1
|
Han H, Du A, Li J, Han H, Feng P, Zhu Y, Li X, Tian G, Yu H, Zhang B, Liu W, Yuan G. Transitioning from molecular methods to therapeutic methods: An in‑depth analysis of glioblastoma (Review). Oncol Rep 2025; 53:48. [PMID: 40017136 PMCID: PMC11894601 DOI: 10.3892/or.2025.8881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumour, characterised by high heterogeneity, aggressiveness and resistance to conventional therapies, leading to poor prognosis for patients. In recent years, with the rapid development of molecular biology and genomics technologies, significant progress has been made in understanding the molecular mechanisms of GBM. This has revealed a complex molecular network involving aberrant key signalling pathways, epigenetic alterations, interactions in the tumour microenvironment and regulation of non‑coding RNAs. Based on these molecular features, novel therapeutic strategies such as targeted therapies, immunotherapy and gene therapy are rapidly evolving and hold promise for improving the outcome of GBM. This review systematically summarises the advances in molecular mechanisms and therapeutic approaches for GBM. It aims to provide new perspectives for the precise diagnosis and personalised treatment of GBM, and to ultimately improve the prognosis of patients.
Collapse
Affiliation(s)
- Hongxi Han
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Aichao Du
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jinwen Li
- College of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Hongyan Han
- Department of Neurology, Tianshui First People's Hospital, Tianshui, Gansu 741000, P.R. China
| | - Peng Feng
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yufeng Zhu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xinlong Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Guopeng Tian
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Haijia Yu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Bo Zhang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Weiguo Liu
- Lanzhou University of Basic Medical Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
2
|
Jangholi E, Tehran HA, Ghasemi A, Hoseinian M, Firoozi S, Ghodsi SM, Tamaddon M, Bereimipour A, Hadjighassem M. Evaluation of secretome biomarkers in glioblastoma cancer stem cells: A bioinformatics analysis. Cancer Rep (Hoboken) 2024; 7:e2080. [PMID: 38967113 PMCID: PMC11224916 DOI: 10.1002/cnr2.2080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a malignant brain tumor that frequently occurs alongside other central nervous system (CNS) conditions. The secretome of GBM cells contains a diverse array of proteins released into the extracellular space, influencing the tumor microenvironment. These proteins can serve as potential biomarkers for GBM due to their involvement in key biological processes, exploring the secretome biomarkers in GBM research represents a cutting-edge strategy with significant potential for advancing diagnostic precision, treatment monitoring, and ultimately improving outcomes for patients with this challenging brain cancer. AIM This study was aimed to investigate the roles of secretome biomarkers and their pathwayes in GBM through bioinformatics analysis. METHODS AND RESULTS Using data from the Gene Expression Omnibus and the Cancer Genome Atlas datasets-where both healthy and cancerous samples were analyzed-we used a quantitative analytical framework to identify differentially expressed genes (DEGs) and cell signaling pathways that might be related to GBM. Then, we performed gene ontology studies and hub protein identifications to estimate the roles of these DEGs after finding disease-gene connection networks and signaling pathways. Using the GEPIA Proportional Hazard Model and the Kaplan-Meier estimator, we widened our analysis to identify the important genes that may play a role in both progression and the survival of patients with GBM. In total, 890 DEGs, including 475 and 415 upregulated and downregulated were identified, respectively. Our results revealed that SQLE, DHCR7, delta-1 phospholipase C (PLCD1), and MINPP1 genes are highly expressed, and the Enolase 2 (ENO2) and hexokinase-1 (HK1) genes are low expressions. CONCLUSION Hence, our findings suggest novel mechanisms that affect the occurrence of GBM development, growth, and/or establishment and may also serve as secretory biomarkers for GBM prognosis and possible targets for therapy. So, continued research in this field may uncover new avenues for therapeutic interventions and contribute to the ongoing efforts to combat GBM effectively.
Collapse
Affiliation(s)
- Ehsan Jangholi
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
- Department of NeurosurgeryShariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Hoda Ahmari Tehran
- Department of Medical EducationQom University of Medical SciencesQomIran
| | - Afsaneh Ghasemi
- Department of Public HealthSchool of Health, Fasa University of Medical SciencesFasaIran
| | - Mohammad Hoseinian
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
| | - Sina Firoozi
- School of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Seyed Mohammad Ghodsi
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
- Department of NeurosurgeryShariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Mona Tamaddon
- Chronic Disease Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Ahmad Bereimipour
- Department of Biological Sciences and BioDiscovery InstituteUniversity of North TexasDentonTexasUSA
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Zoi V, Kyritsis AP, Galani V, Lazari D, Sioka C, Voulgaris S, Alexiou GA. The Role of Curcumin in Cancer: A Focus on the PI3K/Akt Pathway. Cancers (Basel) 2024; 16:1554. [PMID: 38672636 PMCID: PMC11048628 DOI: 10.3390/cancers16081554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer is a life-threatening disease and one of the leading causes of death worldwide. Despite significant advancements in therapeutic options, most available anti-cancer agents have limited efficacy. In this context, natural compounds with diverse chemical structures have been investigated for their multimodal anti-cancer properties. Curcumin is a polyphenol isolated from the rhizomes of Curcuma longa and has been widely studied for its anti-inflammatory, anti-oxidant, and anti-cancer effects. Curcumin acts on the regulation of different aspects of cancer development, including initiation, metastasis, angiogenesis, and progression. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway is a key target in cancer therapy, since it is implicated in initiation, proliferation, and cancer cell survival. Curcumin has been found to inhibit the PI3K/Akt pathway in tumor cells, primarily via the regulation of different key mediators, including growth factors, protein kinases, and cytokines. This review presents the therapeutic potential of curcumin in different malignancies, such as glioblastoma, prostate and breast cancer, and head and neck cancers, through the targeting of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
| | | | - Vasiliki Galani
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45500 Ioannina, Greece
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrissa Sioka
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
| | - Spyridon Voulgaris
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
- Department of Neurosurgery, University of Ioannina, 45500 Ioannina, Greece
| | - Georgios A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
- Department of Neurosurgery, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
4
|
Jhanwar-Uniyal M, Zeller SL, Spirollari E, Das M, Hanft SJ, Gandhi CD. Discrete Mechanistic Target of Rapamycin Signaling Pathways, Stem Cells, and Therapeutic Targets. Cells 2024; 13:409. [PMID: 38474373 PMCID: PMC10930964 DOI: 10.3390/cells13050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions via its discrete binding partners to form two multiprotein complexes, mTOR complex 1 and 2 (mTORC1 and mTORC2). Rapamycin-sensitive mTORC1, which regulates protein synthesis and cell growth, is tightly controlled by PI3K/Akt and is nutrient-/growth factor-sensitive. In the brain, mTORC1 is also sensitive to neurotransmitter signaling. mTORC2, which is modulated by growth factor signaling, is associated with ribosomes and is insensitive to rapamycin. mTOR regulates stem cell and cancer stem cell characteristics. Aberrant Akt/mTOR activation is involved in multistep tumorigenesis in a variety of cancers, thereby suggesting that the inhibition of mTOR may have therapeutic potential. Rapamycin and its analogues, known as rapalogues, suppress mTOR activity through an allosteric mechanism that only suppresses mTORC1, albeit incompletely. ATP-catalytic binding site inhibitors are designed to inhibit both complexes. This review describes the regulation of mTOR and the targeting of its complexes in the treatment of cancers, such as glioblastoma, and their stem cells.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
5
|
Panada J, Klopava V, Kulahava T, Koran S, Faletrov Y, Frolova N, Fomina E, Shkumatov V. Differential induction of C6 glioma apoptosis and autophagy by 3β-hydroxysteroid-indolamine conjugates. Steroids 2023; 200:109326. [PMID: 37827441 DOI: 10.1016/j.steroids.2023.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
In a previous work, we reported the synthesis of four novel indole steroids and their effect on rat C6 glioma proliferation in vitro. The steroid derived from dehydroepiandrosterone and tryptamine (IS-1) was the most active (52 % inhibition at 10 µM), followed by one of the epimers derived from pregnenolone and tryptamine (IS-3, 36 % inhibition at 10 µM). By contrast, the steroid derived from estrone and tryptamine (IS-2) showed negligible activity at 10 µM. No necrosis, increase in intracellular calcium or ROS levels was observed. In this work, the effect of compounds on C6 glioma apoptosis and autophagy is examined by fluorimetry and fluorescent microscopy. The IS-3 epimers disrupt the mitochondrial membrane potential and induce apoptosis in vitro moderately whereas IS-1 and IS-2 do not. However, IS-1 produces a large increase in monodansylcadaverine-positive autophagic vesicles over 24 h. The antiproliferative effect of indole steroids is ameliorated by autophagy inhibitor hydroxychloroquine, suggesting an autophagy-dependent mechanism of cell death.
Collapse
Affiliation(s)
- Jan Panada
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus
| | - Valeriya Klopava
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus
| | - Tatsiana Kulahava
- Institute for Nuclear Problems of the Belarusian State University, 220006, 11 Babrujskaja str., Minsk, Belarus
| | - Siarhei Koran
- Republican Research and Practical Center for Epidemiology and Microbiology, 220114, 23 Filimonava str., Minsk, Belarus
| | - Yaroslav Faletrov
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus; Department of Chemistry, Belarusian State University, 220050, 4 Independence ave., Minsk, Belarus
| | - Nina Frolova
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus
| | - Elena Fomina
- Republican Research and Practical Center for Epidemiology and Microbiology, 220114, 23 Filimonava str., Minsk, Belarus
| | - Vladimir Shkumatov
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus; Department of Chemistry, Belarusian State University, 220050, 4 Independence ave., Minsk, Belarus.
