1
|
Mojtahedi A, Ghaderi S, Ghiasi M, Halabian R, Dehghan H, Padash A, Eftekhari E, Salimi A. Investigating the enhancement of neural differentiation of adipose-derived mesenchymal stem cell with Foeniculum vulgare nanoemulsions: An in vitro research. Tissue Cell 2025; 94:102806. [PMID: 40022910 DOI: 10.1016/j.tice.2025.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Neurons, distributed throughout the body, regulate various bodily functions. The recovery of the nervous system is often slow and can be irreversible. Currently, the approach of using mesenchymal stem cells (MSCs) in conjunction with conventional treatments for nervous system injuries is being explored. Nanoemulsions are systems designed for the nanoscale delivery of drug cargoes. Foeniculum vulgare (F. vulgare), a medicinal plant long utilized in complementary medicine, is the focus of this study. The aim is to utilize nanoemulsions of fennel to induce the differentiation of MSCs into neural-like cells in vitro. MATERIALS AND METHODS Human adipose-derived mesenchymal stem cells (hADSCs) were commercially purchased. These cells were cultured in DMEM medium containing 10 % fetal bovine serum and 1 % penicillin-streptomycin antibiotic. Based on a sequential extraction method, n-hexane (Hex), ethyl acetate (EtAc), and ethanolic extracts were obtained from the seeds of F. vulgare. To prepare the F. vulgare extract nanoemulsion, the aqueous phase (distilled water), the oily part (F. vulgare extract), Span 80 and Tween 20 were used. The optimal dose of F. vulgare nanoemulsion was determined using the MTT assay and acridine orange/ethidium bromide (AO/EB) staining. Neural differentiation was induced using a specialized differentiation medium on the MSCs, with the prepared nanoemulsions acting as inducers. The neural differentiation of the human differentiated hADSCs was studied and evaluated through Real-time PCR and immunocytochemistry (ICC) techniques on days 7 and 14. RESULTS The results obtained from the MTT and AO/EB tests indicated that the optimal dose of F. vulgare nanoemulsions is 1 μg/ml. Analysis of neural differentiation index gene expression revealed a significant (P ≤ 0.05) upregulation of MAP-2, β-tubulin III, and NSE genes on days 7 and 14 following treatment with the nanoemulsions. It is noteworthy that the nanoemulsion prepared from the hexane extract of the plant showed a significant increase in the expression of marker genes in the process of neural differentiation. Protein expression analysis demonstrated an increase in MAP-2, β-tubulin III, and NSE (gamma enolase) proteins in response to the nanoemulsion inducers compared to the control group (TCPS). DISCUSSION Overall, our findings indicate that F. vulgare nanoemulsions have a positive effect on the expression of genes and proteins related to neural differentiation in hADSCs. The proposed protocol may serve as a potential therapeutic strategy in complementary medicine for patients seeking to improve injuries to the nervous system. However, further studies and performance measurements are necessary in future research to confirm these results.
Collapse
Affiliation(s)
- Arya Mojtahedi
- Department of Biology, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Shima Ghaderi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Cardiovascular Research Center, Rajaie Cardiovascular Institute, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Dehghan
- Department of Basic Sciences, Medicinal Plants Research Center, Shahed University, Tehran, Iran
| | - Arash Padash
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Eftekhari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sakamoto T, Koma H, Kuwano A, Horie T, Fuku A, Kitajima H, Nakamura Y, Tanida I, Nakade Y, Hirata H, Tachi Y, Sunami H, Sakamoto D, Yamada S, Yamamoto N, Shimizu Y, Ishigaki Y, Ichiseki T, Kaneuji A, Osawa S, Kawahara N. Efficient spheroid morphology assessment with a ChatGPT data analyst: implications for cell therapy. Biotechniques 2025:1-13. [PMID: 40264428 DOI: 10.1080/07366205.2025.2493489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) exhibit promising potential for the treatment of various diseases, including osteoarthritis. Spheroids derived from ADSCs are a viable treatment option with enhanced anti-inflammatory effects and tissue repair capabilities. OBJECTIVE SphereRing® is a rotating donut-shaped tube that efficiently produces large quantities of spheroids. However, accurately measuring spheroid size for spheroid quality assessment is challenging. This study aimed to develop an automated method for measuring spheroid size using deep learning through the ChatGPT Data Analyst for image recognition and processing. METHOD The area, perimeter, and circularity of spheroids generated with the SphereRing system were analyzed using ChatGPT Data Analyst and ImageJ. Measurement accuracy was validated using Bland-Altman analysis and scatter plot correlation coefficients. RESULTS ChatGPT Data Analyst was consistent with ImageJ for all parameters. Bland-Altman plots demonstrated strong agreement; most data points were within the 95% limits. CONCLUSION The ChatGPT Data Analyst provides a reliable and efficient alternative for assessing spheroid quality. This method reduces human error and improves reproducibility to enhance spheroid quality control. Thus, this method has potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Takuya Sakamoto
- Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Japan
| | - Hiroto Koma
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Japan
| | - Ayane Kuwano
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Japan
| | - Tetsuhiro Horie
- Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Kahoku, Japan
| | - Atsushi Fuku
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Japan
| | - Hironori Kitajima
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
| | - Ikuhiro Tanida
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Japan
| | - Yujiro Nakade
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Japan
| | - Hiroaki Hirata
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Japan
| | - Yoshiyuki Tachi
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Japan
| | - Hiroshi Sunami
- Faculty of Medicine, Advanced Medical Research Center, University of the Ryukyus, Okinawa, Japan
| | - Daisuke Sakamoto
- Department of Cardiovascular Surgery, Kanazawa Medical University, Kahoku, Japan
| | - Sohsuke Yamada
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Kahoku, Japan
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Kahoku, Japan
- Department of Pathology, Kanazawa Medical University Hospital, Kahoku, Japan
| | - Naoki Yamamoto
- Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Kahoku, Japan
| | - Toru Ichiseki
- Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Japan
| | - Ayumi Kaneuji
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Japan
| | - Satoshi Osawa
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Japan
| | - Norio Kawahara
- Department of Orthopedic Surgery, Kanazawa Medical University, Kahoku, Japan
| |
Collapse
|
3
|
Gomez-Pinilla F, Myers SK. Traumatic brain injury from a peripheral axis perspective: Uncovering the roles of liver and adipose tissue in temperature regulation. Prog Neurobiol 2025; 247:102733. [PMID: 40032155 DOI: 10.1016/j.pneurobio.2025.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Most current treatments for TBI and other neurological disorders focus on the brain, often overlooking the significant contributions of peripheral organs to disease progression. Emerging evidence suggests that organs such as the liver and adipose tissue play crucial roles in TBI pathogenesis. The liver synthesizes lipids and proteins vital for brain function, while adipose tissue provides hormones and metabolites that influence brain activity. New research indicates that the liver and adipose tissue work in concert with the hypothalamus to regulate essential processes, such as body temperature, which become disrupted in TBI. Additionally, the brain-peripheral axis-a complex network of visceral nerve pathways, hormones, and metabolites-plays a bidirectional role in regulating brain plasticity and function. Understanding how TBI leads to dysregulation of the liver, adipose tissue, and other organs could unlock new therapeutic opportunities for treating TBI and related neurological disorders. The intricate autonomic network involving hypothalamic and enteric neurons, along with visceral nerve pathways and hormones, presents both pathological targets and therapeutic potential. We examine scientific evidence suggesting that correcting disturbances in systemic physiology could enhance the brain's capacity for healing. However, the interdependence of this autonomic network implies that treating dysfunction in one area may affect others. Therefore, we also explore the mechanisms by which diet and exercise can comprehensively impact the brain-peripheral axis, supporting the healing process. CHEMICAL COMPOUNDS: D-Fructose (PubChem CID 2723872); docosahexaenoic acid (PubChem CID 45934466); eicosapentaenoic acid (PubChem 5282847).
Collapse
Affiliation(s)
- F Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Sydney K Myers
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Matsumura R, Matsumura H, Kawai Y, Kim J, Lee MC, Yu Y, Fujii M, Shimada K, Komiya T. Three-Dimensional Bioprinted Autologous Minimally Manipulated Homologous Adipose Tissue for Skin Defects After Wide Excision of Skin Cancer Provides Early Wound Closure and Good Esthetic Patient Satisfaction. J Clin Med 2025; 14:1795. [PMID: 40142603 PMCID: PMC11942824 DOI: 10.3390/jcm14061795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Background: An autologous minimally manipulated homologous adipose tissue (AMHAT) fabricated using three-dimensional (3D) bioprinting has shown potential in the treatment of diabetic foot ulcers and other chronic wounds. Methods: This study assessed the efficacy of AMHAT fabricated using 3D bioprinting for treating skin defects after a wide excision of skin cancer lesions where primary closure was not feasible. A total of 10 consecutive patients were included. The wounds were photographed and analyzed using AI, and the fat tissue harvested from the lower abdomen was processed into an AMHAT patch using a 3D bioprinter. The wound area was measured weekly until complete wound closure was achieved. Results: The area of the skin defects ranged from 1.77-6.22 cm2, averaging 2.72 cm2. Complete closure was achieved in 3-5 (average, 4.2) weeks. The residual area decreased from 52% after 1 week to 3% after 4 weeks. The scar appearance was esthetically favorable, with one patient showing mild nostril asymmetry. Furthermore, patient-reported outcome evaluation using the Japanese version of SCAR-Q for postoperative scars showed a very high level of satisfaction. Conclusions: The 3D bioprinted AMHAT accelerates wound healing with minimal scarring, offering an important option for skin defects where esthetics are a priority.
Collapse
Affiliation(s)
- Reina Matsumura
- Department of Plastic and Reconstructive Surgery, Tokyo Medical University, Tokyo 160-0023, Japan
- Division of Plastic Surgery, Kumagaya Geka Hospital, Saitama 360-0023, Japan
- Division of Plastic Surgery, Fukaya Red Cross Hospital, Saitama 366-0052, Japan
| | - Hajime Matsumura
- Department of Plastic and Reconstructive Surgery, Tokyo Medical University, Tokyo 160-0023, Japan
- Division of Plastic Surgery, Kumagaya Geka Hospital, Saitama 360-0023, Japan
- Division of Plastic Surgery, Fukaya Red Cross Hospital, Saitama 366-0052, Japan
| | - Yuichiro Kawai
- Department of Plastic and Reconstructive Surgery, Tokyo Medical University, Tokyo 160-0023, Japan
- Division of Plastic Surgery, Kumagaya Geka Hospital, Saitama 360-0023, Japan
| | - Jeehee Kim
- ROKIT HEALTHCARE, Seoul 08514, Republic of Korea
| | - Min-Chae Lee
- ROKIT HEALTHCARE, Seoul 08514, Republic of Korea
| | - Yeongseo Yu
- ROKIT HEALTHCARE, Seoul 08514, Republic of Korea
| | - Miki Fujii
- Department of Plastic and Reconstructive Surgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Kazuki Shimada
- Department of Plastic and Reconstructive Surgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Takako Komiya
- Department of Plastic and Reconstructive Surgery, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
5
|
de Rezende CP, de Lima Alves D, de Almeida Chuffa LG, Pires de Campos Zuccari DA. Extracellular vesicles and miRNA-based therapies in triple-negative breast cancer: advances and clinical perspectives. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:54-71. [PMID: 40206796 PMCID: PMC11977377 DOI: 10.20517/evcna.2024.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 04/11/2025]
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive and challenging subtypes for treatment, due to the lack of hormone receptors and the human epidermal growth factor receptor 2 (HER2) protein. The identification of new molecular targets is important for the development of targeted and specific therapies for TNBC patients. MicroRNAs (miRNAs) have emerged as promising molecular targets, being involved in cellular processes such as cell survival, apoptosis, differentiation, carcinogenesis, and metastasis. Extracellular vesicles (EVs) have gained prominence in areas such as drug delivery, immune modulation, biomarkers for diagnosis and prognosis, and therapeutics, due to their use as vehicles for the delivery of miRNAs, regulation of gene expression, and development of combined therapeutic strategies. In particular, mesenchymal stem cell-derived EVs (MSC-derived EVs) can transfer proteins, mRNAs/miRNAs, or DNA molecules and are being considered safer treatment options due to their inability to directly form tumors and contain lower amounts of membrane proteins such as MHC molecules. Numerous studies have highlighted the role of miRNAs in EVs in TNBC tumorigenesis, with a focus on diagnosis, prognosis, treatment selection, and monitoring. However, the development of therapies with EVs, especially MSC-derived EVs, is still in its infancy. Therefore, the aim of this review is to address new therapeutic strategies based on the delivery of miRNAs through EVs, with a focus on MSC-derived EVs, for the treatment of TNBC as an innovative therapy in oncology.
