeneration. Despite
great promises, clinical trial results are disappointing as allotransplantation
of MSCs trigger thrombotic activity and are damaged by the complement
system, compromising their survival and function. To overcome this,
a new strategy is presented by the silencing of tissue factor (TF),
a transmembrane protein that mediates procoagulant activity. Novel Pluronic-based micelles are designed
with the pendant pyridyl disulfide group, which are used to conjugate
TF-targeting siRNA by the thiol-exchange reaction. This nanocarrier
design effectively delivered the payload to MSCs resulting in ∼72%
TF knockdown (KD) without significant cytotoxicity. Hematological
evaluation of MSCs and TF-KD MSCs in an ex vivo human whole blood
model revealed a significant reduction in an instant-blood-mediated-inflammatory
reaction as evidenced by reduced platelet aggregation (93% of free
platelets in the TF-KD group, compared to 22% in untreated bone marrow-derived
MSCs) and thrombin–antithrombin complex formation. Effective
TF silencing induced higher MSC differentiation in osteogenic and
adipogenic media and showed stronger paracrine suppression of proinflammatory
cytokines in macrophages and higher stimulation in the presence of
endotoxins. Thus, TF silencing can produce functional cells with higher
fidelity, efficacy, and functions.
Collapse
Affiliation(s)
- Vignesh K Rangasami
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33720, Finland
| | - Ganesh Nawale
- Translational Chemical Biology Laboratory, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Kenta Asawa
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sandeep Kadekar
- Translational Chemical Biology Laboratory, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Sumanta Samanta
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33720, Finland
| | - Bo Nilsson
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75105, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75105, Sweden.,Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar SE-391 82, Sweden
| | - Susanna Miettinen
- Adult Stem Cells Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33014, Finland.,Research, Development and Innovation Center, Tampere University Hospital, Tampere 33520, Finland
| | - Jöns Hilborn
- Polymer Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Yuji Teramura
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-75105, Sweden
| | - Oommen P Varghese
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, Tampere 33720, Finland
| |
Collapse
|
29
|
Wechsler ME, Rao VV, Borelli AN, Anseth KS. Engineering the MSC Secretome: A Hydrogel Focused Approach. Adv Healthc Mater 2021; 10:e2001948. [PMID: 33594836 PMCID: PMC8035320 DOI: 10.1002/adhm.202001948] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Indexed: 02/06/2023]
Abstract
The therapeutic benefits of exogenously delivered mesenchymal stromal/stem cells (MSCs) have been largely attributed to their secretory properties. However, clinical translation of MSC-based therapies is hindered due to loss of MSC regenerative properties during large-scale expansion and low survival/retention post-delivery. These limitations might be overcome by designing hydrogel culture platforms to modulate the MSC microenvironment. Hydrogel systems could be engineered to i) promote MSC proliferation and maintain regenerative properties (i.e., stemness and secretion) during ex vivo expansion, ii) improve MSC survival, retention, and engraftment in vivo, and/or iii) direct the MSC secretory profile using tailored biochemical and biophysical cues. Herein, it is reviewed how hydrogel material properties (i.e., matrix modulus, viscoelasticity, dimensionality, cell adhesion, and porosity) influence MSC secretion, mediated through cell-matrix and cell-cell interactions. In addition, it is highlighted how biochemical cues (i.e., small molecules, peptides, and proteins) can improve and direct the MSC secretory profile. Last, the authors' perspective is provided on future work toward the understanding of how microenvironmental cues influence the MSC secretome, and designing the next generation of biomaterials, with optimized biophysical and biochemical cues, to direct the MSC secretory profile for improved clinical translation outcomes.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Varsha V Rao
