1
|
de Freitas ALP, Han SW, Martin PKM, Ferreira LM. Effect of adipose-derived mesenchymal stem cells on the viability of the transverse rectus abdominis myocutaneous flap in rats. Clinics (Sao Paulo) 2025; 80:100590. [PMID: 39908748 PMCID: PMC11847128 DOI: 10.1016/j.clinsp.2025.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/14/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
INTRODUCTION The Transverse Rectus Abdominis Myocutaneous (TRAM) flap is used for breast reconstruction, but involves the risk of necrosis. Adipose tissue-derived mesenchymal Stem Cells (ADSCs) can be used to stimulate neovascularization and reduce the risk of TRAM flap necrosis. AIM Determine the effect of ADSCs on TRAM flap viability in rats. METHODS Twenty-four Wistar-EPM rats were distributed into three groups (n = 8). A right caudal pedicled TRAM flap was performed in all the animals and was the only procedure performed in Group TRAM. The additional procedures of intradermal injection of α-MEM culture medium and intradermal injection of α-MEM containing ADSCs labeled with a fluorescent marker were performed in Groups α-MEM and α-MEM-SC, respectively. The percentage of flap necrosis was determined, and the level of neovascularization and distribution of stem cells in the TRAM flap was assessed using immunohistochemical analysis and fluorescence microscopy, respectively. RESULTS The percentage of necrosis observed in Group α-MEM-SC was lower than that observed in Groups TRAM and α-MEM, namely 23.36 % vs. 50.42 % and 53.57 %, respectively (p < 0.05). In Zone IV of the flap, the number of vessels was greater in Group α-MEM-SC than in the other groups (p < 0.05). Multiple stem cells were observed in the four zones of the flap in Group α-MEM-SC. No stem cells were observed in Groups TRAM or α-MEM. CONCLUSION ADSCs increased TRAM flap viability and the number of vessels in Zone IV of the flap in rats.
Collapse
Affiliation(s)
| | - Sang Won Han
- MSc Interdisciplinary Center for Gene Therapy (CINTERGEN), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Lydia Masako Ferreira
- Division of Plastic Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
2
|
Bazgir F, Karimi Rouzbahani A, Birjandi M, Chehelcheraghi F. Protective effect of bone marrow mesenchymal stem cells on the survival zone of the perforator flaps in rats. SAGE Open Med 2024; 12:20503121241276278. [PMID: 39247215 PMCID: PMC11380125 DOI: 10.1177/20503121241276278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Background Perforator flaps have recently been used in the field of plastic surgery. Skin defects can be reconstructed to reach functional and cosmetic goals. With the development of reconstructive approaches, utilizing stem cells is a hopeful approach to enhance wound healing and tissue recovery. In this study, we assessed the effect of bone marrow mesenchymal stem cells on the perforator flap's survival in rats. Methods Perforator flaps (2.5 × 11 cm) were transplanted into rats and focused on the thoracodorsal, intercostal, and deep circumflex arteries, which were randomly divided into three groups: control, saline, and bone marrow mesenchymal stem cells (7 × 106 ml). Seven days after the surgery, tissue edema, inflammation, and discharge were observed and photographed. Histological analyses were performed to determine flap survival. Hematoxylin and eosin staining was performed to assess levels of microvascular density determined in skin flaps. Results Rats in the bone marrow mesenchymal stem cells group exhibited higher average flap survival area, and higher microvascular density levels at the dynamical regions of the flaps compared with the other two groups. Subdermal injection of bone marrow mesenchymal stem cells significantly increased ischemic perforator flap survival due to stimulated neovascularization in rats. Conclusion Our findings suggest the potential usefulness of bone marrow mesenchymal stem cells in preventing skin flap perforator tissue necrosis.