| |
Collapse
|
6
|
Dong L, Xu M, Li Y, Xu W, Wu C, Zheng H, Xiao Z, Sun G, Ding L, Li X, Li W, Zhou L, Xia Q. SMURF1 attenuates endoplasmic reticulum stress by promoting the degradation of KEAP1 to activate NRF2 antioxidant pathway. Cell Death Dis 2023; 14:361. [PMID: 37316499 PMCID: PMC10267134 DOI: 10.1038/s41419-023-05873-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Cancer cells consistently utilize the unfolded protein response (UPR) to encounter the abnormal endoplasmic reticulum (ER) stress induced by the accumulation of misfolded proteins. Extreme activation of the UPR could also provoke maladaptive cell death. Previous reports have shown that NRF2 antioxidant signaling is activated by UPR and serves as noncanonical pathway to defense and reduce excessive ROS levels during ER stress. However, the mechanisms of regulating NRF2 signaling upon ER stress in glioblastoma have not been fully elucidated. Here we identify that SMURF1 protects against ER stress and facilitates glioblastoma cell survival by rewiring KEAP1-NRF2 pathway. We show that ER stress induces SMURF1 degradation. Knockdown of SMURF1 upregulates IRE1 and PERK signaling in the UPR pathway and prevents ER-associated protein degradation (ERAD) activity, leading to cell apoptosis. Importantly, SMURF1 overexpression activates NRF2 signaling to reduce ROS levels and alleviate UPR-mediated cell death. Mechanistically, SMURF1 interacts with and ubiquitinates KEAP1 for its degradation (NRF2 negative regulator), resulting in NRF2 nuclear import. Moreover, SMURF1 loss reduces glioblastoma cell proliferation and growth in subcutaneously implanted nude mice xenografts. Taken together, SMURF1 rewires KEAP1-NRF2 pathway to confer resistance to ER stress inducers and protect glioblastoma cell survival. ER stress and SMURF1 modulation may provide promising therapeutic targets for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengchuan Xu
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Li
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wanting Xu
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chengwei Wu
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hanfei Zheng
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenyu Xiao
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Guochen Sun
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lei Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaobo Li
- BeiJing Tide Pharmaceutical Co. LTD, BeiJing, 102600, China
| | - Wenming Li
- BeiJing Tide Pharmaceutical Co. LTD, BeiJing, 102600, China
| | - Liying Zhou
- BeiJing Tide Pharmaceutical Co. LTD, BeiJing, 102600, China
| | - Qin Xia
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
7
|
Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, Silvestris N, Di Pietro M, Fadda G, Tuccari G, Ieni A. Autophagic-Related Proteins in Brain Gliomas: Role, Mechanisms, and Targeting Agents. Cancers (Basel) 2023; 15:cancers15092622. [PMID: 37174088 PMCID: PMC10177137 DOI: 10.3390/cancers15092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The present review focuses on the phenomenon of autophagy, a catabolic cellular process, which allows for the recycling of damaged organelles, macromolecules, and misfolded proteins. The different steps able to activate autophagy start with the formation of the autophagosome, mainly controlled by the action of several autophagy-related proteins. It is remarkable that autophagy may exert a double role as a tumour promoter and a tumour suppressor. Herein, we analyse the molecular mechanisms as well as the regulatory pathways of autophagy, mainly addressing their involvement in human astrocytic neoplasms. Moreover, the relationships between autophagy, the tumour immune microenvironment, and glioma stem cells are discussed. Finally, an excursus concerning autophagy-targeting agents is included in the present review in order to obtain additional information for the better treatment and management of therapy-resistant patients.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Martina Di Pietro
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| |
Collapse
|
8
|
Shi T, Zhu J, Zhang X, Mao X. The Role of Hypoxia and Cancer Stem Cells in Development of Glioblastoma. Cancers (Basel) 2023; 15:cancers15092613. [PMID: 37174078 PMCID: PMC10177528 DOI: 10.3390/cancers15092613] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma multiform (GBM) is recognized as the most malignant brain tumor with a high level of hypoxia, containing a small population of glioblastoma stem like cells (GSCs). These GSCs have the capacity of self-renewal, proliferation, invasion and recapitulating the parent tumor, and are major causes of radio-and chemoresistance of GBM. Upregulated expression of hypoxia inducible factors (HIFs) in hypoxia fundamentally contributes to maintenance and progression of GSCs. Therefore, we thoroughly reviewed the currently acknowledged roles of hypoxia-associated GSCs in development of GBM. In detail, we recapitulated general features of GBM, especially GSC-related features, and delineated essential responses resulted from interactions between GSC and hypoxia, including hypoxia-induced signatures, genes and pathways, and hypoxia-regulated metabolic alterations. Five hypothesized GSC niches are discussed and integrated into one comprehensive concept: hypoxic peri-arteriolar niche of GSCs. Autophagy, another protective mechanism against chemotherapy, is also closely related to hypoxia and is a potential therapeutic target for GBM. In addition, potential causes of therapeutic resistance (chemo-, radio-, surgical-, immuno-), and chemotherapeutic agents which can improve the therapeutic effects of chemo-, radio-, or immunotherapy are introduced and discussed. At last, as a potential approach to reverse the hypoxic microenvironment in GBM, hyperbaric oxygen therapy (HBOT) might be an adjuvant therapy to chemo-and radiotherapy after surgery. In conclusion, we focus on demonstrating the important role of hypoxia on development of GBM, especially by affecting the function of GSCs. Important advantages have been made to understand the complicated responses induced by hypoxia in GBM. Further exploration of targeting hypoxia and GSCs can help to develop novel therapeutic strategies to improve the survival of GBM patients.
Collapse
Affiliation(s)
- Tingyu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Tangdu Hospital, Fourth Military Medical University, Xi'an 710024, China
| | - Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinggang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
9
|
Behrooz AB, Latifi-Navid H, Nezhadi A, Świat M, Los M, Jamalpoor Z, Ghavami S. Molecular mechanisms of microRNAs in glioblastoma pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119482. [PMID: 37146725 DOI: 10.1016/j.bbamcr.2023.119482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Glioblastoma (GBM) is human's most prevalent and severe brain cancer. Epigenetic regulators, micro(mi)RNAs, significantly impact cellular health and disease because of their wide range of targets and functions. The "epigenetic symphony" in which miRNAs perform is responsible for orchestrating the transcription of genetic information. The discovery of regulatory miRNA activities in GBM biology has shown that various miRNAs play a vital role in disease onset and development. Here, we summarize our current understanding of the current state-of-the-art and latest findings regarding the interactions between miRNAs and molecular mechanisms commonly associated with GBM pathogenesis. Moreover, by literature review and reconstruction of the GBM gene regulatory network, we uncovered the connection between miRNAs and critical signaling pathways such as cell proliferation, invasion, and cell death, which provides promising hints for identifying potential therapeutic targets for the treatment of GBM. In addition, the role of miRNAs in GBM patient survival was investigated. The present review, which contains new analyses of the previous literature, may lead to new avenues to explore in the future for the development of multitargeted miRNA-based therapies for GBM.
Collapse
Affiliation(s)
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Akram Nezhadi
- Cognitive Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Maciej Świat
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Marek Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
10
|
Laribee RN, Boucher AB, Madireddy S, Pfeffer LM. The STAT3-Regulated Autophagy Pathway in Glioblastoma. Pharmaceuticals (Basel) 2023; 16:671. [PMID: 37242454 PMCID: PMC10223172 DOI: 10.3390/ph16050671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain malignancy in adults with a dismal prognosis. Despite advances in genomic analysis and surgical technique and the development of targeted therapeutics, most treatment options are ineffective and mainly palliative. Autophagy is a form of cellular self-digestion with the goal of recycling intracellular components to maintain cell metabolism. Here, we describe some recent findings that suggest GBM tumors are more sensitive to the excessive overactivation of autophagy leading to autophagy-dependent cell death. GBM cancer stem cells (GSCs) are a subset of the GBM tumor population that play critical roles in tumor formation and progression, metastasis, and relapse, and they are inherently resistant to most therapeutic strategies. Evidence suggests that GSCs are able to adapt to a tumor microenvironment of hypoxia, acidosis, and lack of nutrients. These findings have suggested that autophagy may promote and maintain the stem-like state of GSCs as well as their resistance to cancer treatment. However, autophagy is a double-edged sword and may have anti-tumor properties under certain conditions. The role of the STAT3 transcription factor in autophagy is also described. These findings provide the basis for future research aimed at targeting the autophagy-dependent pathway to overcome the inherent therapeutic resistance of GBM in general and to specifically target the highly therapy-resistant GSC population through autophagy regulation.
Collapse
Affiliation(s)
- Ronald Nicholas Laribee
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Andrew B. Boucher
- Department of Neurosurgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Saivikram Madireddy
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
11
|
Colardo M, Gargano D, Russo M, Petraroia M, Pensabene D, D'Alessandro G, Santoro A, Limatola C, Segatto M, Di Bartolomeo S. Bromodomain and Extraterminal Domain (BET) Protein Inhibition Hinders Glioblastoma Progression by Inducing Autophagy-Dependent Differentiation. Int J Mol Sci 2023; 24:ijms24087017. [PMID: 37108181 PMCID: PMC10138987 DOI: 10.3390/ijms24087017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of malignant primary brain tumor, and it is characterized by a high recurrence incidence and poor prognosis due to the presence of a highly heterogeneous mass of stem cells with self-renewal capacity and stemness maintenance ability. In recent years, the epigenetic landscape of GBM has been explored and many epigenetic alterations have been investigated. Among the investigated epigenetic abnormalities, the bromodomain and extra-terminal domain (BET) chromatin readers have been found to be significantly overexpressed in GBM. In this work, we investigated the effects of BET protein inhibition on GBM cell reprogramming. We found that the pan-BET pharmacological inhibitor JQ1 was able to promote a differentiation program in GBM cells, thus impairing cell proliferation and enhancing the toxicity of the drug Temozolomide (TMZ). Notably, the pro-differentiation capability of JQ1 was prevented in autophagy-defective models, suggesting that autophagy activation is necessary for BET protein activity in regulating glioma cell fate. Given the growing interest in epigenetic therapy, our results further support the possibility of introducing a BET-based approach in GBM clinical management.
Collapse
Affiliation(s)
- Mayra Colardo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Deborah Gargano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Miriam Russo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, 00185 Rome, Italy
- Neuromed IRCCS, Via Atinense, 86077 Pozzilli, Italy
| | - Antonio Santoro
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, 00185 Rome, Italy
- Neuromed IRCCS, Via Atinense, 86077 Pozzilli, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | |
Collapse
|
12
|
Armocida D, Busceti CL, Biagioni F, Fornai F, Frati A. The Role of Cellular Prion Protein in Glioma Tumorigenesis Could Be through the Autophagic Mechanisms: A Narrative Review. Int J Mol Sci 2023; 24:ijms24021405. [PMID: 36674920 PMCID: PMC9865539 DOI: 10.3390/ijms24021405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
The carcinogenesis of glial tumors appears complex because of the many genetic and epigenetic phenomena involved. Among these, cellular prion protein (PrPC) is considered a key factor in cell-death resistance and important aspect implicated in tumorigenesis. Autophagy also plays an important role in cell death in various pathological conditions. These two cellular phenomena are related and share the same activation by specific alterations in the cellular microenvironment. Furthermore, there is an interdependence between autophagy and prion activity in glioma tumorigenesis. Glioma is one of the most aggressive known cancers, and the fact that such poorly studied processes as autophagy and PrPC activity are so strongly involved in its carcinogenesis suggests that by better understanding their interaction, more can be understood about its origin and treatment. Few studies in the literature relate these two cellular phenomena, much less try to explain their combined activity and role in glioma carcinogenesis. In this study, we explored the recent findings on the molecular mechanism and regulation pathways of autophagy, examining the role of PrPC in autophagy processes and how they may play a central role in glioma tumorigenesis. Among the many molecular interactions that PrP physiologically performs, it appears that processes shared with autophagy activity are those most implicated in glial tumor carcinogeneses such as activity on MAP kinases, PI3K, and mTOR. This work can be supportive and valuable as a basis for further future studies on this topic.
Collapse
Affiliation(s)
- Daniele Armocida
- Department of Human Neuroscience, Sapienza University of Rome, Via Caserta 6, 00161 Roma, Italy
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Roma, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Correspondence: ; Tel.: +39-39-3287-4496
| | - Carla Letizia Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Francesco Fornai
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
13
|
Lenzi P, Busceti CL, Lazzeri G, Ferese R, Biagioni F, Salvetti A, Pompili E, De Franchis V, Puglisi-Allegra S, Frati A, Ferrucci M, Fornai F. Autophagy Activation Associates with Suppression of Prion Protein and Improved Mitochondrial Status in Glioblastoma Cells. Cells 2023; 12:cells12020221. [PMID: 36672156 PMCID: PMC9857229 DOI: 10.3390/cells12020221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Cells from glioblastoma multiforme (GBM) feature up-regulation of the mechanistic Target of Rapamycin (mTOR), which brings deleterious effects on malignancy and disease course. At the cellular level, up-regulation of mTOR affects a number of downstream pathways and suppresses autophagy, which is relevant for the neurobiology of GBM. In fact, autophagy acts on several targets, such as protein clearance and mitochondrial status, which are key in promoting the malignancy GBM. A defective protein clearance extends to cellular prion protein (PrPc). Recent evidence indicates that PrPc promotes stemness and alters mitochondrial turnover. Therefore, the present study measures whether in GBM cells abnormal amount of PrPc and mitochondrial alterations are concomitant in baseline conditions and whether they are reverted by mTOR inhibition. Proteins related to mitochondrial turnover were concomitantly assessed. High amounts of PrPc and altered mitochondria were both mitigated dose-dependently by the mTOR inhibitor rapamycin, which produced a persistent activation of the autophagy flux and shifted proliferating cells from S to G1 cell cycle phase. Similarly, mTOR suppression produces a long-lasting increase of proteins promoting mitochondrial turnover, including Pink1/Parkin. These findings provide novel evidence about the role of autophagy in the neurobiology of GBM.
