1
|
Li S, Chen X, Xin J, Liu B, Liu B, Hu M, Wong WH. Human stem cells with in vivo high plasticity generated by cell-cell communication. Proc Natl Acad Sci U S A 2025; 122:e2413043122. [PMID: 40067886 PMCID: PMC11929405 DOI: 10.1073/pnas.2413043122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/06/2025] [Indexed: 03/25/2025] Open
Abstract
Stem cells possess inherent properties of self-renewal and differentiation, and thus hold significant promise for regenerating damaged tissues or replacing lost cells. Unless their therapeutic effects are solely mediated by paracrine, transplanted stem cells need to be highly plastic to adapt to the host tissue environment and differentiate into constituent tissue-specific cells for tissue repair. Stem cells used in current cell-based therapies either have limited differentiation potential or are pluripotent but must be strictly restricted to avoid tumorigenicity risk in vivo. Here, we describe the derivation of human adult high-plasticity stem cells, which we call guide-integrated adult stem cells (giaSCs), from the interaction of blood-derived guide cells and umbilical cord tissue-derived mesenchymal stromal cells (UC-MSCs). The guide cells are a cell population derived from the peripheral blood of human adults. Unidirectional transfer through nanotube-like structures of granular substances from the guide cells into the recipient UC-MSCs gave rise to giaSCs. Topical application of human giaSCs into full-layer excisional wounds of wild-type mice led to reconstitution of skin tissue. Systemically administered human giaSCs migrated to and reside in mouse small intestinal tissue damaged by lipopolysaccharides and then differentiated into small intestinal epithelial cells for tissue repair. These transplantation experiments demonstrated that giaSCs have in vivo high plasticity. Additional in vivo and in vitro data showed that giaSCs have low immunogenicity and are nontumorigenic. These data indicate that giaSCs offer a highly promising approach to stem cell therapy.
Collapse
Affiliation(s)
- Shaowei Li
- APstem Therapeutics, Inc., Fremont, CA94538
| | - Xi Chen
- Department of Statistics, Stanford University, Stanford, CA94305
| | - Jingxue Xin
- Department of Statistics, Stanford University, Stanford, CA94305
| | - Bowen Liu
- APstem Therapeutics, Inc., Fremont, CA94538
| | - Bo Liu
- APstem Therapeutics, Inc., Fremont, CA94538
| | - Min Hu
- APstem Therapeutics, Inc., Fremont, CA94538
| | - Wing Hung Wong
- Department of Statistics, Stanford University, Stanford, CA94305
- Department of Biomedical Data Science, Stanford University, Stanford, CA94305
- Bio-X Program, Stanford University, Stanford, CA94305
| |
Collapse
|
2
|
Sun X, Wu J, Mourad O, Li R, Nunes SS. Microvessel co-transplantation improves poor remuscularization by hiPSC-cardiomyocytes in a complex disease model of myocardial infarction and type 2 diabetes. Stem Cell Reports 2025; 20:102394. [PMID: 39855203 PMCID: PMC11864147 DOI: 10.1016/j.stemcr.2024.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
People with type 2 diabetes (T2D) are at a higher risk for myocardial infarction (MI) than age-matched healthy individuals. Here, we studied cell-based cardiac regeneration post MI in T2D rats modeling the co-morbid conditions in patients with MI. We recapitulated the T2D hallmarks and clinical aspects of diabetic cardiomyopathy using high-fat diet and streptozotocin in athymic rats, which were then subjected to MI and intramyocardial implantation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with or without rat adipose-derived microvessels (MVs). hiPSC-CM alone engrafted poorly. Co-delivery of hiPSC-CMs with MVs yielded a smaller infarct area and a thicker left ventricle wall. Additionally, MVs robustly integrated into the infarcted hearts, improved the survival of hiPSC-CMs, and improved cardiac function. MV-conditioned media also promoted hiPSC-CM maturation in vitro, increasing cardiomyocyte (CM) size in an interleukin (IL)-6-dependent manner. Given the availability of MVs from human adipose tissue, MVs present great translational potential for the treatment of heart failure in people with T2D.
Collapse
MESH Headings
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/transplantation
- Myocytes, Cardiac/metabolism
- Animals
- Diabetes Mellitus, Type 2/therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/metabolism
- Humans
- Myocardial Infarction/therapy
- Myocardial Infarction/pathology
- Myocardial Infarction/complications
- Microvessels/transplantation
- Microvessels/metabolism
- Rats
- Disease Models, Animal
- Male
- Rats, Nude
- Cell Differentiation
- Diabetic Cardiomyopathies/therapy
- Diabetes Mellitus, Experimental/therapy
Collapse
Affiliation(s)
- Xuetao Sun
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Omar Mourad
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Renke Li
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada; Ajmera Transplant Center, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
3
|
Li Y, Lim C, Dismuke T, Malawsky DS, Oasa S, Bruce ZC, Offenhäuser C, Baumgartner U, D'Souza RCJ, Edwards SL, French JD, Ock LSH, Nair S, Sivakumaran H, Harris L, Tikunov AP, Hwang D, Alicea Pauneto CDM, Maybury M, Hassall T, Wainwright B, Kesari S, Stein G, Piper M, Johns TG, Sokolsky-Papkov M, Terenius L, Vukojević V, McSwain LF, Gershon TR, Day BW. Suppressing recurrence in Sonic Hedgehog subgroup medulloblastoma using the OLIG2 inhibitor CT-179. Nat Commun 2025; 16:1091. [PMID: 39904981 PMCID: PMC11794477 DOI: 10.1038/s41467-024-54861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/22/2024] [Indexed: 02/06/2025] Open
Abstract
OLIG2-expressing tumor stem cells have been shown to drive recurrence in Sonic Hedgehog (SHH)-subgroup medulloblastoma (MB) and patients urgently need specific therapies to target this tumor cell population. Here, we investigate the therapeutic potential of the brain-penetrant orally bioavailable, OLIG2 inhibitor CT-179, using SHH-MB explant organoids, PDX and GEM SHH-MB models. We find that CT-179 disrupts OLIG2 dimerization, phosphorylation and DNA binding and alters tumor cell-cycle kinetics, increasing differentiation and apoptosis. CT-179 prolongs survival in SHH-MB PDX and GEM models and potentiates radiotherapy (RT) in vivo. Single cell transcriptomic studies (scRNA-seq) confirm that CT-179 increases differentiation and implicate Cdk4 up-regulation in maintaining proliferation during treatment. Consistent with CDK4 mediating CT-179 resistance, CT-179 combines effectively with the CDK4/6 inhibitor palbociclib, further prolonging survival in vivo. These data support therapeutic targeting of OLIG2+ tumor stem cells in regimens for SHH-driven MB, to improve response, delay recurrence and ultimately improve MB patient outcomes.
Collapse
Affiliation(s)
- Yuchen Li
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- College of Pharmacy, CHA University, 335 PangyoPangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Taylor Dismuke
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Daniel S Malawsky
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Sho Oasa
- Department of Clinical Neuroscience, Center for Molecular Medicine (CMM), Karolinska Institutet, 17176, Stockholm, Sweden
| | - Zara C Bruce
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | | | - Ulrich Baumgartner
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4072, Australia
| | - Rochelle C J D'Souza
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Stacey L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Juliet D French
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Lucy S H Ock
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Sneha Nair
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Haran Sivakumaran
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Lachlan Harris
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrey P Tikunov
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, Emory University, Atlanta, GA, 30323, USA
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Coral Del Mar Alicea Pauneto
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Mellissa Maybury
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, 4101, Australia
| | - Timothy Hassall
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Oncology Service, Queensland Children's Hospital, Children's Health Queensland Hospital & Health Service, Brisbane, QLD, 4101, Australia
| | - Brandon Wainwright
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | | - Michael Piper
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lars Terenius
- Department of Clinical Neuroscience, Center for Molecular Medicine (CMM), Karolinska Institutet, 17176, Stockholm, Sweden
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Center for Molecular Medicine (CMM), Karolinska Institutet, 17176, Stockholm, Sweden
| | - Leon F McSwain
- Department of Pediatrics, Emory University, Atlanta, GA, 30323, USA
| | - Timothy R Gershon
- Department of Pediatrics, Emory University, Atlanta, GA, 30323, USA.
- Children's Center for Neurosciences Research, Emory University, Atlanta, GA, 30323, USA.
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4072, Australia.
