1
|
Lu Y, Chiang J, Zhang R, Roche PA, Hodes RJ. TRAF6 and TRAF2/3 Binding Motifs in CD40 Differentially Regulate B Cell Function in T-Dependent Antibody Responses and Dendritic Cell Function in Experimental Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1814-1822. [PMID: 37921511 PMCID: PMC10694030 DOI: 10.4049/jimmunol.2300607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Expression of the costimulatory molecule CD40 on both B cells and dendritic cells (DCs) is required for induction of experimental autoimmune encephalomyelitis (EAE), and cell-autonomous CD40 expression on B cells is required for primary T-dependent (TD) Ab responses. We now ask whether the function of CD40 expressed by different cell types in these responses is mediated by the same or different cytoplasmic domains. CD40 has been reported to possess multiple cytoplasmic domains, including distinct TRAF6 and TRAF2/3 binding motifs. To elucidate the in vivo function of these motifs in B cells and DCs involved in EAE and TD germinal center responses, we have generated knock-in mice containing distinct CD40 cytoplasmic domain TRAF-binding site mutations and have used these animals, together with bone marrow chimeric mice, to assess the roles that these motifs play in CD40 function. We found that both TRAF2/3 and TRAF6 motifs of CD40 are critically involved in EAE induction and demonstrated that this is mediated by a role of both motifs for priming of pathogenic T cells by DCs. In contrast, the TRAF2/3 binding motif, but not the TRAF6 binding motif, is required for B cell CD40 function in TD high-affinity Ab responses. These data demonstrate that the requirements for expression of specific TRAF-binding CD40 motifs differ for B cells or DCs that function in specific immune responses and thus identify targets for intervention to modulate these responses.
Collapse
Affiliation(s)
- Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jeffrey Chiang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ray Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul A. Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Richard J. Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Zhou S, Luo Y, Lovell JF. Vaccine approaches for antigen capture by liposomes. Expert Rev Vaccines 2023; 22:1022-1040. [PMID: 37878481 PMCID: PMC10872528 DOI: 10.1080/14760584.2023.2274479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Liposomes have been used as carriers for vaccine adjuvants and antigens due to their inherent biocompatibility and versatility as delivery vehicles. Two vial admixture of protein antigens with liposome-formulated immunostimulatory adjuvants has become a broadly used clinical vaccine preparation approach. Compared to freely soluble antigens, liposome-associated forms can enhance antigen delivery to antigen-presenting cells and co-deliver antigens with adjuvants, leading to improved vaccine efficacy. AREAS COVERED Several antigen-capture strategies for liposomal vaccines have been developed for proteins, peptides, and nucleic acids. Specific antigen delivery methodologies are discussed, including electrostatic adsorption, encapsulation inside the liposome aqueous core, and covalent and non-covalent antigen capture. EXPERT OPINION Several commercial vaccines include active lipid components, highlighting an increasingly prominent role of liposomes and lipid nanoparticles in vaccine development. Utilizing liposomes to associate antigens offers potential advantages, including antigen and adjuvant dose-sparing, co-delivery of antigen and adjuvant to immune cells, and enhanced immunogenicity. Antigen capture by liposomes has demonstrated feasibility in clinical testing. New antigen-capture techniques have been developed and appear to be of interest for vaccine development.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Yuan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
3
|
Lu Y, Xu M, Dorrier CE, Zhang R, Mayer CT, Wagner D, McGavern DB, Hodes RJ. CD40 Drives Central Nervous System Autoimmune Disease by Inducing Complementary Effector Programs via B Cells and Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2083-2092. [PMID: 36426970 PMCID: PMC10065987 DOI: 10.4049/jimmunol.2200439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/19/2022] [Indexed: 01/04/2023]
Abstract
Costimulatory CD40 plays an essential role in autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), a murine model of human multiple sclerosis (MS). However, how CD40 drives autoimmune disease pathogenesis is not well defined. Here, we used a conditional knockout approach to determine how CD40 orchestrates a CNS autoimmune disease induced by recombinant human myelin oligodendrocyte glycoprotein (rhMOG). We found that deletion of CD40 in either dendritic cells (DCs) or B cells profoundly reduced EAE disease pathogenesis. Mechanistically, CD40 expression on DCs was required for priming pathogenic Th cells in peripheral draining lymph nodes and promoting their appearance in the CNS. By contrast, B cell CD40 was essential for class-switched MOG-specific Ab production, which played a crucial role in disease pathogenesis. In fact, passive transfer of MOG-immune serum or IgG into mice lacking CD40 on B cells but not DCs reconstituted autoimmune disease, which was associated with inundation of the spinal cord parenchyma by Ig and complement. These data demonstrate that CD40 supports distinct effector programs in B cells and DCs that converge to drive a CNS autoimmune disease and identify targets for intervention.
Collapse
Affiliation(s)
- Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Max Xu
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cayce E. Dorrier
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ray Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian T. Mayer
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wagner
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J. Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Leibler C, Thiolat A, Elsner RA, El Karoui K, Samson C, Grimbert P. Costimulatory blockade molecules and B-cell-mediated immune response: current knowledge and perspectives. Kidney Int 2019; 95:774-786. [PMID: 30711200 DOI: 10.1016/j.kint.2018.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
There is an urgent need for therapeutic agents that target humoral alloimmunity in solid organ transplantation. This includes sensitized patients with preformed donor-specific human leukocyte antigen antibodies and patients who develop de novo donor-specific antibodies, both of which are associated with acute and chronic antibody-mediated rejection and allograft loss. In the last decade, both experimental and clinical studies highlighted the major impact of costimulation molecules in the control of immune responses both in the field of transplantation and autoimmune disease. Although these molecules have been initially developed to control the early steps of T-cell activation, recent evidence also supports their influence at several steps of the humoral response. In this review, we aim to provide an overview of the current knowledge of the effects of costimulatory blockade agents on humoral responses in both autoimmune and allogeneic contexts. We first present the effects of costimulatory molecules on the different steps of alloantibody production. We then summarize mechanisms and clinical results observed using cytotoxic T lymphocyte antigen-4 (CTLA4)-Ig molecules both in transplantation and autoimmunity. Finally, we present the potential interest and implications of other costimulatory family members as therapeutic targets, with emphasis on combinatorial approaches, for the optimal control of the alloantigen-specific humoral response.
Collapse
Affiliation(s)
- Claire Leibler
- Service de Néphrologie et Transplantation, Pôle Cancérologie-Immunité-Transplantation-Infectiologie, Paris-Est Creteil, France; Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allan Thiolat
- Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France
| | - Rebecca A Elsner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Khalil El Karoui
- Service de Néphrologie et Transplantation, Pôle Cancérologie-Immunité-Transplantation-Infectiologie, Paris-Est Creteil, France; Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France
| | - Chloe Samson
- Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France
| | - Philippe Grimbert
- Service de Néphrologie et Transplantation, Pôle Cancérologie-Immunité-Transplantation-Infectiologie, Paris-Est Creteil, France; Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France.