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Alexandra N Borelli
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| |
Collapse
|
30
|
Liu X, Zhang Y. Bioinformatics Analysis of Dysregulated MicroRNA-Messenger RNA Networks in Small Cell Lung Cancer. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study aimed to identify a key module of differentially expressed miRNAs (DE-miRNAs) together with the corresponding differentially expressed mRNAs (DE-mRNAs) within small cell lung cancer (SCLC). Linear models were applied to ascertain the DE-miRNAs and DE-mRNAs in SCLC
versus matched non-carcinoma samples obtained from the RNA expression datasets of GSE19945, GSE74190 and GSE6044. The common DE-miRNAs were identified using the Venn plot. Then, 3 databases were used to retrieve the DE-miRNAs target genes, and the intersection was taken for validating the
shared target genes. Besides, Cytoscape was utilized for constructing the miRNAmRNA network for SCLC. Finally, a key module of five DE-miRNAs and four hub genes was determined based on the degree. In addition, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
were conducted for exploring those hub genes in terms of their functions along with the involved signal transduction pathways. Altogether 106 shared DE-miRNAs were identified, which were used to predict 63 common target genes. In addition, a key module of five DE-miRNAs (hsa-miR-17-5p, hsa-miR-20a-5p,
hsa-miR-20b-5p, hsa-miR-93-5p and hsa-miR- 106b-5p) and four hub genes (SOX4, DPYSL2, TGFBR2 and F3) were extracted from the miRNAmRNA network according to their degree. Finally, the hub genes were subjected to GO as well as KEGG analysis, which revealed that cell cycle G1/S phase transition,
the extracellular matrix, and cellular senescence signaling pathways exerted vial parts during SCLC progression. A key module of five DE-miRNAs and four hub genes may be potentially used as clinical biomarkers to predict SCLC.
Collapse
Affiliation(s)
- Xingsheng Liu
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
31
|
Monguió-Tortajada M, Bayes-Genis A, Rosell A, Roura S. Are mesenchymal stem cells and derived extracellular vesicles valuable to halt the COVID-19 inflammatory cascade? Current evidence and future perspectives. Thorax 2021; 76:196-200. [PMID: 33323479 PMCID: PMC7815888 DOI: 10.1136/thoraxjnl-2020-215717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Marta Monguió-Tortajada
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalunya, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalunya, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Catalunya, Spain
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Catalunya, Spain
| | - Antoni Rosell
- Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Catalunya, Spain
- Servei de Pneumologia, Germans Trias i Pujol University Hospital, Badalona, Catalunya, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalunya, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N, De Biasio M, Heinelt M, Reeve B, Abdi R, Alturki M, Fallatah M, Almalik A, Alhasan AH, Shah K, Karp JM. Shattering barriers toward clinically meaningful MSC therapies. SCIENCE ADVANCES 2020; 6:eaba6884. [PMID: 32832666 PMCID: PMC7439491 DOI: 10.1126/sciadv.aba6884] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/05/2020] [Indexed: 05/11/2023]
Abstract
More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies. However, most of the clinical-stage MSC therapies have been unable to meet primary efficacy end points. The innate therapeutic functions of MSCs administered to humans are not as robust as demonstrated in preclinical studies, and in general, the translation of cell-based therapy is impaired by a myriad of steps that introduce heterogeneity. In this review, we discuss the major clinical challenges with MSC therapies, the details of these challenges, and the potential bioengineering approaches that leverage the unique biology of MSCs to overcome the challenges and achieve more potent and versatile therapies.