Collapse
Affiliation(s)
- Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Carla L. Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Rosangela Ferese
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Elena Pompili
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy
| | - Valerio De Franchis
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy
| | - Stefano Puglisi-Allegra
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Neurosurgery Division, Department of Human Neurosciences, Sapienza University, 00135 Roma, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Correspondence: or ; Tel.: +39-050-2218667
| |
Collapse
|
14
|
Jhanwar-Uniyal M, Gellerson O, Bree J, Das M, Kleinman G, Gandhi CD. Defining the role of mTOR pathway in the regulation of stem cells of glioblastoma. Adv Biol Regul 2022; 88:100946. [PMID: 36658088 DOI: 10.1016/j.jbior.2022.100946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023]
Abstract
The mechanistic target of rapamycin (mTOR), a serine/threonine kinase, functions by forming two multiprotein complexes termed mTORC1 and mTORC2. Glioblastoma (GBM) is a uniformly fatal brain tumor that remains incurable partly due to the existence of untreatable cancer stem cells (CSC). The pathogenesis of GBM is largely due to the loss of the tumor suppressor gene PTEN, which is implicated in the aberrant activation of the mTOR pathway. The major cause of tumor recurrence, growth, and invasion is the presence of the unique population of CSC. Resistance to conventional therapies appears to be caused by both extensive genetic abnormalities and dysregulation of the transcription landscape. Consequently, CSCs have emerged as targets of interest in new treatment paradigms. Evidence suggests that inhibition of the mTOR pathway can also be applied to target CSCs. Here we explored the role of the mTOR pathway in the regulation of stem cells of GBM by treating them with inhibitors of canonical PI3K/AKT/mTOR pathways such as rapamycin (mTORC1 inhibitor), PP242 (ATP binding mTORC1/2 inhibitor), LY294002 (PI3K inhibitor), and MAPK inhibitor, U0126. A significant number of GBM tumors expressed stem cell marker nestin and activated mTOR (pmTORSer2448), with most tumor cells co-expressing both markers. The expression of stem cell marker NANOG was suppressed following rapamycin treatment. The neurospheres were disrupted following rapamycin and LY294002 treatments. Rapamycin or PP242 along with differentiating agent All-trans-retinoic acid reduced stem cell proliferation. Treatment with novel small molecule inhibitors of mTORC1/2 demonstrated that Torin1 and Torin2 suppressed the proliferation of GBM CSC, while XL388 was less effective. Torin1 and XL388 delay the process of self-renewal as compared to controls, whereas Torin2 halted self-renewal. Torin2 was able to eradicate tumor cells. In conclusion, Torin2 effectively targeted CSCs of GBM by halting self-renewal and inhibiting cell proliferation, underscoring the use of Torin2 in the treatment of GBM.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA.
| | - Olivia Gellerson
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Julie Bree
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Mohan Das
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| | - George Kleinman
- Department of Pathology, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Chirag D Gandhi
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| |
Collapse
|
15
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Polyethylenimine, an Autophagy-Inducing Platinum-Carbene-Based Drug Carrier with Potent Toxicity towards Glioblastoma Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14205057. [PMID: 36291841 PMCID: PMC9599868 DOI: 10.3390/cancers14205057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
The difficulty involved in the treatment of many tumours due to their recurrence and resistance to chemotherapy is tightly linked to the presence of cancer stem cells (CSCs). This CSC sub-population is distinct from the majority of cancer cells of the tumour bulk. Indeed, CSCs have increased mitochondrial mass that has been linked to increased sensitivity to mitochondrial targeting compounds. Thus, a platinum-based polyethylenimine (PEI) polymer-drug conjugate (PDC) was assessed as a potential anti-CSC therapeutic since it has previously displayed mitochondrial accumulation. Our results show that CSCs have increased specific sensitivity to the PEI carrier and to the PDC. The mechanism of cell death seems to be necrotic in nature, with an absence of apoptotic markers. Cell death is accompanied by the induction of a protective autophagy. The interference in the balance of this pathway, which is highly important for CSCs, may be responsible for a partial reversion of the stem-like phenotype observed with prolonged PEI and PDC treatment. Several markers also indicate the cell death mode to be capable of inducing an anti-cancer immune response. This study thus indicates the potential therapeutic perspectives of polycations against CSCs.
Collapse
|
17
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
18
|
Del Bello B, Gamberucci A, Marcolongo P, Maellaro E. The autophagy inducer trehalose stimulates macropinocytosis in NF1-deficient glioblastoma cells. Cancer Cell Int 2022; 22:232. [PMID: 35864494 PMCID: PMC9306097 DOI: 10.1186/s12935-022-02652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Background Glioblastoma is a highly aggressive brain tumor. A big effort is required to find novel molecules which can cross the blood–brain barrier and efficiently kill these tumor cells. In this perspective, trehalose (α-glucopyranosyl‐[1→1]‐α‐d‐glucopyranoside), found in various dietary sources and used as a safe nutrient supplement, attracted our attention for its pleiotropic effects against tumor cells. Methods Human glioblastoma cell lines U373-MG and T98G were exposed to trehalose and analyzed at different time points. Cell proliferation was evaluated at medium term, and clonogenic capacity and cell morphology were evaluated at long term. Western blot was used to evaluate biochemical markers of autophagy (also measured in cells co-treated with EIPA or chloroquine), and mTOR, AMPK and ERK 1/2 signalling. Macropinocytosis was evaluated morphologically by bright-field microscopy; in cells loaded with the fluorescein-conjugated fluid-phase tracer dextran, macropinocytic vacuoles were also visualized by fluorescence microscopy, and the extent of macropinocytosis was quantified by flow cytometry. Results The long-term effect of trehalose on U373-MG and T98G cell lines was impressive, as indicated by a dramatic reduction in clonogenic efficiency. Mechanistically, trehalose proved to be an efficient autophagy inducer in macropinocytosis-deficient T98G cells and an efficient inducer of macropinocytosis and eventual cell death by methuosis in U373-MG glioblastoma cells, proved to be poorly responsive to induction of autophagy. These two processes appeared to act in a mutually exclusive manner; indeed, co-treatment of U373-MG cells with the macropinocytosis inhibitor, EIPA, significantly increased the autophagic response. mTOR activation and AMPK inhibition occurred in a similar way in the two trehalose-treated cell lines. Interestingly, ERK 1/2 was activated only in macropinocytosis-proficient U373-MG cells harbouring loss-of-function mutations in the negative RAS regulator, NF1, suggesting a key role of RAS signalling. Conclusions Our results indicate that trehalose is worthy of further study as a candidate molecule for glioblastoma therapy, due to its capacity to induce a sustained autophagic response, ultimately leading to loss of clonogenic potential, and more interestingly, to force macropinocytosis, eventually leading to cell death by methuosis, particularly in tumor cells with RAS hyperactivity. As a further anticancer strategy, stimulation of macropinocytosis may be exploited to increase intracellular delivery of anticancer drugs.
Collapse
Affiliation(s)
- Barbara Del Bello
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 53100, Siena, Italy
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 53100, Siena, Italy
| | - Paola Marcolongo
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 53100, Siena, Italy
| | - Emilia Maellaro
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 53100, Siena, Italy.
| |
Collapse
|
19
|
Bhattacharya S, Yin J, Yang C, Wang Y, Sims M, Pfeffer LM, Chaum E. STAT3 suppresses the AMPKα/ULK1-dependent induction of autophagy in glioblastoma cells. J Cell Mol Med 2022; 26:3873-3890. [PMID: 35670018 PMCID: PMC9279602 DOI: 10.1111/jcmm.17421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
Despite advances in molecular characterization, glioblastoma (GBM) remains the most common and lethal brain tumour with high mortality rates in both paediatric and adult patients. The signal transducer and activator of transcription 3 (STAT3) is an important oncogenic driver of GBM. Although STAT3 reportedly plays a role in autophagy of some cells, its role in cancer cell autophagy remains unclear. In this study, we found Serine-727 and Tyrosine-705 phosphorylation of STAT3 was constitutive in GBM cell lines. Tyrosine phosphorylation of STAT3 in GBM cells suppresses autophagy, whereas knockout (KO) of STAT3 increases ULK1 gene expression, increases TSC2-AMPKα-ULK1 signalling, and increases lysosomal Cathepsin D processing, leading to the stimulation of autophagy. Rescue of STAT3-KO cells by the enforced expression of wild-type (WT) STAT3 reverses these pathways and inhibits autophagy. Conversely, expression of Y705F- and S727A-STAT3 phosphorylation deficient mutants in STAT3-KO cells did not suppress autophagy. Inhibition of ULK1 activity (by treatment with MRT68921) or its expression (by siRNA knockdown) in STAT3-KO cells inhibits autophagy and sensitizes cells to apoptosis. Taken together, our findings suggest that serine and tyrosine phosphorylation of STAT3 play critical roles in STAT3-dependent autophagy in GBM, and thus are potential targets to treat GBM.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinggang Yin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chuanhe Yang
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Michelle Sims
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Edward Chaum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Targeting Glioblastoma Stem Cells to Overcome Chemoresistance: An Overview of Current Therapeutic Strategies. Biomedicines 2022; 10:biomedicines10061308. [PMID: 35740330 PMCID: PMC9220281 DOI: 10.3390/biomedicines10061308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor. The current standard approach in GBM is surgery, followed by treatment with radiation and temozolomide (TMZ); however, GBM is highly resistant to current therapies, and the standard of care has not been revised over the last two decades, indicating an unmet need for new therapies. GBM stem cells (GSCs) are a major cause of chemoresistance due to their ability to confer heterogeneity and tumorigenic capacity. To improve patient outcomes and survival, it is necessary to understand the properties and mechanisms underlying GSC chemoresistance. In this review, we describe the current knowledge on various resistance mechanisms of GBM to therapeutic agents, with a special focus on TMZ, and summarize the recent findings on the intrinsic and extrinsic mechanisms of chemoresistance in GSCs. We also discuss novel therapeutic strategies, including molecular targeting, autophagy inhibition, oncolytic viral therapy, drug repositioning, and targeting of GSC niches, to eliminate GSCs, from basic research findings to ongoing clinical trials. Although the development of effective therapies for GBM is still challenging, this review provides a better understanding of GSCs and offers future directions for successful GBM therapy.