Collapse
Affiliation(s)
- Fatemeh Bazgir
- Student Research Committee, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arian Karimi Rouzbahani
- Student Research Committee, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Birjandi
- Nutritional Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
3
|
Mao L, Yuan X, Su J, Ma Y, Li C, Chen H, Zhang F. Human Umbilical Vein Endothelial Cells Survive on the Ischemic TCA Cycle under Lethal Ischemic Conditions. J Proteome Res 2022; 21:2385-2396. [PMID: 36074008 PMCID: PMC9552233 DOI: 10.1021/acs.jproteome.2c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
It is generally believed that vascular endothelial cells
(VECs)
rely on glycolysis instead of the tricarboxylic acid (TCA) cycle under
both normoxic and hypoxic conditions. However, the metabolic pattern
of human umbilical vein endothelial cells (HUVECs) under extreme ischemia
(hypoxia and nutrient deprivation) needs to be elucidated. We initiated
a lethal ischemic model of HUVECs, performed proteomics and bioinformatics,
and verified the metabolic pattern shift of HUVECs. Ischemic HUVECs
displayed extensive aerobic respiration, including upregulation of
the TCA cycle and mitochondrial respiratory chain in mitochondria
and downregulation of glycolysis in cytoplasm. The TCA cycle was enhanced
while the cell viability was decreased through the citrate synthase
pathway when substrates of the TCA cycle (acetate and/or pyruvate)
were added and vice versa when inhibitors of the TCA cycle (palmitoyl-CoA
and/or avidin) were applied. The inconsistency of the TCA cycle level
and cell viability suggested that the extensive TCA cycle can keep
cells alive yet generate toxic substances that reduce cell viability.
The data revealed that HUVECs depend on “ischemic TCA cycle”
instead of glycolysis to keep cells alive under lethal ischemic conditions,
but consideration must be given to relieve cell injury.
Collapse
Affiliation(s)
- Lisha Mao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Xiaoqi Yuan
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Junlei Su
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Yaping Ma
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Chaofan Li
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Hongying Chen
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Fugui Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
4
|
Mousavi M, Khanifar A, Mousavi N, Anbari K, Chehelcheraghi F. Coactivity of Mast Cells and Stem Cells on Angiogenesis and Antioxidants' Potentials at Inflammation, Proliferation, and Tissue Remodeling Phases of Wound. Arch Plast Surg 2022; 49:462-470. [PMID: 35832143 PMCID: PMC9142223 DOI: 10.1055/s-0042-1748665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background
Reactive oxygen species cause serious damage to the physiological function of tissues. Determination of total antioxidant capacity of skin tissue is one of the determinants of damaged tissue function. Mast cells (MCs) are one of the groups of cells that are invited to the site of injury. The healing process begins with the rapid release of various types of MCs' intermediate factors at the site of injury. Bone marrow mesenchymal stem cell (BMMSC) production and secretion have been shown to regenerate the skin. The aim of this research was to evaluate the wound-healing and antioxidant effects of BMMSCs per MCs.
Methods
Fifty-four albino Wistar male rats were divided into three groups: (1) nonsurgery, (2) surgery, and (3) surgery + BMMSCs. Groups 2 and 3 were operated with a 3 × 8 cm flap and in group 3, cell injections (7 × 10
9
cell injection at the time of surgery) were performed. After days 4, 7, and 15, percentage of the surviving tissue, histological characteristics, superoxide dismutase (SOD) activity, and amount of malondialdehyde (MDA) were measured in the groups. For results, Graph Pad Prism 8 software was used, and data were analyzed and compared by analysis of variance and Tukey test.
Results
BMMSCs' application decreased the amount of MDA, increased SOD activity and survival rate of the flaps, and improved the histological characteristics.
Conclusion
This study revealed the protective effects BMMSCs alongside MCs against oxidative stress on the survival of the flaps. However, for clinical use, more research is needed to determine its benefits.
Collapse
Affiliation(s)
- Mahshad Mousavi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ahmad Khanifar
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nazanin Mousavi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Khatereh Anbari
- Community Medicine Department, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
5
|
Li Y, Jiang QL, Van der Merwe L, Lou DH, Lin C. Preclinical efficacy of stem cell therapy for skin flap: a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:28. [PMID: 33413598 PMCID: PMC7791712 DOI: 10.1186/s13287-020-02103-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background A skin flap is one of the most critical surgical techniques for the restoration of cutaneous defects. However, the distal necrosis of the skin flap severely restricts the clinical application of flap surgery. As there is no consensus on the treatment methods to prevent distal necrosis of skin flaps, more effective and feasible interventions to prevent skin flaps from necrosis are urgently needed. Stem therapy as a potential method to improve the survival rate of skin flaps is receiving increasing attention. Methods This review followed the recommendations from the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statements. Twenty studies with 500 animals were included by searching Web of Science, EMBASE, PubMed, and Cochrane Library databases, up until October 8, 2020. Moreover, the references of the included articles were searched manually to obtain other studies. All analyses were conducted using Review Manager V.5.3 software. Results Meta-analysis of all 20 studies demonstrated stem cell treatment has significant effects on reducing necrosis of skin flap compared with the control group (SMD: 3.20, 95% CI 2.47 to 3.93). Besides, subgroup analysis showed differences in the efficacy of stem cells in improving the survival rate of skin flaps in areas of skin flap, cell type, transplant types, and method of administration of stem cells. The meta-analysis also showed that stem cell treatment had a significant effect on increasing blood vessel density (SMD: 2.96, 95% CI 2.21 to 3.72) and increasing the expression of vascular endothelial growth factor (VEGF, SMD: 4.34, 95% CI 2.48 to 6.1). Conclusions The preclinical evidence of our systematic review indicate that stem cell-based therapy is effective for promoting early angiogenesis by up regulating VEGF and ultimately improving the survival rate of skin flap. In summary, small area skin flap, the administration method of intra-arterial injection, ASCs and MSCs, and xenogenic stem cells from humans showed more effective for the survival of animal skin flaps. In general, stem cell-based therapy may be a promising method to prevent skin flap necrosis.