| |
Collapse
|
5
|
Liu Y, Seto NL, Carmona-Rivera C, Kaplan MJ. Accelerated model of lupus autoimmunity and vasculopathy driven by toll-like receptor 7/9 imbalance. Lupus Sci Med 2018; 5:e000259. [PMID: 29765617 PMCID: PMC5950641 DOI: 10.1136/lupus-2018-000259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022]
Abstract
Objectives Activation of endosomal toll-like receptor (TLR)7 or TLR9 has been proposed as a critical step for the initiation and development of SLE. Traditional spontaneous lupus models normally introduce multiple risk alleles, thereby adding additional confounding factors. In the induced lupus models, the role of TLR9 remains unclear. In the present study, we explored the role of an imbalance between TLR7 and TLR9 pathways in the pathogenesis of lupus and its associated vasculopathy using the imiquimod model in TLR9 KO/B6 background. Methods Wild type (WT) and Tlr9-/- mice were epicutaneously treated with imiquimod cream 5% on both ears three times per week for indicated times. At euthanasia, mice were analysed for organ involvement, endothelium-dependent vasorelaxation, serum autoantibodies, and innate and adaptive immune responses. Results Compared with the lupus-like phenotype that develops in imiquimod-treated WT mice, Tlr9-/- mice exposed to imiquimod have increased severity of autoimmunity features and inflammatory phenotype that develops at earlier stages. These abnormalities are characterised by enhanced TLR7 expression and immune activation, increased immune complex deposition, Th1 T cells and dendritic cell kidney infiltration and significant impairments in endothelial function. Modulation of TLR7 expression was observed in the Tlr9-/- mice. Conclusions These findings further underscore the protective role of TLR9 in TLR7-driven autoimmunity and also in the development of vasculopathy, further strengthening the importance of tightly manipulating TLRs in putative therapeutic strategies. This study provides a new model of accelerated lupus phenotype driven by danger-associated molecular patterns.
Collapse
Affiliation(s)
- Yudong Liu
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nickie L Seto
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Microparticles produced by human papillomavirus type 16 E7-expressing cells impair antigen presenting cell function and the cytotoxic T cell response. Sci Rep 2018; 8:2373. [PMID: 29402982 PMCID: PMC5799164 DOI: 10.1038/s41598-018-20779-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/23/2018] [Indexed: 01/08/2023] Open
Abstract
High-risk, cancer-causing human papillomaviruses (HPV) cause infections of the epidermis that may progress to cancer, including cervical cancer. Viral persistence, contributed to by viral evasion of the host immune response, is associated with the likelihood of cancer developing. Langerhans cells (LCs) are the only professional antigen presenting cells located in the epidermis, therefore may influence the antiviral immune response. Microparticles, or microvesicles, are small membrane particles shed by cells that can exert effects on other cells at both a local and systemic level. We found increased numbers of microparticles were shed from human or mouse keratinocytes expressing the HPV16 E7 oncoprotein, compared with control keratinocytes. Co-culture of LCs with microparticles from E7-expressing cells suppressed the cytotoxic T cell response. We attributed this, at least in part, to the reduction in surface of CD40 and intracellular pro-inflammatory cytokine IL-12 p40 subunit that we measured in the LCs. The evidence provided here shows that co-culture of E7-microparticles with LCs inhibits antigen-specific cytotoxicity. This is an important finding, suggesting that microparticles from HPV-infected cells could suppress the T cell response by regulating LCs, potentially contributing to persistence of HPV infection and cancer.
Collapse
|
7
|
Watanabe M, Fujihara C, Radtke AJ, Chiang YJ, Bhatia S, Germain RN, Hodes RJ. Co-stimulatory function in primary germinal center responses: CD40 and B7 are required on distinct antigen-presenting cells. J Exp Med 2017; 214:2795-2810. [PMID: 28768709 PMCID: PMC5584122 DOI: 10.1084/jem.20161955] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/23/2017] [Accepted: 06/23/2017] [Indexed: 01/28/2023] Open
Abstract
Watanabe et al. report that, contrary to the prevailing paradigm, there are unique cellular requirements for B7 and CD40 expression in primary GC responses. B7 is required on DCs but not on B cells, whereas CD40 is required on B cells but not on DCs for generation of Tfh cells, GC B cells, and high-affinity class-switched antibody production. T cell–dependent germinal center (GC) responses require coordinated interactions of T cells with two antigen-presenting cell (APC) populations, B cells and dendritic cells (DCs), in the presence of B7- and CD40-dependent co-stimulatory pathways. Contrary to the prevailing paradigm, we found unique cellular requirements for B7 and CD40 expression in primary GC responses to vaccine immunization with protein antigen and adjuvant: B7 was required on DCs but was not required on B cells, whereas CD40 was required on B cells but not on DCs in the generation of antigen-specific follicular helper T cells, antigen-specific GC B cells, and high-affinity class-switched antibody production. There was, in fact, no requirement for coexpression of B7 and CD40 on the same cell in these responses. Our findings support a substantially revised model for co-stimulatory function in the primary GC response, with crucial and distinct contributions of B7- and CD40-dependent pathways expressed by different APC populations and with important implications for understanding how to optimize vaccine responses or limit autoimmunity.
Collapse
Affiliation(s)
- Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Chiharu Fujihara
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Andrea J Radtke
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Y Jeffrey Chiang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sumeena Bhatia
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ronald N Germain
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Richard J Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Zorzopulos J, Opal SM, Hernando-Insúa A, Rodriguez JM, Elías F, Fló J, López RA, Chasseing NA, Lux-Lantos VA, Coronel MF, Franco R, Montaner AD, Horn DL. Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World J Stem Cells 2017; 9:45-67. [PMID: 28396715 PMCID: PMC5368622 DOI: 10.4252/wjsc.v9.i3.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
The immune responses of humans and animals to insults (i.e., infections, traumas, tumoral transformation and radiation) are based on an intricate network of cells and chemical messengers. Abnormally high inflammation immediately after insult or abnormally prolonged pro-inflammatory stimuli bringing about chronic inflammation can lead to life-threatening or severely debilitating diseases. Mesenchymal stem cell (MSC) transplant has proved to be an effective therapy in preclinical studies which evaluated a vast diversity of inflammatory conditions. MSCs lead to resolution of inflammation, preparation for regeneration and actual regeneration, and then ultimate return to normal baseline or homeostasis. However, in clinical trials of transplanted MSCs, the expectations of great medical benefit have not yet been fulfilled. As a practical alternative to MSC transplant, a synthetic drug with the capacity to boost endogenous MSC expansion and/or activation may also be effective. Regarding this, IMT504, the prototype of a major class of immunomodulatory oligonucleotides, induces in vivo expansion of MSCs, resulting in a marked improvement in preclinical models of neuropathic pain, osteoporosis, diabetes and sepsis. IMT504 is easily manufactured and has an excellent preclinical safety record. In the small number of patients studied thus far, IMT504 has been well-tolerated, even at very high dosage. Further clinical investigation is necessary to demonstrate the utility of IMT504 for resolution of inflammation and regeneration in a broad array of human diseases that would likely benefit from an immunoprotective/immunoregenerative therapy.