Collapse
|
21
|
Auzmendi-Iriarte J, Otaegi-Ugartemendia M, Carrasco-Garcia E, Azkargorta M, Diaz A, Saenz-Antoñanzas A, Andermatten JA, Garcia-Puga M, Garcia I, Elua-Pinin A, Ruiz I, Sampron N, Elortza F, Cuervo AM, Matheu A. Chaperone-Mediated Autophagy Controls Proteomic and Transcriptomic Pathways to Maintain Glioma Stem Cell Activity. Cancer Res 2022; 82:1283-1297. [PMID: 35131870 PMCID: PMC9359743 DOI: 10.1158/0008-5472.can-21-2161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/15/2021] [Accepted: 01/27/2022] [Indexed: 02/07/2023]
Abstract
Chaperone-mediated autophagy (CMA) is a homeostatic process essential for the lysosomal degradation of a selected subset of the proteome. CMA activity directly depends on the levels of LAMP2A, a critical receptor for CMA substrate proteins at the lysosomal membrane. In glioblastoma (GBM), the most common and aggressive brain cancer in adulthood, high levels of LAMP2A in the tumor and tumor-associated pericytes have been linked to temozolomide resistance and tumor progression. However, the role of LAMP2A, and hence CMA, in any cancer stem cell type or in glioblastoma stem cells (GSC) remains unknown. In this work, we show that LAMP2A expression is enriched in patient-derived GSCs, and its depletion diminishes GSC-mediated tumorigenic activities. Conversely, overexpression of LAMP2A facilitates the acquisition of GSC properties. Proteomic and transcriptomic analysis of LAMP2A-depleted GSCs revealed reduced extracellular matrix interaction effectors in both analyses. Moreover, pathways related to mitochondrial metabolism and the immune system were differentially deregulated at the proteome level. Furthermore, clinical samples of GBM tissue presented overexpression of LAMP2, which correlated with advanced glioma grade and poor overall survival. In conclusion, we identified a novel role of CMA in directly regulating GSCs activity via multiple pathways at the proteome and transcriptome levels. SIGNIFICANCE A receptor of chaperone-mediated autophagy regulates glioblastoma stem cells and may serve as a potential biomarker for advanced tumor grade and poor survival in this disease.
Collapse
Affiliation(s)
| | | | | | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Spain
| | - Antonio Diaz
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Mikel Garcia-Puga
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Idoia Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | | | - Irune Ruiz
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Donostia University Hospital, Osakidetza, San Sebastian, Spain
| | - Nicolas Sampron
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Donostia University Hospital, Osakidetza, San Sebastian, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Spain
| | - Ana Maria Cuervo
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Corresponding Author: Ander Matheu, Cellular Oncology, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, San Sebastian 20014, Spain. E-mail:
| |
Collapse
|
22
|
Persano F, Gigli G, Leporatti S. Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. Int J Mol Sci 2022; 23:3360. [PMID: 35328780 PMCID: PMC8955269 DOI: 10.3390/ijms23063360] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
In humans, glioblastoma is the most prevalent primary malignant brain tumor. Usually, glioblastoma has specific characteristics, such as aggressive cell proliferation and rapid invasion of surrounding brain tissue, leading to a poor patient prognosis. The current therapy-which provides a multidisciplinary approach with surgery followed by radiotherapy and chemotherapy with temozolomide-is not very efficient since it faces clinical challenges such as tumor heterogeneity, invasiveness, and chemoresistance. In this respect, natural substances in the diet, integral components in the lifestyle medicine approach, can be seen as potential chemotherapeutics. There are several epidemiological studies that have shown the chemopreventive role of natural dietary compounds in cancer progression and development. These heterogeneous compounds can produce anti-glioblastoma effects through upregulation of apoptosis and autophagy; allowing the promotion of cell cycle arrest; interfering with tumor metabolism; and permitting proliferation, neuroinflammation, chemoresistance, angiogenesis, and metastasis inhibition. Although these beneficial effects are promising, the efficacy of natural compounds in glioblastoma is limited due to their bioavailability and blood-brain barrier permeability. Thereby, further clinical trials are necessary to confirm the in vitro and in vivo anticancer properties of natural compounds. In this article, we overview the role of several natural substances in the treatment of glioblastoma by considering the challenges to be overcome and future prospects.
Collapse
Affiliation(s)
- Francesca Persano
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
23
|
Occurrence of Total and Proteinase K-Resistant Alpha-Synuclein in Glioblastoma Cells Depends on mTOR Activity. Cancers (Basel) 2022; 14:cancers14061382. [PMID: 35326535 PMCID: PMC8946689 DOI: 10.3390/cancers14061382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The accumulation of alpha-synuclein (α-syn) is considered a pathological hallmark of the neurodegenerative disorders known as synucleinopathies. The clearance of α-syn depends on autophagy activity, which is inhibited by the mechanistic target of rapamycin (mTOR). Thus, it is likely that α-syn accumulation may occur whenever mTOR is overactive and autophagy is suppressed. In fact, the lack of effective autophagy increases the amount of α-syn and may produce protein aggregation. Therefore, in the present study, we questioned whether cells from glioblastoma multiforme (GBM), a lethal brain neoplasm, wherein mTOR is upregulated and autophagy is suppressed, may overexpress α-syn. In fact, a large quantity of α-syn is measured in GBM cells compared with astrocytes, which includes proteinase K-resistant α-syn. Rapamycin, while inhibiting mTOR activity, significantly reduces the amount of α-syn and allocates α-syn within autophagy-like vacuoles. Abstract Alpha-synuclein (α-syn) is a protein considered to be detrimental in a number of degenerative disorders (synucleinopathies) of which α-syn aggregates are considered a pathological hallmark. The clearance of α-syn strongly depends on autophagy, which can be stimulated by inhibiting the mechanistic target of rapamycin (mTOR). Thus, the overexpression of mTOR and severe autophagy suppression may produce α-syn accumulation, including the proteinase K-resistant protein isoform. Glioblastoma multiforme (GBM) is a lethal brain tumor that features mTOR overexpression and severe autophagy inhibition. Cell pathology in GBM is reminiscent of a fast, progressive degenerative disorder. Therefore, the present work questions whether, as is analogous to neurons during degenerative disorders, an overexpression of α-syn occurs within GBM cells. A high amount of α-syn was documented in GBM cells via real-time PCR (RT-PCR), Western blotting, immunohistochemistry, immuno-fluorescence, and ultrastructural stoichiometry, compared with the amount of β- and γ-synucleins and compared with the amount of α-syn counted within astrocytes. The present study indicates that (i) α-syn is overexpressed in GBM cells, (ii) α-syn expression includes a proteinase-K resistant isoform, (iii) α-syn is dispersed from autophagy-like vacuoles to the cytosol, (iv) α-syn overexpression and cytosol dispersion are mitigated by rapamycin, and (v) the α-syn-related GBM-like phenotype is mitigated by silencing the SNCA gene.
Collapse
|
24
|
Sun Z, Liu D, Zeng B, Zhao Q, Li X, Chen H, Wang J, Rosie Xing H. Sec23a inhibits the self-renewal of melanoma cancer stem cells via inactivation of ER-phagy. Cell Commun Signal 2022; 20:22. [PMID: 35236368 PMCID: PMC8889648 DOI: 10.1186/s12964-022-00827-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The genesis and developments of solid tumors, analogous to the renewal of healthy tissues, are driven by a subpopulation of dedicated stem cells, known as cancer stem cells (CSCs), that exhibit long-term clonal repopulation and self-renewal capacity. CSCs may regulate tumor initiation, growth, dormancy, metastasis, recurrence and chemoresistance. While autophagy has been proposed as a regulator of the stemness of CSCs, the underlying mechanisms requires further elucidation. METHODS The CSC component in human melanoma cell lines M14 and A375 was isolated and purified by repetitive enrichments for cells that consistently display anchorage-independent spheroid growth. The stemness properties of the CSCs were confirmed in vitro by the expressions of stemness marker genes, the single-cell cloning assay and the serial spheroid formation assay. Subcutaneous tumor transplantation assay in BALB/c nude mice was performed to test the stemness properties of the CSCs in vivo. The autophagic activity was confirmed by the protein level of LC3 and P62, mRFP-LC3B punta and cytoplasmic accumulation of autolysosomes. The morphology of ER was detected with transmission electron microscopy. RESULTS In the present study, by employing stable CSC cell lines derived from human melanoma cell lines M14 and A375, we show for the first time that Sec23a inhibits the self-renewal of melanoma CSCs via inactivation of ER-phagy. Mechanistically, inhibition of Sec23a reduces ER stress and consequently FAM134B-induced ER-phagy. Furthermore, TCGA data mining and analysis show that Sec23a is a favorable diagnostic and prognostic marker for human skin cutaneous melanoma. CONCLUSION This study has elucidated a new mechanism underlying the regulation of autophagy on stemness, i.e. CSCs can exploit the SEC23A/ER-stress/FAM134B/ER-phagy axis for the self-renewal. These observations provide new ideas for exploration of the regulatory network of CSC self-renewal to develop CSCs-based therapy strategies for malignant tumors. Video Abstract.
Collapse
Affiliation(s)
- Zhiwei Sun
- Institute of Life Sciences, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Doudou Liu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| | - Bin Zeng
- Institute of Life Sciences, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| | - Qiting Zhao
- Institute of Life Sciences, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| | - Xiaoshuang Li
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| | - Hao Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| | - H. Rosie Xing
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, 1 Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| |
Collapse
|
25
|
Vallée A, Lecarpentier Y, Vallée JN. The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions. Cancers (Basel) 2021; 13:cancers13215557. [PMID: 34771718 PMCID: PMC8582658 DOI: 10.3390/cancers13215557] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Recent studies have shown that cancer processes are involved under normoxic conditions. These findings completely change the way of approaching the study of the cancer process. In this review, we focus on the fact that, under normoxic conditions, the overstimulation of the WNT/β-catenin pathway leads to modifications in the tumor micro-environment and the activation of the Warburg effect, i.e., aerobic glycolysis, autophagy and glutaminolysis, which in turn participate in tumor growth. Abstract The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Nuclear β-catenin accumulation is associated with cancer. Hypoxic mechanisms lead to the activation of the hypoxia-inducible factor (HIF)-1α, promoting glycolytic and energetic metabolism and angiogenesis. However, HIF-1α is degraded by the HIF prolyl hydroxylase under normoxia, conditions under which the WNT/β-catenin pathway can activate HIF-1α. This review is therefore focused on the interaction between the upregulated WNT/β-catenin pathway and the metabolic processes underlying cancer mechanisms under normoxic conditions. The WNT pathway stimulates the PI3K/Akt pathway, the STAT3 pathway and the transduction of WNT/β-catenin target genes (such as c-Myc) to activate HIF-1α activity in a hypoxia-independent manner. In cancers, stimulation of the WNT/β-catenin pathway induces many glycolytic enzymes, which in turn induce metabolic reprogramming, known as the Warburg effect or aerobic glycolysis, leading to lactate overproduction. The activation of the Wnt/β-catenin pathway induces gene transactivation via WNT target genes, c-Myc and cyclin D1, or via HIF-1α. This in turn encodes aerobic glycolysis enzymes, including glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production. The increase in lactate production is associated with modifications to the tumor microenvironment and tumor growth under normoxic conditions. Moreover, increased lactate production is associated with overexpression of VEGF, a key inducer of angiogenesis. Thus, under normoxic conditions, overstimulation of the WNT/β-catenin pathway leads to modifications of the tumor microenvironment and activation of the Warburg effect, autophagy and glutaminolysis, which in turn participate in tumor growth.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 Rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR, CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
26
|
Stevanovic M, Kovacevic-Grujicic N, Mojsin M, Milivojevic M, Drakulic D. SOX transcription factors and glioma stem cells: Choosing between stemness and differentiation. World J Stem Cells 2021; 13:1417-1445. [PMID: 34786152 PMCID: PMC8567447 DOI: 10.4252/wjsc.v13.i10.1417] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common, most aggressive and deadliest brain tumor. Recently, remarkable progress has been made towards understanding the cellular and molecular biology of gliomas. GBM tumor initiation, progression and relapse as well as resistance to treatments are associated with glioma stem cells (GSCs). GSCs exhibit a high proliferation rate and self-renewal capacity and the ability to differentiate into diverse cell types, generating a range of distinct cell types within the tumor, leading to cellular heterogeneity. GBM tumors may contain different subsets of GSCs, and some of them may adopt a quiescent state that protects them against chemotherapy and radiotherapy. GSCs enriched in recurrent gliomas acquire more aggressive and therapy-resistant properties, making them more malignant, able to rapidly spread. The impact of SOX transcription factors (TFs) on brain tumors has been extensively studied in the last decade. Almost all SOX genes are expressed in GBM, and their expression levels are associated with patient prognosis and survival. Numerous SOX TFs are involved in the maintenance of the stemness of GSCs or play a role in the initiation of GSC differentiation. The fine-tuning of SOX gene expression levels controls the balance between cell stemness and differentiation. Therefore, innovative therapies targeting SOX TFs are emerging as promising tools for combatting GBM. Combatting GBM has been a demanding and challenging goal for decades. The current therapeutic strategies have not yet provided a cure for GBM and have only resulted in a slight improvement in patient survival. Novel approaches will require the fine adjustment of multimodal therapeutic strategies that simultaneously target numerous hallmarks of cancer cells to win the battle against GBM.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
- Chair Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, Belgrade 11158, Serbia
- Department of Chemical and Biological Sciences, Serbian Academy of Sciences and Arts, Belgrade 11000, Serbia.