Collapse
Affiliation(s)
- Yuan Li
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Qi-Lin Jiang
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Leanne Van der Merwe
- School of International Studies, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Dong-Hao Lou
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Cai Lin
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
6
|
Foroglou P, Demiri E, Koliakos G, Karathanasis V. Autologous administration of adipose stromal cells improves skin flap survival through neovascularization: An experimental study. Int Wound J 2019; 16:1471-1476. [PMID: 31486248 DOI: 10.1111/iwj.13216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/13/2019] [Accepted: 08/18/2019] [Indexed: 11/27/2022] Open
Abstract
One of the most severe complications in aesthetic and reconstructive surgeries is the partial or total necrosis of a skin flap. In our experimental study, we demonstrated the use of adipose-derived stem cells in the increase of skin flap survival rates. Stem cells were isolated from the fat of Wistar rats and genetically modified to permanently produce a green fluorescent protein (GFP). Two random-pattern skin flaps (2 cm × 8 cm) were elevated on the dorsal area of the spine, and after being separated from the surgical wounds with a thin silicone sheet, they were placed back onto their original location. Then, the autologous GFP-producing cells were injected intradermally into the dorsal area of the rats. At the seventh day, after the implantation of the stem cells, a clinical and immunohistochemical control was performed. The fluorescence microscopy revealed green vascular formations, suggesting that autologous GFP stromal cells were converted into endothelial cells through neovascularization. In the control skin flaps, where no stromal cells were used, no fluorescence was observed. The statistical analysis showed significantly lower necrosis rates in the right-sided flaps (i.e., the flaps where adipose-derived stromal cells were injected) compared with the left-sided ones. Findings from our study demonstrate that adipose-derived stem cells play an important role in the improvement of skin flap survival. Neovascularization is an effective way of achieving it.
Collapse
Affiliation(s)
- Pericles Foroglou
- Department of Plastic Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efterpi Demiri
- Department of Plastic Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Koliakos
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Karathanasis
- Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Chehelcheraghi F, Chien S, Bayat M. Mesenchymal stem cells improve survival in ischemic diabetic random skin flap via increased angiogenesis and VEGF expression. J Cell Biochem 2019; 120:17491-17499. [PMID: 31127644 DOI: 10.1002/jcb.29013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/13/2023]
Abstract
Random skin flaps (RSFs) are cutaneous flaps. Despite the negative impact of diabetes mellitus (DM) on RSF viability, they are commonly used in diabetic patients. In this study, we have assessed bone marrow mesenchymal stem cell (BMMSC) treatment on RSF survival, tensiometrical parameters, angiogenesis, and mast cells (MCs) count in an ischemic RSF model in rats with type 1 DM (T1DM). We induced T1DM in 30 Wistar adult male rats. The animals were assigned to three groups of 10 rats per group as follows: group 1 (control); group 2 (placebo), and group 3 (BMMSCs). A 30 × 80 mm RSF was created in each rat. On day 7, we measured the viable portion of each RSF. A sample was taken for histological and immunohistochemistry studies, fibroblasts, MCs, angiogenesis, collagen bundle density, and the presence of vascular endothelial growth factor (VEGF)+ cells. An additional sample was taken to evaluate the flap's incision strength. Treatment with BMMSCs (17.8 ± 0.37) significantly increased RSF survival compared with the control (13.3 ± 0.35) and placebo (16.1 ± 0.27) groups (one-way analysis of variance, P = .000; least significant difference, P = .000, P = .002). There was a significant improvement in angiogenesis, as confirmed by stereologic examination. Assessment of VEGF+ cells showed prominent neovascularization in BMMSC-treated RSFs compared with the control and placebo groups. Subdermal injection of BMMSC significantly increased ischemic RSF survival as a result of stimulated neovascularization in T1DM rats. Treatment of diabetic RSF with BMMSCs showed no beneficial effects in the fibroblast number and biomechanical parameters for the repair of ischemic wounds in the rat model. Treatment with BMMSCs significantly increased collagen bundle density.