Collapse
Affiliation(s)
- Caroline Patini de Rezende
- Department of Molecular Biology, Cancer Molecular Research Laboratory (LIMC)/FAMERP, São José do Rio Preto 15090-000, Brazil
| | - Débora de Lima Alves
- Department of Molecular Biology, Cancer Molecular Research Laboratory (LIMC)/FAMERP, São José do Rio Preto 15090-000, Brazil
| | - Luiz Gustavo de Almeida Chuffa
- Department of Anatomy-IBB/UNESP, Institute of Biosciences of Botucatu, Univ.Estadual Paulista, Botucatu 18618-689, Brazil
| | | |
Collapse
|
6
|
Powantia Pontoh LA, Fiolin J, Dilogo IH, Prasetyo M, Antarianto RD, Harahap A, Tantry AJ, Pakasi TA, Priosoeryanto BP, Dewi TIT. Combined exosome of adipose-derived mesenchymal stem cell and hyaluronic acid delays early osteoarthritis progression of ovine sheep model: Clinical, radiographic, macroscopic and microscopic evaluation. F1000Res 2025; 13:494. [PMID: 39989481 PMCID: PMC11842963 DOI: 10.12688/f1000research.147309.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
Background Current treatment of osteoarthritis (OA) mainly focused on treating symptoms. Exosome from Adipose-derived Mesenchymal Stem Cell (Ad-MSC) have been shown to delay degenerative process. This study aimed to investigate the clinical, radiological and histological impact of combined intra-articular (IA) hyaluronic acid (HA) and exosome Ad-MSCs in-vivo using a larger animal model with low-grade OA. Methods Eighteen male Ovies aries sheep underwent total lateral meniscectomy and conventional radiography was performed to confirm low-grade OA after 6 weeks. The sheep were divided into three groups, Group 1 (G1; n=6) received thrice exosome injections, G2 (n=6) received twice HA injection, and G3 (n=6) received both treatments with a 1-week interval after 10 days of meniscectomy. Clinical evaluations were conducted using the Clinical Lameness Score (CLS), radiographic with X-ray using OA score by Innes et al, while macroscopic evaluation by Osteoarthritis Research Society International (OARSI) scores. Results Lameness parameter scored lowest in G3 significantly (2.0±0.0 VS 2.7±0.52 VS 2.7±0.52; p=0.024) at the second month although the overall CLS score did not significantly differ at the 3 rd month. The best improvement of conventional total OA radiographic score at the 3 rd month compared to all groups (5.2±1.17 vs 6.3±0.82 vs 6.7±1.03; p=0.053). Macroscopic OARSI evaluation showed no difference (p=0.711). Conclusions Combined repeated exosome Ad-MSC and HA IA injection proven to delay OA progression, however longer duration of follow up is required to evaluate its long-term effect.
Collapse
Affiliation(s)
| | - Jessica Fiolin
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Indonesia, Central Jakarta, DKI Jakarta, 10430, Indonesia
| | - Ismail Hadisoebroto Dilogo
- Orthopaedic and Traumatology, Faculty of Medicine, Universitas Indonesia, Centra Jakarta, DKI Jakarta, 10430, Indonesia
| | - Marcel Prasetyo
- Department of Radiology, Faculty of Medicine, Universitas Indonesia, Central Jakarta, DKI Jakarta, 10430, Indonesia
| | - Radiana Dhewayani Antarianto
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Central Jakarta, DKI Jakarta, 10430, Indonesia
| | - Alida Harahap
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Indonesia, Central Jakarta, DKI Jakarta, 10430, Indonesia
| | - Angela Jennifer Tantry
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, West Java, 16424, Indonesia
| | - Trevino Aristakus Pakasi
- Department of Community Medicine, Faculty of Medicine, Universitas Indonesia, Central Jakarta, DKI Jakarta, 10430, Indonesia
| | - Bambang Pontjo Priosoeryanto
- School of Veterinary Medicine and Biomedical Science, Institut Pertanian Bogor, Bogor, West Java, 16680, Indonesia
| | - Tri Isyani Tungga Dewi
- School of Veterinary Medicine and Biomedical Science, Institut Pertanian Bogor, Bogor, West Java, 16680, Indonesia
| |
Collapse
|
7
|
Lee SW, Lim YJ, Kim HY, Kim W, Park WT, Ma MJ, Lee J, Seo MS, Kim YI, Park S, Choi SK, Lee GW. Immortalization of epidural fat-derived mesenchymal stem cells: In vitro characterization and adipocyte differentiation potential. World J Stem Cells 2025; 17:98777. [PMID: 39866894 PMCID: PMC11752455 DOI: 10.4252/wjsc.v17.i1.98777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/12/2024] [Accepted: 12/03/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy due to their self-renewal capability, multilineage differentiation potential, and immunomodulatory effects. The molecular characteristics of MSCs are influenced by their location. Recently, epidural fat (EF) and EF-derived MSCs (EF-MSCs) have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers. However, their clinical applications are limited due to cell senescence and limited accessibility of EF. Although many studies have attempted to establish an immortalized, stable SC line, the characteristics of immortalized EF-MSCs remain to be clarified. AIM To establish and analyze stable immortalized EF-MSCs. METHODS The phenotypes of EF-MSCs were analyzed using optical microscopy. Cell immortalization was performed using lentiviral vectors. The biomolecular characteristics of the cells were analyzed by immunoblotting, quantitative PCR, and proteomics. RESULTS The immortalized EF-MSCs demonstrated a significantly extended lifespan compared to the control group, with well-preserved adipogenic potential and SC surface marker expression. Introduction of human telomerase reverse transcriptase genes markedly increased the lifespan of EF-MSCs. Proteomics analysis revealed substantial increase in the expression of DNA replication pathway components in immortalized EF-MSCs. CONCLUSION Immortalized EF-MSCs exhibited significantly enhanced proliferative capacity, retained adipogenic potential, and upregulated the expression of DNA replication pathway components.
Collapse
Affiliation(s)
- Seoung-Woo Lee
- Core Protein Resources Center, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Young-Ju Lim
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu 42415, South Korea
| | - Hee-Yeon Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Wansoo Kim
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea
| | - Wook-Tae Park
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu 42415, South Korea
| | - Min-Jung Ma
- Laboratory of Veterinary Tissue Engineering, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Junho Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Min-Soo Seo
- Department of Veterinary Tissue Engineering, Kyungpook National University, Daegu 41566, South Korea
| | | | - Sangbum Park
- Michigan State University, Institute for Quantitative Health Science & Engineering, East Lansing, MI 48824, United States
| | - Seong-Kyoon Choi
- Core Protein Resources Center, Daegu-Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Daegu 42415, South Korea.
| |
Collapse
|
8
|
Silva RO, Haddad M, Counil H, Zaouter C, Patten SA, Fulop T, Ramassamy C. Exploring the potential of plasma and adipose mesenchymal stem cell-derived extracellular vesicles as novel platforms for neuroinflammation therapy. J Control Release 2025; 377:880-898. [PMID: 39617173 DOI: 10.1016/j.jconrel.2024.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Persistent reactive oxygen species (ROS) and neuroinflammation contribute to the onset and progression of neurodegenerative diseases, underscoring the need for targeted therapeutic strategies to mitigate these effects. Extracellular vesicles (EVs) show promise in drug delivery due to their biocompatibility, ability to cross biological barriers, and specific interactions with cell and tissue receptors. In this study, we demonstrated that human plasma-derived EVs (pEVs) exhibit higher brain-targeting specificity, while adipose-derived mesenchymal stem cells EVs (ADMSC-EVs) offer regenerative and immunomodulatory properties. We further investigated the potential of these EVs as therapeutic carriers for brain-targeted drug delivery, using Donepezil (DNZ) as the model drug. DNZ, a cholinesterase inhibitor commonly used for Alzheimer's disease (AD), also has neuroprotective and anti-inflammatory properties. The size of EVs used ranged from 50 to 300 nm with a surface charge below -30 mV. Both formulations showed rapid cellular internalization, without toxicity, and the ability to cross the blood-brain barrier (BBB) in a zebrafish model. The have analyzed the anti-inflammatory and antioxidant actions of pEVs-DNZ and ADMSC-EVs-DNZ in the presence of lipopolysaccharide (LPS). ADMSC-EVs significantly reduced the inflammatory mediators released by HMC3 microglial cells while treatment with pEVs-DNZ and ADMSC-EVs-DNZ lowered both phagocytic activity and ROS levels in these cells. In vivo experiments using zebrafish larvae revealed that both EV formulations reduced microglial proliferation and exhibited antioxidant effects. Overall, this study highlights the potential of EVs loaded with DNZ as a novel approach for treating neuroinflammation underlying various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mohamed Haddad
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Hermine Counil
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Charlotte Zaouter
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Shunmoogum A Patten
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Charles Ramassamy
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
9
|
Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Piscopo S, Beley N, Dzyha S, Smetanina K, Shanaida V, Resimont S, Bjorklund G. The Possible Roles of β-alanine and L-carnosine in Anti-aging. Curr Med Chem 2025; 32:6-22. [PMID: 38243982 DOI: 10.2174/0109298673263561231117054447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024]
Abstract
β-alanine (BA), being a non-proteinogenic amino acid, is an important constituent of L-carnosine (LC), which is necessary for maintaining the muscle buffering capacity and preventing a loss of muscle mass associated with aging effects. BA is also very important for normal human metabolism due to the formation of a part of pantothenate, which is incorporated into coenzyme A. BA is synthesized in the liver, and its combination with histidine results in the formation of LC, which accumulates in the muscles and brain tissues and has a well-defined physiological role as a good buffer for the pH range of muscles that caused its rapidly increased popularity as ergogenic support to sports performance. The main antioxidant mechanisms of LC include reactive oxygen species (ROS) scavenging and chelation of metal ions. With age, the buffering capacity of muscles also declines due to reduced concentration of LC and sarcopenia. Moreover, LC acts as an antiglycation agent, ultimately reducing the development of degenerative diseases. LC has an anti-inflammatory effect in autoimmune diseases such as osteoarthritis. As histidine is always present in the human body in higher concentrations than BA, humans have to get BA from dietary sources to support the required amount of this critical constituent to supply the necessary amount of LC synthesis. Also, BA has other beneficial effects, such as preventing skin aging and intestinal damage, improving the stress-- fighting capability of the muscle cells, and managing an age-related decline in memory and learning. In this review, the results of a detailed analysis of the role and various beneficial properties of BA and LC from the anti-aging perspective are presented.