Collapse
Affiliation(s)
- Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Rui Kuai
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Erika M. J. Siren
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Deepak Bhere
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuka Milton
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Nabeel Nissar
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael De Biasio
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Martina Heinelt
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meshael Alturki
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mohanad Fallatah
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulaziz Almalik
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Ali H. Alhasan
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Khalid Shah
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
33
|
Heparin Anticoagulant for Human Bone Marrow Does Not Influence In Vitro Performance of Human Mesenchymal Stromal Cells. Cells 2020; 9:cells9071580. [PMID: 32610653 PMCID: PMC7408646 DOI: 10.3390/cells9071580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are a promising cell source for tissue engineering and regenerative medicine. In our lab, we found that MSC preparations from bone marrow of many different donors had a limited capacity of in vitro differentiation into osteogenic and chondrogenic lineages-a capacity claimed to be inherent to MSCs. The current study was designed to test the hypothesis that the amount of heparin used as anticoagulant during bone marrow harvest had an inhibitory influence on the in vitro differentiation capacity of isolated MSCs. Bone marrow was obtained from the femoral cavity of twelve donors during total hip arthroplasty in the absence or presence of heparin. No coagulation was observed in the absence of heparin. The number of mononuclear cells was independent of heparin addition. Isolated MSCs were characterized by morphology, population doubling times, expression of cell surface antigens and in vitro differentiation. Results of these analyses were independent of the amount of heparin. Transcriptome analyses of cells from three randomly chosen donors and quantitative realtime PCR (qRT-PCR) analysis from cells of all donors demonstrated no clear effect of heparin on the transcriptome of the cells. This excludes heparin as a potential source of disparate results.
Collapse
|
34
|
Abstract
Mesenchymal stromal cells (MSCs) are among of the most studied cell type for cellular therapy thanks to the ease of isolation, cultivation, and the high
ex vivo expansion potential. In 2018, the European Medicines Agency finally granted the first marketing authorization for an MSC product. Despite the numerous promising results in preclinical studies, translation into routine practice still lags behind: therapeutic benefits of MSCs are not as satisfactory in clinical trial settings as they appear to be in preclinical models. The bench-to-bedside-and-back approach and careful evaluation of discrepancies between preclinical and clinical results have provided valuable insights into critical components of MSC manufacturing, their mechanisms of action, and how to evaluate and quality-control them. We sum up these past developments in the introductory section (“Mesenchymal stromal cells: name follows function”). From the huge amount of information, we then selected a few examples to illustrate challenges and opportunities to improve MSCs for clinical purposes. These include tissue origin of MSCs, MSC culture conditions, immune compatibility, and route of application and dosing. Finally, we add some information on MSC mechanisms of action and translation into potency assays and give an outlook on future perspectives raising the question of whether the future clinical product may be cell-based or cell-derived.
Collapse
Affiliation(s)
- Erika Rendra
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Eleonora Scaccia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.,FlowCore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.,German Red Cross Blood Donor Service Baden-Württemberg - Hessen, Mannheim, 68167, Germany
| |
Collapse
|
35
|
Andrzejewska A, Catar R, Schoon J, Qazi TH, Sass FA, Jacobi D, Blankenstein A, Reinke S, Krüger D, Streitz M, Schlickeiser S, Richter S, Souidi N, Beez C, Kamhieh-Milz J, Krüger U, Zemojtel T, Jürchott K, Strunk D, Reinke P, Duda G, Moll G, Geissler S. Multi-Parameter Analysis of Biobanked Human Bone Marrow Stromal Cells Shows Little Influence for Donor Age and Mild Comorbidities on Phenotypic and Functional Properties. Front Immunol 2019; 10:2474. [PMID: 31781089 PMCID: PMC6857652 DOI: 10.3389/fimmu.2019.02474] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Heterogeneous populations of human bone marrow-derived stromal cells (BMSC) are among the most frequently tested cellular therapeutics for treating degenerative and immune disorders, which occur predominantly in the aging population. Currently, it is unclear whether advanced donor age and commonly associated comorbidities affect the properties of ex vivo-expanded BMSCs. Thus, we stratified cells from adult and elderly donors from our biobank (n = 10 and n = 13, mean age 38 and 72 years, respectively) and compared their phenotypic and functional performance, using multiple assays typically employed as minimal criteria for defining multipotent mesenchymal stromal cells (MSCs). We found that BMSCs from both cohorts meet the standard criteria for MSC, exhibiting similar morphology, growth kinetics, gene expression profiles, and pro-angiogenic and immunosuppressive potential and the capacity to differentiate toward adipogenic, chondrogenic, and osteogenic lineages. We found no substantial differences between cells from the adult and elderly cohorts. As positive controls, we studied the impact of in vitro aging and inflammatory cytokine stimulation. Both conditions clearly affected the cellular properties, independent of donor age. We conclude that in vitro aging rather than in vivo donor aging influences BMSC characteristics.