| | - Natasa Kovacevic-Grujicic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| |
Collapse
|
27
|
Abstract
DLK1 is a maternally imprinted, paternally expressed gene coding for the transmembrane protein Delta-like homologue 1 (DLK1), a non-canonical NOTCH ligand with well-described roles during development, and tumor-supportive functions in several aggressive cancer forms. Here, we review the many functions of DLK1 as a regulator of stem cell pools and tissue differentiation in tissues such as brain, muscle, and liver. Furthermore, we review recent evidence supporting roles for DLK1 in the maintenance of aggressive stem cell characteristics of tumor cells, specifically focusing on central nervous system tumors, neuroblastoma, and hepatocellular carcinoma. We discuss NOTCH -dependent as well as NOTCH-independent functions of DLK1, and focus particularly on the complex pattern of DLK1 expression and cleavage that is finely regulated from a spatial and temporal perspective. Progress in recent years suggest differential functions of extracellular, soluble DLK1 as a paracrine stem cell niche-secreted factor, and has revealed a role for the intracellular domain of DLK1 in cell signaling and tumor stemness. A better understanding of DLK1 regulation and signaling may enable therapeutic targeting of cancer stemness by interfering with DLK1 release and/or intracellular signaling.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
28
|
WNT Signaling as a Therapeutic Target for Glioblastoma. Int J Mol Sci 2021; 22:ijms22168428. [PMID: 34445128 PMCID: PMC8395085 DOI: 10.3390/ijms22168428] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022] Open
Abstract
The WNT (Wingless/Integrated) signaling pathway is implicated in various stages of glioblastoma, which is an aggressive brain tumor for which therapeutic options are limited. WNT has been recognized as a hallmark of therapeutic challenge due to its context-dependent role and critical function in healthy tissue homeostasis. In this review, we deeply scrutinize the WNT signaling pathway and its involvement in the genesis of glioblastoma as well as its acquired therapy resistance. We also provide an analysis of the WNT pathway in terms of its therapeutic importance in addition to an overview of the current targeted therapies under clinical investigation.
Collapse
|
29
|
Brunel A, Hombourger S, Barthout E, Battu S, Kögel D, Antonietti P, Deluche E, Saada S, Durand S, Lalloué F, Jauberteau MO, Begaud G, Bessette B, Verdier M. Autophagy inhibition reinforces stemness together with exit from dormancy of polydisperse glioblastoma stem cells. Aging (Albany NY) 2021; 13:18106-18130. [PMID: 34314381 PMCID: PMC8351723 DOI: 10.18632/aging.203362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023]
Abstract
Therapeutic resistance and infiltrative capacities justify the aggressiveness of glioblastoma. This is due to cellular heterogeneity, especially the presence of stemness-related cells, i.e. Cancer Stem Cells (CSC). Previous studies focused on autophagy and its role in CSCs maintenance; these studies gave conflicting results as they reported either sustaining or disruptive effects. In the present work, we silenced two autophagy related genes -either Beclin1 or ATG5- by shRNA and we explored the ensuing consequences on CSCs markers’ expression and functionalities. Our results showed that the down regulation of autophagy led to enhancement in expression of CSCs markers, while proliferation and clonogenicity were boosted. Temozolomide (TMZ) treatment failed to induce apoptotic death in shBeclin1-transfected cells, contrary to control. We optimized the cellular subset analysis with the use of Sedimentation Field Flow Fractionation, a biological event monitoring- and cell sorting-dedicated technique. Fractograms of both shBeclin1 and shATG5 cells exhibited a shift of elution peak as compared with control cells, showing cellular dispersion and intrinsic sub-fraction modifications. The classical stemness fraction (i.e. F3) highlighted data obtained with the overall cellular population, exhibiting enhancement of stemness markers and escape from dormancy. Our results contributed to illustrate CSCs polydispersity and to show how these cells develop capacity to bypass autophagy inhibition, thanks to their acute adaptability and plasticity.
Collapse
Affiliation(s)
- Aude Brunel
- EA 3842 CAPTuR, GEIST Institute, University of Limoges, Limoges 87025, Cedex France
| | - Sophie Hombourger
- EA 3842 CAPTuR, GEIST Institute, University of Limoges, Limoges 87025, Cedex France
| | - Elodie Barthout
- EA 3842 CAPTuR, GEIST Institute, University of Limoges, Limoges 87025, Cedex France
| | - Serge Battu
- EA 3842 CAPTuR, GEIST Institute, University of Limoges, Limoges 87025, Cedex France
| | - Donat Kögel
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main D-60590, Germany.,German Cancer Consortium (D.K.T.K.), Partner Site Frankfurt, Frankfurt am Main D-60590, Germany
| | - Patrick Antonietti
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main D-60590, Germany
| | - Elise Deluche
- EA 3842 CAPTuR, GEIST Institute, University of Limoges, Limoges 87025, Cedex France.,Service d'Oncologie, CHU, Limoges 87025, France
| | - Sofiane Saada
- EA 3842 CAPTuR, GEIST Institute, University of Limoges, Limoges 87025, Cedex France
| | - Stéphanie Durand
- EA 3842 CAPTuR, GEIST Institute, University of Limoges, Limoges 87025, Cedex France
| | - Fabrice Lalloué
- EA 3842 CAPTuR, GEIST Institute, University of Limoges, Limoges 87025, Cedex France
| | | | - Gaëlle Begaud
- EA 3842 CAPTuR, GEIST Institute, University of Limoges, Limoges 87025, Cedex France
| | - Barbara Bessette
- EA 3842 CAPTuR, GEIST Institute, University of Limoges, Limoges 87025, Cedex France
| | - Mireille Verdier
- EA 3842 CAPTuR, GEIST Institute, University of Limoges, Limoges 87025, Cedex France
| |
Collapse
|
30
|
Kaushik V, Kulkarni Y, Felix K, Azad N, Iyer AKV, Yakisich JS. Alternative models of cancer stem cells: The stemness phenotype model, 10 years later. World J Stem Cells 2021; 13:934-943. [PMID: 34367485 PMCID: PMC8316871 DOI: 10.4252/wjsc.v13.i7.934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The classical cancer stem cell (CSCs) theory proposed the existence of a rare but constant subpopulation of CSCs. In this model cancer cells are organized hierarchically and are responsible for tumor resistance and tumor relapse. Thus, eliminating CSCs will eventually lead to cure of cancer. This simplistic model has been challenged by experimental data. In 2010 we proposed a novel and controversial alternative model of CSC biology (the Stemness Phenotype Model, SPM). The SPM proposed a non-hierarchical model of cancer biology in which there is no specific subpopulation of CSCs in tumors. Instead, cancer cells are highly plastic in term of stemness and CSCs and non-CSCs can interconvert into each other depending on the microenvironment. This model predicts the existence of cancer cells ranging from a pure CSC phenotype to pure non-CSC phenotype and that survival of a single cell can originate a new tumor. During the past 10 years, a plethora of experimental evidence in a variety of cancer types has shown that cancer cells are indeed extremely plastic and able to interconvert into cells with different stemness phenotype. In this review we will (1) briefly describe the cumulative evidence from our laboratory and others supporting the SPM; (2) the implications of the SPM in translational oncology; and (3) discuss potential strategies to develop more effective therapeutic regimens for cancer treatment.
Collapse
Affiliation(s)
- Vivek Kaushik
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Yogesh Kulkarni
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Kumar Felix
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Neelam Azad
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Anand Krishnan V Iyer
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States
| | - Juan Sebastian Yakisich
- School of Pharmacy, Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, United States.
| |
Collapse
|
31
|
Kamynina M, Tskhovrebova S, Fares J, Timashev P, Laevskaya A, Ulasov I. Oncolytic Virus-Induced Autophagy in Glioblastoma. Cancers (Basel) 2021; 13:cancers13143482. [PMID: 34298694 PMCID: PMC8304501 DOI: 10.3390/cancers13143482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most common and aggressive brain tumor with an incidence rate of nearly 3.19/100,000. Current therapeutic options fall short in improving the survival of patients with GBM. Various genetic and microenvironmental factors contribute to GBM progression and resistance to therapy. The development of gene therapies using self-replicating oncolytic viruses can advance GBM treatment. Due to GBM heterogeneity, oncolytic viruses have been genetically modified to improve the antiglioma effect in vitro and in vivo. Oncolytic viruses can activate autophagy signaling in GBM upon tumoral infection. Autophagy can be cytoprotective, whereby the GBM cells catabolize damaged organelles to accommodate to virus-induced stress, or cytotoxic, whereby it leads to the destruction of GBM cells. Understanding the molecular mechanisms that control oncolytic virus-induced autophagic signaling in GBM can fuel further development of novel and more effective genetic vectors. Abstract Autophagy is a catabolic process that allows cells to scavenge damaged organelles and produces energy to maintain cellular homeostasis. It is also an effective defense method for cells, which allows them to identify an internalized pathogen and destroy it through the fusion of the autophagosome and lysosomes. Recent reports have demonstrated that various chemotherapeutic agents and viral gene therapeutic vehicles provide therapeutic advantages for patients with glioblastoma as monotherapy or in combination with standards of care. Despite nonstop efforts to develop effective antiglioma therapeutics, tumor-induced autophagy in some studies manifests tumor resistance and glioma progression. Here, we explore the functional link between autophagy regulation mediated by oncolytic viruses and discuss how intracellular interactions control autophagic signaling in glioblastoma. Autophagy induced by oncolytic viruses plays a dual role in cell death and survival. On the one hand, autophagy stimulation has mostly led to an increase in cytotoxicity mediated by the oncolytic virus, but, on the other hand, autophagy is also activated as a cell defense mechanism against intracellular pathogens and modulates antiviral activity through the induction of ER stress and unfolded protein response (UPR) signaling. Despite the fact that the moment of switch between autophagic prosurvival and prodeath modes remains to be known, in the context of oncolytic virotherapy, cytotoxic autophagy is a crucial mechanism of cancer cell death.