Collapse
Affiliation(s)
- Amin Gasmi
- Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Research and Development Department, Nutri-Logics, Weiswampach, Luxembourg
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Svitlana Dzyha
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Kateryna Smetanina
- Faculty of Postgraduate Education, Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | - Stephane Resimont
- Research and Development Department, Nutri-Logics, Weiswampach, Luxembourg
| | - Geir Bjorklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
10
|
Baran Z, Çetinkaya M, Baran Y. Mesenchymal Stem Cells in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:149-177. [PMID: 39470980 DOI: 10.1007/5584_2024_824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.
Collapse
Affiliation(s)
- Züleyha Baran
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Melisa Çetinkaya
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Baran
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
11
|
Hassanpour Khodaei S, Sabetkam S, Kalarestaghi H, Dizaji Asl K, Mazloumi Z, Bahramloo M, Norouzi N, Naderali E, Rafat A. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: attractive therapeutic approaches for female reproductive dysfunction. Mol Biol Rep 2024; 52:10. [PMID: 39576370 DOI: 10.1007/s11033-024-10106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Infertility is a reproductive health problem in the male or female reproductive system. Traditional assisted reproductive technology (ART) has been unable to solve various cases of infertility for years. Clinical researchers have sought to treat infertility using new methods that are more effective and noninvasive than the old methods. Recently, Mesenchymal stem cells (MSCs) and MSCs-derived Exosomes (MSC-Exos) via paracrine activity play an important role in treating various causes of infertility and improving pregnancy outcomes. In this review, we focus on the roles of MSCs and MSC-Exos cell therapy in female infertility in the different types of female reproductive disorders.
Collapse
Affiliation(s)
- Sepideh Hassanpour Khodaei
- Department of Dentistry, Eastern Mediterranean University (EMU) Famagusta, North Cyprus Mersin 10, Famagusta, Turkey
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, University of Kyrenia, Kyrenia, Northern Cyprus
| | - Hossein Kalarestaghi
- Research Laboratory for Embryology and Stem Cell, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Zeinab Mazloumi
- Department of Medical Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadmahdi Bahramloo
- Department of Medical Sciences, Student Research Committee, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nahid Norouzi
- Nursing Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Naderali
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Silva Couto P, Stibbs DJ, Rotondi MC, Khalife R, Wolf D, Takeuchi Y, Rafiq QA. Biological differences between adult and perinatal human mesenchymal stromal cells and their impact on the manufacturing processes. Cytotherapy 2024; 26:1429-1441. [PMID: 38970611 DOI: 10.1016/j.jcyt.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 07/08/2024]
Abstract
The biological properties of human mesenchymal stromal cells (hMSCs) have been explored in over a thousand clinical trials in the last decade. Although hMSCs can be isolated from multiple sources, the degree of biological similarity between cell populations from these sources remains to be determined. A comparative study was performed investigating the growth kinetics and functionality of hMSCs isolated from adipose tissue (AT), bone marrow (BM) and umbilical cord tissue (UCT) expanded in monolayer over five passages. Adult hMSCs (AT, BM) had a slower proliferation ability than the UCT-hMSCs, with no apparent differences in their glucose consumption profile. BM-hMSCs produced higher concentrations of endogenous vascular endothelial growth factor (VEGF) compared to AT- and UCT-hMSCs. This study also revealed that UCT-hMSCs were more efficiently transduced by a lentiviral vector carrying a VEGF gene than their adult counterparts. Following cellular immunophenotypic characterization, no differences across the sources were found in the expression levels of the typical markers used to identify hMSCs. This work established a systematic approach for cell source selection depending on the hMSC's intended clinical application.
Collapse
Affiliation(s)
- Pedro Silva Couto
- Department of Biochemical Engineering, University College London, London, UK
| | - Dale J Stibbs
- Department of Biochemical Engineering, University College London, London, UK
| | - Marco C Rotondi
- Department of Biochemical Engineering, University College London, London, UK
| | - Rana Khalife
- Department of Biochemical Engineering, University College London, London, UK
| | | | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, London, UK; Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines and Healthcare products Regulatory Agency, Potters Bar, UK
| | - Qasim A Rafiq
- Department of Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
13
|
Mohamadi S, Mehrasa P, Mehramuz B, Kobravi S, Taghizadieh M, Salmaninejad A, Bayat M, Sadri Nahand J. The tumor microenvironment's gambit: Exosomal pawns on the board of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189189. [PMID: 39343066 DOI: 10.1016/j.bbcan.2024.189189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The tumor microenvironment (TME) harbors a hidden universe of interactions that profoundly shape the behavior of head and neck cancers (HNCs). HNCs are not merely localized afflictions; they constitute a pressing global health crisis that impacts millions, frequently resulting in severe prognoses due to late-stage diagnosis and intrinsic resistance to conventional therapies. In this intricate interplay, cancer cells function as strategic players, adeptly manipulating their microenvironment to foster proliferation, evade immune detection, and withstand therapeutic interventions. Central to this dynamic play are exosomes, the enigmatic pawns of cellular communication, carrying vital messages across the board. This review elucidates the multifaceted roles of exosomes within the TME, highlighting their capacity to transmit critical signals that not only promote tumor progression but also modulate immune responses, ultimately playing a crucial role in the evolving narrative of HNC. Our insights aim to catalyze further research and exploration into exosome-targeted therapies, potentially transforming the landscape of HNC treatment and improving clinical outcomes in this formidable battle against cancer.
Collapse
Affiliation(s)
- Solmaz Mohamadi
- Faculty of Dentistry, Tabriz University of Medical Sciences, 15731 Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramuz
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| |
Collapse
|
14
|
El Masri J, Fadlallah H, Al Sabsabi R, Afyouni A, Al-Sayegh M, Abou-Kheir W. Adipose-Derived Stem Cell Therapy in Spinal Cord Injury. Cells 2024; 13:1505. [PMID: 39273075 PMCID: PMC11394073 DOI: 10.3390/cells13171505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Spinal cord injury (SCI) is a serious condition accompanied by severe adverse events that affect several aspects of the patient's life, such as motor, sensory, and functional impairment. Despite its severe consequences, definitive treatment for these injuries is still missing. Therefore, researchers have focused on developing treatment strategies aimed at ensuring full recovery post-SCI. Accordingly, attention has been drawn toward cellular therapy using mesenchymal stem cells. Considering their wide availability, decreased immunogenicity, wide expansion capacity, and impressive effectiveness in many therapeutic approaches, adipose-derived stem cell (ADSC) injections in SCI cases have been investigated and showed promising results. In this review, SCI pathophysiology and ADSC transplantation benefits are discussed independently, together with SCI animal models and adipose stem cell preparation and application techniques. The mechanisms of healing in an SCI post-ADSC injection, the outcomes of this therapeutic approach, and current clinical trials are also deliberated, in addition to the challenges and future perspectives, aiming to encourage further research in this field.
Collapse
Affiliation(s)
- Jad El Masri
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Hiba Fadlallah
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
| | - Rahaf Al Sabsabi
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Ahmad Afyouni
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
| |
Collapse
|
15
|
Jeyaraman N, Shrivastava S, Ravi VR, Nallakumarasamy A, Pundkar A, Jeyaraman M. Understanding and controlling the variables for stromal vascular fraction therapy. World J Stem Cells 2024; 16:784-798. [PMID: 39219728 PMCID: PMC11362852 DOI: 10.4252/wjsc.v16.i8.784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
In regenerative medicine, the isolation of mesenchymal stromal cells (MSCs) from the adipose tissue's stromal vascular fraction (SVF) is a critical area of study. Our review meticulously examines the isolation process of MSCs, starting with the extraction of adipose tissue. The choice of liposuction technique, anatomical site, and immediate processing are essential to maintain cell functionality. We delve into the intricacies of enzymatic digestion, emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm. The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF, alongside cell viability assessments like flow cytometry, which are vital for confirming the efficacy of the isolated MSCs. We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources, touching upon immunocompatibility and logistical considerations, as well as the variability inherent in donor-derived cells. Anesthesia choices, the selection between hypodermic needles vs liposuction cannulas, and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation. Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF. The necessity for standardized MSC isolation protocols is highlighted, promoting reproducibility and successful clinical application. We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action, aiming to further the field of regenerative medicine. The review concludes with a call for rigorous research, interdisciplinary collaboration, and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Sandeep Shrivastava
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - V R Ravi
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Aditya Pundkar
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
16
|
Pharoun J, Berro J, Sobh J, Abou-Younes MM, Nasr L, Majed A, Khalil A, Joseph, Stephan, Faour WH. Mesenchymal stem cells biological and biotechnological advances: Implications for clinical applications. Eur J Pharmacol 2024; 977:176719. [PMID: 38849038 DOI: 10.1016/j.ejphar.2024.176719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to differentiate into multiple lineages including bone, cartilage, muscle and fat. They hold immunomodulatory properties and therapeutic ability to treat multiple diseases, including autoimmune and chronic degenerative diseases. In this article, we reviewed the different biological properties, applications and clinical trials of MSCs. Also, we discussed the basics of manufacturing conditions, quality control, and challenges facing MSCs in the clinical setting. METHODS Extensive review of the literature was conducted through the databases PubMed, Google Scholar, and Cochrane. Papers published since 2015 and covering the clinical applications and research of MSC therapy were considered. Furthermore, older papers were considered when referring to pioneering studies in the field. RESULTS The most widely studied stem cells in cell therapy and tissue repair are bone marrow-derived mesenchymal stem cells. Adipose tissue-derived stem cells became more common and to a lesser extent other stem cell sources e.g., foreskin derived MSCs. MSCs therapy were also studied in the setting of COVID-19 infections, ischemic strokes, autoimmune diseases, tumor development and graft rejection. Multiple obstacles, still face the standardization and optimization of MSC therapy such as the survival and the immunophenotype and the efficiency of transplanted cells. MSCs used in clinical settings displayed heterogeneity in their function despite their extraction from healthy donors and expression of similar surface markers. CONCLUSION Mesenchymal stem cells offer a rising therapeutic promise in various diseases. However, their potential use in clinical applications requires further investigation.
Collapse
Affiliation(s)
- Jana Pharoun
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Jana Berro
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Jeanine Sobh
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | | | - Leah Nasr
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Ali Majed
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Alia Khalil
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Joseph
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Stephan
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36.
| |
Collapse
|
17
|
Hajihosseintehrani M, Amini A, Heidari M, Gholipourmalekabadi M, Fadaei Fathabady F, Mostafavinia A, Ahmadi H, Khodadadi M, Naser R, Zare F, Alizadeh S, Moeinian N, Chien S, Bayat M. The Application of Photobiomodulation and Stem Cells Seeded on the Scaffold Accelerates the Wound Healing Process in Mice. J Lasers Med Sci 2024; 15:e40. [PMID: 39381785 PMCID: PMC11459249 DOI: 10.34172/jlms.2024.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 10/10/2024]
Abstract
Introduction: The purpose of this research was to test the impact of seeding a hydrogel chitosan scaffold (HCS) with human adipose-derived stem cells (hADSCs) under the influence of photobiomodulation (PBM) on the remodeling step on the wound repairing process in mice. Methods: Thirty mice were randomly assigned to five groups (n=6 per group ): The control group (group 1) consisted of mice without any intervention. In group 2, an HCS was implanted into the wound. In group 3, a combination of HCS+hADSC was inserted into the wound. In group 4, an HCS was inserted into the wound and PBM was applied. In group 5, a combination of HCS+hADSCs was inserted into the wound, followed by PBM treatment. Results: Improvements in the injury closing rate (WCR) and microbial flora were observed in all groups. However, the highest WCRs were observed in group s 5, 4, 3, and 2 (all P values were 0.000). Groups 3-5 showed increased wound strength compared to group s 1 and 2, with group 2 demonstrating better results than group 1 (P values ranged from 0.000 to 0.013). Although group s 3-5 showed increases in certain stereological elements compared to group s 1 and 2, group 2 exhibited superior results in comparison with group 1 (P values ranged from 0.000 to 0.049). Conclusion: The joined use of HCS+hADSCs+PBM significantly accelerated the wound healing process during the maturation phase in healthy mice. This approach demonstrated superior wound healing compared to the use of HCS alone, hADSCs+HCS, or PBM+HCS. The findings suggest an additive effect when HCS+hADSCs+PBM are combined.