Collapse
Affiliation(s)
- Anastazja Andrzejewska
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Rusan Catar
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Janosch Schoon
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Taimoor Hasan Qazi
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Frauke Andrea Sass
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Dorit Jacobi
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Antje Blankenstein
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Simon Reinke
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - David Krüger
- Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Mathias Streitz
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Sarina Richter
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Naima Souidi
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Christien Beez
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Ulrike Krüger
- BIH Core Unit Genomics Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tomasz Zemojtel
- BIH Core Unit Genomics Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Karsten Jürchott
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Dirk Strunk
- Berlin Center for Advanced Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Spinal Cord Injury and Tissue Regeneration Center, Experimental and Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Georg Duda
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Sven Geissler
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| |
Collapse
|
36
|
Coppin L, Sokal E, Stéphenne X. Thrombogenic Risk Induced by Intravascular Mesenchymal Stem Cell Therapy: Current Status and Future Perspectives. Cells 2019; 8:cells8101160. [PMID: 31569696 PMCID: PMC6829440 DOI: 10.3390/cells8101160] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are currently studied and used in numerous clinical trials. Nevertheless, some concerns have been raised regarding the safety of these infusions and the thrombogenic risk they induce. MSCs express procoagulant activity (PCA) linked to the expression of tissue factor (TF) that, when in contact with blood, initiates coagulation. Some even describe a dual activation of both the coagulation and the complement pathway, called Instant Blood-Mediated Inflammatory Reaction (IBMIR), explaining the disappointing results and low engraftment rates in clinical trials. However, nowadays, different approaches to modulate the PCA of MSCs and thus control the thrombogenic risk after cell infusion are being studied. This review summarizes both in vitro and in vivo studies on the PCA of MSC of various origins. It further emphasizes the crucial role of TF linked to the PCA of MSCs. Furthermore, optimization of MSC therapy protocols using different methods to control the PCA of MSCs are described.
Collapse
Affiliation(s)
- Louise Coppin
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Etienne Sokal
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Xavier Stéphenne
- Laboratoire d'Hépatologie Pédiatrique et Thérapie Cellulaire, Unité PEDI, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| |
Collapse
|
37
|
Khan RS, Newsome PN. A Comparison of Phenotypic and Functional Properties of Mesenchymal Stromal Cells and Multipotent Adult Progenitor Cells. Front Immunol 2019; 10:1952. [PMID: 31555259 PMCID: PMC6724467 DOI: 10.3389/fimmu.2019.01952] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Both Multipotent Adult Progenitor Cells and Mesenchymal Stromal Cells are bone-marrow derived, non-haematopoietic adherent cells, that are well-known for having immunomodulatory and pro-angiogenic properties, whilst being relatively non-immunogenic. However, they are phenotypically and functionally distinct cell types, which has implications for their efficacy in different settings. In this review we compare the phenotypic and functional properties of these two cell types, to help in determining which would be the superior cell type for different applications.