Collapse
|
9
|
Soutar DA, Doucette CD, Liwski RS, Hoskin DW. Piperine, a Pungent Alkaloid from Black Pepper, Inhibits B Lymphocyte Activation and Effector Functions. Phytother Res 2017; 31:466-474. [PMID: 28102026 DOI: 10.1002/ptr.5772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 12/28/2016] [Indexed: 11/09/2022]
Abstract
Piperine has several well-documented anti-inflammatory properties; however, little is known regarding its effect on humoral immunity. In this study, we describe the immunosuppressive effect of piperine on B lymphocytes, which are integral to the humoral immune response. Mouse B cells were cultured in the absence or presence of non-cytotoxic concentrations (25, 50, and 100 μM) of piperine during T-dependent or T-independent stimulation. Piperine inhibited B cell proliferation by causing G0/G1 phase cell cycle arrest in association with reduced expression of cyclin D2 and D3. The inhibitory effect of piperine was not mediated through transient receptor potential vanilloid-1 ion channel (TRPV1) because piperine also inhibited the proliferation of B cells from TRPV1-deficient mice. Expression of class II major histocompatibility complex molecules and costimulatory CD40 and CD86 on B lymphocytes was reduced in the presence of piperine, as was B cell-mediated antigen presentation to syngeneic T cells. In addition, piperine inhibited B cell synthesis of interleukin (IL)-6 and IL-10 cytokines, as well as IgM, IgG2b, and IgG3 immunoglobulins. The inhibitory effect of piperine on B lymphocyte activation and effector function warrants further investigation for possible application in the treatment of pathologies related to inappropriate humoral immune responses. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- David A Soutar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Carolyn D Doucette
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Robert S Liwski
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - David W Hoskin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
10
|
Cognasse F, Chavarin P, Acquart S, Sabido O, Beniguel L, Genin C, Richard Y, Garraud O. Differential Downstream Effects of Cd40 Ligation Mediated by Membrane or Soluble CD40L and Agonistic Ab: A Study on Purified Human B Cells. Int J Immunopathol Pharmacol 2016; 18:65-74. [PMID: 15698512 DOI: 10.1177/039463200501800108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the addition of various cytokines, the CD40-CD40 ligand (CD40L) system can act as a T-helper cell surrogate to permit B lymphocytes to produce large amounts of polyclonal Ig. In the present study, we tested six CD40-CD40L stimulation models: (i, ii) soluble agonistic 89 and G28.5 mAbs; (iii, iv) ‘89’ and ‘G28.5’ bound via their Fc fragments on CDw32-transfected mouse fibroblasts; (v) purified, soluble, trimeric human CD40L molecules (sCD40L); and (vi) human CD40L expressed by a CD40L-transfected mouse fibroblastic cell line (LCD40L). Target B cells consisted of purified blood and tonsillar CD19+ lymphocytes cultured in the presence of CD40 stimuli and IL-2 and IL-10, added at the onset of each B cell culture. A) There was differential expression of CD69, CD80 and CD86 exposure to sCD40L and LCD40L was ensued by the strongest % MFI changes over control. B) In blood B cells, mAbs and sCD40L induced IgA, IgM and IgG production almost equally well; LCD40L proved less efficient. In contrast, in tonsil B cells, LCD40L induced significantly more IgA, IgG 1, IgG3and IgM production than other signals. Using certain CD40/CD40L stimuli to model in vitro Ig production, a system used regularly in many laboratories, may affect the interpretation based on the cell type and on the CD40/CD40L system used.
Collapse
Affiliation(s)
- F Cognasse
- GIMAP-EA 3064, Faculté de Médecine, Université de Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Haanstra KG, Dijkman K, Bashir N, Bauer J, Mary C, Poirier N, Baker P, Crossan CL, Scobie L, 't Hart BA, Vanhove B. Selective blockade of CD28-mediated T cell costimulation protects rhesus monkeys against acute fatal experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2015; 194:1454-66. [PMID: 25589073 DOI: 10.4049/jimmunol.1402563] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Costimulatory and coinhibitory receptor-ligand pairs on T cells and APC control the immune response. We have investigated whether selective blockade of CD28-CD80/86 costimulatory interactions, which preserves the coinhibitory CTLA4-CD80/86 interactions and the function of regulatory T (Treg) cells, abrogates the induction of experimental autoimmune encephalomyelitis (EAE) in rhesus monkeys. EAE was induced by intracutaneous immunization with recombinant human myelin oligodendrocyte glycoprotein (rhMOG) in CFA on day 0. FR104 is a monovalent, PEGylated-humanized Fab' Ab fragment against human CD28, cross-reactive with rhesus monkey CD28. FR104 or placebo was administered on days 0, 7, 14, and 21. FR104 levels remained high until the end of the study (day 42). Placebo-treated animals all developed clinical EAE between days 12 and 27. FR104-treated animals did not develop clinical EAE and were sacrificed at the end of the study resulting in a significantly prolonged survival. FR104 treatment diminished T and B cell responses against rhMOG, significantly reduced CNS inflammation and prevented demyelination. The inflammatory profile in the cerebrospinal fluid and brain material was also strongly reduced. Recrudescence of latent virus was investigated in blood, spleen, and brain. No differences between groups were observed for the β-herpesvirus CMV and the polyomaviruses SV40 and SA12. Cross-sectional measurement of lymphocryptovirus, the rhesus monkey EBV, demonstrated elevated levels in the blood of FR104-treated animals. Blocking rhesus monkey CD28 with FR104 mitigated autoreactive T and B cell activation and prevented CNS pathology in the rhMOG/CFA EAE model in rhesus monkeys.
Collapse
Affiliation(s)
- Krista G Haanstra
- Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands;
| | - Karin Dijkman
- Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands
| | - Noun Bashir
- Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands
| | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | - Paul Baker
- Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | | | - Linda Scobie
- Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Bert A 't Hart
- Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands; University of Groningen, University Medical Center, Department of Neuroscience, 9713 GZ Groningen, the Netherlands; and
| | - Bernard Vanhove
- Effimune SAS, 44035 Nantes, France; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064, 44093 Nantes, France
| |
Collapse
|
12
|
Aung LL, Balashov KE. Decreased Dicer expression is linked to increased expression of co-stimulatory molecule CD80 on B cells in multiple sclerosis. Mult Scler 2014; 21:1131-8. [PMID: 25480859 DOI: 10.1177/1352458514560923] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/20/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated inflammatory disease of the central nervous system. B cells have been strongly implicated in disease pathogenesis based on clinical trials with B-cell ablation. There is a growing body of evidence linking microRNAs with regulation of the immune system. Dicer, a key enzyme involved in microRNA biogenesis, is necessary for normal B-cell function. OBJECTIVE We aimed to determine whether Dicer expression is impaired in B cells and is linked to increased expression co-stimulatory molecules in patients with MS. METHODS B cells were separated from blood samples of MS patients and healthy subjects. Expression of Dicer and co-stimulatory molecules CD80 and CD86 was tested. The effect of Dicer modulation on CD80 and CD86 expression in B cells was studied. RESULTS Dicer expression was decreased in B cells but not in monocytes of patients with MS compared with healthy subjects. CD80 and CD86 expression was increased on B cells of MS patients compared with healthy subjects. Inhibition of Dicer expression in B cells by small interfering RNA led to increased expression of CD80. CONCLUSION Dicer expression is decreased and is mechanistically linked to increased expression of co-stimulatory molecule CD80 in B cells of patients with MS. This may contribute to activation of immune responses in MS.
Collapse
Affiliation(s)
- Latt Latt Aung
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Konstantin E Balashov
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
13
|
Fujihara C, Williams JA, Watanabe M, Jeon H, Sharrow SO, Hodes RJ. T cell-B cell thymic cross-talk: maintenance and function of thymic B cells requires cognate CD40-CD40 ligand interaction. THE JOURNAL OF IMMUNOLOGY 2014; 193:5534-44. [PMID: 25344473 DOI: 10.4049/jimmunol.1401655] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thymic development requires bidirectional interaction or cross-talk between developing T cells and thymic stromal cells, a relationship that has been best characterized for the interaction between thymocytes and thymic epithelial cells. We have characterized in this article the requirement for similar cross-talk in the maintenance and function of thymic B cells, another population that plays a role in selection of developing thymic T cells. We found that maintenance of thymic B cells is strongly dependent on the presence of mature single-positive thymocytes and on the interactions of these T cells with specific Ag ligand. Maintenance of thymic B cell number is strongly dependent on B cell-autonomous expression of CD40, but not MHC class II, indicating that direct engagement of CD40 on thymic B cells is necessary to support their maintenance and proliferation. Thymic B cells can mediate negative selection of superantigen-specific, self-reactive, single-positive thymocytes, and we show that CD40 expression on B cells is critical for this negative selection. Cross-talk with thymic T cells is thus required to support the thymic B cell population through a pathway that requires cell-autonomous expression of CD40, and that reciprocally functions in negative selection of autoreactive T cells.