Collapse
Affiliation(s)
- Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
| | - Salome Tskhovrebova
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N. N. Semenov Institute of Chemical Physics, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia Laevskaya
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
- Correspondence:
| |
Collapse
|
32
|
Jandrey EHF, Bezerra M, Inoue LT, Furnari FB, Camargo AA, Costa ÉT. A Key Pathway to Cancer Resilience: The Role of Autophagy in Glioblastomas. Front Oncol 2021; 11:652133. [PMID: 34178638 PMCID: PMC8222785 DOI: 10.3389/fonc.2021.652133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
There are no effective strategies for the successful treatment of glioblastomas (GBM). Current therapeutic modalities effectively target bulk tumor cells but leave behind marginal GBM cells that escape from the surgical margins and radiotherapy field, exhibiting high migratory phenotype and resistance to all available anti-glioma therapies. Drug resistance is mostly driven by tumor cell plasticity: a concept associated with reactivating transcriptional programs in response to adverse and dynamic conditions from the tumor microenvironment. Autophagy, or "self-eating", pathway is an emerging target for cancer therapy and has been regarded as one of the key drivers of cell plasticity in response to energy demanding stress conditions. Many studies shed light on the importance of autophagy as an adaptive mechanism, protecting GBM cells from unfavorable conditions, while others recognize that autophagy can kill those cells by triggering a non-apoptotic cell death program, called 'autophagy cell death' (ACD). In this review, we carefully analyzed literature data and conclude that there is no clear evidence indicating the presence of ACD under pathophysiological settings in GBM disease. It seems to be exclusively induced by excessive (supra-physiological) stress signals, mostly from in vitro cell culture studies. Instead, pre-clinical and clinical data indicate that autophagy is an emblematic example of the 'dark-side' of a rescue pathway that contributes profoundly to a pro-tumoral adaptive response. From a standpoint of treating the real human disease, only combinatorial therapy targeting autophagy with cytotoxic drugs in the adjuvant setting for GBM patients, associated with the development of less toxic and more specific autophagy inhibitors, may inhibit adaptive response and enhance the sensibility of glioma cells to conventional therapies.
Collapse
Affiliation(s)
| | - Marcelle Bezerra
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California San Diego (UCSD), San Diego, CA, United States
| | | | | |
Collapse
|
33
|
Batara DCR, Choi MC, Shin HU, Kim H, Kim SH. Friend or Foe: Paradoxical Roles of Autophagy in Gliomagenesis. Cells 2021; 10:1411. [PMID: 34204169 PMCID: PMC8227518 DOI: 10.3390/cells10061411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults, with a poor median survival of approximately 15 months after diagnosis. Despite several decades of intensive research on its cancer biology, treatment for GBM remains a challenge. Autophagy, a fundamental homeostatic mechanism, is responsible for degrading and recycling damaged or defective cellular components. It plays a paradoxical role in GBM by either promoting or suppressing tumor growth depending on the cellular context. A thorough understanding of autophagy's pleiotropic roles is needed to develop potential therapeutic strategies for GBM. In this paper, we discussed molecular mechanisms and biphasic functions of autophagy in gliomagenesis. We also provided a summary of treatments for GBM, emphasizing the importance of autophagy as a promising molecular target for treating GBM.
Collapse
Affiliation(s)
- Don Carlo Ramos Batara
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| | - Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea;
| | - Hyeon-Uk Shin
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea;
| | - Sung-Hak Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| |
Collapse
|
34
|
Kumar N, Elangovan A, Madan R, Dracham C, Khosla D, Tripathi M, Gupta K, Kapoor R. Impact of Immunohistochemical profiling of Glioblastoma multiforme on clinical outcomes: Real-world scenario in resource limited setting. Clin Neurol Neurosurg 2021; 207:106726. [PMID: 34116459 DOI: 10.1016/j.clineuro.2021.106726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Intuition into the molecular pathways of glioblastoma multiforme (GBM) has changed the diagnostic, prognostic, and therapeutic approaches. We investigated the influence of various clinical and molecular prognostic factors on survival outcomes in radically treated GBM patients. METHODS Medical records of 160 GBM patients treated between January-2012 and December-2018 with surgery followed by post-operative external beam radiotherapy (EBRT) with/without temozolomide (TMZ) were reviewed. Immunohistochemical (IHC) assays were performed for IDH1mutation, ATRX loss, TP53 overexpression and Ki-67% index. Apart from disease and treatment-related factors' influence on clinical outcomes, the impact of IHC markers in prognostication was analyzed using appropriate statistical tests. RESULTS The median overall survival (OS) was 14 months. EBRT with concurrent TMZ was given to 60% of patients and 42.5% completed the standard Stupp-protocol. Significant improvements in OS was observed in patients aged ≤ 50years (2-year OS: 22.1% vs. 12.5%, p = 0.001), those who underwent gross total resection (2-year OS: 21.8% vs. 12.8%, p = 0.002), received concurrent TMZ (21.9% vs. 12.5%, p = 0.005), completed the entire Stupp-protocol (2-year OS: 23.4% vs. 6.5%, p = 0.000), and with Ki-67 index <20% (2-year OS: 23.3% vs. 11.6%, p = 0.015). On multivariate analysis, IDH1 mutation, ATRX loss, TP53 expression, and Ki-67 ≤ 20% were significant prognosticators of outcomes. CONCLUSION GBM patients treated with concurrent chemoradiation and those who completed the full Stupp-protocol experienced better survival outcomes. Molecular biology significantly impacts clinical outcomes and plays a key deterministic role in newer management strategies.
Collapse
Affiliation(s)
- Narendra Kumar
- Department of Radiotherapy& Oncology, PGIMER, Chandigarh, India.
| | - Arun Elangovan
- Department of Radiotherapy& Oncology, PGIMER, Chandigarh, India.
| | - Renu Madan
- Department of Radiotherapy& Oncology, PGIMER, Chandigarh, India.
| | | | - Divya Khosla
- Department of Radiotherapy& Oncology, PGIMER, Chandigarh, India.
| | | | - Kirti Gupta
- Department of Pathology, PGIMER, Chandigarh, India.
| | - Rakesh Kapoor
- Department of Radiotherapy& Oncology, PGIMER, Chandigarh, India.
| |
Collapse
|
35
|
Rapamycin Ameliorates Defects in Mitochondrial Fission and Mitophagy in Glioblastoma Cells. Int J Mol Sci 2021; 22:ijms22105379. [PMID: 34065350 PMCID: PMC8161366 DOI: 10.3390/ijms22105379] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma (GBM) cells feature mitochondrial alterations, which are documented and quantified in the present study, by using ultrastructural morphometry. Mitochondrial impairment, which roughly occurs in half of the organelles, is shown to be related to mTOR overexpression and autophagy suppression. The novelty of the present study consists of detailing an mTOR-dependent mitophagy occlusion, along with suppression of mitochondrial fission. These phenomena contribute to explain the increase in altered mitochondria reported here. Administration of the mTOR inhibitor rapamycin rescues mitochondrial alterations. In detail, rapamycin induces the expression of genes promoting mitophagy (PINK1, PARKIN, ULK1, AMBRA1) and mitochondrial fission (FIS1, DRP1). This occurs along with over-expression of VPS34, an early gene placed upstream in the autophagy pathway. The topographic stoichiometry of proteins coded by these genes within mitochondria indicates that, a remarkable polarization of proteins involved in fission and mitophagy within mitochondria including LC3 takes place. Co-localization of these proteins within mitochondria, persists for weeks following rapamycin, which produces long-lasting mitochondrial plasticity. Thus, rapamycin restores mitochondrial status in GBM cells. These findings add novel evidence about mitochondria and GBM, while fostering a novel therapeutic approach to restore healthy mitochondria through mTOR inhibition.
Collapse
|
36
|
Auzmendi-Iriarte J, Matheu A. Impact of Chaperone-Mediated Autophagy in Brain Aging: Neurodegenerative Diseases and Glioblastoma. Front Aging Neurosci 2021; 12:630743. [PMID: 33633561 PMCID: PMC7901968 DOI: 10.3389/fnagi.2020.630743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Brain aging is characterized by a time-dependent decline of tissue integrity and function, and it is a major risk for neurodegenerative diseases and brain cancer. Chaperone-mediated autophagy (CMA) is a selective form of autophagy specialized in protein degradation, which is based on the individual translocation of a cargo protein through the lysosomal membrane. Regulation of processes such as proteostasis, cellular energetics, or immune system activity has been associated with CMA, indicating its pivotal role in tissue homeostasis. Since first studies associating Parkinson’s disease (PD) to CMA dysfunction, increasing evidence points out that CMA is altered in both physiological and pathological brain aging. In this review article, we summarize the current knowledge regarding the impact of CMA during aging in brain physiopathology, highlighting the role of CMA in neurodegenerative diseases and glioblastoma, the most common and aggressive brain tumor in adults.
Collapse
Affiliation(s)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation, Bilbao, Spain
| |
Collapse
|
37
|
Kucukhuseyin O, Cakiris A, Hakan MT, Horozoglu C, Tuzun E, Yaylim I. Impact of calcitriol and an AKT inhibitor, AT7867, on survival of rat C6 glioma cells. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1912641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Ozlem Kucukhuseyin
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Aris Cakiris
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Tolgahan Hakan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cem Horozoglu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tuzun
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ilhan Yaylim
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
38
|
Grassi ES, Jeannot P, Pantazopoulou V, Berg TJ, Pietras A. Niche-derived soluble DLK1 promotes glioma growth. Neoplasia 2020; 22:689-701. [PMID: 33142235 PMCID: PMC7587507 DOI: 10.1016/j.neo.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Tumor cell behaviors associated with aggressive tumor growth such as proliferation, therapeutic resistance, and stem cell characteristics are regulated in part by soluble factors derived from the tumor microenvironment. Tumor-associated astrocytes represent a major component of the glioma tumor microenvironment, and astrocytes have an active role in maintenance of normal neural stem cells in the stem cell niche, in part via secretion of soluble delta-like noncanonical Notch ligand 1 (DLK1). We found that astrocytes, when exposed to stresses of the tumor microenvironment such as hypoxia or ionizing radiation, increased secretion of soluble DLK1. Tumor-associated astrocytes in a glioma mouse model expressed DLK1 in perinecrotic and perivascular tumor areas. Glioma cells exposed to recombinant DLK1 displayed increased proliferation, enhanced self-renewal and colony formation abilities, and increased levels of stem cell marker genes. Mechanistically, DLK1-mediated effects on glioma cells involved increased and prolonged stabilization of hypoxia-inducible factor 2alpha, and inhibition of hypoxia-inducible factor 2alpha activity abolished effects of DLK1 in hypoxia. Forced expression of soluble DLK1 resulted in more aggressive tumor growth and shortened survival in a genetically engineered mouse model of glioma. Together, our data support DLK1 as a soluble mediator of glioma aggressiveness derived from the tumor microenvironment.
Collapse
Affiliation(s)
- Elisa S Grassi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pauline Jeannot
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Vasiliki Pantazopoulou
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Tracy J Berg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
39
|
Mechanisms of Anticancer Therapy Resistance: The Role of Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21239006. [PMID: 33260802 PMCID: PMC7730979 DOI: 10.3390/ijms21239006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Despite incredible progress in anticancer therapy development, resistance to therapy is the major factor limiting the cure of cancer patients [...].