Collapse
Affiliation(s)
- Reenam S Khan
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
38
|
Viau S, Lagrange A, Chabrand L, Lorant J, Charrier M, Rouger K, Alvarez I, Eap S, Delorme B. A highly standardized and characterized human platelet lysate for efficient and reproducible expansion of human bone marrow mesenchymal stromal cells. Cytotherapy 2019; 21:738-754. [PMID: 31133491 DOI: 10.1016/j.jcyt.2019.04.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human platelet lysate (hPL) represents a powerful alternative to fetal bovine serum (FBS) for human mesenchymal stromal cell (hMSC) expansion. However, the large variability in hPL sources and production protocols gives rise to discrepancies in product quality, characterization and poor batch-to-batch standardization. METHODS hPL prepared with more than 200 donors (200+DhPL) or with five donors (5DhPL) were compared in terms of growth factor (GF) contents and biochemical analysis. A multiple protein assay and proteomic analysis were performed to further characterize 200+DhPL batches. We also compared the phenotypic and functional characteristics of bone marrow (BM)-hMSCs grown in 200+DhPL versus FBS+basic fibroblast growth factor (bFGF). RESULTS By contrast to 5DhPL, industrial 200+DhPL displayed a strong standardization of GF contents and biochemical characteristics. We identified specific plasmatic components and platelet-released factors as the most relevant markers for the evaluation of the standardization of hPL batches. We used a multiplex assay and proteomic analysis of 200+DhPL to establish a proteomic signature and demonstrated the robust standardization of batches. 200+DhPL was shown to improve and standardize BM-hMSC expansion compared with FBS+bFGF. The levels of expression of BM-hMSC membrane markers were found to be much more homogeneous between batches when cells were cultured in 200+DhPL. BM-hMSCs cultured in parallel under both conditions displayed similar adipogenic and osteogenic differentiation potential and immunosuppressive properties. CONCLUSIONS We report a standardization of hPL and the importance of such standardization for the efficient amplification of more homogeneous and reproducible cell therapy products.
Collapse
Affiliation(s)
- Sabrina Viau
- Biotherapy Division, Macopharma, Mouvaux, France.
| | | | | | | | - Marine Charrier
- PAnTher, Institut National de la Recherche Agronomique (INRA), Ecole Nationale Vétérinaire, Agro-alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire, Nantes, France; Université de Nantes, Université Bretagne Loire, Nantes, France
| | - Karl Rouger
- PAnTher, Institut National de la Recherche Agronomique (INRA), Ecole Nationale Vétérinaire, Agro-alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire, Nantes, France
| | | | - Sandy Eap
- Biotherapy Division, Macopharma, Mouvaux, France
| | | |
Collapse
|
39
|
Laner-Plamberger S, Oeller M, Poupardin R, Krisch L, Hochmann S, Kalathur R, Pachler K, Kreutzer C, Erdmann G, Rohde E, Strunk D, Schallmoser K. Heparin Differentially Impacts Gene Expression of Stromal Cells from Various Tissues. Sci Rep 2019; 9:7258. [PMID: 31076619 PMCID: PMC6510770 DOI: 10.1038/s41598-019-43700-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Pooled human platelet lysate (pHPL) is increasingly used as replacement of animal serum for manufacturing of stromal cell therapeutics. Porcine heparin is commonly applied to avoid clotting of pHPL-supplemented medium but the influence of heparin on cell behavior is still unclear. Aim of this study was to investigate cellular uptake of heparin by fluoresceinamine-labeling and its impact on expression of genes, proteins and function of human stromal cells derived from bone marrow (BM), umbilical cord (UC) and white adipose tissue (WAT). Cells were isolated and propagated using various pHPL-supplemented media with or without heparin. Flow cytometry and immunocytochemistry showed differential cellular internalization and lysosomal accumulation of heparin. Transcriptome profiling revealed regulation of distinct gene sets by heparin including signaling cascades involved in proliferation, cell adhesion, apoptosis, inflammation and angiogenesis, depending on stromal cell origin. The influence of heparin on the WNT, PDGF, NOTCH and TGFbeta signaling pathways was further analyzed by a bead-based western blot revealing most alterations in BM-derived stromal cells. Despite these observations heparin had no substantial effect on long-term proliferation and in vitro tri-lineage differentiation of stromal cells, indicating compatibility for clinically applied cell products.