- Children's Brain Cancer Centre, UQ Frazer Institute, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
4
|
Wagstaff LJ, Bestard-Cuche N, Kaczmarek M, Fidanza A, McNeil L, Franklin RJM, Williams AC. CRISPR-edited human ES-derived oligodendrocyte progenitor cells improve remyelination in rodents. Nat Commun 2024; 15:8570. [PMID: 39384784 PMCID: PMC11464782 DOI: 10.1038/s41467-024-52444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/16/2024] [Indexed: 10/11/2024] Open
Abstract
In Multiple Sclerosis (MS), inflammatory demyelinated lesions in the brain and spinal cord lead to neurodegeneration and progressive disability. Remyelination can restore fast saltatory conduction and neuroprotection but is inefficient in MS especially with increasing age, and is not yet treatable with therapies. Intrinsic and extrinsic inhibition of oligodendrocyte progenitor cell (OPC) function contributes to remyelination failure, and we hypothesised that the transplantation of 'improved' OPCs, genetically edited to overcome these obstacles, could improve remyelination. Here, we edit human(h) embryonic stem cell-derived OPCs to be unresponsive to a chemorepellent released from chronic MS lesions, and transplant them into rodent models of chronic lesions. Edited hOPCs display enhanced migration and remyelination compared to controls, regardless of the host age and length of time post-transplant. We show that genetic manipulation and transplantation of hOPCs overcomes the negative environment inhibiting remyelination, with translational implications for therapeutic strategies for people with progressive MS.
Collapse
Affiliation(s)
- Laura J Wagstaff
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Nadine Bestard-Cuche
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Maja Kaczmarek
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Antonella Fidanza
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Lorraine McNeil
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Robin J M Franklin
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Anna C Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Lee JY, Kim JH, Freedman BR, Mooney DJ. Motion-Accommodating Dual-Layer Hydrogel Dressing to Deliver Adipose-Derived Stem Cells to Wounds. Tissue Eng Regen Med 2024; 21:843-854. [PMID: 38850485 PMCID: PMC11286926 DOI: 10.1007/s13770-024-00651-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Current dressing materials cannot secure a cell survival-promoting wound environment for stem cell delivery due to insufficient assimilation to skin motion. The authors developed a novel motion-accommodating dual-layer hydrogel dressing for stem cell delivery into such wounds. METHODS Dorsal hand skin movement was evaluated to determine the potential range of deformation for a dressing. The outer hydrogel (OH) was fabricated with an alginate-acrylamide double-network hydrogel with a covalently cross-linked elastomer coat. The tough adhesive consisted of a chitosan-based bridging polymer and coupling reagents. OH material properties and adhesiveness on porcine skin were measured. An oxidized alginate-based inner hydrogel (IH) containing human adipose-derived stem cells (ASCs) was evaluated for cell-supporting and cell-releasing properties. The OH's function as a secondary dressing, and dual-layer hydrogel cell delivery potential in wounds were assessed in a rodent model. RESULTS The dual-layer hydrogel consisted of OH and IH. The OH target range of deformation was up to 25% strain. The OH adhered to porcine skin, and showed significantly higher adhesion energy than common secondary dressings and endured 900 flexion-extension cycles without detachment. OH showed a similar moisture vapor transmission rate as moisture-retentive dressings. IH maintained embedded cell survival for three days with significant cell release on the contacting surface. OH showed less fibrotic wound healing than other secondary dressings in vivo. The dual-layer hydrogel successfully delivered ASCs into open wounds of nude mice (13 ± 3 cells/HPF). CONCLUSIONS The novel dual-layer hydrogel can accommodate patient movement and deliver ASCs into the wound bed by securing the wound microenvironment.
Collapse
Affiliation(s)
- Jun Yong Lee
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 319 Pierce Hall, Cambridge, MA, 02138, USA.
- Department of Plastic and Reconstructive Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea.
| | - Jie Hyun Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Benjamin R Freedman
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 319 Pierce Hall, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 319 Pierce Hall, Cambridge, MA, 02138, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
6
|
Wulkan F, Romagnuolo R, Qiang B, Valdman Sadikov T, Kim KP, Quesnel E, Jiang W, Andharia N, Weyers JJ, Ghugre NR, Ozcan B, Alibhai FJ, Laflamme MA. Stem cell-derived cardiomyocytes expressing a dominant negative pacemaker HCN4 channel do not reduce the risk of graft-related arrhythmias. Front Cardiovasc Med 2024; 11:1374881. [PMID: 39045008 PMCID: PMC11263024 DOI: 10.3389/fcvm.2024.1374881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Background Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) show tremendous promise for cardiac regeneration following myocardial infarction (MI), but their transplantation gives rise to transient ventricular tachycardia (VT) in large-animal MI models, representing a major hurdle to translation. Our group previously reported that these arrhythmias arise from a focal mechanism whereby graft tissue functions as an ectopic pacemaker; therefore, we hypothesized that hPSC-CMs engineered with a dominant negative form of the pacemaker ion channel HCN4 (dnHCN4) would exhibit reduced automaticity and arrhythmogenic risk following transplantation. Methods We used CRISPR/Cas9-mediated gene-editing to create transgenic dnHCN4 hPSC-CMs, and their electrophysiological behavior was evaluated in vitro by patch-clamp recordings and optical mapping. Next, we transplanted WT and homozygous dnHCN4 hPSC-CMs in a pig MI model and compared post-transplantation outcomes including the incidence of spontaneous arrhythmias and graft structure by immunohistochemistry. Results In vitro dnHCN4 hPSC-CMs exhibited significantly reduced automaticity and pacemaker funny current (I f ) density relative to wildtype (WT) cardiomyocytes. Following transplantation with either dnHCN4 or WT hPSC-CMs, all recipient hearts showed transmural infarct scar that was partially remuscularized by scattered islands of human myocardium. However, in contrast to our hypothesis, both dnHCN4 and WT hPSC-CM recipients exhibited frequent episodes of ventricular tachycardia (VT). Conclusions While genetic silencing of the pacemaker ion channel HCN4 suppresses the automaticity of hPSC-CMs in vitro, this intervention is insufficient to reduce VT risk post-transplantation in the pig MI model, implying more complex mechanism(s) are operational in vivo.
Collapse
Affiliation(s)
- Fanny Wulkan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | | | | | - Elya Quesnel
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Wenlei Jiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Naaz Andharia
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Jill J. Weyers
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nilesh R. Ghugre
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bilgehan Ozcan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J. Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Smith AR, Rizvi F, Everton E, Adeagbo A, Wu S, Tam Y, Muramatsu H, Pardi N, Weissman D, Gouon-Evans V. Transient growth factor expression via mRNA in lipid nanoparticles promotes hepatocyte cell therapy in mice. Nat Commun 2024; 15:5010. [PMID: 38866762 PMCID: PMC11169405 DOI: 10.1038/s41467-024-49332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two male mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Fatima Rizvi
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Elissa Everton
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Anisah Adeagbo
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Susan Wu
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Valerie Gouon-Evans
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA.
| |
Collapse
|
8
|
Ifediba M, Baetz N, Lambert L, Benzon H, Page V, Anderson N, Roth S, Miess J, Nicolosi I, Beck S, Sopko N, Garrett C. Characterization of heterogeneous skin constructs for full thickness skin regeneration in murine wound models. Tissue Cell 2024; 88:102403. [PMID: 38728948 DOI: 10.1016/j.tice.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
An autologous heterogeneous skin construct (AHSC) has been developed and used clinically as an alternative to traditional skin grafting techniques for treatment of cutaneous defects. AHSC is manufactured from a small piece of healthy skin in a manner that preserves endogenous regenerative cellular populations. To date however, specific cellular and non-cellular contributions of AHSC to the epidermal and dermal layers of closed wounds have not been well characterized given limited clinical opportunity for graft biopsy following wound closure. To address this limitation, a three-part mouse full-thickness excisional wound model was developed for histologic and macroscopic graft tracing. First, fluorescent mouse-derived AHSC (mHSC) was allografted onto non-fluorescent recipient mice to enable macroscopic and histologic time course evaluation of wound closure. Next, mHSC-derived from haired pigmented mice was allografted onto gender- and major histocompatibility complex (MHC)-mismatched athymic nude mouse recipients. Resulting grafts were distinguished from recipient murine skin via immunohistochemistry. Finally, human-derived AHSC (hHSC) was xenografted onto athymic nude mice to evaluate engraftment and hHSC contribution to wound closure. Experiments demonstrated that mHSC and hHSC facilitated wound closure through production of viable, proliferative cellular material and promoted full-thickness skin regeneration, including hair follicles and glands in dermal compartments. This combined macroscopic and histologic approach to tracing AHSC-treated wounds from engraftment to closure enabled robust profiling of regenerated architecture and further understanding of processes underlying AHSC mechanism of action. These models may be applied to a variety of wound care investigations, including those requiring longitudinal assessments of healing and targeted identification of donor and recipient tissue contributions.
