1
|
Wei SG, Chen HH, Xie LR, Qin Y, Mai YY, Huang LH, Liao HB. RNA interference-mediated osteoprotegerin silencing increases the receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio and promotes osteoclastogenesis. World J Stem Cells 2025; 17:101290. [PMID: 40308885 PMCID: PMC12038464 DOI: 10.4252/wjsc.v17.i4.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND In vivo degradation of bone scaffolds is significantly influenced by osteoclast (OC) activity, which is orchestrated by the interplay between receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG). The ratio of RANKL/OPG is a crucial determinant of OC-mediated bone resorption, which plays an integral role in bone remodeling and scaffold degradation. Elevated levels of RANKL relative to OPG enhance osteoclastogenesis, thereby accelerating the degradation process essential for integrating bone scaffolds into the host tissue. AIM To elucidate the effects of OPG gene silencing on osteoclastogenesis within rat bone marrow-derived mesenchymal stem cells (BMSCs). By investigating these effects, the study aimed to provide deeper insights into the regulatory mechanisms that influence bone scaffold degradation, potentially leading to improved bone repair and regeneration strategies. METHODS We employed recombinant lentiviral plasmids to silence the OPG gene in rat BMSCs to achieve the aims. The efficacy of gene silencing was assessed using quantitative reverse transcription polymerase chain reaction and western blot analysis to measure the expression levels of OPG and RANKL. Tartrate-resistant acid phosphatase staining was utilized to evaluate the formation of OCs. Additionally, co-immunoprecipitation assays were conducted to explore the interactions between RANKL and OPG proteins, further assessing the biochemical pathways involved in osteoclastogenesis. RESULTS The silencing of the OPG gene in BMSCs resulted in a significant increase in the RANKL/OPG ratio, evidenced by decreased expression levels of OPG and increased levels of RANKL. Enhanced osteoclastogenesis was observed through tartrate-resistant acid phosphatase staining, which indicated a substantial rise in OC formation in response to the altered RANKL/OPG balance. The co-immunoprecipitation assays provided concrete evidence of the direct interaction between RANKL and OPG proteins, substantiating their pivotal roles in regulating OC activity. CONCLUSION The findings from this study underscore the critical role of the RANKL/OPG axis in osteoclastogenesis. Silencing of the OPG gene in BMSCs effectively increases the RANKL/OPG ratio, promoting OC activity and potentially enhancing bone scaffold degradation. This regulatory mechanism offers a promising avenue for modulating bone remodeling processes, which is essential for effective bone repair and the successful integration of bone scaffolds into damaged sites. Future research might focus on optimizing the control of this axis to better facilitate bone tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Song-Guan Wei
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Department of Stomatology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545005, Guangxi Zhuang Autonomous Region, China
| | - Hui-Hong Chen
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Liu-Rong Xie
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yuan Qin
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Ying Mai
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lin-Hui Huang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hong-Bing Liao
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
2
|
Li W, Yang C, Xu J, Ran D, Wang C. MIR155HG suppresses the osteogenic differentiation of bone marrow mesenchymal stem cells through regulating miR-155-5p and DKK1 expression. J Orthop Surg Res 2025; 20:392. [PMID: 40251598 PMCID: PMC12008851 DOI: 10.1186/s13018-025-05798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Increasing evidence has demonstrated that non-coding RNAs, including the lncRNA MIR155HG, are involved in the pathogenesis of postmenopausal osteoporosis (PMOP). In the current study, we studied MIR155HG function in regulation of osteogenic differentiation and tried to reveal the underlying mechanisms. METHODS Forty blood samples taken from 20 PMOP patients (PMOP group) and 20 postmenopausal individuals without osteoporosis (control group) were used to compare the contents of MIR155HG and miR-155-5p via RT-PCR. Alizarin red S staining and ALP staining were used to evaluate the osteogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs). RESULTS Elevated levels of MIR155HG and miR-155-5p were observed in the blood samples of the PMOP group. Upregulation of MIR155HG resulted in decreased expression of OPN, OSX, ALP, RUNX2 and β-catenin but increased DKK1 expression, together with decreased Alizarin red S + and ALP + staining areas. However, downregulation of DKK1 did not obviously change the above indices induced by MIR155HG upregulation. Further experiments revealed that MIR155HG caused an increase in the expression of miR-155-5p, which also serves as an inhibitor of the osteogenic differentiation of BMSCs through binding to β-catenin. Consistent with DKK1 knockdown, downregulation of miR-155-5p only also did not obviously reverse the repressive effect of MIR155HG on osteoblastic differentiation, but downregulation of DKK1 and miR-155-5p synchronously restored the osteogenic differentiation ability of BMSCs suppressed by MIR155HG overexpression. CONCLUSION MIR155HG suppressed the osteoblastic differentiation of BMSCs by regulating miR-155-5p and DKK1 expression. Either inhibition of miR-155-5p and DKK1 or direct suppression of MIR155HG may be effective approaches for treating PMOP.