Collapse
|
40
|
Ryskalin L, Biagioni F, Busceti CL, Lazzeri G, Frati A, Fornai F. The Multi-Faceted Effect of Curcumin in Glioblastoma from Rescuing Cell Clearance to Autophagy-Independent Effects. Molecules 2020; 25:E4839. [PMID: 33092261 PMCID: PMC7587955 DOI: 10.3390/molecules25204839] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
The present review focuses on the multi-faceted effects of curcumin on the neurobiology glioblastoma multiforme (GBM), with a special emphasis on autophagy (ATG)-dependent molecular pathways activated by such a natural polyphenol. This is consistent with the effects of curcumin in a variety of experimental models of neurodegeneration, where the molecular events partially overlap with GBM. In fact, curcumin broadly affects various signaling pathways, which are similarly affected in cell degeneration and cell differentiation. The antitumoral effects of curcumin include growth inhibition, cell cycle arrest, anti-migration and anti-invasion, as well as chemo- and radio-sensitizing activity. Remarkably, most of these effects rely on mammalian target of rapamycin (mTOR)-dependent ATG induction. In addition, curcumin targets undifferentiated and highly tumorigenic GBM cancer stem cells (GSCs). When rescuing ATG with curcumin, the tumorigenic feature of GSCs is suppressed, thus counteracting GBM establishment and growth. It is noteworthy that targeting GSCs may also help overcome therapeutic resistance and reduce tumor relapse, which may lead to a significant improvement of GBM prognosis. The present review focuses on the multi-faceted effects of curcumin on GBM neurobiology, which represents an extension to its neuroprotective efficacy.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.L.)
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Carla L. Busceti
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.L.)
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.L.)
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| |
Collapse
|
41
|
mTOR Modulates Intercellular Signals for Enlargement and Infiltration in Glioblastoma Multiforme. Cancers (Basel) 2020; 12:cancers12092486. [PMID: 32887296 PMCID: PMC7564864 DOI: 10.3390/cancers12092486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor. Emerging evidence indicate the multi-faceted role of extracellular vesicles (EVs) in GBM growth and proliferation. In fact, GBM-derived EVs can alter the phenotype of GBM-associated parenchymal cells; thus, promoting tumor growth, angiogenesis, and immune evasion. Remarkably, among several pathways that are frequently deregulated in GBM, mammalian Target of Rapamycin (mTOR) up-regulation, and subsequent autophagy (ATG) depression are considered hallmarks of GBM. In fact, mTOR-dependent ATG inhibition strongly correlates with the presence of EVs, which in turn promotes glioblastoma cancer stem cells (GSCs) self-renewal, proliferation, and infiltration. ATG and exosome release are reciprocally regulated. In detail, a failure in ATG enhances exosomal release. Therefore, strategies aimed at targeting on mTOR-dependent extracellular vesicles could be a promising approach for GBM prevention and treatment. Abstract Recently, exosomal release has been related to the acquisition of a malignant phenotype in glioblastoma cancer stem cells (GSCs). Remarkably, intriguing reports demonstrate that GSC-derived extracellular vesicles (EVs) contribute to glioblastoma multiforme (GBM) tumorigenesis via multiple pathways by regulating tumor growth, infiltration, and immune invasion. In fact, GSCs release tumor-promoting macrovesicles that can disseminate as paracrine factors to induce phenotypic alterations in glioma-associated parenchymal cells. In this way, GBM can actively recruit different stromal cells, which, in turn, may participate in tumor microenvironment (TME) remodeling and, thus, alter tumor progression. Vice versa, parenchymal cells can transfer their protein and genetic contents to GSCs by EVs; thus, promoting GSCs tumorigenicity. Moreover, GBM was shown to hijack EV-mediated cell-to-cell communication for self-maintenance. The present review examines the role of the mammalian Target of Rapamycin (mTOR) pathway in altering EVs/exosome-based cell-to-cell communication, thus modulating GBM infiltration and volume growth. In fact, exosomes have been implicated in GSC niche maintenance trough the modulation of GSCs stem cell-like properties, thus, affecting GBM infiltration and relapse. The present manuscript will focus on how EVs, and mostly exosomes, may act on GSCs and neighbor non tumorigenic stromal cells to modify their expression and translational profile, while making the TME surrounding the GSC niche more favorable for GBM growth and infiltration. Novel insights into the mTOR-dependent mechanisms regulating EV-mediated intercellular communication within GBM TME hold promising directions for future therapeutic applications.
Collapse
|
42
|
Ferese R, Lenzi P, Fulceri F, Biagioni F, Fabrizi C, Gambardella S, Familiari P, Frati A, Limanaqi F, Fornai F. Quantitative Ultrastructural Morphometry and Gene Expression of mTOR-Related Mitochondriogenesis within Glioblastoma Cells. Int J Mol Sci 2020; 21:ijms21134570. [PMID: 32604996 PMCID: PMC7370179 DOI: 10.3390/ijms21134570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
In glioblastoma (GBM) cells, an impairment of mitochondrial activity along with autophagy suppression occurs. Autophagy suppression in GBM promotes stemness, invasion, and poor prognosis. The autophagy deficit seems to be due, at least in part, to an abnormal up-regulation of the mammalian target of rapamycin (mTOR), which may be counteracted by pharmacological mTORC1 inhibition. Since autophagy activation is tightly bound to increased mitochondriogenesis, a defect in the synthesis of novel mitochondria is expected to occur in GBM cells. In an effort to measure a baseline deficit in mitochondria and promote mitochondriogenesis, the present study used two different GBM cell lines, both featuring mTOR hyperactivity. mTORC1 inhibition increases the expression of genes and proteins related to autophagy, mitophagy, and mitochondriogenesis. Autophagy activation was counted by RT-PCR of autophagy genes, LC3- immune-fluorescent puncta and immune-gold, as well as specific mitophagy-dependent BNIP3 stoichiometric increase in situ, within mitochondria. The activation of autophagy-related molecules and organelles after rapamycin exposure occurs concomitantly with progression of autophagosomes towards lysosomes. Remarkably, mitochondrial biogenesis and plasticity (increased mitochondrial number, integrity, and density as well as decreased mitochondrial area) was long- lasting for weeks following rapamycin withdrawal.
Collapse
Affiliation(s)
- Rosangela Ferese
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy; (R.F.); (F.B.); (S.G.); (A.F.)
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy; (P.L.); (F.L.)
| | - Federica Fulceri
- Department of Clinical and Experimental Medicine University of Pisa, via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy; (R.F.); (F.B.); (S.G.); (A.F.)
| | - Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy;
| | - Stefano Gambardella
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy; (R.F.); (F.B.); (S.G.); (A.F.)
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Sapienza University of Rome, 00185 Roma, Italy;
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy; (R.F.); (F.B.); (S.G.); (A.F.)
| | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy; (P.L.); (F.L.)
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy; (R.F.); (F.B.); (S.G.); (A.F.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy; (P.L.); (F.L.)
- Correspondence:
| |
Collapse
|
43
|
Palumbo P, Lombardi F, Augello FR, Giusti I, Dolo V, Leocata P, Cifone MG, Cinque B. Biological effects of selective COX-2 inhibitor NS398 on human glioblastoma cell lines. Cancer Cell Int 2020; 20:167. [PMID: 32435158 PMCID: PMC7222447 DOI: 10.1186/s12935-020-01250-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Cyclooxygenase-2 (COX-2), an inflammation-associated enzyme, has been implicated in tumorigenesis and progression of glioblastoma (GBM). The poor survival of GBM was mainly associated with the presence of glioma stem cells (GSC) and the markedly inflammatory microenvironment. To further explore the involvement of COX-2 in glioma biology, the effects of NS398, a selective COX-2 inhibitor, were evaluated on GSC derived from COX-2 expressing GBM cell lines, i.e., U87MG and T98G, in terms of neurospheres' growth, autophagy, and extracellular vesicle (EV) release. Methods Neurospheres' growth and morphology were evaluated by optical and scanning electron microscopy. Autophagy was measured by staining acidic vesicular organelles. Extracellular vesicles (EV), released from neurospheres, were analyzed by transmission electron microscopy. The autophagic proteins Beclin-1 and LC3B, as well as the EV markers CD63 and CD81, were analyzed by western blotting. The scratch assay test was used to evaluate the NS398 influence on GBM cell migration. Results Both cell lines were strongly influenced by NS398 exposure, as showed by morphological changes, reduced growth rate, and appearance of autophagy. Furthermore, the inhibitor led to a functional change of EV released by neurospheres. Indeed, EV secreted by NS398-treated GSC, but not those from control cells, were able to significantly inhibit adherent U87MG and T98G cell migration and induced autophagy in recipient cells, thus leading to effects quite similar to those directly caused by NS398 in the same cells. Conclusion Despite the intrinsic diversity and individual genetic features of U87MG and T98G, comparable effects were exerted by the COX-2 inhibitor NS398 on both GBM cell lines. Overall, our findings support the crucial role of the inflammatory-associated COX-2/PGE2 system in glioma and glioma stem cell biology.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Ilaria Giusti
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Pietro Leocata
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
44
|
Cyclocarya paliurus Polysaccharide Inhibits Glioma Cell U251 Proliferation, Migration, and Invasion and Promotes Apoptosis via the GSK3β/β-Catenin Signaling Pathway. INT J POLYM SCI 2020. [DOI: 10.1155/2020/2391439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective. To investigate the effects of Cyclocarya paliurus polysaccharide (CPP) on the proliferation, migration, invasion, and apoptosis of human glioma U251 cells and further explore the underlying mechanism. Methods. U251 cells were cultured in vitro and treated with various concentrations (25, 50, 75, 100, 125, and 150 μmol/L) of CPP for 24, 48, and 72 h. Cell counting kit-8 was used to detect the activity of cell proliferation. Wound-healing assay, Transwell assay, and flow cytometry were used to measure the effects of CPP on the migration, invasion, and apoptosis of U251 cells, respectively. Western blotting was used to determine the protein expression involved in the GSK3β/β-catenin signaling pathway and its downstream genes related to proliferation, migration, invasion, and apoptosis including Cyr61, CCND1, Vimentin, and Slug. Meanwhile, qRT-PCR was used to detect the mRNA levels of Cyr61, CCND1, Vimentin, and Slug. Results. We found that CPP not only could inhibit the proliferation, migration, and invasion of U251 cells but also promote its apoptosis in vitro. Besides, CPP could significantly inhibit the phosphorylation and decrease the protein levels of GSK3 β at ser9 site (p<0.05), and thus increasing the phosphorylation of β-Catenin at ser33/37 site (p<0.05), resulting in β-Catenin degradation. In addition, we also found that CPP could downregulate the mRNA (p<0.05) and protein expression (p<0.05) of downstream genes of GSK3 β/β-catenin signaling pathway including Cyr61, CCND1, Vimentin, and Slug, which are related to proliferation, migration, invasion, and apoptosis. Conclusion. CPP could inhibit the expression of GSK3β, promote the degradation of β-catenin, and downregulate the levels of GSK3β/β-catenin downstream genes including Cyr61, CCND1, Vimentin, and Slug, which regulate the proliferation, migration, invasion, and apoptosis of glioma cells.
Collapse
|
45
|
mTOR-Related Cell-Clearing Systems in Epileptic Seizures, an Update. Int J Mol Sci 2020; 21:ijms21051642. [PMID: 32121250 PMCID: PMC7084443 DOI: 10.3390/ijms21051642] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that autophagy impairment is implicated in the epileptogenic mechanisms downstream of mTOR hyperactivation. This holds true for a variety of genetic and acquired epileptic syndromes besides malformations of cortical development which are classically known as mTORopathies. Autophagy suppression is sufficient to induce epilepsy in experimental models, while rescuing autophagy prevents epileptogenesis, improves behavioral alterations, and provides neuroprotection in seizure-induced neuronal damage. The implication of autophagy in epileptogenesis and maturation phenomena related to seizure activity is supported by evidence indicating that autophagy is involved in the molecular mechanisms which are implicated in epilepsy. In general, mTOR-dependent autophagy regulates the proliferation and migration of inter-/neuronal cortical progenitors, synapse development, vesicular release, synaptic plasticity, and importantly, synaptic clustering of GABAA receptors and subsequent excitatory/inhibitory balance in the brain. Similar to autophagy, the ubiquitin–proteasome system is regulated downstream of mTOR, and it is implicated in epileptogenesis. Thus, mTOR-dependent cell-clearing systems are now taking center stage in the field of epilepsy. In the present review, we discuss such evidence in a variety of seizure-related disorders and models. This is expected to provide a deeper insight into the molecular mechanisms underlying seizure activity.