Collapse
Affiliation(s)
- Chiharu Fujihara
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joy A Williams
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hyein Jeon
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Susan O Sharrow
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Richard J Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
14
|
Santos PDA, Lorena VMB, Fernandes É, Sales IRF, Albuquerque MCP, Gomes Y, Costa VMA, Souza VMO. Maternal schistosomiasis alters costimulatory molecules expression in antigen-presenting cells from adult offspring mice. Exp Parasitol 2014; 141:62-7. [PMID: 24657585 DOI: 10.1016/j.exppara.2014.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/20/2014] [Accepted: 03/12/2014] [Indexed: 01/11/2023]
Abstract
Adult offspring of Schistosoma mansoni-infected mice showed alterations in immunity to a heterologous antigen, ovalbumin (OA). Prior breastfeeding induced increased production of anti-OA antibodies, while pregnancy impaired it. Here, we investigated the expression of costimulatory molecules on antigen-presenting cells (APCs) of the adult offspring of S. mansoni-infected mothers in response to OA. Newborn mice were divided into three groups: animals Born Infected Mothers (BIM) suckled by non-infected mothers; animals from non-infected mothers Suckled Infected Mothers (SIM); and another group of mice born from and suckled by non-infected mothers (CONTROL). The adult offspring were immunized with subcutaneous OA+adjuvant, and 3-8days following immunization, double labeling was performed (CD45R/B220 or CD11c and CD80, CD86, CD40 or HLA-DR) on spleen cells. In comparison to the CONTROL group, an early increased frequency of CD40+/CD80+ B cells was observed in SIM mice (p<0.001/p<0.05), but no alteration of CD11c+ cells was observed. In contrast, in BIM mice, the frequency of CD86+/CD11c+ cells (p<0.05) and CD40+/CD80+/CD86+ B cells (p<0.01/p<0.01/p<0.05) was drastically reduced. In conclusion, previous suckling by S. mansoni-infected mothers enabled improved antigen presentation by B cells in adult offspring, whereas gestation in these mothers imprinted offspring with weak antigen presentation by APCs during the immune response to a non-related antigen.
Collapse
Affiliation(s)
- Patrícia d'Emery Alves Santos
- Laboratory of Immunology, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Érica Fernandes
- Laboratory of Immunology, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, PE, Brazil
| | - Iana Rafaela Fernandes Sales
- Laboratory of Immunology, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, PE, Brazil
| | - Mônica Camelo Pessoa Albuquerque
- Laboratory of Immunology, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, PE, Brazil; Department of Tropical Medicine, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Yara Gomes
- Aggeu Magalhães Research Center (CPqAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, Brazil
| | - Vlaudia Maria Assis Costa
- Laboratory of Immunology, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, PE, Brazil; Department of Tropical Medicine, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Valdênia Maria Oliveira Souza
- Laboratory of Immunology, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, PE, Brazil; Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
15
|
Finnegan A, Ashaye S, Hamel KM. B effector cells in rheumatoid arthritis and experimental arthritis. Autoimmunity 2012; 45:353-63. [PMID: 22432771 DOI: 10.3109/08916934.2012.665526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis is a chronic autoimmune immune disease affecting approximately 1% of the population. There has been a renewed interest in the role of B cells in rheumatoid arthritis based on the evidence that B cell depletion therapy is effective in the treatment of disease. This review summarizes the current knowledge of the mechanisms by which B cells contribute to autoimmune arthritis including roles as autoantibody producing cells, antigen-presenting cells, cytokine producing cells, and regulatory cells.
Collapse
Affiliation(s)
- Alison Finnegan
- Department of Medicine, Section of Rheumatology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
16
|
Good-Jacobson KL, Song E, Anderson S, Sharpe AH, Shlomchik MJ. CD80 expression on B cells regulates murine T follicular helper development, germinal center B cell survival, and plasma cell generation. THE JOURNAL OF IMMUNOLOGY 2012; 188:4217-25. [PMID: 22450810 DOI: 10.4049/jimmunol.1102885] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Germinal center (GC) B cells and T follicular helper (T(FH)) cells interact in the production of high-affinity long-lived plasma cells (PCs) and memory B cells, although the mechanisms regulating the formation of these long-lived populations remain unclear. Because CD80 is one of the few markers shared by human and murine memory B cells, we investigated its role in the development of GCs, memory cells, and PCs. In CD80-deficient mice, fewer long-lived PCs were generated upon immunization compared with that in B6 controls. In concert, the absence of CD80 resulted in an increase in apoptotic GC B cells during the contraction phase of the GC. CD80(-/-) mice had fewer T(FH) cells compared with that of B6, and residual T(FH) cells failed to mature, with decreased ICOS and PD-1 expression and decreased synthesis of IL-21 mRNA. Mixed bone marrow chimeras demonstrated a B cell-intrinsic requirement for CD80 expression for normal T(FH) cell and PC development. Therefore, B cell expression of CD80 plays a critical role in regulating B-T interactions in both early and late GC responses. This, in turn, results in impaired ability to produce long-lived PCs. These data provide new insights into the development of GCs and Ab-forming cells and the functions of CD80 in humoral immunity.
Collapse
Affiliation(s)
- Kim L Good-Jacobson
- Department of Laboratory Medicine, Yale University, New Haven, CT 06519, USA
| | | | | | | | | |
Collapse
|
17
|
Jain S, Chodisetti SB, Agrewala JN. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells. PLoS One 2011; 6:e20651. [PMID: 21674065 PMCID: PMC3107243 DOI: 10.1371/journal.pone.0020651] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/06/2011] [Indexed: 12/15/2022] Open
Abstract
Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40 - molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.
Collapse
Affiliation(s)
- Shweta Jain
- Immunology Laboratory, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Sathi Babu Chodisetti
- Immunology Laboratory, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Javed N. Agrewala
- Immunology Laboratory, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
- * E-mail: .
| |
Collapse
|
18
|
Hansson J, Bosco N, Favre L, Raymond F, Oliveira M, Metairon S, Mansourian R, Blum S, Kussmann M, Benyacoub J. Influence of gut microbiota on mouse B2 B cell ontogeny and function. Mol Immunol 2011; 48:1091-101. [DOI: 10.1016/j.molimm.2011.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/02/2011] [Accepted: 02/06/2011] [Indexed: 12/21/2022]
|
19
|
Rau FC, Dieter J, Luo Z, Priest SO, Baumgarth N. B7-1/2 (CD80/CD86) direct signaling to B cells enhances IgG secretion. THE JOURNAL OF IMMUNOLOGY 2010; 183:7661-71. [PMID: 19933871 DOI: 10.4049/jimmunol.0803783] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell responses are regulated by Ag recognition, costimulatory signals provided by interaction with helper T cells, and by innate signals. We recently provided evidence for a link between the effects of innate and costimulatory signals on B cells during influenza virus infection, by demonstrating that most B cells in the regional lymph nodes of the respiratory tract enhance surface expression of the costimulator B7-2 (CD86) within 24-48 h following infection via a type I IFNR-dependent mechanisms, a finding we are confirming here. While the role of B7-1/2 for helper T cell activation is well documented, its role in direct B cell regulation is poorly understood. Here, our in vivo studies with mixed bone marrow irradiation chimeric mice, lacking B7-1/2 only on B cells, demonstrated that B7-1/2 expression is crucial for induction of maximal local, but to a lesser extent systemic, IgG Ab responses following influenza virus infection. In contrast to mice that completely lack B7-1/2 expression, loss of B7-1/2 on B cells alone did not significantly affect germinal center formation or the extent of CD4(+) T cell activation and IFN-gamma secretion. Instead, our in vitro studies identify a dramatic effect of B7-2 engagement on IgG, but not IgM secretion by already class-switched B cells. Concomitantly, B7-2 engagement induced expression of X-box binding protein 1 (XBP-1) and spliced XBP1, evidence for increased protein synthesis by these cells. Taken together, these results identify direct signaling through B7-1/2 as a potent regulator of IgG secretion by previously activated B cells.