Collapse
Affiliation(s)
- Marytheresa Ifediba
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Nicholas Baetz
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Lyssa Lambert
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Haley Benzon
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Vonda Page
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Nicole Anderson
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Stephanie Roth
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - James Miess
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Ian Nicolosi
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Sarah Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nikolai Sopko
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA.
| | - Caroline Garrett
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| |
Collapse
|
9
|
Cook MP, Dhahri W, Laflamme MA, Ghugre NR, Wright GA. Using diffusion tensor imaging to depict myocardial changes after matured pluripotent stem cell-derived cardiomyocyte transplantation. J Cardiovasc Magn Reson 2024; 26:101045. [PMID: 38795790 PMCID: PMC11278291 DOI: 10.1016/j.jocmr.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Novel treatment strategies are needed to improve the structure and function of the myocardium post-infarction. In vitro-matured pluripotent stem cell-derived cardiomyocytes (PSC-CMs) have been shown to be a promising regenerative strategy. We hypothesized that mature PSC-CMs will have anisotropic structure and improved cell alignment when compared to immature PSC-CMs using cardiovascular magnetic resonance (CMR) in a guinea pig model of cardiac injury. METHODS Guinea pigs (n = 16) were cryoinjured on day -10, followed by transplantation of either 108 polydimethylsiloxane (PDMS)-matured PSC-CMs (n = 6) or 108 immature tissue culture plastic (TCP)-generated PSC-CMs (n = 6) on day 0. Vehicle (sham-treated) subjects were injected with a pro-survival cocktail devoid of cells (n = 4), while healthy controls (n = 4) did not undergo cryoinjury or treatment. Animals were sacrificed on either day +14 or day +28 post-transplantation. Animals were imaged ex vivo on a 7T Bruker MRI. A 3D diffusion tensor imaging (DTI) sequence was used to quantify structure via fractional anisotropy (FA), mean diffusivity (MD), and myocyte alignment measured by the standard deviation of the transverse angle (TA). RESULTS MD and FA of mature PDMS grafts demonstrated anisotropy was not significantly different than the healthy control hearts (MD = 1.1 ± 0.12 × 10-3 mm2/s vs 0.93 ± 0.01 × 10-3 mm2/s, p = 0.4 and FA = 0.22 ± 0.05 vs 0.26 ± 0.001, p = 0.5). Immature TCP grafts exhibited significantly higher MD than the healthy control (1.3 ± 0.08 × 10-3 mm2/s, p < 0.05) and significantly lower FA than the control (0.12 ± 0.02, p < 0.05) but were not different from mature PDMS grafts in this small cohort. TA of healthy controls showed low variability and was not significantly different than mature PDMS grafts (p = 0.4) while immature TCP grafts were significantly different (p < 0.001). DTI parameters of mature graft tissue trended toward that of the healthy myocardium, indicating the grafted cardiomyocytes may have a similar phenotype to healthy tissue. Contrast-enhanced magnetic resonance images corresponded well to histological staining, demonstrating a non-invasive method of localizing the repopulated cardiomyocytes within the scar. CONCLUSIONS The DTI measures within graft tissue were indicative of anisotropic structure and showed greater myocyte organization compared to the scarred territory. These findings show that MRI is a valuable tool to assess the structural impacts of regenerative therapies.
Collapse
Affiliation(s)
- Moses P Cook
- Department of Medical Biophysics, University of Toronto, ON, Canada.
| | - Wahiba Dhahri
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.
| | - Nilesh R Ghugre
- Department of Medical Biophysics, University of Toronto, ON, Canada; Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Graham A Wright
- Department of Medical Biophysics, University of Toronto, ON, Canada; Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
10
|
Smith AR, Rizvi F, Everton E, Adeagbo A, Wu S, Tam Y, Muramatsu H, Pardi N, Weissman D, Gouon-Evans V. Transient growth factor expression via mRNA in lipid nanoparticles promotes hepatocyte cell therapy to treat murine liver diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575286. [PMID: 38260488 PMCID: PMC10802626 DOI: 10.1101/2024.01.11.575286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This novel strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.
Collapse
|
11
|
Takahashi Y, Kajitani T, Endo T, Nakayashiki A, Inoue T, Niizuma K, Tominaga T. Intravenous Administration of Human Muse Cells Ameliorates Deficits in a Rat Model of Subacute Spinal Cord Injury. Int J Mol Sci 2023; 24:14603. [PMID: 37834052 PMCID: PMC10572998 DOI: 10.3390/ijms241914603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are newly established pluripotent stem cells. The aim of the present study was to examine the potential of the systemic administration of Muse cells as an effective treatment for subacute SCI. We intravenously administered the clinical product "CL2020" containing Muse cells to a rat model two weeks after mid-thoracic spinal cord contusion. Eight experimental animals received CL2020, and twelve received the vehicle. Behavioral analyses were conducted over 20 weeks. Histological evaluations were performed. After 20 weeks of observation, diphtheria toxin was administered to three CL2020-treated animals to selectively ablate human cell functions. Hindlimb motor functions significantly improved from 6 to 20 weeks after the administration of CL2020. The cystic cavity was smaller in the CL2020 group. Furthermore, larger numbers of descending 5-HT fibers were preserved in the distal spinal cord. Muse cells in CL2020 were considered to have differentiated into neuronal and neural cells in the injured spinal cord. Neuronal and neural cells were identified in the gray and white matter, respectively. Importantly, these effects were reversed by the selective ablation of human cells by diphtheria toxin. Intravenously administered Muse cells facilitated the therapeutic potential of CL2020 for severe subacute spinal cord injury.
Collapse
Affiliation(s)
- Yoshiharu Takahashi
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
- Department of Neurosurgery, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Takumi Kajitani
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
| | - Toshiki Endo
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
- Department of Neurosurgery, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Atsushi Nakayashiki
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
| | - Tomoo Inoue
- Department of Neurosurgery, Saitama Red Cross Hospital, Saitama 330-8553, Japan;
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8572, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
| |
Collapse
|
12
|
Canceill T, Jourdan G, Kémoun P, Guissard C, Monsef YA, Bourdens M, Chaput B, Cavalie S, Casteilla L, Planat-Bénard V, Monsarrat P, Raymond-Letron I. Characterization and Safety Profile of a New Combined Advanced Therapeutic Medical Product Platelet Lysate-Based Fibrin Hydrogel for Mesenchymal Stromal Cell Local Delivery in Regenerative Medicine. Int J Mol Sci 2023; 24:ijms24032206. [PMID: 36768532 PMCID: PMC9916739 DOI: 10.3390/ijms24032206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Adipose-derived mesenchymal stromal cells (ASC) transplant to recover the optimal tissue structure/function relationship is a promising strategy to regenerate tissue lesions. Because filling local tissue defects by injection alone is often challenging, designing adequate cell carriers with suitable characteristics is critical for in situ ASC delivery. The aim of this study was to optimize the generation phase of a platelet-lysate-based fibrin hydrogel (PLFH) as a proper carrier for in situ ASC implantation and (1) to investigate in vitro PLFH biomechanical properties, cell viability, proliferation and migration sustainability, and (2) to comprehensively assess the local in vivo PLFH/ASC safety profile (local tolerance, ASC fate, biodistribution and toxicity). We first defined the experimental conditions to enhance physicochemical properties and microscopic features of PLFH as an adequate ASC vehicle. When ASC were mixed with PLFH, in vitro assays exhibited hydrogel supporting cell migration, viability and proliferation. In vivo local subcutaneous and subgingival PLFH/ASC administration in nude mice allowed us to generate biosafety data, including biodegradability, tolerance, ASC fate and engraftment, and the absence of biodistribution and toxicity to non-target tissues. Our data strongly suggest that this novel combined ATMP for in situ administration is safe with an efficient local ASC engraftment, supporting the further development for human clinical cell therapy.