Collapse
Affiliation(s)
- Masoumeh Hajihosseintehrani
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mohammadhossein Heidari
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Maryam Khodadadi
- Xi’an jiaotong University School of Stomatology, Xi’an, Shaanxi Province, China
| | - Reza Naser
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zare
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sanaz Alizadeh
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nafiseh Moeinian
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA
| | - Mohammad Bayat
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA
| |
Collapse
|
18
|
Urrata V, Toia F, Cammarata E, Franza M, Montesano L, Cordova A, Di Stefano AB. Characterization of the Secretome from Spheroids of Adipose-Derived Stem Cells (SASCs) and Its Potential for Tissue Regeneration. Biomedicines 2024; 12:1842. [PMID: 39200306 PMCID: PMC11351933 DOI: 10.3390/biomedicines12081842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
INTRODUCTION Spheroids are spherical aggregates of cells that mimic the three-dimensional (3D) architecture of tissues more closely than traditional two dimensional (2D) cultures. Spheroids of adipose stem cells (SASCs) show special features such as high multilineage differentiation potential and immunomodulatory activity. These properties have been attributed to their secreted factors, such as cytokines and growth factors. Moreover, a key role is played by the extracellular vesicles (EVs), which lead a heterogeneous cargo of proteins, mRNAs, and small RNAs that interfere with the pathways of the recipient cells. PURPOSE The aim of this work was to characterize the composition of the secretome and exosome from SASCs and evaluate their regenerative potential. MATERIALS AND METHODS SASCs were extracted from adipose samples of healthy individuals after signing informed consent. The exosomes were isolated and characterized by Dinamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Western blotting analyses. The expression of mRNAs and miRNAs were evaluated through real-time PCR. Lastly, a wound-healing assay was performed to investigate their regenerative potential on different cell cultures. RESULTS The SASCs' exosomes showed an up-regulation of NANOG and SOX2 mRNAs, typical of stemness maintenance, as well as miR126 and miR146a, related to angiogenic and osteogenic processes. Moreover, the exosomes showed a regenerative effect. CONCLUSIONS The SASCs' secretome carried paracrine signals involved in stemness maintenance, pro-angiogenic and pro-osteogenic differentiation, immune system regulation, and regeneration.
Collapse
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| | - Francesca Toia
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Emanuele Cammarata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Mara Franza
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Luigi Montesano
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Adriana Cordova
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| |
Collapse
|
19
|
Rezaee Asl RS, Rahimzadeh-Bajgiran F, Saburi E. Evaluation of osteoconductive effect of polycaprolactone (PCL) scaffold treated with fibronectin on adipose-derived mesenchymal stem cells (AD-MSCs). AMERICAN JOURNAL OF STEM CELLS 2024; 13:152-161. [PMID: 39021375 PMCID: PMC11249668 DOI: 10.62347/dmky5924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Replacing damaged organs or tissues and repairing damage by tissue engineering are attracting great interest today. A potentially effective method for bone remodeling involves combining nanofiber scaffolds with extracellular matrix (ECM), and growth factors. Today, electrospun PCL-based scaffolds are widely used for tissue engineering applications. METHODS In this study, we used an electrospun polycaprolactone (PCL) scaffold coated with fibronectin (Fn), a ubiquitous ECM glycoprotein, to investigate the induction potential of this scaffold in osteogenesis with adipose-derived mesenchymal stem cells (AD-MSCs). RESULTS Scanning electron microscopy (SEM) analysis showed that fibronectin, by binding to the membrane receptors of mesenchymal stem cells (MSCs), leads to their attachment and proliferation on the PCL scaffold and provides a suitable environment for osteogenesis. In addition, biochemical tests showed that fibronectin leads to increased calcium deposition. The results also showed that alkaline phosphatase activity was significantly higher in the PCL scaffold coated with fibronectin than in the control groups (PCL scaffold group and tissue culture polystyrene (TCPS) group) (P<0.05). Also, the analysis of quantitative reverse transcription PCR (qRT-PCR) data showed that the relative expression of bone marker genes such as osteonectin (ON), osteocalcin (OC), RUNX family transcription factor 2 (RUNX2), and collagen type I alpha 1 (COL1) was much higher in the cells seeded on the PCL/Fn scaffold than in the other groups (P<0.05). CONCLUSIONS The results show that fibronectin has an increasing effect in accelerating bone formation and promising potential for use in bone tissue engineering.
Collapse
Affiliation(s)
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical SciencesMashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical SciencesMashhad, Iran
| |
Collapse
|
20
|
Bingnan W, Jiao T, Ghorbani A, Baghei S. Enhancing regenerative potential: A comprehensive review of stem cell transplantation for sports-related neuronal injuries, with a focus on spinal cord injuries and peripheral nervous system damage. Tissue Cell 2024; 88:102429. [PMID: 38833939 DOI: 10.1016/j.tice.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Neuronal injuries, as one of the consequences of sports-related incidents, exert a profound influence on the athletes' future, potentially leading to complete immobility and impeding their athletic pursuits. In cases of severe damage inflicted upon the spinal cord (SC) and peripheral nervous systems (PNS), the regenerative process is notably compromised, rendering it essentially inefficient. Among the pivotal therapeutic approaches for the enhancement and prevention of secondary SC injuries (SCI), stem cell transplantation (SCT) stands out prominently. Stem cells, whether directly involved in replacement and reconstruction or indirectly through modification and secretion of crucial bioenvironmental factors, engage in the intricate process of tissue regeneration. Stem cells, through the secretion of neurotrophic factors (NTFs) (aiming to modulate the immune system), reduction of inflammation, axonal growth stimulation, and myelin formation, endeavor to facilitate the regeneration of damaged SC tissue. The fundamental challenges of this approach encompass the proper selection of suitable stem cell candidates for transplantation and the establishment of an appropriate microenvironment conducive to SC repair. In this article, an attempt has been made to explore sports-related injuries, particularly SCI, to comprehensively review innovative methods for treating SCI, and to address the existing challenges. Additionally, some of the stem cells used in neural injuries and the process of their utilization have been discussed.
Collapse
Affiliation(s)
- Wang Bingnan
- Department of P.E, Central South University, Changsha 410083, China
| | - Tong Jiao
- The High School Attached to Hunan Normal University Bocai Experimental Middle School,Changsha 410208, China.
| | - A Ghorbani
- Biotechnology Department, Islamic Azad University, Isfahan, Iran
| | - Sh Baghei
- Biotechnology Department, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
21
|
El-Haddad K, El-Zainy MA, Nagy M, Fathy I. De novo regeneration of dentin pulp complex mediated by Adipose derived stem cells in an immunodeficient albino rat model (Histological, histochemical and scanning electron microscopic Study). Saudi Dent J 2024; 36:899-904. [PMID: 38883895 PMCID: PMC11178961 DOI: 10.1016/j.sdentj.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 06/18/2024] Open
Abstract
Background Dental tissue engineering is an alternative procedure for restoring damaged dental tissues. Adipose-derived stem cells are a new source of cells for regenerative endodontics in combination with scaffold materials. The descriptive data about this regenerative process is still insufficient. Objective To evaluate the regenerative potential of Adipose-derived stem cells using a self-assembling polypeptide scaffold for the dentin-pulp complex in an emptied root canal space. Material and Methods 40 root segments of human single-rooted teeth were transplanted into the albino rats' dorsal subcutaneous tissue. Root segments were divided into two groups: group I contained only a self-assembling polypeptide scaffold, and group II contained fluorescent-labeled Adipose-derived stem cells embedded in a self-assembling polypeptide scaffold. The newly formed tissues were assessed on the 60th and 90th days post-transplantation using routine histological examination, Masson trichrome staining, and scanning electron microscopy. Results Group I showed granulation tissue without any signs of predentin formation or odontoblast-like cells. Group II revealed the presence of predentin tissue along the dentin margin, with arranged odontoblast-like cells. An organized connective tissue with abundant vasculature and calcific masses was observed in the pulp space. Conclusion Adipose-derived stem cells can be considered as alternative stem cells for regenerating the dentin-pulp complex. Dentin pulp complex regeneration utilizing a self-assembling polypeptide scaffold alone would not yield successful results.
Collapse
Affiliation(s)
- Khaled El-Haddad
- Department of Basic Oral Medical Sciences, College of Dentistry, Qassim University, Kingdom of Saudi Arabia, Qassim Region, Al-Mulida, Saudi Arabia
- Department of Oral Biology, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Medhat A El-Zainy
- Department of Oral Biology, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Mohamed Nagy
- Department of Endodontics, Faculty of Dentistry, Ain-Shams University, Cairo, Egypt
| | - Iman Fathy
- Department of Oral Biology, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
22
|
Bakinowska E, Bratborska AW, Kiełbowski K, Ćmil M, Biniek WJ, Pawlik A. The Role of Mesenchymal Stromal Cells in the Treatment of Rheumatoid Arthritis. Cells 2024; 13:915. [PMID: 38891047 PMCID: PMC11171813 DOI: 10.3390/cells13110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterised by the formation of a hyperplastic pannus, as well as cartilage and bone damage. The pathogenesis of RA is complex and involves broad interactions between various cells present in the inflamed synovium, including fibroblast-like synoviocytes (FLSs), macrophages, and T cells, among others. Under inflammatory conditions, these cells are activated, further enhancing inflammatory responses and angiogenesis and promoting bone and cartilage degradation. Novel treatment methods for RA are greatly needed, and mesenchymal stromal cells (MSCs) have been suggested as a promising new regenerative and immunomodulatory treatment. In this paper, we present the interactions between MSCs and RA-FLSs, and macrophages and T cells, and summarise studies examining the use of MSCs in preclinical and clinical RA studies.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | | | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Maciej Ćmil
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Wojciech Jerzy Biniek
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| |
Collapse
|
23
|
Yu HR, Huang HC, Chen IL, Li SC. Exosomes Secreted by Wharton's Jelly-Derived Mesenchymal Stem Cells Promote the Ability of Cell Proliferation and Migration for Keratinocyte. Int J Mol Sci 2024; 25:4758. [PMID: 38731977 PMCID: PMC11084911 DOI: 10.3390/ijms25094758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) isolated from Wharton's jelly (WJ-MSCs) and adipose tissue (AD-MSCs) are alternative sources for bone marrow-derived MSCs. Owing to their multiple functions in angiogenesis, immune modulation, proliferation, migration, and nerve regeneration, MSC-derived exosomes can be applied in "cell-free cell therapy". Here, we investigated the functional protein components between the exosomes from WJ-MSCs and AD-MSCs to explain their distinct functions. Proteins of WJ-MSC and AD-MSC exosomes were collected and compared based on iTRAQ gel-free proteomics data. Results: In total, 1695 proteins were detected in exosomes. Of these, 315 were more abundant (>1.25-fold) in AD-MSC exosomes and 362 kept higher levels in WJ-MSC exosomes, including fibrinogen proteins. Pathway enrichment analysis suggested that WJ-MSC exosomes had higher potential for wound healing than AD-MSC exosomes. Therefore, we treated keratinocyte cells with exosomes and the recombinant protein of fibrinogen beta chain (FGB). It turned out that WJ-MSC exosomes better promoted keratinocyte growth and migration than AD-MSC exosomes. In addition, FGB treatment had similar results to WJ-MSC exosomes. The fact that WJ-MSC exosomes promoted keratinocyte growth and migration better than AD-MSC exosomes can be explained by their higher FGB abundance. Exploring the various components of AD-MSC and WJ-MSC exosomes can aid in their different clinical applications.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (H.-R.Y.); (H.-C.H.); (I.-L.C.)