Collapse
Affiliation(s)
- Friederike C Rau
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
20
|
Targeting novel antigens in the arterial wall in thromboangiitis obliterans. Folia Histochem Cytobiol 2010; 48:134-41. [PMID: 20529829 DOI: 10.2478/v10042-008-0104-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thromboangiitis obliterans is an inflammatory disease possibly resulting from cigarette smoking as a primary etiologic factor, perhaps as a delayed type of hypersensitivity or toxic angiitis. As little is known about the pathogenesis of the disease, we aimed to determine novel antigens that might be responsible from the local inflammatory reactions and structural changes observed in this disease. An indirect immunoperoxidase technique is used to examine the tissue samples obtained from the dorsalis pedis artery of affected individuals with twenty monoclonal antibodies. Among these several antigens which are not previously reported in TAO like CD34, CD44 and CD90 were determined in the tissue samples examined. On the other hand, many other antigens like cytokine/chemokine receptors, several enzymes and leukocyte/lymphocyte antigens were lacking giving some clues about the local pathological reactions. We briefly discussed our findings for several critical antigens those first described in the present work, possibly having roles in the development of the disease. Expression of the CD90/CD11c receptor/ligand pair seems to play an important role in mononuclear cell recruitment to the damage site. Vascular invasion of not only tunica intima but also the tunica media in affected vessels is clearly demonstrated using endothelial cell specific antigens.
Collapse
|
21
|
Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol 2009; 9:185-94. [PMID: 19240757 DOI: 10.1038/nri2508] [Citation(s) in RCA: 440] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infants and the elderly share a high vulnerability to infections and therefore have specific immunization requirements. Inducing potent and sustained B-cell responses is as challenging in infants as it is in older subjects. Several mechanisms to explain the decreased B-cell responses at the extremes of age apply to both infants and the elderly. These include intrinsic B-cell limitations as well as numerous microenvironmental factors in lymphoid organs and the bone marrow. This Review describes the mechanisms that shape B-cell responses at the extremes of age and how they could be taken into account to design more effective immunization strategies for these high-risk age groups.
Collapse
Affiliation(s)
- Claire-Anne Siegrist
- Departments of Pathology-Immunology and Pediatrics, WHO Collaborative Center for Neonatal Vaccinology, Medical Faculty of University of Geneva, Centre Medical Universitaire, Geneva 4, Switzerland.
| | | |
Collapse
|
22
|
Porter JF, Vavassori S, Covey LR. A polypyrimidine tract-binding protein-dependent pathway of mRNA stability initiates with CpG activation of primary B cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:3336-45. [PMID: 18714005 DOI: 10.4049/jimmunol.181.5.3336] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mRNA encoding CD154, a critical protein involved in both humoral and cell-mediated immune responses, is regulated at the posttranscriptional level by the binding of complex I, a polypyrimidine tract-binding (PTB) protein-containing complex, which acts to increase message stability at late times of activation. Our current work focuses on analyzing a similar complex in B cells, designated B-cpx I, which is increased in B cells activated by CpG engagement of the TLR9 receptor but not by activation through CD40. Expression profiling of transcripts from primary B cells identified 31 mRNA transcripts with elevated PTB binding upon activation. Two of these transcripts, Rab8A and cyclin D(2), contained binding sites for B-cpx I in their 3' untranslated regions (UTRs). Analysis of turnover of endogenous Rab8A transcript in B cells revealed that like CD154, the mRNA half-life increased following activation and insertion of the Rab8A B-cpx I binding site into a heterologous transcript led to a 3-fold increase in stability. Also, short hairpin RNA down-regulation of PTB resulted in a corresponding decrease in Rab8A mRNA half-life. Overall these data strongly support a novel pathway of mRNA turnover that is expressed both in T cells and B cells and depends on the formation of a PTB-containing stability complex in response to cellular activation.
Collapse
Affiliation(s)
- Joseph F Porter
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | | | | |
Collapse
|
23
|
Gebhardt C, Riehl A, Durchdewald M, Németh J, Fürstenberger G, Müller-Decker K, Enk A, Arnold B, Bierhaus A, Nawroth PP, Hess J, Angel P. RAGE signaling sustains inflammation and promotes tumor development. ACTA ACUST UNITED AC 2008; 205:275-85. [PMID: 18208974 PMCID: PMC2271015 DOI: 10.1084/jem.20070679] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A broad range of experimental and clinical evidence has highlighted the central role of chronic inflammation in promoting tumor development. However, the molecular mechanisms converting a transient inflammatory tissue reaction into a tumor-promoting microenvironment remain largely elusive. We show that mice deficient for the receptor for advanced glycation end-products (RAGE) are resistant to DMBA/TPA-induced skin carcinogenesis and exhibit a severe defect in sustaining inflammation during the promotion phase. Accordingly, RAGE is required for TPA-induced up-regulation of proinflammatory mediators, maintenance of immune cell infiltration, and epidermal hyperplasia. RAGE-dependent up-regulation of its potential ligands S100a8 and S100a9 supports the existence of an S100/RAGE-driven feed-forward loop in chronic inflammation and tumor promotion. Finally, bone marrow chimera experiments revealed that RAGE expression on immune cells, but not keratinocytes or endothelial cells, is essential for TPA-induced dermal infiltration and epidermal hyperplasia. We show that RAGE signaling drives the strength and maintenance of an inflammatory reaction during tumor promotion and provide direct genetic evidence for a novel role for RAGE in linking chronic inflammation and cancer.