Collapse
Affiliation(s)
- Thibault Canceill
- CIRIMAT, Université Toulouse III Paul Sabatier, CNRS UMR 5085, INPT, Faculté de Pharmacie, 35 Chemin des Maraichers, CEDEX 09, 31062 Toulouse, France
- Department of Oral Medicine and Toulouse University Hospital (CHU of Toulouse)—Toulouse Institute of Oral Medicine and Science, CEDEX 09, 31062 Toulouse, France
| | - Géraldine Jourdan
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Philippe Kémoun
- Department of Oral Medicine and Toulouse University Hospital (CHU of Toulouse)—Toulouse Institute of Oral Medicine and Science, CEDEX 09, 31062 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Christophe Guissard
- Department of Oral Medicine and Toulouse University Hospital (CHU of Toulouse)—Toulouse Institute of Oral Medicine and Science, CEDEX 09, 31062 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Yanad Abou Monsef
- LabHPEC, Histology and Pathology Department, Université de Toulouse, ENVT, CEDEX 03, 31076 Toulouse, France
| | - Marion Bourdens
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Benoit Chaput
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, Centre Hospitalier Universitaire Rangueil, Avenue du Professeur Jean Poulhès, CEDEX 09, 31059 Toulouse, France
| | - Sandrine Cavalie
- CIRIMAT, Université Toulouse III Paul Sabatier, CNRS UMR 5085, INPT, Faculté de Pharmacie, 35 Chemin des Maraichers, CEDEX 09, 31062 Toulouse, France
| | - Louis Casteilla
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Valérie Planat-Bénard
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Paul Monsarrat
- Department of Oral Medicine and Toulouse University Hospital (CHU of Toulouse)—Toulouse Institute of Oral Medicine and Science, CEDEX 09, 31062 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
- Artificial and Natural Intelligence Toulouse Institute ANITI, 31400 Toulouse, France
- Correspondence:
| | - Isabelle Raymond-Letron
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
- LabHPEC, Histology and Pathology Department, Université de Toulouse, ENVT, CEDEX 03, 31076 Toulouse, France
| |
Collapse
|
13
|
Säljö K, Apelgren P, Stridh Orrhult L, Li S, Amoroso M, Gatenholm P, Kölby L. Long-term in vivo survival of 3D-bioprinted human lipoaspirate-derived adipose tissue: proteomic signature and cellular content. Adipocyte 2022; 11:34-46. [PMID: 34957918 PMCID: PMC8726626 DOI: 10.1080/21623945.2021.2014179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/05/2022] Open
Abstract
Three-dimensional (3D)-bioprinted lipoaspirate-derived adipose tissue (LAT) is a potential alternative to lipo-injection for correcting soft-tissue defects. This study investigated the long-term in vivo survival of 3D-bioprinted LAT and its proteomic signature and cellular composition. We performed proteomic and multicolour flow cytometric analyses on the lipoaspirate and 3D-bioprinted LAT constructs were transplanted into nude mice, followed by explantation after up to 150 days. LAT contained adipose-tissue-derived stem cells (ASCs), pericytes, endothelial progenitor cells (EPCs) and endothelial cells. Proteomic analysis identified 6,067 proteins, including pericyte markers, adipokines, ASC secretome proteins, proangiogenic proteins and proteins involved in adipocyte differentiation and developmental morphogenic signalling, as well as proteins not previously described in human subcutaneous fat. 3D-bioprinted LAT survived for 150 days in vivo with preservation of the construct shape and size. Furthermore, we identified human blood vessels after 30 and 150 days in vivo, indicating angiogenesis from capillaries. These results showed that LAT has a favourable proteomic signature, contains ASCs, EPCs and blood vessels that survive 3D bioprinting and can potentially facilitate angiogenesis and successful autologous fat grafting in soft-tissue reconstruction.
Collapse
Affiliation(s)
- Karin Säljö
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Apelgren
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linnea Stridh Orrhult
- 3D Bioprinting Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Susann Li
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Matteo Amoroso
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Paul Gatenholm
- 3D Bioprinting Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
14
|
Oh JY, Kim H, Lee HJ, Lee K, Barreda H, Kim HJ, Shin E, Bae EH, Kaur G, Zhang Y, Kim E, Lee JY, Lee RH. MHC Class I Enables MSCs to Evade NK-Cell-Mediated Cytotoxicity and Exert Immunosuppressive Activity. Stem Cells 2022; 40:870-882. [PMID: 35852488 PMCID: PMC9512104 DOI: 10.1093/stmcls/sxac043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/20/2022] [Indexed: 01/07/2023]
Abstract
Allogeneic mesenchymal stem/stromal cells (MSCs) are frequently used in clinical trials due to their low expression of major histocompatibility complex (MHC) class I and lack of MHC class II. However, the levels of MHC classes I and II in MSCs are increased by inflammatory stimuli, raising concerns over potential adverse effects associated with allogeneic cell therapy. Also, it is unclear how the host immune response to MHC-mismatched MSCs affects the therapeutic efficacy of the cells. Herein, using strategies to manipulate MHC genes in human bone marrow-derived MSCs via the CRISPR-Cas9 system, plasmids, or siRNAs, we found that inhibition of MHC class I-not MHC class II-in MSCs lowered the survival rate of MSCs and their immunosuppressive potency in mice with experimental autoimmune uveoretinitis, specifically by increasing MSC vulnerability to natural killer (NK)-cell-mediated cytotoxicity. A subsequent survey of MSC batches derived from 6 human donors confirmed a significant correlation between MSC survival rate and susceptibility to NK cells with the potency of MSCs to increase MHC class I level upon stimulation. Our overall results demonstrate that MHC class I enables MSCs to evade NK-cell-mediated cytotoxicity and exert immunosuppressive activity.
Collapse
Affiliation(s)
- Joo Youn Oh
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyemee Kim
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, College of Medicine, Texas A&M University, College Station, TX, USA
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Kangin Lee
- ToolGen, Inc., Geumcheon-gu, Seoul, Korea
| | - Heather Barreda
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, College of Medicine, Texas A&M University, College Station, TX, USA
| | - Hyeon Ji Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Eunji Shin
- ToolGen, Inc., Geumcheon-gu, Seoul, Korea
| | - Eun-Hye Bae
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, College of Medicine, Texas A&M University, College Station, TX, USA
| | - Gagandeep Kaur
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, College of Medicine, Texas A&M University, College Station, TX, USA
| | - Yu Zhang
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, College of Medicine, Texas A&M University, College Station, TX, USA
| | - Eunjae Kim
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, College of Medicine, Texas A&M University, College Station, TX, USA
| | | | - Ryang Hwa Lee
- Corresponding author: Ryang Hwa Lee, Molecular and Cellular Medicine Department, Institute for Regenerative Medicine, College of Medicine, Texas A&M University, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77845, USA.
| |
Collapse
|
15
|
Mousaei Ghasroldasht M, Seok J, Park HS, Liakath Ali FB, Al-Hendy A. Stem Cell Therapy: From Idea to Clinical Practice. Int J Mol Sci 2022; 23:ijms23052850. [PMID: 35269990 PMCID: PMC8911494 DOI: 10.3390/ijms23052850] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
Regenerative medicine is a new and promising mode of therapy for patients who have limited or no other options for the treatment of their illness. Due to their pleotropic therapeutic potential through the inhibition of inflammation or apoptosis, cell recruitment, stimulation of angiogenesis, and differentiation, stem cells present a novel and effective approach to several challenging human diseases. In recent years, encouraging findings in preclinical studies have paved the way for many clinical trials using stem cells for the treatment of various diseases. The translation of these new therapeutic products from the laboratory to the market is conducted under highly defined regulations and directives provided by competent regulatory authorities. This review seeks to familiarize the reader with the process of translation from an idea to clinical practice, in the context of stem cell products. We address some required guidelines for clinical trial approval, including regulations and directives presented by the Food and Drug Administration (FDA) of the United States, as well as those of the European Medicine Agency (EMA). Moreover, we review, summarize, and discuss regenerative medicine clinical trial studies registered on the Clinicaltrials.gov website.
Collapse
|
16
|
Evaluation of two in vitro assays for tumorigenicity assessment of CRISPR-Cas9 genome-edited cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:241-253. [PMID: 34703845 PMCID: PMC8505356 DOI: 10.1016/j.omtm.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022]
Abstract
Off-target editing is one of the main safety concerns for the use of CRISPR-Cas9 genome editing in gene therapy. These unwanted modifications could lead to malignant transformation, which renders tumorigenicity assessment of gene therapy products indispensable. In this study, we established two in vitro transformation assays, the soft agar colony-forming assay (SACF) and the growth in low attachment assay (GILA) as alternative methods for tumorigenicity evaluation of genome-edited cells. Using a CRISPR-Cas9-based approach to transform immortalized MCF10A cells, we identified PTPN12, a known tumor suppressor, as a valid positive control in GILA and SACF. Next, we measured the limit of detection for both assays and proved that SACF is more sensitive than GILA (0.8% versus 3.1% transformed cells). We further validated SACF and GILA by identifying a set of positive and negative controls and by testing the suitability of another cell line (THLE-2). Moreover, in contrast to SACF and GILA, an in vivo tumorigenicity study failed to detect the known tumorigenic potential of PTPN12 deletion, demonstrating the relevance of GILA and SACF in tumorigenicity testing. In conclusion, SACF and GILA are both attractive and valuable additions to preclinical safety assessment of gene therapy products.