Collapse
Affiliation(s)
- Sandra Laner-Plamberger
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Michaela Oeller
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Cell Therapy Institute, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Linda Krisch
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Sarah Hochmann
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Cell Therapy Institute, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Ravi Kalathur
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Cell Therapy Institute, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Department for Biomedicine, University of Basel, Basel, Switzerland
| | - Karin Pachler
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,GMP Unit, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Christina Kreutzer
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Institute for Experimental Neuroregeneration, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | | - Eva Rohde
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Cell Therapy Institute, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Katharina Schallmoser
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria. .,Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria.
| |
Collapse
|
40
|
Perspectives for Clinical Translation of Adipose Stromal/Stem Cells. Stem Cells Int 2019; 2019:5858247. [PMID: 31191677 PMCID: PMC6525805 DOI: 10.1155/2019/5858247] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Adipose stromal/stem cells (ASCs) are an ideal cell type for regenerative medicine applications, as they can easily be harvested from adipose tissue in large quantities. ASCs have excellent proliferation, differentiation, and immunoregulatory capacities that have been demonstrated in numerous studies. Great interest and investment have been placed in efforts to exploit the allogeneic use and immunomodulatory and anti-inflammatory effects of ASCs. However, bridging the gap between in vitro and in vivo studies and moving into clinical practice remain a challenge. For the clinical translation of ASCs, several issues must be considered, including how to characterise such a heterogenic cell population and how to ensure their safety and efficacy. This review explores the different phases of in vitro and preclinical ASC characterisation and describes the development of appropriate potency assays. In addition, good manufacturing practice requirements are discussed, and cell-based medicinal products holding marketing authorisation in the European Union are reviewed. Moreover, the current status of clinical trials applying ASCs and the patent landscape in the field of ASC research are presented. Overall, this review highlights the applicability of ASCs for clinical cell therapies and discusses their potential.
Collapse
|
41
|
Moll G, Ankrum JA, Kamhieh-Milz J, Bieback K, Ringdén O, Volk HD, Geissler S, Reinke P. Intravascular Mesenchymal Stromal/Stem Cell Therapy Product Diversification: Time for New Clinical Guidelines. Trends Mol Med 2019; 25:149-163. [PMID: 30711482 DOI: 10.1016/j.molmed.2018.12.006] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Intravascular infusion is the most popular route for therapeutic multipotent mesenchymal stromal/stem cell (MSC) delivery in hundreds of clinical trials. Meta-analysis has demonstrated that bone marrow MSC infusion is safe. It is not clear if this also applies to diverse new cell products derived from other sources, such as adipose and perinatal tissues. Different MSC products display varying levels of highly procoagulant tissue factor (TF) and may adversely trigger the instant blood-mediated inflammatory reaction (IBMIR). Suitable strategies for assessing and controlling hemocompatibility and optimized cell delivery are crucial for the development of safer and more effective MSC therapies.
Collapse
Affiliation(s)
- Guido Moll
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany.
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Olle Ringdén
- Translational Cell Therapy Research (TCR), Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Institute of Medical Immunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Berlin Center for Advanced Therapies (BECAT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Equal contribution senior authorship
| | - Sven Geissler
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Julius Wolff Institute (JWI), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Equal contribution senior authorship
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Berlin Center for Advanced Therapies (BECAT), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin (FUB), Humboldt-Universität zu Berlin (HUB), and Berlin Institute of Health (BIH), Berlin, Germany; Equal contribution senior authorship
| |
Collapse
|
42
|