Collapse
Affiliation(s)
- Christoffer Gebhardt
- Division of Signal Transduction and Growth Control, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
O'Neill SK, Cao Y, Hamel KM, Doodes PD, Hutas G, Finnegan A. Expression of CD80/86 on B cells is essential for autoreactive T cell activation and the development of arthritis. THE JOURNAL OF IMMUNOLOGY 2007; 179:5109-16. [PMID: 17911596 DOI: 10.4049/jimmunol.179.8.5109] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Depletion of B cells in rheumatoid arthritis is therapeutically efficacious. Yet, the mechanism by which B cells participate in the inflammatory process is unclear. We previously demonstrated that Ag-specific B cells have two important functions in the development of arthritis in a murine model of rheumatoid arthritis, proteoglycan (PG)-induced arthritis (PGIA). PG-specific B cells function as autoantibody-producing cells and as APCs that activate PG-specific T cells. Moreover, the costimulatory molecule CD86 is up-regulated on PG-specific B cells in response to stimulation with PG. To address the requirement for CD80/CD86 expression on B cells in the development of PGIA, we generated mixed bone marrow chimeras in which CD80/CD86 is specifically deleted on B cells and not on other APC populations. Chimeras with a specific deficiency in CD80/CD86 expression on B cells are resistant to the induction of PGIA. The concentration of PG-specific autoantibody is similar in mice sufficient or deficient for CD80/86-expressing B cells, which indicates that resistance to PGIA is not due to the suppression of PG-specific autoantibody production. CD80/86-deficient B cells failed to effectively activate PG-specific autoreactive T cells as indicated by the failure of T cells from PG-immunized CD80/86-deficient B cell chimeras to transfer arthritis into SCID mice. In vitro secondary recall responses to PG are also dependent on CD80/86-expressing B cells. These results demonstrate that a CD80/86:CD28 costimulatory interaction between B cells and T cells is required for autoreactive T cell activation and the induction of arthritis but not for B cell autoantibody production.
Collapse
Affiliation(s)
- Shannon K O'Neill
- Department of Immunology/Microbiology, Rush University, Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kin NW, Sanders VM. CD86 regulates IgG1 production via a CD19-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2007; 179:1516-23. [PMID: 17641017 DOI: 10.4049/jimmunol.179.3.1516] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD86 signals directly in a B cell to activate PI3K and increase the rate of IgG(1) production, without affecting germline transcription. However, the mechanism by which CD86 activates PI3K in a B cell and the relevance of CD86 stimulation in vivo remains unknown. We show that the addition of CD28/Ig to CD40 ligand/IL-4-activated wild-type, but not CD86- or CD19-deficient, B cells increased the level of phosphorylation for Lyn and CD19, as well as the amount of Lyn, Vav, and PI3K that immunoprecipitated with CD19. Adoptive transfer of CD86-deficient B cells and wild-type CD4(+) T cells into RAG2-deficient mice and immunization with trinitrophenylated keyhole limpet hemocyanin resulted in an IL-4 and germline IgG(1) response equivalent to control mice, but a decrease in serum IgG(1). Thus, our findings suggest that CD86 plays a key role in regulating the level of IgG(1) produced in vitro and in vivo, and that Lyn and CD19 may be the signaling intermediates activated by CD86 proximal to PI3K.
Collapse
Affiliation(s)
- Nicholas W Kin
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | | |
Collapse
|
26
|
Orlova VV, Choi EY, Xie C, Chavakis E, Bierhaus A, Ihanus E, Ballantyne CM, Gahmberg CG, Bianchi ME, Nawroth PP, Chavakis T. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 2007; 26:1129-39. [PMID: 17268551 PMCID: PMC1852832 DOI: 10.1038/sj.emboj.7601552] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 12/19/2006] [Indexed: 12/26/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is released extracellularly upon cell necrosis acting as a mediator in tissue injury and inflammation. However, the molecular mechanisms for the proinflammatory effect of HMGB1 are poorly understood. Here, we define a novel function of HMGB1 in promoting Mac-1-dependent neutrophil recruitment. HMGB1 administration induced rapid neutrophil recruitment in vivo. HMGB1-mediated recruitment was prevented in mice deficient in the beta2-integrin Mac-1 but not in those deficient in LFA-1. As observed by bone marrow chimera experiments, Mac-1-dependent neutrophil recruitment induced by HMGB1 required the presence of receptor for advanced glycation end products (RAGE) on neutrophils but not on endothelial cells. In vitro, HMGB1 enhanced the interaction between Mac-1 and RAGE. Consistently, HMGB1 activated Mac-1 as well as Mac-1-mediated adhesive and migratory functions of neutrophils in a RAGE-dependent manner. Moreover, HMGB1-induced activation of nuclear factor-kappaB in neutrophils required both Mac-1 and RAGE. Together, a novel HMGB1-dependent pathway for inflammatory cell recruitment and activation that requires the functional interplay between Mac-1 and RAGE is described here.
Collapse
Affiliation(s)
| | - Eun Young Choi
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD, USA
| | - Changping Xie
- Department of Internal Medicine I, University Heidelberg, Heidelberg, Germany
| | - Emmanouil Chavakis
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Frankfurt, Germany
| | - Angelika Bierhaus
- Department of Internal Medicine I, University Heidelberg, Heidelberg, Germany
| | - Eveliina Ihanus
- Division of Biochemistry, Faculty of Biosciences, University of Helsinki, Finland
| | - Christie M Ballantyne
- Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine and Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart Center, Houston, TX, USA
| | - Carl G Gahmberg
- Division of Biochemistry, Faculty of Biosciences, University of Helsinki, Finland
| | | | - Peter P Nawroth
- Department of Internal Medicine I, University Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
27
|
Qiu J, Terasaki PI, Miller J, Mizutani K, Cai J, Carosella ED. Soluble HLA-G expression and renal graft acceptance. Am J Transplant 2006; 6:2152-6. [PMID: 16780545 DOI: 10.1111/j.1600-6143.2006.01417.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
HLA-G is a potentially interesting molecule associated with immunosuppressive function. We survey here the presence of soluble HLA-G (sHLA-G) in serial serum samples of renal transplants. A total of 330 sera of from 65 patients were tested for sHLA-G with ELISA. IgG/IgM antibodies to HLA, and MICA antibodies were also previously tested. After serial analysis of the 65 patients' 330 sera, 50% of 26 patients in functioning group had consistent sHLA-G expression or became positive, in comparison to 20.5% among 39 patients who rejected their transplants (p=0.013). Thus sHLA-G was associated with functioning transplants. Eighty percent (77 of 96) of the HLA IgG positive sera had no sHLA-G expression, while 81.4% (83 of 102) of the HLA-G(+) sera had no HLA IgG (p=0.005), which showed a negative association between sHLA-G and the presence of HLA IgG antibodies (which was previously been shown to be associated with failure). In this preliminary survey, sHLA-G was found in the serum of about 30% of renal transplant patients. sHLA-G had a negative association with allograft failure from chronic rejection, and a negative relationship with the production of HLA IgG antibodies. The significance of sHLA-G in renal transplants remains to be determined.
Collapse
Affiliation(s)
- J Qiu
- Terasaki Foundation Laboratory, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
28
|
Dimitrova P, Ivanovska N. Host resistance to Candida albicans infection of mice with collagen-induced arthritis treated with leflunomide. Res Microbiol 2006; 157:525-30. [PMID: 16797932 DOI: 10.1016/j.resmic.2005.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 11/02/2005] [Accepted: 12/08/2005] [Indexed: 10/25/2022]
Abstract
The dehydro-orotate dehydrogenase inhibitor leflunomide is used for the treatment of rheumatoid arthritis. In the present study, its influence on host resistance to Candida albicans infection in mice with collagen-induced arthritis (CIA) was investigated. Leflunomide administered at a dose of 5 mg/kg for 5 consecutive days in mice with CIA inhibited collagen-specific cellular and humoral responses. The drug did not change the severity of primary C. albicans infection evaluated by kidney and liver colonization. At the early stage of infection leflunomide inhibited IFN-gamma production and enhanced IL-4 secretion. The effect of the drug on IL-4 production was less pronounced at the late phase of infection. Leflunomide enhanced anti-Candida IgM antibody production and diminished anti-Candida IgG antibody synthesis. This correlated with impaired resistance to reinfection. Results demonstrate that leflunomide administration to mice with collagen-induced arthritis might affect mechanisms of the late immune response to C. albicans infection.