Collapse
|
17
|
Ge D, O'Brien MJ, Savoie FH, Gimble JM, Wu X, Gilbert MH, Clark-Patterson GL, Schuster JD, Miller KS, Wang A, Myers L, You Z. Human adipose-derived stromal/stem cells expressing doublecortin improve cartilage repair in rabbits and monkeys. NPJ Regen Med 2021; 6:82. [PMID: 34848747 PMCID: PMC8633050 DOI: 10.1038/s41536-021-00192-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Localized cartilage lesions in early osteoarthritis and acute joint injuries are usually treated surgically to restore function and relieve pain. However, a persistent clinical challenge remains in how to repair the cartilage lesions. We expressed doublecortin (DCX) in human adipose-derived stromal/stem cells (hASCs) and engineered hASCs into cartilage tissues using an in vitro 96-well pellet culture system. The cartilage tissue constructs with and without DCX expression were implanted in the knee cartilage defects of rabbits (n = 42) and monkeys (n = 12). Cohorts of animals were euthanized at 6, 12, and 24 months after surgery to evaluate the cartilage repair outcomes. We found that DCX expression in hASCs increased expression of growth differentiation factor 5 (GDF5) and matrilin 2 in the engineered cartilage tissues. The cartilage tissues with DCX expression significantly enhanced cartilage repair as assessed macroscopically and histologically at 6, 12, and 24 months after implantation in the rabbits and 24 months after implantation in the monkeys, compared to the cartilage tissues without DCX expression. These findings suggest that hASCs expressing DCX may be engineered into cartilage tissues that can be used to treat localized cartilage lesions.
Collapse
Affiliation(s)
- Dongxia Ge
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Michael J O'Brien
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Felix H Savoie
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jeffrey M Gimble
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- LaCell LLC and Obatala Sciences Inc., New Orleans, LA, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiying Wu
- LaCell LLC and Obatala Sciences Inc., New Orleans, LA, USA
| | - Margaret H Gilbert
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | | | - Jason D Schuster
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Alun Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Leann Myers
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropic Medicine, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, USA.
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
| |
Collapse
|
18
|
Long-term repair of porcine articular cartilage using cryopreservable, clinically compatible human embryonic stem cell-derived chondrocytes. NPJ Regen Med 2021; 6:77. [PMID: 34815400 PMCID: PMC8611001 DOI: 10.1038/s41536-021-00187-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) impacts hundreds of millions of people worldwide, with those affected incurring significant physical and financial burdens. Injuries such as focal defects to the articular surface are a major contributing risk factor for the development of OA. Current cartilage repair strategies are moderately effective at reducing pain but often replace damaged tissue with biomechanically inferior fibrocartilage. Here we describe the development, transcriptomic ontogenetic characterization and quality assessment at the single cell level, as well as the scaled manufacturing of an allogeneic human pluripotent stem cell-derived articular chondrocyte formulation that exhibits long-term functional repair of porcine articular cartilage. These results define a new potential clinical paradigm for articular cartilage repair and mitigation of the associated risk of OA.
Collapse
|
19
|
Differential Angiogenic Potential of 3-Dimension Spheroid of HNSCC Cells in Mouse Xenograft. Int J Mol Sci 2021; 22:ijms22158245. [PMID: 34361027 PMCID: PMC8348975 DOI: 10.3390/ijms22158245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
The experimental animal model is still essential in the development of new anticancer drugs. We characterized mouse tumors derived from two-dimensional (2D) monolayer cells or three-dimensional (3D) spheroids to establish an in vivo model with highly standardized conditions. Primary cancer-associated fibroblasts (CAFs) were cultured from head and neck squamous cell carcinoma (HNSCC) tumor tissues and co-injected with monolayer cancer cells or spheroids into the oral mucosa of mice. Mice tumor blood vessels were stained, followed by tissue clearing and 3D Lightsheet fluorescent imaging. We compared the effect of exosomes secreted from 2D or 3D culture conditions on the angiogenesis-related genes in HNSCC cells. Our results showed that both the cells and spheroids co-injected with primary CAFs formed tumors. Interestingly, vasculature was abundantly distributed inside the spheroid-derived but not the monolayer-derived mice tumors. In addition, cisplatin injection more significantly decreased spheroid-derived but not monolayer-derived tumor size in mice. Additionally, exosomes isolated from co-culture media of FaDu spheroid and CAF upregulated angiogenesis-related genes in HNSCC cells as compared to exosomes from FaDu cell and CAF co-culture media under in vitro conditions. The mouse tumor xenograft model derived from 3D spheroids of HNSCC cells with primary CAFs is expected to produce reliable chemotherapy drug screening results given the robust angiogenesis and lack of necrosis inside tumor tissues.
Collapse
|
20
|
Sun X, Wu J, Qiang B, Romagnuolo R, Gagliardi M, Keller G, Laflamme MA, Li RK, Nunes SS. Transplanted microvessels improve pluripotent stem cell-derived cardiomyocyte engraftment and cardiac function after infarction in rats. Sci Transl Med 2021; 12:12/562/eaax2992. [PMID: 32967972 DOI: 10.1126/scitranslmed.aax2992] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 05/06/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer an unprecedented opportunity to remuscularize infarcted human hearts. However, studies have shown that most hiPSC-CMs do not survive after transplantation into the ischemic myocardial environment, limiting their regenerative potential and clinical application. We established a method to improve hiPSC-CM survival by cotransplanting ready-made microvessels obtained from adipose tissue. Ready-made microvessels promoted a sixfold increase in hiPSC-CM survival and superior functional recovery when compared to hiPSC-CMs transplanted alone or cotransplanted with a suspension of dissociated endothelial cells in infarcted rat hearts. Microvessels showed unprecedented persistence and integration at both early (~80%, week 1) and late (~60%, week 4) time points, resulting in increased vessel density and graft perfusion, and improved hiPSC-CM maturation. These findings provide an approach to cell-based therapies for myocardial infarction, whereby incorporation of ready-made microvessels can improve functional outcomes in cell replacement therapies.
Collapse
Affiliation(s)
- Xuetao Sun
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Jun Wu
- Division of Cardiovascular Surgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mark Gagliardi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada.,Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada.,Division of Cardiovascular Surgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada. .,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON M5S 3H2, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
21
|
Modular cell-assembled adipose matrix-derived bead foams as a mesenchymal stromal cell delivery platform for soft tissue regeneration. Biomaterials 2021; 275:120978. [PMID: 34182328 DOI: 10.1016/j.biomaterials.2021.120978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
With the goal of establishing a new clinically-relevant bioscaffold format to enable the delivery of high densities of human adipose-derived stromal cells (ASCs) for applications in soft tissue regeneration, a novel "cell-assembly" method was developed to generate robust 3-D scaffolds comprised of fused networks of decellularized adipose tissue (DAT)-derived beads. In vitro studies confirmed that the assembly process was mediated by remodelling of the extracellular matrix by the seeded ASCs, which were well distributed throughout the scaffolds and remained highly viable after 8 days in culture. The ASC density, sulphated glycosaminoglycan content and scaffold stability were enhanced under culture conditions that included growth factor preconditioning. In vivo testing was performed to compare ASCs delivered within the cell-assembled DAT bead foams to an equivalent number of ASCs delivered on a previously-established pre-assembled DAT bead foam platform in a subcutaneous implant model in athymic nude mice. Scaffolds were fabricated with human ASCs engineered to stably co-express firefly luciferase and tdTomato to enable long-term cell tracking. Longitudinal bioluminescence imaging showed a significantly stronger signal associated with viable human ASCs at timepoints up to 7 days in the cell-assembled scaffolds, although both implant groups were found to retain similar densities of human ASCs at 28 days. Notably, the infiltration of CD31+ murine endothelial cells was enhanced in the cell-assembled implants at 28 days. Moreover, microcomputed tomography angiography revealed that there was a marked reduction in vascular permeability in the cell-assembled group, indicating that the developing vascular network was more stable in the new scaffold format. Overall, the novel cell-assembled DAT bead foams represent a promising platform to harness the pro-regenerative paracrine functionality of human ASCs and warrant further investigation as a clinically-translational approach for volume augmentation.