Collapse
Affiliation(s)
- Weimin Li
- Department of Orthopedic, The Fourth People's Hospital of Guiyang, Guiyang Guizhou, 550002, China
| | - Cheng Yang
- Department of Orthopedic, Guizhou Hospital of Beijing Jishuitan Hospital, Guiyang Guizhou, 550014, China
| | - Jiamu Xu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Dongcheng Ran
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Chunqing Wang
- Department of Traumatology and Orthopedics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
3
|
Fan L, Zhang L, Zhang X, Wei W, Liu Z. Long Noncoding RNA EMX2-AS Facilitates Osteoblast Differentiation and Bone Formation by Inhibiting EMX2 Protein Translation and Activating Wnt/ β-Catenin Pathway. Stem Cells Int 2024; 2024:4397807. [PMID: 39628661 PMCID: PMC11614513 DOI: 10.1155/sci/4397807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), as a potentially new and crucial element of biological regulation, have gained widespread attention in recent years. Our previous work identified lncRNA empty spiracles homeobox 2 antisence (EMX2-AS) was significantly increased during the osteoblast differentiation of mesenchymal stem cells (MSCs). Overexpression of lncRNA EMX2-AS promoted osteogenesis in vitro and enhanced heterotopic bone formation in vivo, whereas lncRNA EMX2-AS knockdown had the opposite effect. EMX2 could negatively regulate the osteoblast differentiation of MSCs. lncRNA EMX2-AS was 80% expressed in the cytoplasm during osteoblast differentiation in MSCs. Mechanistic analysis revealed that lncRNA EMX2-AS acts as a positive regulator of osteogenic differentiation through interaction with EMX2 and suppression of its expression at the translational level and Wnt/β-catenin pathway is involved in lncRNA EMX2-AS/EMX2 regulated osteogenic differentiation. Our findings not only provide new targets for the treatment of diseases related to osteoblast differentiation disruption but also enrich the understanding of the regulation mechanisms of lncRNA during stem cell differentiation.
Collapse
Affiliation(s)
- Linyuan Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| | - Li Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| | - Xin Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| | - Wei Wei
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital Beijing, Beijing 100026, China
| |
Collapse
|
4
|
Wang N, Lin Z, Gao L, Wang B, Wei K, Zhang M, Li Y, Xue P. Liraglutide reduces bone marrow adipogenesis by miR-150-5p/ GDF11 axis in diabetic rats. Eur J Pharmacol 2024; 978:176793. [PMID: 38960061 DOI: 10.1016/j.ejphar.2024.176793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
In recent years, a common-used antidiabetic drug, liraglutide, was identified with extra effects on lipid metabolism. Its effects against excessive lipid deposition in bone marrow were gained much attention but not well established. Our aim in the present study is to explore the interaction of miRNAs-mRNAs altered by liraglutide administration during bone marrow adipogenesis in diabetes. To establish the diabetic animal model, rats were treated with high fat diet (HFD) and STZ injection. We then identified the lowering effect of liraglutide on lipids metabolism in the diabetes. During this process, high-throughput sequencing and bioinformatics analyses on miRNAs extracted from bone marrow mesenchymal stem cells (BMSCs) were conducted after liraglutide administration. We then identified five differentially expressed miRNAs (miRNA-150-5p, miRNA-129-5p, miRNA-201-3p, miRNA-201-5p, and miRNA-214-5p). The expressions of the DE miRNAs were verified as temporal specific expression patterns in Day 3 and in Day 7. Among them, miRNA-150-5p expression was more stable and consistent with the sequencing data. Of interest, miR-150-5p overexpression facilitated adipogenesis of BMSCs. But this promotion was alleviated by liraglutide. The predicted target gene of miR-150-5p, GDF11, was validated to be involved in liraglutide alleviated BMSCs' lipid accumulation in diabetes. In vitro, liraglutide increased the GDF11 expression, rescued its down-expression by siGDF11 and inhibit the adipogenesis of BMSCs cultured in high glucose medium. In vivo, liraglutide reversed the HFD-STZ induced excessive lipid droplets by up-regulation of GDF11 expression, which was discounted by agomiR-150-5p injection. Above all, liraglutide might alleviate bone marrow fat accumulation via inactivating miR-150-5p/GDF11 axis in diabetes.