Collapse
Affiliation(s)
- Farzaneh Chehelcheraghi
- Department of Anatomical Sciences, School of Medicine, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Noveratech LLC of Louisville, Louisville, Kentucky
| |
Collapse
|
8
|
Vidor SB, Terraciano PB, Valente FS, Rolim VM, Kuhl CP, Ayres LS, Garcez TNA, Lemos NE, Kipper CE, Pizzato SB, Driemeier D, Cirne-Lima EO, Contesini EA. Adipose-derived stem cells improve full-thickness skin grafts in a rat model. Res Vet Sci 2018; 118:336-344. [PMID: 29621642 DOI: 10.1016/j.rvsc.2018.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 03/08/2018] [Accepted: 03/25/2018] [Indexed: 01/09/2023]
Abstract
To investigate the effects of heterologous adipose-derived stem cells (ADSCs) on autologous full-thickness skin grafts, we designed a first-intention healing model using Wistar rats. We harvested and sutured two full-thickness skin grafts in the dorsal recipient beds of 15 rats, randomized into three groups. In the treatment group, 1 × 106 ADSCs resuspended in saline solution (200 μL) were administered subcutaneously to the skin graft. The control group received only saline solution subcutaneously, whereas the negative control group did not receive any treatment. Compressive dressings were maintained until postoperative day 5. The grafts were assessed by two observers, who checked for the presence of epidermolysis on day 14. Planimetry showed the relative areas of normal skin, redness, ulceration, and contraction. Graft samples were obtained on day 14 and stained with hematoxylin and eosin and Masson's trichrome. Epidermal analysis evaluated thickening, keratosis, acanthosis, hydropic degeneration, and inflammatory infiltrate. Dermal evaluation investigated the absence of hair follicles, granulation tissue formation, presence of inflammatory infiltrate, and collagen deposition. Immunohistochemistry was performed for dermal anti-VEGF and epidermal anti-Ki-67 staining. The ADSC group presented better macroscopic aspects, lower incidence of epidermolysis, and less loss of hair follicles. In addition, the ADSC group presented the lowest frequency of histopathological changes in the dermis and epidermis, as well as the largest subcutaneous and granulation tissue VEGF averages and the weakest Ki-67 staining of the epidermal basal layer. Subcutaneous administration of ADSCs may improve the integration of skin grafts, reducing the deleterious effects of ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Silvana Bellini Vidor
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Paula Barros Terraciano
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Soldatelli Valente
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Verônica Machado Rolim
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiana Palma Kuhl
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Laura Silveira Ayres
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tuane Nerissa Alves Garcez
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Emerim Lemos
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Sabrina Beal Pizzato
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - David Driemeier
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Emerson Antonio Contesini
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Chehelcheraghi F, Abbaszadeh A, Tavafi M. Skin Mast Cell Promotion in Random Skin Flaps in Rats using Bone Marrow Mesenchymal Stem Cells and Amniotic Membrane. IRANIAN BIOMEDICAL JOURNAL 2018; 22:322-30. [PMID: 29506347 PMCID: PMC6058190 DOI: 10.29252/ibj.22.5.322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background Skin flap procedures are employed in plastic surgery, but failure can lead to necrosis of the flap. Studies have used bone marrow mesenchymal stem cells (BM-MSCs) to improve flap viability. BM-MSCs and acellular amniotic membrane (AAM) have been introduced as alternatives. The objective of this study was to evaluate the effect of BM-MSCs and AAM on mast cells of random skin flaps (RSF) in rats. Methods RSFs (80 × 30 mm) were created on 40 rats that were randomly assigned to one of four groups, including (I) AAM, (II) BM-MSCs, (III) BM-MSCs/AAM, and (IV) saline (control). Transplantation was carried out during the procedure (zero day). Flap necrosis was observed on day 7, and skin samples were collected from the transition line of the flap to evaluate the total number and types of mast cells. The development and the total number of mast cells were related to the development of capillaries. Results The results of one-way ANOVA indicated that there was no statistically significant difference between the mean numbers of mast cell types for different study groups. However, the difference between the total number of mast cells in the study groups was statistically significant (p = 0.001). Conclusion The present study suggests that the use of AAM/BM-MSCs can improve the total number of mast cells and accelerate the growth of capillaries at the transient site in RSFs in rats.