Collapse
|
22
|
Cancer-Associated Fibroblast Subgroups Showing Differential Promoting Effect on HNSCC Progression. Cancers (Basel) 2021; 13:cancers13040654. [PMID: 33562096 PMCID: PMC7915931 DOI: 10.3390/cancers13040654] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary It is generally accepted that fibroblasts represent a heterogeneous population of cells with different functions depending on the cell type. Although numerous reports have stated that cancer-associated fibroblast (CAF) promotes cancer progression, few studies have shown that they inhibit cancer progression. We propose that CAFs derived from some HNSCC patients is less effective in promoting cancer progression than CAFs from other patients and that specific collagen proteins may be involved in this process. Abstract Background: The critical effect of the tumor microenvironment on cancer progression is well recognized. Recent research suggests that the cancer-promoting properties of the tumor stroma may be attributed to fibroblasts. However, the effect of cancer-associated fibroblast (CAF) on the progression of head and neck squamous cell carcinoma (HNSCC) is not well known. Methods: From the immunohistochemical analysis of head and neck squamous cell carcinoma (HNSCC) tissues, we divided CAF into two groups depending on the presence or absence of a well-demarcated boundary between epithelial cancer cells and the surrounding extracellular matrix (ECM). Primary culture of CAF was performed, followed by co-transplantation with HNSCC cells into mice oral mucosa, and the tumorigenesis was compared. The mRNA expression patterns between these two CAF groups were compared using DNA microarray analysis. Results: CAFs from cancer tissues that showed no demarcation between ECM and epithelial cancer cells (CAF-Promote) tended to stimulate Matrigel invasion of HNSCC cells. Conversely, CAFs from cancer tissues that showed a boundary with epithelial cancer cells (CAF-Delay) caused no remarkable increase in Matrigel invasion. Compared with CAF-P, CAF-D is less effective in promoting FaDu tumorigenicity in the mouse model. In DNA microarray analysis, COL3A1 and COL6A6 showed particularly high expression in the CAF-D group. Conclusions: These cancer stroma-derived collagen proteins might delay the HNSCC progression. These findings are expected to provide vital information for predicting HNSCC prognosis and developing drug targets in the future.
Collapse
|
23
|
Han TTY, Walker JT, Grant A, Dekaban GA, Flynn LE. Preconditioning Human Adipose-Derived Stromal Cells on Decellularized Adipose Tissue Scaffolds Within a Perfusion Bioreactor Modulates Cell Phenotype and Promotes a Pro-regenerative Host Response. Front Bioeng Biotechnol 2021; 9:642465. [PMID: 33816453 PMCID: PMC8012684 DOI: 10.3389/fbioe.2021.642465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-based therapies involving the delivery of adipose-derived stromal cells (ASCs) on decellularized adipose tissue (DAT) scaffolds are a promising approach for soft tissue augmentation and reconstruction. Our lab has recently shown that culturing human ASCs on DAT scaffolds within a perfusion bioreactor prior to implantation can enhance their capacity to stimulate in vivo adipose tissue regeneration. Building from this previous work, the current study investigated the effects of bioreactor preconditioning on the ASC phenotype and secretory profile in vitro, as well as host cell recruitment following implantation in an athymic nude mouse model. Immunohistochemical analyses indicated that culturing within the bioreactor increased the percentage of ASCs co-expressing inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), as well as tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10), within the peripheral regions of the DAT relative to statically cultured controls. In addition, bioreactor culture altered the expression levels of a range of immunomodulatory factors in the ASC-seeded DAT. In vivo testing revealed that culturing the ASCs on the DAT within the perfusion bioreactor prior to implantation enhanced the infiltration of host CD31+ endothelial cells and CD26+ cells into the DAT implants, but did not alter CD45+F4/80+CD68+ macrophage recruitment. However, a higher fraction of the CD45+ cell population expressed the pro-regenerative macrophage marker CD163 in the bioreactor group, which may have contributed to enhanced remodeling of the scaffolds into host-derived adipose tissue. Overall, the findings support that bioreactor preconditioning can augment the capacity of human ASCs to stimulate regeneration through paracrine-mediated mechanisms.
Collapse
Affiliation(s)
- Tim Tian Y. Han
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - John T. Walker
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Aaron Grant
- Division of Plastic and Reconstructive Surgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Gregory A. Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Lauren E. Flynn
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn,
| |
Collapse
|
24
|
van Schaik TJA, Gaul F, Dorthé EW, Lee EE, Grogan SP, D’Lima DD. Development of an Ex Vivo Murine Osteochondral Repair Model. Cartilage 2021; 12:112-120. [PMID: 30373381 PMCID: PMC7755972 DOI: 10.1177/1947603518809402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Mouse models are commonly used in research applications due to the relatively low cost, highly characterized strains, as well as the availability of many genetically modified phenotypes. In this study, we characterized an ex vivo murine osteochondral repair model using human infrapatellar fat pad (IPFP) progenitor cells. DESIGN Femurs from euthanized mice were removed and clamped in a custom multidirectional vise to create cylindrical osteochondral defects 0.5 mm in diameter and 0.5 mm deep in both condyles. The IPFP contains progenitors that are a promising cell source for the repair of osteochondral defects. For proof of concept, human IPFP-derived progenitor cells, from osteoarthritic (OA) patients, cultured as pellets, were implanted into the defects and cultured in serum-free medium with TGFβ3 for 3 weeks and then processed for histology and immunostaining. RESULTS The custom multidirectional vise enabled reproducible creation of osteochondral defects in murine femoral condyles. Implantation of IPFP-derived progenitor cells led to development of cartilaginous tissue with Safranin O staining and deposition of collagen type II in the extracellular matrix. CONCLUSIONS We showed feasibility in creating ex vivo osteochondral defects and demonstrated the regenerative potential of OA human IPFP-derived progenitors in mouse femurs. The murine model can be used to study the effects of aging and OA on tissue regeneration and to explore molecular mechanisms of cartilage repair using genetically modified mice.
Collapse
Affiliation(s)
- Thomas J. A. van Schaik
- Orthopaedic Research Laboratory, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Florian Gaul
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Erik W. Dorthé
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Emily E. Lee
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shawn P. Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA,Darryl D. D’Lima, Scripps Health, Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 North Torrey Pines Road, MS126, La Jolla, CA 92027, USA.
| |
Collapse
|
25
|
Han TTY, Flynn LE. Perfusion bioreactor culture of human adipose‐derived stromal cells on decellularized adipose tissue scaffolds enhances in vivo adipose tissue regeneration. J Tissue Eng Regen Med 2020; 14:1827-1840. [DOI: 10.1002/term.3133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Tim Tian Y. Han
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry The University of Western Ontario London Ontario Canada
| | - Lauren E. Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry The University of Western Ontario London Ontario Canada
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| |
Collapse
|
26
|
Rigon M, Hörner SJ, Straka T, Bieback K, Gretz N, Hafner M, Rudolf R. Effects of ASC Application on Endplate Regeneration Upon Glycerol-Induced Muscle Damage. Front Mol Neurosci 2020; 13:107. [PMID: 32655366 PMCID: PMC7324987 DOI: 10.3389/fnmol.2020.00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/20/2020] [Indexed: 01/06/2023] Open
Abstract
Amongst other approaches, adipose-derived stromal cells (ASCs) have recently been tested with respect to their regenerative capacity for treatment of neuromuscular disorders. While beneficial effects of ASCs on muscle recovery were observed previously, their impact on regeneration of neuromuscular junctions (NMJs) is unclear. Here, we used a murine glycerol damage model to study disruption and regeneration of NMJs and to evaluate the effects of systemic application of ASCs on muscle and NMJ recovery. In mice that were not treated with ASCs, a differential response of NMJ pre- and post-synapses to glycerol-induced damage was observed. While post-synapses were still present in regions that were necrotic and lacking actin and dystrophin, pre-synapses disappeared soon in those affected areas. Partial regeneration of NMJs occurred within 11 days after damage. ASC treatment slightly enhanced NMJ recovery and reduced the loss of presynaptic sites, but also led to a late phase of muscle necrosis and fibrosis. In summary, the results suggest a differential sensitivity of NMJ pre- and post-synapses to glycerol-induced muscle damage and that the use of ASC for the treatment of neuromuscular disorders needs further careful evaluation.