Collapse
Affiliation(s)
- Na Wang
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Zhe Lin
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; Department of Orthopedic Surgery, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Liu Gao
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Bin Wang
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Kangxu Wei
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Menghan Zhang
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Yukun Li
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Peng Xue
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China.
| |
Collapse
|
5
|
Guo Y, Jiang S, Li H, Xie G, Pavel V, Zhang Q, Li Y, Huang C. Obesity induces osteoimmunology imbalance: Molecular mechanisms and clinical implications. Biomed Pharmacother 2024; 177:117139. [PMID: 39018871 DOI: 10.1016/j.biopha.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The notion that obesity can be a protective factor for bone health is a topic of ongoing debate. Increased body weight may have a positive impact on bone health due to its mechanical effects and the production of estrogen by adipose tissue. However, recent studies have found a higher risk of bone fracture and delayed bone healing in elderly obese patients, which may be attributed to the heightened risk of bone immune regulation disruption associated with obesity. The balanced functions of bone cells such as osteoclasts, osteoblasts, and osteocytes, would be subverted by aberrant and prolonged immune responses under obese conditions. This review aims to explore the intricate relationship between obesity and bone health from the perspective of osteoimmunology, elucidate the impact of disturbances in bone immune regulation on the functioning of bone cells, including osteoclasts, osteoblasts, and osteocytes, highlighting the deleterious effects of obesity on various diseases development such as rheumatoid arthritis (RA), osteoarthritis (AS), bone fracture, periodontitis. On the one hand, weight loss may achieve significant therapeutic effects on the aforementioned diseases. On the other hand, for patients who have difficulty in losing weight, the osteoimmunological therapies could potentially serve as a viable approach in halting the progression of these disease. Additional research in the field of osteoimmunology is necessary to ascertain the optimal equilibrium between body weight and bone health.
Collapse
Affiliation(s)
- Yating Guo
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
6
|
Qi JL, Zhang ZD, Dong Z, Shan T, Yin ZS. mir-150-5p inhibits the osteogenic differentiation of bone marrow-derived mesenchymal stem cells by targeting irisin to regulate the p38/MAPK signaling pathway. J Orthop Surg Res 2024; 19:190. [PMID: 38500202 PMCID: PMC10949585 DOI: 10.1186/s13018-024-04671-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
PURPOSE To study the effect of miR-150-5p on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), and further explore the relationship between its regulatory mechanism and irisin. METHODS We isolated mouse BMSCs, and induced osteogenic differentiation by osteogenic induction medium. Using qPCR to detect the expression of osteogenic differentiation-related genes, western blot to detect the expression of osteogenic differentiation-related proteins, and luciferase reporter system to verify that FNDC5 is the target of miR-150-5p. Irisin intraperitoneal injection to treat osteoporosis in mice constructed by subcutaneous injection of dexamethasone. RESULTS Up-regulation of miR-150-5p inhibited the proliferation of BMSCs, and decreased the content of osteocalcin, ALP activity, calcium deposition, the expression of osteogenic differentiation genes (Runx2, OSX, OCN, OPN, ALP and BMP2) and protein (BMP2, OCN, and Runx2). And down-regulation of miR-150-5p plays the opposite role of up-regulation of miR-150-5p on osteogenic differentiation of BMSCs. Results of luciferase reporter gene assay showed that FNDC5 gene was the target gene of miR-150-5p, and miR-150-5p inhibited the expression of FNDC5 in mouse BMSCs. The expression of osteogenic differentiation genes and protein, the content of osteocalcin, ALP activity and calcium deposition in BMSCs co-overexpressed by miR-150-5p and FNDC5 was significantly higher than that of miR-150-5p overexpressed alone. In addition, the overexpression of FNDC5 reversed the blocked of p38/MAPK pathway by the overexpression of miR-150-5p in BMSCs. Irisin, a protein encoded by FNDC5 gene, improved symptoms in osteoporosis mice through intraperitoneal injection, while the inhibitor of p38/MAPK pathway weakened this function of irisin. CONCLUSION miR-150-5p inhibits the osteogenic differentiation of BMSCs by targeting irisin to regulate the/p38/MAPK signaling pathway, and miR-150-5p/irisin/p38 pathway is a potential target for treating osteoporosis.