| | - Hsin-Chun Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (H.-R.Y.); (H.-C.H.); (I.-L.C.)
| | - I-Lun Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (H.-R.Y.); (H.-C.H.); (I.-L.C.)
| | - Sung-Chou Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821004, Taiwan
| |
Collapse
|
24
|
Zhao JY, Zhou LJ, Ma KL, Hao R, Li M. MHO or MUO? White adipose tissue remodeling. Obes Rev 2024; 25:e13691. [PMID: 38186200 DOI: 10.1111/obr.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
In this review, we delve into the intricate relationship between white adipose tissue (WAT) remodeling and metabolic aspects in obesity, with a specific focus on individuals with metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO). WAT is a highly heterogeneous, plastic, and dynamically secreting endocrine and immune organ. WAT remodeling plays a crucial role in metabolic health, involving expansion mode, microenvironment, phenotype, and distribution. In individuals with MHO, WAT remodeling is beneficial, reducing ectopic fat deposition and insulin resistance (IR) through mechanisms like increased adipocyte hyperplasia, anti-inflammatory microenvironment, appropriate extracellular matrix (ECM) remodeling, appropriate vascularization, enhanced WAT browning, and subcutaneous adipose tissue (SWAT) deposition. Conversely, for those with MUO, WAT remodeling leads to ectopic fat deposition and IR, causing metabolic dysregulation. This process involves adipocyte hypertrophy, disrupted vascularization, heightened pro-inflammatory microenvironment, enhanced brown adipose tissue (BAT) whitening, and accumulation of visceral adipose tissue (VWAT) deposition. The review underscores the pivotal importance of intervening in WAT remodeling to hinder the transition from MHO to MUO. This insight is valuable for tailoring personalized and effective management strategies for patients with obesity in clinical practice.
Collapse
Affiliation(s)
- Jing Yi Zhao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Juan Zhou
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Le Ma
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Hao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Rezzonico Jost T, Lozito A, Mangani D, Raimondi A, Klinger F, Morone D, Klinger M, Grassi F, Vinci V. CD304 + adipose tissue-derived mesenchymal stem cell abundance in autologous fat grafts highly correlates with improvement of localized pain syndromes. Pain 2024; 165:811-819. [PMID: 37943081 DOI: 10.1097/j.pain.0000000000003092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/06/2023] [Indexed: 11/10/2023]
Abstract
ABSTRACT Surgery, burns or surgery-free accident are leading causes of scars with altered tissue consistency, a reduced degree of motion and pain. Autologous fat grafting can dramatically improve tissue consistency and elasticity but less frequently results in the reduction of pain. Therefore, we analyzed different cell populations present within the adipose tissue to be engrafted and correlated them with the reduction of pain after surgery. Here, we identify a population of CD3 - CD4 - CD304 + cells present in grafted adipose tissue, whose abundance highly correlates with pain improvement shortly after surgery ( r2 = 0.7243****) as well as persistently over time (3 months later: r2 = 0.6277****, 1 year later: r2 = 0.5346***, and 4 years later: r2 = 0.5223***). These cells are characterized by the absence of the hematopoietic marker CD45, whereas they express CD90 and CD34, which characterize mesenchymal stem cells (MSCs); the concomitant presence of CD10 and CD73 in the plasma membrane supports a function of these cells in pain reduction. We deduce that the enrichment of this adipose tissue-derived MSC subset could enhance the therapeutic properties of adipose grafts and ameliorate localized pain syndromes.
Collapse
Affiliation(s)
- Tanja Rezzonico Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alessia Lozito
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | - Davide Mangani
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Raimondi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Klinger
- Department of Health Sciences, University of Milan, Ospedale San Paolo, Milan, Italy
| | - Diego Morone
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marco Klinger
- Plastic Surgery Unit, Department of Medical Biotechnology and Translational Medicine BIOMETRA, Humanitas Clinical and Research Hospital, Reconstructive and Aesthetic Plastic Surgery School, University of Milan, Rozzano, MI, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Valeriano Vinci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
- Humanitas Clinical and Research Center-IRCCS, Rozzano, MI, Italy
| |
Collapse
|
26
|
Bakinowska E, Kiełbowski K, Boboryko D, Bratborska AW, Olejnik-Wojciechowska J, Rusiński M, Pawlik A. The Role of Stem Cells in the Treatment of Cardiovascular Diseases. Int J Mol Sci 2024; 25:3901. [PMID: 38612710 PMCID: PMC11011548 DOI: 10.3390/ijms25073901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and include several vascular and cardiac disorders, such as atherosclerosis, coronary artery disease, cardiomyopathies, and heart failure. Multiple treatment strategies exist for CVDs, but there is a need for regenerative treatment of damaged heart. Stem cells are a broad variety of cells with a great differentiation potential that have regenerative and immunomodulatory properties. Multiple studies have evaluated the efficacy of stem cells in CVDs, such as mesenchymal stem cells and induced pluripotent stem cell-derived cardiomyocytes. These studies have demonstrated that stem cells can improve the left ventricle ejection fraction, reduce fibrosis, and decrease infarct size. Other studies have investigated potential methods to improve the survival, engraftment, and functionality of stem cells in the treatment of CVDs. The aim of the present review is to summarize the current evidence on the role of stem cells in the treatment of CVDs, and how to improve their efficacy.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | | | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Marcin Rusiński
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| |
Collapse
|
27
|
Kesavan R, Sheela Sasikumar C, Narayanamurthy VB, Rajagopalan A, Kim J. Management of Diabetic Foot Ulcer with MA-ECM (Minimally Manipulated Autologous Extracellular Matrix) Using 3D Bioprinting Technology - An Innovative Approach. INT J LOW EXTR WOUND 2024; 23:161-168. [PMID: 34636693 DOI: 10.1177/15347346211045625] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic foot ulcers are the leading cause of prolonged hospitalization and loss of social participation in people with diabetes. Conventional management of diabetic foot ulcers (DFU) is associated with slow healing, high cost, and recurrent visits to the hospital. Currently, the application of autologous lipotransfer is more popular, as the regenerative and reparative effects of fat are well established. Herein we report the efficacy of minimally manipulated extracellular matrix (MA-ECM) prepared from autologous homologous adipose tissue by using 3D bioprinting in DFU (test group) in comparison to the standard wound care (control group). A total of 40 subjects were screened and randomly divided into test and control groups. In the test group, the customized MA-ECM was printed as a scaffold from the patient autologous fat using a 3D bioprinter device and applied to the wound directly. The control group received standard wound care and weekly follow-up was done for all the patients. We evaluated the efficacy of this novel technology by assessing the reduction in wound size and attainment of epithelialization. The patients in the test group (n = 17) showed complete wound closure with re-epithelialization approximately within a period of 4 weeks. On the other hand, most of the patients in the control group (n = 16) who received standard wound dressings care showed a delay in wound healing in comparison to the test group. This technique can be employed as a personalized therapeutic method to accelerate diabetic wound healing and may provide a promising potential alternative approach to protect against lower foot amputation a most common complication in diabetes.
Collapse
Affiliation(s)
- Rajesh Kesavan
- Department of Podiatric Surgery, NRA Wound Care Pvt Ltd, Hycare Super speciality Hospital, Chennai, Tamilnadu, India
- SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Changam Sheela Sasikumar
- Department of Clinical Research, S.S. Healthcare, NRA Wound Care Pvt Ltd, Hycare Super Speciality, Hospital, Chennai, Tamilnadu, India
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University Chennai, Tamilnadu, India
| | - V B Narayanamurthy
- Department of Plastic Surgery, NRA Wound Care Pvt Ltd, Hycare Super Speciality Hospital, Chennai, Tamilnadu, India
| | - Arvind Rajagopalan
- Department of Orthopedic Surgery, NRA Wound Care Pvt Ltd, Hycare Super Speciality Hospital, Chennai, Tamilnadu, India
| | - Jeehee Kim
- R&D Center, ROKIT AMERICA, 3580 Wilshire Blvd., Los Angeles, CA, USA
| |
Collapse
|
28
|
Ertlen C, Seblani M, Bonnet M, Brezun JM, Coyle T, Sabatier F, Fuentes S, Decherchi P, Serratrice N, Marqueste T. Efficacy of the immediate adipose-derived stromal vascular fraction autograft on functional sensorimotor recovery after spinal cord contusion in rats. Stem Cell Res Ther 2024; 15:29. [PMID: 38303017 PMCID: PMC10835949 DOI: 10.1186/s13287-024-03645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Spinal cord injuries (SCI) lead to functional alteration with important consequences such as motor and sensory disorders. The repair strategies developed to date remain ineffective. The adipose tissue-derived stromal vascular fraction (SVF) is composed of a cocktail of cells with trophic, pro-angiogenic and immunomodulatory effects. Numerous therapeutic benefits were shown for tissue reconstitution, peripheral neuropathy and for the improvement of neurodegenerative diseases. Here, the therapeutic efficacy of SVF on sensorimotor recovery after an acute thoracic spinal cord contusion in adult rats was determined. METHOD Male Sprague Dawley rats (n = 45) were divided into 3 groups: SHAM (without SCI and treatment), NaCl (animals with a spinal lesion and receiving a saline injection through the dura mater) and SVF (animals with a spinal lesion and receiving a fraction of fat removed from adipocytes through the dura mater). Some animals were sacrificed 14 days after the start of the experiment to determine the inflammatory reaction by measuring the interleukin-1β, interleukin-6 and Tumor Necrosis Factor-α in the lesion area. Other animals were followed once a week for 12 weeks to assess functional recovery (postural and locomotor activities, sensorimotor coordination). At the end of this period, spinal reflexivity (rate-dependent depression of the H-reflex) and physiological adjustments (ventilatory response to metabosensitive muscle activation following muscle fatigue) were measured with electrophysiological tools. RESULTS Compared to non-treated animals, results indicated that the SVF reduced the endogenous inflammation and increased the behavioral recovery in treated animals. Moreover, H-reflex depression and ventilatory adjustments to muscle fatigue were found to be comparable between SHAM and SVF groups. CONCLUSION Our results highlight the effectiveness of SVF and its high therapeutic potential to improve sensorimotor functions and to restore the segmental sensorimotor loop and the communication between supra- and sub-lesional spinal cord regions after traumatic contusion.