Netsch P, Elvers-Hornung S, Uhlig S, Klüter H, Huck V, Kirschhöfer F, Brenner-Weiß G, Janetzko K, Solz H, Wuchter P, Bugert P, Bieback K. Human mesenchymal stromal cells inhibit platelet activation and aggregation involving CD73-converted adenosine. Stem Cell Res Ther 2018; 9:184. [PMID: 29973267 PMCID: PMC6033237 DOI: 10.1186/s13287-018-0936-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) are promising cell therapy candidates. Clinical application is considered safe. However, minor side effects have included thromboembolism and instant blood-mediated inflammatory reactions suggesting an effect of MSC infusion on hemostasis. Previous studies focusing on plasmatic coagulation as a secondary hemostasis step detected both procoagulatory and anticoagulatory activities of MSCs. We now focus on primary hemostasis and analyzed whether MSCs can promote or inhibit platelet activation. Methods Effects of MSCs and MSC supernatant on platelet activation and function were studied using flow cytometry and further platelet function analyses. MSCs from bone marrow (BM), lipoaspirate (LA) and cord blood (CB) were compared to human umbilical vein endothelial cells or HeLa tumor cells as inhibitory or activating cells, respectively. Results BM-MSCs and LA-MSCs inhibited activation and aggregation of stimulated platelets independent of the agonist used. This inhibitory effect was confirmed in diagnostic point-of-care platelet function analyses in platelet-rich plasma and whole blood. Using inhibitors of the CD39–CD73–adenosine axis, we showed that adenosine produced by CD73 ectonucleotidase activity was largely responsible for the LA-MSC and BM-MSC platelet inhibitory action. With CB-MSCs, batch-dependent responses were obvious, with some batches exerting inhibition and others lacking this effect. Conclusions Studies focusing on plasmatic coagulation suggested both procoagulatory and anticoagulatory activities of MSCs. We now show that MSCs can, dependent on their tissue origin, inhibit platelet activation involving adenosine converted from adenosine monophosphate by CD73 ectonucleotidase activity. These data may have strong implications for safety and risk/benefit assessment regarding MSCs from different tissue sources and may help to explain the tissue protective mode of action of MSCs. The adenosinergic pathway emerges as a key mechanism by which MSCs exert hemostatic and immunomodulatory functions. Electronic supplementary material The online version of this article (10.1186/s13287-018-0936-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Netsch
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany
| | - S Elvers-Hornung
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany
| | - S Uhlig
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany.,Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - H Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany
| | - V Huck
- Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - F Kirschhöfer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - G Brenner-Weiß
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - K Janetzko
- Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - H Solz
- Mannheim Clinic for Plastic Surgery, Mannheim, Germany
| | - P Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany
| | - P Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany
| | - K Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Friedrich-Ebert Straße 107, 68167, Mannheim, Germany.
| |
Collapse
|
43
|
Torres Crigna A, Daniele C, Gamez C, Medina Balbuena S, Pastene DO, Nardozi D, Brenna C, Yard B, Gretz N, Bieback K. Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Front Med (Lausanne) 2018; 5:179. [PMID: 29963554 PMCID: PMC6013716 DOI: 10.3389/fmed.2018.00179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Within the last years, the use of stem cells (embryonic, induced pluripotent stem cells, or hematopoietic stem cells), Progenitor cells (e.g., endothelial progenitor cells), and most intensely mesenchymal stromal cells (MSC) has emerged as a promising cell-based therapy for several diseases including nephropathy. For patients with end-stage renal disease (ESRD), dialysis or finally organ transplantation are the only therapeutic modalities available. Since ESRD is associated with a high healthcare expenditure, MSC therapy represents an innovative approach. In a variety of preclinical and clinical studies, MSC have shown to exert renoprotective properties, mediated mainly by paracrine effects, immunomodulation, regulation of inflammation, secretion of several trophic factors, and possibly differentiation to renal precursors. However, studies are highly diverse; thus, knowledge is still limited regarding the exact mode of action, source of MSC in comparison to other stem cell types, administration route and dose, tracking of cells and documentation of therapeutic efficacy by new imaging techniques and tissue visualization. The aim of this review is to provide a summary of published studies of stem cell therapy in acute and chronic kidney injury, diabetic nephropathy, polycystic kidney disease, and kidney transplantation. Preclinical studies with allogeneic or xenogeneic cell therapy were first addressed, followed by a summary of clinical trials carried out with autologous or allogeneic hMSC. Studies were analyzed with respect to source of cell type, mechanism of action etc.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Cristina Daniele
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Carolina Gamez
- Department for Experimental Orthopaedics and Trauma Surgery, Medical Faculty Mannheim, Orthopaedic and Trauma Surgery Centre (OUZ), Heidelberg University, Mannheim, Germany
| | - Sara Medina Balbuena
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Diego O. Pastene
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniela Nardozi
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Cinzia Brenna
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Benito Yard
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Karen Bieback
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| |
Collapse
|