Collapse
Affiliation(s)
- Matteo Rigon
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Tatjana Straka
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Medical Technology, Medical Faculty Mannheim, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Medical Technology, Medical Faculty Mannheim, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Medical Technology, Medical Faculty Mannheim, Mannheim University of Applied Sciences, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
27
|
Zheng C, Schneider JW, Hsieh J. Role of RB1 in human embryonic stem cell-derived retinal organoids. Dev Biol 2020; 462:197-207. [PMID: 32197890 DOI: 10.1016/j.ydbio.2020.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 01/09/2023]
Abstract
Three-dimensional (3D) organoid models derived from human pluripotent stem cells provide a platform for studying human development and understanding disease mechanisms. Most studies that examine biallelic inactivation of the cell cycle regulator Retinoblastoma 1 (RB1) and the link to retinoblastoma is in mice, however, less is known regarding the pathophysiological role of RB1 during human retinal development. To study the role of RB1 in early human retinal development and tumor formation, we generated retinal organoids from CRISPR/Cas9-derived RB1-null human embryonic stem cells (hESCs). We showed that RB is abundantly expressed in retinal progenitor cells in retinal organoids and loss of RB1 promotes S-phase entry. Furthermore, loss of RB1 resulted in widespread apoptosis and reduced the number of photoreceptor, ganglion, and bipolar cells. Interestingly, RB1 mutation in retinal organoids did not result in retinoblastoma formation in vitro or in the vitreous body of NOD/SCID immunodeficient mice. Together, our work identifies a crucial function for RB1 in human retinal development and suggests that RB1 deletion alone is not sufficient for tumor development, at least in human retinal organoids.
Collapse
Affiliation(s)
- Canbin Zheng
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, GD, 510080, China
| | - Jay W Schneider
- Wanek Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jenny Hsieh
- Department of Biology and Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
28
|
Das S, Koyano-Nakagawa N, Gafni O, Maeng G, Singh BN, Rasmussen T, Pan X, Choi KD, Mickelson D, Gong W, Pota P, Weaver CV, Kren S, Hanna JH, Yannopoulos D, Garry MG, Garry DJ. Generation of human endothelium in pig embryos deficient in ETV2. Nat Biotechnol 2020; 38:297-302. [DOI: 10.1038/s41587-019-0373-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
|
29
|
Moreira A, Winter C, Joy J, Winter L, Jones M, Noronha M, Porter M, Quim K, Corral A, Alayli Y, Seno T, Mustafa S, Hornsby P, Ahuja S. Intranasal delivery of human umbilical cord Wharton's jelly mesenchymal stromal cells restores lung alveolarization and vascularization in experimental bronchopulmonary dysplasia. Stem Cells Transl Med 2020; 9:221-234. [PMID: 31774626 PMCID: PMC6988765 DOI: 10.1002/sctm.18-0273] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating lung condition that develops in premature newborns exposed to prolonged mechanical ventilation and supplemental oxygen. Significant morbidity and mortality are associated with this costly disease and effective therapies are limited. Mesenchymal stem/stromal cells (MSCs) are multipotent cells that can repair injured tissue by secreting paracrine factors known to restore the function and integrity of injured lung epithelium and endothelium. Most preclinical studies showing therapeutic efficacy of MSCs for BPD are administered either intratracheally or intravenously. The purpose of this study was to examine the feasibility and effectiveness of human cord tissue-derived MSC administration given via the intranasal route. Human umbilical cord tissue MSCs were isolated, characterized, and given intranasally (500 000 cells per 20 μL) to a hyperoxia-induced rat model of BPD. Lung alveolarization, vascularization, and pulmonary vascular remodeling were restored in animals receiving MSC treatment. Gene and protein analysis suggest the beneficial effects of MSCs were attributed, in part, to a concerted effort targeting angiogenesis, immunomodulation, wound healing, and cell survival. These findings are clinically significant, as neonates who develop BPD have altered alveolar development, decreased pulmonary vascularization and chronic inflammation, all resulting in impaired tissue healing. Our study is the first to report the intranasal delivery of umbilical cord Wharton's jelly MSCs in experimental BPD is feasible, noninvasive, and an effective route that may bear clinical applicability.
Collapse
Affiliation(s)
- Alvaro Moreira
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Caitlyn Winter
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Jooby Joy
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Lauryn Winter
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Maxwell Jones
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Michelle Noronha
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Melissa Porter
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Kayla Quim
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Alexis Corral
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Yasmeen Alayli
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Tyrelle Seno
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Shamimunisa Mustafa
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Peter Hornsby
- Department of Pediatrics, Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| | - Sunil Ahuja
- Microbiology and ImmunologyUniversity of Texas Health Science Center San Antonio (UTHSCSA)San AntonioTexas
| |
Collapse
|
30
|
Liu YC, Lu LF, Li CJ, Sun NK, Guo JY, Huang YH, Yeh CT, Chao CCK. Hepatitis B Virus X Protein Induces RHAMM-Dependent Motility in Hepatocellular Carcinoma Cells via PI3K-Akt-Oct-1 Signaling. Mol Cancer Res 2019; 18:375-389. [PMID: 31792079 DOI: 10.1158/1541-7786.mcr-19-0463] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/07/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a major risk factor for the development of hepatocellular carcinoma (HCC), which represents one of the most common cancers worldwide. Recent studies suggest that HBV's protein X (HBx) plays a crucial role in HCC development and progression. Earlier, genome-wide analysis identified that the receptor for hyaluronan-mediated motility (RHAMM) represents a putative oncogene and is overexpressed in many human cancers, including HCC. However, the mechanism underlying RHAMM upregulation and its role in tumorigenesis remain unclear. Here, we show that ectopic expression of HBx activates the PI3K/Akt/Oct-1 pathway and upregulates RHAMM expression in HCC cells. HBx overexpression leads to dissociation of C/EBPβ from the RHAMM gene promoter, thereby inducing RHAMM upregulation. RHAMM knockdown attenuates HBx-induced cell migration and invasion in vitro. In mice, HBx promotes cancer cell colonization via RHAMM upregulation, resulting in enhanced metastasis. Analysis of gene expression datasets reveals that RHAMM mRNA level is upregulated in patients with HCC with poor prognosis. IMPLICATIONS: These results indicate that RHAMM expression is upregulated by HBx, a process that depends on the inhibition of C/EBPβ activity and activation of the PI3K/Akt/Oct-1 pathway. These results have several implications for the treatment of HBV-positive HCC involving upregulation of RHAMM and cancer metastasis. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/3/375/F1.large.jpg.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Li-Feng Lu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chia-Jung Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Nian-Kang Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Division of Biomedical Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China
| | - Jing-You Guo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan, Republic of China
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan, Republic of China
| | - Chuck C-K Chao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China. .,Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Liver Research Center, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan, Republic of China
| |
Collapse
|
31
|
Ponnusamy S, Asemota S, Schwartzberg LS, Guestini F, McNamara KM, Pierobon M, Font-Tello A, Qiu X, Xie Y, Rao PK, Thiyagarajan T, Grimes B, Johnson DL, Fleming MD, Pritchard FE, Berry MP, Oswaks R, Fine RE, Brown M, Sasano H, Petricoin EF, Long HW, Narayanan R. Androgen Receptor Is a Non-canonical Inhibitor of Wild-Type and Mutant Estrogen Receptors in Hormone Receptor-Positive Breast Cancers. iScience 2019; 21:341-358. [PMID: 31698248 PMCID: PMC6889594 DOI: 10.1016/j.isci.2019.10.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
Sustained treatment of estrogen receptor (ER)-positive breast cancer with ER-targeting drugs results in ER mutations and refractory unresponsive cancers. Androgen receptor (AR), which is expressed in 80%-95% of ER-positive breast cancers, could serve as an alternate therapeutic target. Although AR agonists were used in the past to treat breast cancer, their use is currently infrequent due to virilizing side effects. Discovery of tissue-selective AR modulators (SARMs) has renewed interest in using AR agonists to treat breast cancer. Using translational models, we show that AR agonist and SARM, but not antagonist, inhibit the proliferation and growth of ER-positive breast cancer cells, patient-derived tissues, and patient-derived xenografts (PDX). Ligand-activated AR inhibits wild-type and mutant ER activity by reprogramming the ER and FOXA1 cistrome and rendering tumor growth inhibition. These findings suggest that ligand-activated AR may function as a non-canonical inhibitor of ER and that AR agonists may offer a safe and effective treatment for ER-positive breast cancer.