Collapse
Affiliation(s)
- Jia-Long Qi
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei City, 230022, Anhui Province, China
- Department of Spine Surgery, Hefei First People's Hospital, Hefei City, 230061, Anhui Province, China
| | - Zhi-Dong Zhang
- Department of Spine Surgery, Hefei First People's Hospital, Hefei City, 230061, Anhui Province, China
| | - Zhou Dong
- Department of Spine Surgery, Hefei First People's Hospital, Hefei City, 230061, Anhui Province, China
| | - Tao Shan
- Department of Spine Surgery, Hefei First People's Hospital, Hefei City, 230061, Anhui Province, China
| | - Zong-Sheng Yin
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei City, 230022, Anhui Province, China.
| |
Collapse
|
7
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
8
|
Lin Y, Liang Z, Zhang A, Xu N, Pei X, Wang N, Zheng L, Xu D. Relationship Between Weight-Adjusted Waist Index and Osteoporosis in the Senile in the United States from the National Health and Nutrition Examination Survey, 2017-2020. J Clin Densitom 2023; 26:101361. [PMID: 36922294 DOI: 10.1016/j.jocd.2023.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Some studies suggested obesity may be beneficial in preventing bone loss through the negative relationship between body mass index (BMI) and osteoporosis in senile. However, using BMI to measure obesity is unconvincing due to confounding factors such as muscle mass were not taken into account, and few articles have yet taken a better way to evaluate the relationship between obesity and osteoporosis. METHODOLOGY Using a cross-sectional sample of 1,979 participants aged ≥65 years from the National Health and Nutrition Examination Survey (NHANES) 2017 to 2020, we evaluated the relation of weight-adjusted waist index (WWI) with osteoporosis. WWI was calculated as waist (cm) divided by the square root of body weight (kg). Diagnosis of osteoporosis was described as follows: according to the updated reference for calculating bone mineral density T-Scores, we marked the BMD value as X, using the formula T femoral neck= (X g/cm2-0.888 g/cm2)/0.121 g/cm2, T lumbar spine= (X g/cm2- 1.065 g/cm2)/0.122 g/cm2, and defined those with a final T femoral neck <-0.25. T lumbar spine<-0.25 or patients with previously diagnosed OP in other hospitals as osteoporosis. RESULTS All the 1,979 participants were between 65 and 80 years, there were 379 (21.1%) with osteoporosis, 608 (30.7%) with WWI exceeding 12 (cm/√kg) (range 8.85-14.14), and 955 (48.3%) women. Furthermore, the relationship between WWI and osteoporosis was nonlinear with a threshold effect point. Odds of OP significantly increased with the increase of WWI (OR 2.33, 95% CI 11.48-3.38, P = 0.0001) at the right side of the threshold point (WWI≥12) according to the threshold effect study. CONCLUSIONS Found a significant positive relationship between WWI and osteoporosis. Body fat management in the senile may be good to prevent osteoporosis if confirmed by other prospective studies analyzing the longitudinal risk of osteoporosis with obesity.
Collapse
Affiliation(s)
- Yuxiang Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zijie Liang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Anxin Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Nuo Xu
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Xuewen Pei
- Health Care Policy and Aging Research, Rutgers Institute for Health, New Brunswick, NJ, United States
| | - Nanbu Wang
- Rehabilitation Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liang Zheng
- Rehabilitation Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Danghan Xu
- Rehabilitation Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|