Collapse
Affiliation(s)
- Céline Ertlen
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Mostafa Seblani
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Maxime Bonnet
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Jean-Michel Brezun
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Thelma Coyle
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Florence Sabatier
- Assistance Publique - Hôpitaux de Marseille (AP-HM), INSERM 1409 Centre d'Investigation Clinique en Biothérapies, Unité de Culture Et Thérapie Cellulaire, Hôpital de La Conception, 147, Boulevard Baille, 13385, Marseille Cedex 05, France
| | - Stéphane Fuentes
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Service de Neurochirurgie, Hôpital de La Timone, 264, Rue Saint-Pierre, 13005, Marseille, France
| | - Patrick Decherchi
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France.
| | - Nicolas Serratrice
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Service de Neurochirurgie, Hôpital de La Timone, 264, Rue Saint-Pierre, 13005, Marseille, France
| | - Tanguy Marqueste
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
29
|
Qiu Y, Li C, Sheng S. Efficacy and safety of stem cell therapy for Crohn's disease: a meta-analysis of randomized controlled trials. Stem Cell Res Ther 2024; 15:28. [PMID: 38303054 PMCID: PMC10835827 DOI: 10.1186/s13287-024-03637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
PURPOSE Small-scale clinical trials have provided evidence suggesting the effectiveness of stem-cell therapy (SCT) for patients diagnosed with Crohn's disease (CD). The objective of the research was to systematically assess the effectiveness and safety of SCT for individuals diagnosed with CD through a comprehensive review and meta-analysis. METHODS A search was conducted in Medline (PubMed), CENTER (Cochrane Library), and Embase (Ovid) to find randomized controlled trials (RCTs) that assessed the impact of SCT on the occurrence of clinical remission (CR) and severe adverse events (SAE) among patients diagnosed with CD. The Cochrane Q test and estimation of I2 were used to assess heterogeneity among studies. After incorporating heterogeneity, a random-effects model was employed for data pooling. RESULTS Overall, 12 RCTs involving 632 adult patients with medically refractory CD or CD-related fistula were included. In comparison with placebo or no treatment, SCT showed a greater likelihood of CR (odds ratio [OR] 2.08, 95% CI 1.39-3.12, p < 0.001) without any notable heterogeneity (I2 = 0%). Consistent results were observed in subgroup analyses based on study design, patient diagnosis, source and type of stem cells, and follow-up durations, with all p-values for subgroup analyses being greater than 0.05. The occurrence of SAE was similar among patients assigned to SCT and the placebo/no treatment cohorts (OR 0.70, 95% CI 0.37-1.33, p = 0.28; I2 = 0%). CONCLUSIONS For patients with medically refractory CD or CD-related fistula, SCT may be an alternatively effective and safe treatment.
Collapse
Affiliation(s)
- Yunfeng Qiu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Shihou Sheng
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, China.
| |
Collapse
|
30
|
Josino R, Stimamiglio MA. Bioactive decellularized extracellular matrix-based hydrogel supports human adipose tissue-derived stem cell maintenance and fibrocartilage phenotype. Front Bioeng Biotechnol 2024; 11:1304030. [PMID: 38260748 PMCID: PMC10800544 DOI: 10.3389/fbioe.2023.1304030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 01/24/2024] Open
Abstract
Articular cartilage is a highly specialized tissue able to tolerate physical stress. However, its capacity for restoration is restricted, and injuries to the cartilage do not recover spontaneously. Interest in mesenchymal stem cells derived from human adipose tissue (hASCs) is growing due to their potential to improve tissue healing and recovery. Decellularized extracellular matrix (dECM)-based hydrogels combined with hASCs could serve as an interface for studying behavior and differentiation properties in a cartilage microenvironment. In the present study, we described the behavior of hASCs cultured in a commercial dECM MatriXpec™. The structural microtopography of MatriXpec™ was analyzed by scanning electron micrography, and its protein composition was accessed by mass spectrometry. The protein composition of MatriXpec™ is mainly represented by collagen proteins, building its fibrous ultrastructure. hASCs were cultured three-dimensionally (3D) on MatriXpec™ to perform cell viability, growth, and cartilage differentiation analysis. We showed that MatriXpec™ could be loaded with hASCs and that it supports cell maintenance for several days. We observed that the three-dimensional ultrastructure of the biomaterial is composed of nanofibers, and its protein composition reflects the tissue from which it was harvested. Finally, we showed that the molecular cues from the hydrogel are biologically active as these influence cell behavior and differentiation phenotype, increasing the expression of fibrocartilage-related genes such as SOX9, COL1, COL10, and MMP13. MatriXpec™ hydrogel can be used as an interface for 3D hASCs culture studies as it maintains cell viability and supports its differentiation process.
Collapse
|
31
|
Barik P, Kuo WW, Kuo CH, Hsieh DJY, Day CH, Daddam J, Chen MYC, Padma VV, Shibu MA, Huang CY. Rewiring of IGF1 secretion and enhanced IGF1R signaling induced by co-chaperone carboxyl-terminus of Hsp70 interacting protein in adipose-derived stem cells provide augmented cardioprotection in aging-hypertensive rats. Aging (Albany NY) 2023; 15:14019-14038. [PMID: 38085649 PMCID: PMC10756089 DOI: 10.18632/aging.205287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2023] [Indexed: 12/21/2023]
Abstract
Aging-associated cardiovascular diseases depend on the longitudinal deterioration of stem cell dynamics. The entire mechanism behind it is not completely understood. However, many studies suggest that endocrine pathways, particularly the insulin-like growth factor-1(IGF1) signaling pathway are involved in cardioprotection, especially in stem-cell treatments. Here, we investigated the role of a co-chaperone, carboxyl-terminus of Hsp70 interacting protein (CHIP) in the aspects of growth factor secretion and receptor stabilization in mesenchymal stem cells (MSCs). Briefly, we overexpressed CHIP in rat adipose-derived stem cells (rADSCs) and explored the consequences in vitro, and in vivo, in spontaneously hypertensive rats (SHR). Our data revealed that CHIP overexpression in rADSCs promoted the secretion of insulin-like growth factor-1 (IGF1) and IGF binding protein-3 (IGFBP3) as per immunoblot/cytokine array analysis. We also found that these results were dependent on the nuclear translocation of signal transducer and activator of transcription 3 (STAT3) in rADSCs. Further, the CHIP co-chaperone was also involved in the stabilization of the receptor of IGF1 (IGF1R); interactions between the beta transmembrane region of IGF1R, and the tetracopeptide repeat (TPR) domain of CHIP were evident. Importantly, after the transplantation of lentiviral CHIP overexpression of rADSCs (rADSCsCHIP-WT) into nine months aging-SHR led to an increase in their cardiac function - increased ejection fraction and fractional shortening (≈15% vs. control SHR) - as well as a decrease in their heart size and heart rate, respectively. Altogether, our results support the use of CHIP overexpressing stem cells for the mitigation of cardiac hypertrophy and remodeling associated with late-stage hypertension.
Collapse
Affiliation(s)
- Parthasarathi Barik
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - Jayasimharayalu Daddam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - V. Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
32
|
Princen K, Marien N, Guedens W, Graulus GJ, Adriaensens P. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review. Chembiochem 2023; 24:e202300149. [PMID: 37220343 DOI: 10.1002/cbic.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.
Collapse
Affiliation(s)
- Ken Princen
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Neeve Marien
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
33
|
Mohammadi TC, Jazi K, Bolouriyan A, Soleymanitabar A. Stem cells in treatment of crohn's disease: Recent advances and future directions. Transpl Immunol 2023; 80:101903. [PMID: 37541629 DOI: 10.1016/j.trim.2023.101903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND AND AIM Crohn's disease (CD) is an inflammatory bowel disease that can affect any part of the intestine. There is currently no recognized cure for CD because its cause is unknown. One of the modern approaches that have been suggested for the treatment of CD and other inflammatory-based disorders is cell therapy. METHODS Search terms were stem cell therapy, CD, adipose-derived stem cells, mesenchymal stem cells, and fistula. Of 302 related studies, we removed duplicate and irrelevant papers and identified the ones with proper information related to our scope of the research by reviewing all the abstracts and categorizing each study into the proper section. RESULTS AND CONCLUSION Nowadays, stem cell therapy is widely implied in treating CD. Although mesenchymal and adipose-derived tissue stem cells proved to be safe in treating Crohn's-associated fistula, there are still debates on an optimal protocol to use. Additionally, there is still a lack of evidence on the efficacy of stem cell therapy for intestinal involvement of CD. Future investigations should focus on preparing a standard protocol as well as luminal stem cell therapy in patients.
Collapse
Affiliation(s)
| | - Kimia Jazi
- Student Research Committee, Faculty of Medicine, Medical University of Qom, Qom, Iran
| | - Alireza Bolouriyan
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
34
|
Song Y, Wang N, Shi H, Zhang D, Wang Q, Guo S, Yang S, Ma J. Biomaterials combined with ADSCs for bone tissue engineering: current advances and applications. Regen Biomater 2023; 10:rbad083. [PMID: 37808955 PMCID: PMC10551240 DOI: 10.1093/rb/rbad083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
In recent decades, bone tissue engineering, which is supported by scaffold, seed cells and bioactive molecules (BMs), has provided new hope and direction for treating bone defects. In terms of seed cells, compared to bone marrow mesenchymal stem cells, which were widely utilized in previous years, adipose-derived stem cells (ADSCs) are becoming increasingly favored by researchers due to their abundant sources, easy availability and multi-differentiation potentials. However, there is no systematic theoretical basis for selecting appropriate biomaterials loaded with ADSCs. In this review, the regulatory effects of various biomaterials on the behavior of ADSCs are summarized from four perspectives, including biocompatibility, inflammation regulation, angiogenesis and osteogenesis, to illustrate the potential of combining various materials with ADSCs for the treatment of bone defects. In addition, we conclude the influence of additional application of various BMs on the bone repair effect of ADSCs, in order to provide more evidences and support for the selection or preparation of suitable biomaterials and BMs to work with ADSCs. More importantly, the associated clinical case reports and experiments are generalized to provide additional ideas for the clinical transformation and application of bone tissue engineering loaded with ADSCs.
Collapse
Affiliation(s)
- Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dan Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Jia Ma
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| |
Collapse
|
35
|
Vasalou V, Kotidis E, Tatsis D, Boulogeorgou K, Grivas I, Koliakos G, Cheva A, Ioannidis O, Tsingotjidou A, Angelopoulos S. The Effects of Tissue Healing Factors in Wound Repair Involving Absorbable Meshes: A Narrative Review. J Clin Med 2023; 12:5683. [PMID: 37685753 PMCID: PMC10488606 DOI: 10.3390/jcm12175683] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Wound healing is a complex and meticulously orchestrated process involving multiple phases and cellular interactions. This narrative review explores the intricate mechanisms behind wound healing, emphasizing the significance of cellular processes and molecular factors. The phases of wound healing are discussed, focusing on the roles of immune cells, growth factors, and extracellular matrix components. Cellular shape alterations driven by cytoskeletal modulation and the influence of the 'Formin' protein family are highlighted for their impact on wound healing processes. This review delves into the use of absorbable meshes in wound repair, discussing their categories and applications in different surgical scenarios. Interleukins (IL-2 and IL-6), CD31, CD34, platelet rich plasma (PRP), and adipose tissue-derived mesenchymal stem cells (ADSCs) are discussed in their respective roles in wound healing. The interactions between these factors and their potential synergies with absorbable meshes are explored, shedding light on how these combinations might enhance the healing process. Recent advances and challenges in the field are also presented, including insights into mesh integration, biocompatibility, infection prevention, and postoperative complications. This review underscores the importance of patient-specific factors and surgical techniques in optimizing mesh placement and healing outcomes. As wound healing remains a dynamic field, this narrative review provides a comprehensive overview of the current understanding and potential avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Varvara Vasalou
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
- Andreas Syggros Hospital, 11528 Athens, Greece
| | - Efstathios Kotidis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Dimitris Tatsis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
- Oral and Maxillofacial Surgery Department, School of Dentistry, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Kassiani Boulogeorgou
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.B.)