Collapse
Affiliation(s)
- Farzaneh Chehelcheraghi
- Department of Anatomical Sciences, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abolfazl Abbaszadeh
- Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Magid Tavafi
- Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
10
|
Mardani M, Roshankhah S, Hashemibeni B, Salahshoor M, Naghsh E, Esfandiari E. Induction of chondrogenic differentiation of human adipose-derived stem cells by low frequency electric field. Adv Biomed Res 2016; 5:97. [PMID: 27308269 PMCID: PMC4908790 DOI: 10.4103/2277-9175.183146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/01/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Since when the cartilage damage (e.g., with the osteoarthritis) it could not be repaired in the body, hence for its reconstruction needs cell therapy. For this purpose, adipose-derived stem cells (ADSCs) is one of the best cell sources because by the tissue engineering techniques it can be differentiated into chondrocytes. Chemical and physical inducers is required order to stem cells to chondrocytes differentiating. We have decided to define the role of electric field (EF) in inducing chondrogenesis process. MATERIALS AND METHODS A low frequency EF applied the ADSCs as a physical inducer for chondrogenesis in a 3D micromass culture system which ADSCs were extracted from subcutaneous abdominal adipose tissue. Also enzyme-linked immunosorbent assay, methyl thiazolyl tetrazolium, real time polymerase chain reaction and flowcytometry techniques were used for this study. RESULTS We found that the 20 minutes application of 1 kHz, 20 mv/cm EF leads to chondrogenesis in ADSCs. Although our results suggest that application of physical (EF) and chemical (transforming growth factor-β3) inducers at the same time, have best results in expression of collagen type II and SOX9 genes. It is also seen EF makes significant decreased expression of collagens type I and X genes. CONCLUSION The low frequency EF can be a good motivator to promote chondrogenic differentiation of human ADSCs.
Collapse
Affiliation(s)
- Mohammad Mardani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Roshankhah
- Fertility and Infertility Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Salahshoor
- Fertility and Infertility Research Center, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Naghsh
- Department of Electrical Engineering, Engineering School, Isfahan University, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Foroglou P, Karathanasis V, Demiri E, Koliakos G, Papadakis M. Role of adipose-derived stromal cells in pedicle skin flap survival in experimental animal models. World J Stem Cells 2016; 8:101-5. [PMID: 27022440 PMCID: PMC4807308 DOI: 10.4252/wjsc.v8.i3.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/23/2015] [Accepted: 01/21/2016] [Indexed: 02/06/2023] Open
Abstract
The use of skin flaps in reconstructive surgery is the first-line surgical treatment for the reconstruction of skin defects and is essentially considered the starting point of plastic surgery. Despite their excellent usability, their application includes general surgical risks or possible complications, the primary and most common is necrosis of the flap. To improve flap survival, researchers have used different methods, including the use of adipose-derived stem cells, with significant positive results. In our research we will report the use of adipose-derived stem cells in pedicle skin flap survival based on current literature on various experimental models in animals.
Collapse
Affiliation(s)
- Pericles Foroglou
- Pericles Foroglou, Vasileios Karathanasis, Efterpi Demiri, Department of Plastic Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasileios Karathanasis
- Pericles Foroglou, Vasileios Karathanasis, Efterpi Demiri, Department of Plastic Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efterpi Demiri
- Pericles Foroglou, Vasileios Karathanasis, Efterpi Demiri, Department of Plastic Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Koliakos
- Pericles Foroglou, Vasileios Karathanasis, Efterpi Demiri, Department of Plastic Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marios Papadakis
- Pericles Foroglou, Vasileios Karathanasis, Efterpi Demiri, Department of Plastic Surgery, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
12
|
Wang Z, Li Z, Dai T, Zong C, Liu Y, Liu B. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site. Int J Mol Sci 2016; 17:ijms17020070. [PMID: 26848656 PMCID: PMC4783872 DOI: 10.3390/ijms17020070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/11/2015] [Accepted: 12/28/2015] [Indexed: 02/08/2023] Open
Abstract
To determine the effect of adipose-derived stem cells (ADSCs) added to bone marrow-derived mesenchymal stem cell (MSC) sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID) mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.
Collapse
Affiliation(s)
- Zhifa Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhijin Li
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| | - Chunlin Zong
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| | - Yanpu Liu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| | - Bin Liu
- State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|