Collapse
Affiliation(s)
- Petya Dimitrova
- Department of Immunology, Institute of Microbiology, 26 G. Bonchev Str., 1113 Sofia, Bulgaria
| | | |
Collapse
|
29
|
Caron J, Larivière L, Nacache M, Tam M, Stevenson MM, McKerly C, Gros P, Malo D. Influence of Slc11a1 on the outcome of Salmonella enterica serovar Enteritidis infection in mice is associated with Th polarization. Infect Immun 2006; 74:2787-802. [PMID: 16622216 PMCID: PMC1459719 DOI: 10.1128/iai.74.5.2787-2802.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic analyses identified Ses1 as a significant quantitative trait locus influencing the carrier state of 129S6 mice following a sublethal challenge with Salmonella enterica serovar Enteritidis. Previous studies have determined that Slc11a1 was an excellent candidate gene for Ses1. Kinetics of infection in 129S6 mice and Slc11a1-deficient (129S6-Slc11a1(tm1Mcg)) mice demonstrated that the wild-type allele of Slc11a1 contributed to the S. enterica serovar Enteritidis carrier state as early as 7 days postinfection. Gene expression profiling demonstrated that 129S6 mice had a significant up-regulation of proinflammatory genes associated with macrophage activation at day 10 postinfection, followed by a gradual increase in immunoglobulin transcripts, whereas 129S6-Slc11a1(tm1Mcg) mice had higher levels of immunoglobulins earlier in the infection. Quantitative reverse transcription-PCR revealed an increase in Th1 cytokine (Ifng and Il12) and Th1-specific transcription factor Tbx21 expression during infection in both the 129S6 and 129S6-Slc11a1(tm1Mcg) strains. However, the expression of Gata3, a transcription factor involved in Th2 polarization, Cd28, and Il4 was markedly increased in Slc11a1-deficient mice during infection, suggesting a predominant Th2 phenotype in 129S6-Slc11a1(tm1Mcg) animals following S. enterica serovar Enteritidis infection. A strong immunoglobulin G2a response, reflecting Th1 activity, was observed only in 129S6 mice. All together, these results are consistent with an impact of Slc11a1 on Th cell differentiation during chronic S. enterica serovar Enteritidis infection. The presence of a Th2 bias in Slc11a1-deficient mice is associated with improved bacterial clearance.
Collapse
Affiliation(s)
- Judith Caron
- Department of Human Genetics, McGill University, Montreal, QC, Canada H3G 1A4
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Neuringer IP, Chalermskulrat W, Aris R. Obliterative bronchiolitis or chronic lung allograft rejection: a basic science review. J Heart Lung Transplant 2005; 24:3-19. [PMID: 15653373 DOI: 10.1016/j.healun.2004.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 12/12/2003] [Accepted: 01/06/2004] [Indexed: 01/06/2023] Open
Affiliation(s)
- Isabel P Neuringer
- Division of Pulmonary and Critical Care Medicine and Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
31
|
Lee CG, Choi SY, Park SH, Park KS, Ryu SH, Sung YC. The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met as a novel adjuvant for DNA vaccine. Vaccine 2005; 23:4703-10. [PMID: 15936851 DOI: 10.1016/j.vaccine.2005.03.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 02/25/2005] [Accepted: 03/03/2005] [Indexed: 11/29/2022]
Abstract
Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm) is a synthetic peptide known to activate human neutrophils, monocytes and dendritic cells, resulting in the enhancement of superoxide generation, bactericidal activity, chemotactic migration and survival. In this study, we demonstrated that WKYMVm enhanced the surface expression of CD80, but not that of CD40, CD86 and MHC class II, on mouse bone marrow-derived dendritic cells which is one of the essential costimulatory signals for the induction of immune responses. Furthermore, when WKYMVm was codelivered with HIV, HBV and Influenza DNA vaccines, WKYMVm selectively enhanced the vaccine-induced CD8(+) T cell responses in a dose-dependent manner, in terms of IFN-gamma secretion and cytolytic activity. Our results indicate that a synthetic peptide, WKYMVm can function as a novel adjuvant for DNA vaccine.
Collapse
Affiliation(s)
- Chang Geun Lee
- National Research Laboratory of DNA medicine, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
32
|
Yang R, Murillo FM, Delannoy MJ, Blosser RL, Yutzy WH, Uematsu S, Takeda K, Akira S, Viscidi RP, Roden RBS. B lymphocyte activation by human papillomavirus-like particles directly induces Ig class switch recombination via TLR4-MyD88. THE JOURNAL OF IMMUNOLOGY 2005; 174:7912-9. [PMID: 15944297 DOI: 10.4049/jimmunol.174.12.7912] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vaccination with human papillomavirus type 16 (HPV16) L1 virus-like particles (VLP) induces both high titer neutralizing IgG and protective immunity. Because protection from experimental infection by papillomavirus is mediated by neutralizing IgG, we sought the mechanisms that trigger humoral immunity to HPV16 L1 VLP. We find that HPV16 L1 VLP bind to murine B lymphocytes thereby inducing activation-induced cytidine deaminase expression and Ig class switch recombination to cause the generation of IgG. HPV16 L1 VLP also activate production of proinflammatory factors IFN-alpha, IL-6, MIP-1alpha, RANTES, and KC, up-regulate the expression of costimulatory molecules by naive B cells, and increase the B1 B cell subpopulation. These B cell responses to HPV16 L1 VLP are dependent upon MyD88. Although MyD88(-/-) B cells produce only mu transcript after exposure to HPV16 L1 VLP, MyD88(+/+) B cells express alpha, gamma, and mu Ig H chain and activation-induced cytidine deaminase transcripts. Notably, TLR4 mutant C3H/HeJ mice exhibited significantly reduced HPV16 VLP-specific IgG1, IgG2a, IgG2b, and IgG3 titers after vaccination as compared with the control C3H/HeOuJ mice. HPV16 L1 VLP directly activated class switch recombination and costimulatory molecule expression by B cells of C3H/HeOuJ mice but not C3H/HeJ mice. Thus HPV16 L1 VLP directly activate B cells to induce CD4(+) T cell independent humoral immune responses via TLR4- and MyD88-dependent signaling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/physiology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- CD40 Ligand/physiology
- Capsid Proteins
- Immunoglobulin Class Switching/genetics
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/physiology
- Interleukin-4/physiology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Oncogene Proteins, Viral/administration & dosage
- Oncogene Proteins, Viral/immunology
- Papillomaviridae/immunology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/virology
- Toll-Like Receptor 4
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Virion/genetics
- Virion/immunology
Collapse
Affiliation(s)
- Rongcun Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Antigens, provided by the allograft, trigger the activation and proliferation of allospecific T cells. As a consequence of this response, effector elements are generated that mediate graft injury and are responsible for the clinical manifestations of allograft rejection. Donor-specific CD8+ cytotoxic T lymphocytes play a major role in this process. Likewise, CD4+ T cells mediate delayed-type hypersensitivity responses via the production of soluble mediators that function to further activate and guide immune cells to the site of injury. In addition, these mediators may directly alter graft function by modulating vascular tone and permeability or by promoting platelet aggregation. Allospecific CD4+ T cells also promote B-cell maturation and differentiation into antibody-secreting plasma cells via CD40-CD40 ligand interactions. Alloantibodies that are produced by these B cells exert most of their detrimental effects on the graft by activating the complement cascade. Alternatively, antibodies can bind Fc receptors on natural killer cells or macrophages and cause target cell lysis via antibody-dependent cell-mediated cytotoxicity. In this review, we discuss these major effector pathways, focusing on their role in the pathogenesis of allograft rejection.