| | - Ioannis Grivas
- Laboratory of Anatomy, Histology & Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Koliakos
- Department of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angeliki Cheva
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.B.)
| | - Orestis Ioannidis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology & Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stamatis Angelopoulos
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
36
|
Ribeiro BF, da Cruz BC, de Sousa BM, Correia PD, David N, Rocha C, Almeida RD, Ribeiro da Cunha M, Marques Baptista AA, Vieira SI. Cell therapies for spinal cord injury: a review of the clinical trials and cell-type therapeutic potential. Brain 2023; 146:2672-2693. [PMID: 36848323 DOI: 10.1093/brain/awad047] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/23/2022] [Accepted: 01/29/2023] [Indexed: 03/01/2023] Open
Abstract
Spinal cord injury (SCI) is an as yet untreatable neuropathology that causes severe dysfunction and disability. Cell-based therapies hold neuroregenerative and neuroprotective potential, but, although being studied in SCI patients for more than two decades, long-term efficacy and safety remain unproven, and which cell types result in higher neurological and functional recovery remains under debate. In a comprehensive scoping review of 142 reports and registries of SCI cell-based clinical trials, we addressed the current therapeutical trends and critically analysed the strengths and limitations of the studies. Schwann cells, olfactory ensheathing cells (OECs), macrophages and various types of stem cells have been tested, as well as combinations of these and other cells. A comparative analysis between the reported outcomes of each cell type was performed, according to gold-standard efficacy outcome measures like the ASIA impairment scale, motor and sensory scores. Most of the trials were in the early phases of clinical development (phase I/II), involved patients with complete chronic injuries of traumatic aetiology and did not display a randomized comparative control arm. Bone marrow stem cells and OECs were the most commonly tested cells, while open surgery and injection were the main methods of delivering cells into the spinal cord or submeningeal spaces. Transplantation of support cells, such as OECs and Schwann cells, resulted in the highest ASIA Impairment Scale (AIS) grade conversion rates (improvements in ∼40% of transplanted patients), which surpassed the spontaneous improvement rate expected for complete chronic SCI patients within 1 year post-injury (5-20%). Some stem cells, such as peripheral blood-isolated and neural stem cells, offer potential for improving patient recovery. Complementary treatments, particularly post-transplantation rehabilitation regimes, may contribute highly to neurological and functional recovery. However, unbiased comparisons between the tested therapies are difficult to draw, given the great heterogeneity of the design and outcome measures used in the SCI cell-based clinical trials and how these are reported. It is therefore crucial to standardize these trials when aiming for higher value clinical evidence-based conclusions.
Collapse
Affiliation(s)
- Beatriz F Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruna C da Cruz
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Patrícia D Correia
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuno David
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Camila Rocha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ramiro D Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Ribeiro da Cunha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Spinal Cord Injury Rehabilitation Unit, Centro de Reabilitação do Norte (CRN), Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNG/E), 4400-129 Vila Nova de Gaia, Portugal
| | - António A Marques Baptista
- Department of Neurosurgery, Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNG/E), 4400-129 Vila Nova de Gaia, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
37
|
Yang G, Fan X, Liu Y, Jie P, Mazhar M, Liu Y, Dechsupa N, Wang L. Immunomodulatory Mechanisms and Therapeutic Potential of Mesenchymal Stem Cells. Stem Cell Rev Rep 2023; 19:1214-1231. [PMID: 37058201 PMCID: PMC10103048 DOI: 10.1007/s12015-023-10539-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
Mesenchymal stem cells (MSCs) are regarded as highly promising cells for allogeneic cell therapy, owing to their multipotent nature and ability to display potent and varied functions in different diseases. The functions of MSCs, including native immunomodulation, high self-renewal characteristic, and secretory and trophic properties, can be employed to improve the immune-modulatory functions in diseases. MSCs impact most immune cells by directly contacting and/or secreting positive microenvironmental factors to influence them. Previous studies have reported that the immunomodulatory role of MSCs is basically dependent on their secretion ability from MSCs. This review discusses the immunomodulatory capabilities of MSCs and the promising strategies to successfully improve the potential utilization of MSCs in clinical research.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Yingchun Liu
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Pingping Jie
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Yong Liu
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
38
|
Gordon LC, Martin KL, Torres N, Benabid A, Mitrofanis J, Stone J, Moro C, Johnstone DM. Remote photobiomodulation targeted at the abdomen or legs provides effective neuroprotection against parkinsonian MPTP insult. Eur J Neurosci 2023; 57:1611-1624. [PMID: 36949610 PMCID: PMC10947039 DOI: 10.1111/ejn.15973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023]
Abstract
Photobiomodulation (PBM)-the irradiation of tissue with low-intensity light-mitigates neuropathology in rodent models of Parkinson's disease (PD) when targeted at the head ('transcranial PBM'). In humans, however, attenuation of light energy by the scalp and skull necessitates a different approach. We have reported that targeting PBM at the body also protects the brain by a mechanism that spreads from the irradiated tissue ('remote PBM'), although the optimal peripheral tissue target for remote PBM is currently unclear. This study compared the neuroprotective efficacy of remote PBM targeting the abdomen or leg with transcranial PBM, in mouse and non-human primate models of PD. In a pilot study, the neurotoxin MPTP was used to induce PD in non-human primates; PBM (670 nm, 50 mW/cm2 , 6 min/day) of the abdomen (n = 1) was associated with fewer clinical signs and more surviving midbrain dopaminergic cells relative to MPTP-injected non-human primates not treated with PBM. Validation studies in MPTP-injected mice (n = 10 per group) revealed a significant rescue of midbrain dopaminergic cells in mice receiving PBM to the abdomen (~80%, p < .0001) or legs (~80%, p < .0001), with comparable rescue of axonal terminals in the striatum. Strikingly, this degree of neuroprotection was at least as, if not more, pronounced than that achieved with transcranial PBM. These findings confirm that remote PBM provides neuroprotection against MPTP-induced destruction of the key circuitry underlying PD, with both the abdomen and legs serving as viable remote targets. This should provide the impetus for a comprehensive investigation of remote PBM-induced neuroprotection in other models of PD and, ultimately, human patients.
Collapse
Affiliation(s)
- Luke C. Gordon
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Kristy L. Martin
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Napoleon Torres
- Univ. Grenoble Alpes, CEA, LETI, Clinatec38000GrenobleFrance
| | | | - John Mitrofanis
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
- Univ. Grenoble Alpes, CEA, LETI, Clinatec38000GrenobleFrance
| | - Jonathan Stone
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Cecile Moro
- Univ. Grenoble Alpes, CEA, LETI, Clinatec38000GrenobleFrance
| | - Daniel M. Johnstone
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
- School of Biomedical Sciences & PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
39
|
Wang B, Li L, Yu R. Exosomes From Adipose-Derived Stem Cells Suppress the Progression of Chronic Endometritis. Cell Transplant 2023; 32:9636897231173736. [PMID: 37191253 DOI: 10.1177/09636897231173736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Chronic endometritis (CE) is closely linked to the reproductive failure. Exosome (Exo)-based therapy is proposed as an encouraging strategy in inflammation-related disorders; however, little work has been devoted to its usage in CE therapy. An in vitro CE was established by administration of lipopolysaccharide (LPS) in human endometrial stromal cells (HESCs). The cell proliferation, cell apoptosis, and inflammatory cytokine assays were performed in vitro, and the efficacy of Exos derived from adipose tissue-derived stem cells (ADSCs) was evaluated in a mouse model of CE. We found that Exos isolated from ADSCs could be taken up by HESCs. Exos elevated the proliferation and inhibited apoptosis in LPS-treated HESCs. Administration of Exos to HESCs suppressed the content of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). Moreover, Exos exposure repressed the inflammation stimulated by LPS in vivo. Mechanistically, we demonstrated that Exos exerted their ant-inflammatory effect via miR-21/TLR4/NF-kB signaling pathway in endometrial cells. Our findings suggest that ADSC-Exo-based therapy might serve as an attractive strategy for the treatment of CE.
Collapse
Affiliation(s)
- Bin Wang
- Department of Reproduction, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of ChinaSubmitted: November 7, 2022
| | - Li Li
- Department of Reproduction, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of ChinaSubmitted: November 7, 2022
| | - Ruizhu Yu
- Department of Reproduction, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of ChinaSubmitted: November 7, 2022
| |
Collapse
|
40
|
Unnisa A, Dua K, Kamal MA. Mechanism of Mesenchymal Stem Cells as a Multitarget Disease- Modifying Therapy for Parkinson's Disease. Curr Neuropharmacol 2023; 21:988-1000. [PMID: 35339180 PMCID: PMC10227913 DOI: 10.2174/1570159x20666220327212414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/10/2022] [Accepted: 03/12/2022] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders, affecting the basal nuclei, causing impairment of motor and cognitive functions. Loss of dopaminergic (DAergic) neurons or their degeneration and the aggregation of Lewy bodies is the hallmark of this disease. The medications used to treat PD relieve the symptoms and maintain quality of life, but currently, there is no cure. There is a need for the development of therapies that can cease or perhaps reverse neurodegeneration effectively. With the rapid advancements in cell replacement therapy techniques, medical professionals are trying to find a cure by which restoration of dopamine neurotransmitters can occur. Researchers have started focusing on cell-based therapies using mesenchymal stem cells (MSCs) due to their abundance in the body, the ability of proliferation, and immunomodulation. Here we review the MSC-based treatment in Parkinson's disease and the various mechanisms it repairs DAergic neurons in parkinsonian patients.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Kingdom Saudi Arabia
| | - Kamal Dua
- Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
41
|
Nonaka T. Application of engineered extracellular vesicles to overcome drug resistance in cancer. Front Oncol 2022; 12:1070479. [PMID: 36591444 PMCID: PMC9797956 DOI: 10.3389/fonc.2022.1070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted therapies have significantly improved survival rates and quality of life for many cancer patients. However, on- and off-target side toxicities in normal tissues, and precocious activation of the immune response remain significant issues that limit the efficacy of molecular targeted agents. Extracellular vesicles (EVs) hold great promise as the mediators of next-generation therapeutic payloads. Derived from cellular membranes, EVs can be engineered to carry specific therapeutic agents in a targeted manner to tumor cells. This review highlights the progress in our understanding of basic EV biology, and discusses how EVs are being chemically and genetically modified for use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States,Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States,*Correspondence: Taichiro Nonaka,
| |
Collapse
|
42
|
Najafi-Ghalehlou N, Feizkhah A, Mobayen M, Pourmohammadi-Bejarpasi Z, Shekarchi S, Roushandeh AM, Roudkenar MH. Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal. Stem Cell Rev Rep 2022; 18:2709-2739. [PMID: 35505177 PMCID: PMC9064122 DOI: 10.1007/s12015-022-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, organs, and tissues. A novel means to accomplish such a quest is what is being called "medical biowaste", a large assortment of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shekarchi
- Anatomical Sciences Department, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
43
|
Roohaninasab M, Seifadini A, Atefi N, Sadeghzadeh-Bazargan A, Goodarzi A, Hanifnia AR, Nouri M, Zare S, Moradi S, Dehghani A, Nilforoushzadeh MA, Behrangi E. Evaluating the effectiveness of stromal-vascular fraction (SVF) cells along with subcision method in the treatment of acne scars: A double-blind randomized controlled clinical trial study. J Cosmet Dermatol 2022; 21:6928-6938. [PMID: 36086927 DOI: 10.1111/jocd.15375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Subcision method is one of the main techniques for treatment of acne scars or stromal-vascular fraction (SVF) and combined therapy can improve treatment strategy. OBJECTIVE To use subcision method along with SVF for treatment of acne scar and comprised with alone subcision method. MATERIALS AND METHODS In this double-blind clinical trial study, 10 patients with acne scars were entered into the study. Subcision technique was randomly performed on one side of the face and subcision technique plus SVF on opposite side of the face. All patients were examined before treatment and after 3 months by Visioface for volume, area, and depth of scars, as well as thickness and density of the epidermis and dermis of the scars in question. In addition, doctor's and patients' satisfaction, tolerability, and safety were determined after 3 months of treatment. Finally, statistical analysis was done by SPPS, version 25. RESULTS In terms of volume and area of scars, the mean percent change was 46.55 ± 13.92 and 44.60 ± 5.76, for the case group, and 13.31 ± 9.27 and 11.28 ± 9.64 for the control group, respectively. So, combined therapy led to significant recovery compared with alone subcision method (p value < 0.001). In both interventions, the increase of density and thickness was proven after treatment, also a significant difference in complete, epidermal, and dermal thickness and epidermal density variables was observed between combined therapy and alone subcision (p value < 0.05). Mean score of doctor's and patients' satisfaction in combined therapy (7.10 ± 0.74 and 7.10 ± 0.99, respectively), was also significantly higher than subcision alone (5.50 ± 0.53 and 5.30 ± 1.25, respectively). Finally, no complications were observed in the patients. CONCLUSION According to the acquired results, combined therapy can be considered as effective and safe treatment for acne scars with significant higher efficacy compared with subcision alone.