Collapse
|
46
|
Salvati M, Bruzzaniti P, Relucenti M, Nizzola M, Familiari P, Giugliano M, Scafa AK, Galletta S, Li X, Chen R, Barbaranelli C, Frati A, Santoro A. Retrospective and Randomized Analysis of Influence and Correlation of Clinical and Molecular Prognostic Factors in a Mono-Operative Series of 122 Patients with Glioblastoma Treated with STR or GTR. Brain Sci 2020; 10:brainsci10020091. [PMID: 32050461 PMCID: PMC7071604 DOI: 10.3390/brainsci10020091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma is a solid, infiltrating, and the most frequent highly malignant primary brain tumor. Our aim was to find the correlation between sex, age, preoperative Karnofsky performance status (KPS), presenting with seizures, and extent of resection (EOR) with overall survival (OS), progression-free survival (PFS), and postoperative KPS, along with the prognostic value of IDH1, MGMT, ATRX, EGFR, and TP53 genes mutations and of Ki67 through the analysis of a single-operator series in order to avoid the biases of a multi-operator series, such as the lack of homogeneity in surgical and adjuvant nonsurgical treatments. A randomized retrospective analysis of 122 patients treated by a single first operator at Sapienza University of Rome was carried out. After surgery, patients followed standard Stupp protocol treatment. Exclusion criteria were: (1) patients with primary brainstem and spinal cord gliomas and (2) patients who underwent partial resections (resection < 90%) or a biopsy exclusively for diagnostic purposes. Statistical analysis with a simultaneous regression model was carried out through the use of SPSS 25® (IBM). Results showed statistically significant survival increase in four groups: (1) patients treated with gross total resection (GTR) (p < 0.030); (2) patients with mutation of IDH1 (p < 0.0161); (3) patients with methylated MGMT promoter (p < 0.005); (4) patients without EGFR amplification or EGFRvIII mutation (p < 0.035). Higher but not statistically significant survival rates were also observed in: patients <75 years, patients presenting with seizures at diagnosis, patients affected by lesions in noneloquent areas, as well as in patients with ATRX gene mutation and Ki-67 < 10%.
Collapse
Affiliation(s)
- Maurizio Salvati
- Department of Neurological Sciences, Neurosurgey, “La Sapienza” University of Rome, 00161 Rome, Italy; (M.S.); (M.N.); (P.F.); (M.G.); (A.K.S.); (A.S.)
| | - Placido Bruzzaniti
- Department of Neurological Sciences, Neurosurgey, “La Sapienza” University of Rome, 00161 Rome, Italy; (M.S.); (M.N.); (P.F.); (M.G.); (A.K.S.); (A.S.)
- Correspondence: ; Tel.: +39-3349753520
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, “La Sapienza” University of Rome, 00161 Rome, Italy;
| | - Mariagrazia Nizzola
- Department of Neurological Sciences, Neurosurgey, “La Sapienza” University of Rome, 00161 Rome, Italy; (M.S.); (M.N.); (P.F.); (M.G.); (A.K.S.); (A.S.)
| | - Pietro Familiari
- Department of Neurological Sciences, Neurosurgey, “La Sapienza” University of Rome, 00161 Rome, Italy; (M.S.); (M.N.); (P.F.); (M.G.); (A.K.S.); (A.S.)
| | - Marco Giugliano
- Department of Neurological Sciences, Neurosurgey, “La Sapienza” University of Rome, 00161 Rome, Italy; (M.S.); (M.N.); (P.F.); (M.G.); (A.K.S.); (A.S.)
| | - Anthony Kevin Scafa
- Department of Neurological Sciences, Neurosurgey, “La Sapienza” University of Rome, 00161 Rome, Italy; (M.S.); (M.N.); (P.F.); (M.G.); (A.K.S.); (A.S.)
| | - Santi Galletta
- UOSD of Neurophysiopathology and DISMOV, AOU G Martino, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing 210009, China; (X.L.); (R.C.)
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing 210009, China; (X.L.); (R.C.)
| | - Claudio Barbaranelli
- Department of Psychology, Faculty of Medicine and Psychology “La Sapienza” University of Rome, 00189 Rome, Italy;
| | - Alessandro Frati
- Department of Neurosurgery, IRCCS Neuromed Pozzilli IS, 86077 Isernia, Italy;
| | - Antonio Santoro
- Department of Neurological Sciences, Neurosurgey, “La Sapienza” University of Rome, 00161 Rome, Italy; (M.S.); (M.N.); (P.F.); (M.G.); (A.K.S.); (A.S.)
| |
Collapse
|
47
|
Nediani C, Ruzzolini J, Romani A, Calorini L. Oleuropein, a Bioactive Compound from Olea europaea L., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants (Basel) 2019; 8:E578. [PMID: 31766676 PMCID: PMC6943788 DOI: 10.3390/antiox8120578] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Growing scientific literature data suggest that the intake of natural bioactive compounds plays a critical role in preventing or reducing the occurrence of human chronic non-communicable diseases (NCDs). Oleuropein, the main phenolic component of Olea europaea L., has attracted scientific attention for its several health beneficial properties such as antioxidant, anti-inflammatory, cardio- and neuro-protective, and anti-cancer. This article is a narrative review focused on the current literature concerning the effect of oleuropein in NCDs, such as neuro- and cardiovascular diseases, diabetes mellitus, chronic kidney diseases, and cancer, by its putative antioxidant and anti-inflammatory activity, but also for its other peculiar actions such as an autophagy inducer and amyloid fibril growth inhibitor and, finally, for its anti-cancer effect. Despite the increasing number of published studies, looking at the beneficial effects of oleuropein, there is limited clinical evidence focused on the benefits of this polyphenol as a nutraceutical product in humans, and many problems are still to be resolved about its bioavailability, bioaccessibility, and dosage. Thus, future clinical randomized trials are needed to establish the relation between the beneficial effects and the mechanisms of action occurring in the human body in response to the intake of oleuropein.
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Florence, Italy;
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
- Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education (DENOTHE), University of Florence, Piazza di San Marco 4, 50121 Florence, Italy
| |
Collapse
|
48
|
Ryskalin L, Busceti CL, Biagioni F, Limanaqi F, Familiari P, Frati A, Fornai F. Prion Protein in Glioblastoma Multiforme. Int J Mol Sci 2019; 20:ijms20205107. [PMID: 31618844 PMCID: PMC6834196 DOI: 10.3390/ijms20205107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The cellular prion protein (PrPc) is an evolutionarily conserved cell surface protein encoded by the PRNP gene. PrPc is ubiquitously expressed within nearly all mammalian cells, though most abundantly within the CNS. Besides being implicated in the pathogenesis and transmission of prion diseases, recent studies have demonstrated that PrPc contributes to tumorigenesis by regulating tumor growth, differentiation, and resistance to conventional therapies. In particular, PrPc over-expression has been related to the acquisition of a malignant phenotype of cancer stem cells (CSCs) in a variety of solid tumors, encompassing pancreatic ductal adenocarcinoma (PDAC), osteosarcoma, breast cancer, gastric cancer, and primary brain tumors, mostly glioblastoma multiforme (GBM). Thus, PrPc is emerging as a key in maintaining glioblastoma cancer stem cells’ (GSCs) phenotype, thereby strongly affecting GBM infiltration and relapse. In fact, PrPc contributes to GSCs niche’s maintenance by modulating GSCs’ stem cell-like properties while restraining them from differentiation. This is the first review that discusses the role of PrPc in GBM. The manuscript focuses on how PrPc may act on GSCs to modify their expression and translational profile while making the micro-environment surrounding the GSCs niche more favorable to GBM growth and infiltration.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy.
| | - Carla L Busceti
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli, Italy.
| | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy.
| | - Pietro Familiari
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy.
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli, Italy.
| |
Collapse
|
49
|
Kim HY, Lee BI, Jeon JH, Kim DK, Kang SG, Shim JK, Kim SY, Kang SW, Jang H. Gossypol Suppresses Growth of Temozolomide-Resistant Glioblastoma Tumor Spheres. Biomolecules 2019; 9:biom9100595. [PMID: 31658771 PMCID: PMC6843396 DOI: 10.3390/biom9100595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Temozolomide is the current first-line treatment for glioblastoma patients but, because many patients are resistant to it, there is an urgent need to develop antitumor agents to treat temozolomide-resistant glioblastoma. Gossypol, a natural polyphenolic compound, has been studied as a monotherapy or combination therapy for the treatment of glioblastoma. The combination of gossypol and temozolomide has been shown to inhibit glioblastoma, but it is not clear yet whether gossypol alone can suppress temozolomide-resistant glioblastoma. We find that gossypol suppresses the growth of temozolomide-resistant glioblastoma cells in both tumor sphere and adherent culture conditions, with tumor spheres showing the greatest sensitivity. Molecular docking and binding energy calculations show that gossypol has a similar affinity to the Bcl2 (B-cell lymphoma 2) family of proteins and several dehydrogenases. Gossypol reduces mitochondrial membrane potential and cellular ATP levels before cell death, which suggests that gossypol inhibits several dehydrogenases in the cell’s metabolic pathway. Treatment with a Bcl2 inhibitor does not fully explain the effect of gossypol on glioblastoma. Overall, this study demonstrates that gossypol can suppress temozolomide-resistant glioblastoma and will be helpful for the refinement of gossypol treatments by elucidating some of the molecular mechanisms of gossypol in glioblastoma.
Collapse
Affiliation(s)
- Hee Yeon Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea.
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea.
| | - Byung Il Lee
- Division of Precision Medicine, Research Institute, National Cancer Center, Goyang 10408, Korea.
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea.
| | - Ji Hoon Jeon
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea.
| | - Dong Keon Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea.
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Soo Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea.
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea.
| | - Hyonchol Jang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea.
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea.
| |
Collapse
|
50
|
TREM Receptors Connecting Bowel Inflammation to Neurodegenerative Disorders. Cells 2019; 8:cells8101124. [PMID: 31546668 PMCID: PMC6829526 DOI: 10.3390/cells8101124] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023] Open
Abstract
Alterations in Triggering Receptors Expressed on Myeloid cells (TREM-1/2) are bound to a variety of infectious, sterile inflammatory, and degenerative conditions, ranging from inflammatory bowel disease (IBD) to neurodegenerative disorders. TREMs are emerging as key players in pivotal mechanisms often concurring in IBD and neurodegeneration, namely microbiota dysbiosis, leaky gut, and inflammation. In conditions of dysbiosis, compounds released by intestinal bacteria activate TREMs on macrophages, leading to an exuberant pro-inflammatory reaction up to damage in the gut barrier. In turn, TREM-positive activated macrophages along with inflammatory mediators may reach the brain through the blood, glymphatic system, circumventricular organs, or the vagus nerve via the microbiota-gut-brain axis. This leads to a systemic inflammatory response which, in turn, impairs the blood-brain barrier, while promoting further TREM-dependent neuroinflammation and, ultimately, neural injury. Nonetheless, controversial results still exist on the role of TREM-2 compared with TREM-1, depending on disease specificity, stage, and degree of inflammation. Therefore, the present review aimed to provide an update on the role of TREMs in the pathophysiology of IBD and neurodegeneration. The evidence here discussed the highlights of the potential role of TREMs, especially TREM-1, in bridging inflammatory processes in intestinal and neurodegenerative disorders.
Collapse
|