Collapse
Affiliation(s)
- Paulo N Rocha
- Duke University and Durham VA Medical Centers, Durham, NC 27705, USA
| | | | | | | |
Collapse
|
34
|
Podojil JR, Kin NW, Sanders VM. CD86 and beta2-adrenergic receptor signaling pathways, respectively, increase Oct-2 and OCA-B Expression and binding to the 3'-IgH enhancer in B cells. J Biol Chem 2004; 279:23394-404. [PMID: 15024018 DOI: 10.1074/jbc.m313096200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of CD86 (formerly known as B7-2) and/or the beta2-adrenergic receptor on a CD40 ligand/interleukin-4-activated B cell increased the rate of mature IgG1 transcription. To identify the mechanism responsible for this effect, we determined whether CD86 and/or beta2-adrenergic receptor stimulation regulated transcription factor expression and binding to the 3'-IgH enhancer in vitro and in vivo. We showed that CD86 stimulation increased the nuclear localization of NF-kappaB1 (p50) and phosphorylated RelA (p65) and increased Oct-2 expression and binding to the 3'-IgH enhancer, in a protein kinase C-dependent manner. These effects were lost when CD86-deficient or NF-kappaB1-deficient B cells were used. CD86 stimulation also increased the level of IkappaB-alpha phosphorylation but in a protein kinase C-independent manner. Beta2-adrenergic receptor stimulation increased CREB phosphorylation, OCA-B expression, and OCA-B binding to the 3'-IgH enhancer in a protein kinase A-dependent manner, an effect lost when beta2-adrenergic receptor-deficient B cells were used. Also, the beta2-adrenergic receptor-induced increase in the level of mature IgG1 transcript was lost when OCA-B-deficient B cells were used. These data are the first to show that CD86 stimulation up-regulates the expression of the transcription factor Oct-2 in a protein kinase C- and NF-kappaB1-dependent manner, and that beta2-adrenergic receptor stimulation up-regulates the expression of the coactivator OCA-B in a protein kinase A-dependent manner to cooperate with Oct-2 binding to the 3'-IgH enhancer.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
35
|
Lee BO, Moyron-Quiroz J, Rangel-Moreno J, Kusser KL, Hartson L, Sprague F, Lund FE, Randall TD. CD40, but Not CD154, Expression on B Cells Is Necessary for Optimal Primary B Cell Responses. THE JOURNAL OF IMMUNOLOGY 2003; 171:5707-17. [PMID: 14634078 DOI: 10.4049/jimmunol.171.11.5707] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD40 is an important costimulatory molecule for B cells as well as dendritic cells, monocytes, and other APCs. The ligand for CD40, CD154, is expressed on activated T cells, NK cells, mast cells, basophils, and even activated B cells. Although both CD40(-/-) and CD154(-/-) mice have impaired ability to isotype switch, form germinal centers, make memory B cells, and produce Ab, it is not entirely clear whether these defects are intrinsic to B cells, to other APCs, or to T cells. Using bone marrow chimeric mice, we investigated whether CD40 or CD154 must be expressed on B cells for optimal B cell responses in vivo. We demonstrate that CD40 expression on B cells is required for the generation of germinal centers, isotype switching, and sustained Ab production, even when other APCs express CD40. In contrast, the expression of CD154 on B cells is not required for the generation of germinal centers, isotype switching, or sustained Ab production. In fact, B cell responses are completely normal when CD154 expression is limited exclusively to Ag-specific T cells. These results suggest that the interaction of CD154 expressed by activated CD4 T cells with CD40 expressed by B cells is the primary pathway necessary to achieve B cell activation and differentiation and that CD154 expression on B cells does not noticeably facilitate B cell activation and differentiation.
Collapse
Affiliation(s)
- Byung O Lee
- Trudeau Institute, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sangster MY, Riberdy JM, Gonzalez M, Topham DJ, Baumgarth N, Doherty PC. An early CD4+ T cell-dependent immunoglobulin A response to influenza infection in the absence of key cognate T-B interactions. ACTA ACUST UNITED AC 2003; 198:1011-21. [PMID: 14517272 PMCID: PMC2194225 DOI: 10.1084/jem.20021745] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Contact-mediated interactions between CD4+ T cells and B cells are considered crucial for T cell–dependent B cell responses. To investigate the ability of activated CD4+ T cells to drive in vivo B cell responses in the absence of key cognate T–B interactions, we constructed radiation bone marrow chimeras in which CD4+ T cells would be activated by wild-type (WT) dendritic cells, but would interact with B cells that lacked expression of either major histocompatibility complex class II (MHC II) or CD40. B cell responses were assessed after influenza virus infection of the respiratory tract, which elicits a vigorous, CD4+ T cell–dependent antibody response in WT mice. The influenza-specific antibody response was strongly reduced in MHC II knockout and CD40 knockout mice. MHC II–deficient and CD40-deficient B cells in the chimera environment also produced little virus-specific immunoglobulin (Ig)M and IgG, but generated a strong virus-specific IgA response with virus-neutralizing activity. The IgA response was entirely influenza specific, in contrast to the IgG2a response, which had a substantial nonvirus-specific component. Our study demonstrates a CD4+ T cell–dependent, antiviral IgA response that is generated in the absence of B cell signaling via MHC II or CD40, and is restricted exclusively to virus-specific B cells.
Collapse
Affiliation(s)
- Mark Y Sangster
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Podojil JR, Sanders VM. Selective regulation of mature IgG1 transcription by CD86 and beta 2-adrenergic receptor stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5143-51. [PMID: 12734361 DOI: 10.4049/jimmunol.170.10.5143] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stimulation of CD86 and the beta(2)-adrenergic receptor (beta(2)AR) on a B cell, either alone or together, is known to increase the level of IgG1 protein produced by a CD40 ligand/IL-4-activated B cell. It is also known that the mechanism by which CD40 and IL-4R stimulation on a B cell increases the level of IgG1 protein is by increasing germline gamma 1 transcription, IgG1 class switching, and mature IgG1 transcription, while the molecular mechanism responsible for mediating the CD86- and beta(2)AR-induced effect remains unknown. In the present study using real-time PCR we show that the level of mature IgG1 transcription increases in CD40 ligand/IL-4-activated B cells following stimulation of either CD86 and/or beta(2)AR, and that this increase reflects the increase in IgG1 protein. Furthermore, we show that the CD86- and/or beta(2)AR-induced increase in mature IgG1 transcript is due to an increase in the rate of mature IgG1 transcription, as determined by nuclear run-on analysis. This effect is additive when both receptors are stimulated and is lost when B cells from CD86- and beta(2)AR-deficient mice are used. In contrast, the level of germline gamma 1 transcription, the stability of mature IgG1 transcript, the number of IgG1-positive B cells, and the number of IgG1-secreting B cells did not change. These results provide the first evidence that CD86 and/or beta(2)AR stimulation on a CD40 ligand/IL-4-activated B cell increases the level of IgG1 protein produced per cell by increasing the rate of mature IgG1 transcription.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B7-2 Antigen
- CD40 Ligand/pharmacology
- Cells, Cultured
- Female
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/genetics
- Immunoglobulin G/metabolism
- Interleukin-4/pharmacology
- Lymphocyte Activation
- Lymphocyte Count
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- RNA Processing, Post-Transcriptional/immunology
- RNA Stability/immunology
- RNA, Messenger/metabolism
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/genetics
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|