Collapse
Affiliation(s)
- Masoumeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Seifadini
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmolsadat Atefi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Sadeghzadeh-Bazargan
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Hanifnia
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran
| | - Sepideh Moradi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Dehghani
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Skin Repair Research Center, Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| | - Elham Behrangi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Li Q, Wang D, Jiang Z, Li R, Xue T, Lin C, Deng Y, Jin Y, Sun B. Advances of hydrogel combined with stem cells in promoting chronic wound healing. Front Chem 2022; 10:1038839. [PMID: 36518979 PMCID: PMC9742286 DOI: 10.3389/fchem.2022.1038839] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 08/15/2023] Open
Abstract
Wounds can be divided into two categories, acute and chronic. Acute wounds heal through the normal wound healing process. However, chronic wounds take longer to heal, leading to inflammation, pain, serious complications, and an economic burden of treatment costs. In addition, diabetes and burns are common causes of chronic wounds that are difficult to treat. The rapid and thorough treatment of chronic wounds, including diabetes wounds and burns, represents a significant unmet medical need. Wound dressings play an essential role in chronic wound treatment. Various biomaterials for wound healing have been developed. Among these, hydrogels are widely used as wound care materials due to their good biocompatibility, moisturizing effect, adhesion, and ductility. Wound healing is a complex process influenced by multiple factors and regulatory mechanisms in which stem cells play an important role. With the deepening of stem cell and regenerative medicine research, chronic wound treatment using stem cells has become an important field in medical research. More importantly, the combination of stem cells and stem cell derivatives with hydrogel is an attractive research topic in hydrogel preparation that offers great potential in chronic wound treatment. This review will illustrate the development and application of advanced stem cell therapy-based hydrogels in chronic wound healing, especially in diabetic wounds and burns.
Collapse
Affiliation(s)
- Qirong Li
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongzhi Deng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
45
|
Romaniyanto FNU, Mahyudin F, Prakoeswa CRS, Notobroto HB, Tinduh D, Ausrin R, Rantam FA, Suroto H, Utomo DN, Rhatomy S. Adipose-Derived Stem Cells (ASCs) for Regeneration of Intervertebral Disc Degeneration: Review Article. STEM CELLS AND CLONING: ADVANCES AND APPLICATIONS 2022; 15:67-76. [DOI: 10.2147/sccaa.s379714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
|
46
|
Autologous Minimally Manipulated Homologous Adipose Tissue (AMHAT) for Treatment of Nonhealing Diabetic Foot Ulcers. Plast Reconstr Surg Glob Open 2022; 10:e4588. [PMID: 36320618 PMCID: PMC9616634 DOI: 10.1097/gox.0000000000004588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
UNLABELLED Diabetic foot complications are increasingly burdensome for patients, clinicians, and society. Development of innovative therapies to support good quality basic care is a priority among those with an interest in this area. One of these involves scanning and printing tissues to match and conform to a defect (so-called 3D printing). METHODS A single-arm pilot study of ten consecutive patients with a history of a chronic diabetic foot ulcer (DFU), treated with autologous minimally manipulated homologous adipose tissue (AMHAT), dispensed by a specialized 3D bioprinter, Dr. INVIVO, was performed. Patients with nonhealing DFUs present for more than 4 weeks and refractory to standard-of-care therapies were included. Wounds were treated with a single application of AMHAT, and then followed up weekly for up to 12 weeks, or until the wounds healed. The primary outcome measure was complete epithelialization of the wound up to 12 weeks after the treatment. Secondary outcome measures included wound size and/or volume reduction, assessment of ulcer grade, and time to closure. RESULTS Five wounds were healed by 5 weeks and one at 8 weeks. The mean percent area reduction at 12 weeks was 78.3% (SD: 33.23). Complete closure was achieved in 60% of wounds. The mean time to closure in these wounds was 49.1 days (95% CI, 29.9-68.3). No adverse events were reported. CONCLUSIONS Single treatment of bioprinted AMHAT appears to be a safe and potentially effective treatment modality for patients with chronic DFUs. Further studies are warranted to explore the full potential of 3D bioprinting for tissue repair in this high-risk population.
Collapse
|
47
|
Tang Q, Zhao XS, Guo A, Cui RT, Song HL, Qi ZY, Pan Y, Yang Y, Zhang FF, Jin L. Therapeutic applications of adipose-derived stromal vascular fractions in osteoarthritis. World J Stem Cells 2022; 14:744-755. [PMID: 36337155 PMCID: PMC9630988 DOI: 10.4252/wjsc.v14.i10.744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is considered to be a highly heterogeneous disease with progressive cartilage loss, subchondral bone remodeling, and low-grade inflammation. It is one of the world's leading causes of disability. Most conventional clinical treatments for OA are palliative drugs, which cannot fundamentally cure this disease. The stromal vascular fraction (SVF) from adipose tissues is a heterogeneous cell population. According to previous studies, it contains a large number of mesenchymal stem cells, which have been used to treat OA with good therapeutic results. This safe, simple, and effective therapy is expected to be applied and promoted in the future. In this paper, the detailed pathogenesis, diagnosis, and current clinical treatments for OA are introduced. Then, clinical studies and the therapeutic mechanism of SVF for the treatment of OA are summarized.
Collapse
Affiliation(s)
- Qi Tang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Xian-Sheng Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ao Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Ruo-Tong Cui
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Huai-Le Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Zi-Yang Qi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Yi Pan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Yue Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Fang-Fang Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Liang Jin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| |
Collapse
|
48
|
Stem Cells in Clinical Trials on Neurological Disorders: Trends in Stem Cells Origins, Indications, and Status of the Clinical Trials. Int J Mol Sci 2022; 23:ijms231911453. [PMID: 36232760 PMCID: PMC9570410 DOI: 10.3390/ijms231911453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Neurological diseases can significantly reduce the quality and duration of life. Stem cells provide a promising solution, not only due to their regenerative features but also for a variety of other functions, including reducing inflammation and promoting angiogenesis. Although only hematopoietic cells have been approved by the FDA so far, the number of trials continues to expand. We analyzed 492 clinical trials and illustrate the trends in stem cells origins, indications, and phase and status of the clinical trials. The most common neurological disorders treated with stem cells were injuries of brain, spinal cord, and peripheral nerves (14%), stroke (13%), multiple sclerosis (12%), and brain tumors (11%). Mesenchymal stem cells dominated (83%) although the choice of stem cells was highly dependent on the neurological disorder. Of the 492 trials, only two trials have reached phase 4, with most of all other trials being in phases 1 or 2, or transitioning between them (83%). Based on a comparison of the obtained results with similar works and further analysis of the literature, we discuss some of the challenges and future directions of stem cell therapies in the treatment of neurological diseases.
Collapse
|
49
|
Prospects and Challenges of Electrospun Cell and Drug Delivery Vehicles to Correct Urethral Stricture. Int J Mol Sci 2022; 23:ijms231810519. [PMID: 36142432 PMCID: PMC9502833 DOI: 10.3390/ijms231810519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Current therapeutic modalities to treat urethral strictures are associated with several challenges and shortcomings. Therefore, significant strides have been made to develop strategies with minimal side effects and the highest therapeutic potential. In this framework, electrospun scaffolds incorporated with various cells or bioactive agents have provided promising vistas to repair urethral defects. Due to the biomimetic nature of these constructs, they can efficiently mimic the native cells’ niches and provide essential microenvironmental cues for the safe transplantation of multiple cell types. Furthermore, these scaffolds are versatile platforms for delivering various drug molecules, growth factors, and nucleic acids. This review discusses the recent progress, applications, and challenges of electrospun scaffolds to deliver cells or bioactive agents during the urethral defect repair process. First, the current status of electrospinning in urethral tissue engineering is presented. Then, the principles of electrospinning in drug and cell delivery applications are reviewed. Finally, the recent preclinical studies are summarized and the current challenges are discussed.
Collapse
|
50
|
Sophie VG, Marlene SJ, Helene HT, Lilli L, Allan PG, Susanne H. Injection of freshly collected autologous adipose tissue in complicated pilonidal disease: a prospective pilot study. Tech Coloproctol 2022; 26:883-891. [PMID: 35963978 DOI: 10.1007/s10151-022-02683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pilonidal sinus disease (PSD) is a frequent disorder. Treatment failure and recurrence are common, leading to significant morbidity. The aim of this study was to investigate the impact and need for repeated treatment of injected autologous adipose tissue into non-healing PSD wounds and primary anal-near PSD or anal-near recurrence. METHODS At the Department of Surgery, Randers Regional Hospital, Denmark, a prospective pilot study was conducted on consecutive PSD patients with lack of healing 3 months after surgery (Bascom's cleft lift) or with primary or recurrent anal-near pilonidal sinus disease from December 2018 to March 2020. The primary endpoint was time to healing. Autologous adipose tissue was harvested from the patients and injected into the lesions after surgical revision. Patients were examined 2 and 12 weeks after surgery. Patients with lack of healing after 12 weeks (undermining or no skin coverage) were offered re-injection. RESULTS We included 30 patients [26 men and 4 women, median age 24 years (range 18-59 years)]. Complete healing was achieved in 25 patients [83.3%; 95% CI (69.9-96.7)]. Two patients had recurrence (6.7%). The median time to complete healing was 159 (189) days. The mean operation time was 70.6 ± 23.7 min and the mean amount of injected autologous adipose tissue was 19 ± 10 ml. There were no major complications. CONCLUSION Freshly collected autologous adipose tissue injected into chronic non-healing or primary and recurrent PSD lesions near the anal verge is safe and efficient.
Collapse
Affiliation(s)
| | | | | | - Lundby Lilli
- Department of Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Pedersen G Allan
- Department of Surgery, Horsens Regional Hospital, Horsens, Denmark
| | - Haas Susanne
- Department of Surgery, Randers Regional Hospital, Randers, Denmark.
| |
Collapse
|