Collapse
Affiliation(s)
- Suriyan Ponnusamy
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, 19, S. Manassas, Room 120, Memphis, TN 38103, USA
| | - Sarah Asemota
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, 19, S. Manassas, Room 120, Memphis, TN 38103, USA
| | | | - Fouzia Guestini
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keely M McNamara
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Alba Font-Tello
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Prakash K Rao
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thirumagal Thiyagarajan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, 19, S. Manassas, Room 120, Memphis, TN 38103, USA
| | | | - Daniel L Johnson
- Molecular Informatics Core, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Martin D Fleming
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, 19, S. Manassas, Room 120, Memphis, TN 38103, USA
| | - Frances E Pritchard
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, 19, S. Manassas, Room 120, Memphis, TN 38103, USA
| | | | | | | | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, 19, S. Manassas, Room 120, Memphis, TN 38103, USA; West Cancer Center, Memphis, TN, USA.
| |
Collapse
|
32
|
Hong CS, Danet-Desnoyers G, Shan X, Sharma P, Whiteside TL, Boyiadzis M. Human acute myeloid leukemia blast-derived exosomes in patient-derived xenograft mice mediate immune suppression. Exp Hematol 2019; 76:60-66.e2. [PMID: 31369790 DOI: 10.1016/j.exphem.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022]
Abstract
Exosomes are virus-size membrane-bound vesicles of endocytic origin present in all body fluids. Plasma of AML patients is significantly enriched in exosomes, which carry a cargo of immunosuppressive molecules and deliver them to recipient immune cells, suppressing their functions. However, whether these exosomes originate from leukemic blasts or from various normal cells in the bone marrow or other tissues is unknown. In the current study, we developed an AML PDX model in mice and studied the molecular cargo and immune cell effects of the AML PDX exosomes in parallel with the exosomes from plasma of the corresponding AML patients. Fully engrafted AML PDX mice produced exosomes with characteristics similar to those of exosomes isolated from plasma of the AML patients who had donated the cells for engraftment. The engrafted leukemic cells produced exosomes that carried human proteins and leukemia-associated antigens, confirming the human origin of these exosomes. Furthermore, the AML-derived exosomes carried immunosuppressive proteins responsible for immune cell dysfunctions. Our studies of exosomes in AML PDX mice serve as a proof of concept that AML blasts are the source of immunosuppressive exosomes with a molecular profile that mimics the content and functions of the parental cells.
Collapse
Affiliation(s)
- Chang-Sook Hong
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | | | - Xiaochuan Shan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Priyanka Sharma
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Theresa L Whiteside
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Michael Boyiadzis
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
33
|
Paudel S, Lee WH, Lee M, Zahoor T, Mitchell R, Yang SY, Zhao H, Schon L, Zhang Z. Intravenous administration of multipotent stromal cells and bone allograft modification to enhance allograft healing. Regen Med 2019; 14:199-211. [PMID: 30761943 DOI: 10.2217/rme-2018-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study investigated a coordinated strategy of revitalizing bone allograft with circulating multipotent stromal cells (MSCs). Materials & methods: After chemotactic and releasing assessments, stromal cell-derived factor 1 and platelet-derived growth factor BB in copolymers were coated on the bone allograft (AlloS-P). Allograft coated with copolymers alone (Allo), as controls, or AlloS-P was implanted into the femur of athymic mice, which received intravenous injections of human MSCs or saline at weeks 1, 2 and 3. Results: At week 8, the total callus volume (both cartilaginous and bony callus) around the allograft was the largest in the AlloS-P + MSC group (p < 0.05). Conclusion: Coating bone allograft with stromal cell-derived factor 1 and platelet-derived growth factor BB and intravenous injections of MSCs improved allograft incorporation.
Collapse
Affiliation(s)
- Sharada Paudel
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Wen-Han Lee
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Moses Lee
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Talal Zahoor
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Reed Mitchell
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Shang-You Yang
- Department of Orthopaedic Surgery, University of Kansas School of Medicine-Wichita, Wichita, KS, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Lew Schon
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| |
Collapse
|
34
|
Morissette Martin P, Grant A, Hamilton DW, Flynn LE. Matrix composition in 3-D collagenous bioscaffolds modulates the survival and angiogenic phenotype of human chronic wound dermal fibroblasts. Acta Biomater 2019; 83:199-210. [PMID: 30385224 DOI: 10.1016/j.actbio.2018.10.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/22/2018] [Accepted: 10/27/2018] [Indexed: 01/18/2023]
Abstract
There is a substantial need for new strategies to stimulate cutaneous tissue repair in the treatment of chronic wounds. To address this challenge, our team is developing modular biomaterials termed "bead foams", comprised of porous beads synthesized exclusively of extracellular matrix (ECM) and assembled into a cohesive three-dimensional (3-D) network. In the current study, bead foams were fabricated from human decellularized adipose tissue (DAT) or commercially-sourced bovine tendon collagen (COL) to explore the effects of ECM composition on human wound edge dermal fibroblasts (weDF) sourced from chronic wound tissues. The DAT and COL bead foams were shown to be structurally similar, but compositionally distinct, containing different levels of glycosaminoglycan content and collagen types IV, V, and VI. In vitro testing under conditions simulating stresses within the chronic wound microenvironment indicated that weDF survival and angiogenic marker expression were significantly enhanced in the DAT bead foams as compared to the COL bead foams. These findings were corroborated through in vivo assessment in a subcutaneous athymic mouse model. Taken together, the results demonstrate that weDF survival and paracrine function can be modulated by the matrix source applied in the design of ECM-derived scaffolds and that the DAT bead foams hold promise as cell-instructive biological wound dressings. STATEMENT OF SIGNIFICANCE: Biological wound dressings derived from the extracellular matrix (ECM) can be designed to promote the establishment of a more permissive microenvironment for healing in the treatment of chronic wounds. In the current work, we developed modular biomaterials comprised of fused networks of porous ECM-derived beads fabricated from human decellularized adipose tissue (DAT) or commercially-available bovine collagen. The bioscaffolds were designed to be structurally similar to provide a platform for investigating the effects of ECM composition on human dermal fibroblasts isolated from chronic wounds. Testing in in vitro and in vivo models demonstrated that cell survival and pro-angiogenic function were enhanced in the adipose-derived bioscaffolds, which contained higher levels of glycosaminoglycans and collagen types IV, V, and VI. Our findings support that the complex matrix composition within DAT can induce a more pro-regenerative cellular response for applications in wound healing.
Collapse
|
35
|
Co-expression of MDM2 and CDK4 in transformed human mesenchymal stem cells causes high-grade sarcoma with a dedifferentiated liposarcoma-like morphology. J Transl Med 2019; 99:1309-1320. [PMID: 31160689 PMCID: PMC6760642 DOI: 10.1038/s41374-019-0263-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Amplification and overexpression of MDM2 and CDK4 are well-known diagnostic criteria for well-differentiated liposarcoma (WDLPS)/dedifferentiated liposarcoma (DDLPS). Although it was reported that the depletion of MDM2 or CDK4 decreased proliferation in DDLPS cell lines, whether MDM2 and CDK4 induce WDLPS/DDLPS tumorigenesis remains unclear. We examined whether MDM2 and/or CDK4 cause WDLPS/DDLPS, using two types of transformed human bone marrow stem cells (BMSCs), 2H and 5H, with five oncogenic hits (overexpression of hTERT, TP53 degradation, RB inactivation, c-MYC stabilization, and overexpression of HRASv12). In vitro functional experiments revealed that the co-overexpression of MDM2 and CDK4 plays a key role in tumorigenesis by increasing cell growth and migration and inhibiting adipogenic differentiation potency when compared with the sole expression of MDM2 or CDK4. Using mouse xenograft models, we found that the co-overexpression of MDM2 and CDK4 in 5H cells with five additional oncogenic mutations can cause proliferative sarcoma with a DDLPS-like morphology in vivo. Our results suggest that the co-overexpression of MDM2 and CDK4, along with multiple genetic factors, increases the tendency for high-grade sarcoma with a DDLPS-like morphology in transformed human BMSCs by accelerating their growth and migration and blocking their adipogenic potential.
Collapse
|
36
|
The Prognostic Value of the Combination of Low VEGFR-1 and High VEGFR-2 Expression in Endothelial Cells of Colorectal Cancer. Int J Mol Sci 2018; 19:ijms19113536. [PMID: 30423986 PMCID: PMC6274874 DOI: 10.3390/ijms19113536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/17/2018] [Accepted: 10/31/2018] [Indexed: 01/11/2023] Open
Abstract
Research on tumor angiogenesis has mainly focused on the vascular endothelial growth factor (VEGF) family and on methods to block its actions. However, reports on VEGF receptor (VEGFR) expression in tumor-associated endothelial cells (ECs) are limited. Thus, we evaluated VEGF, VEGFR-1 and VEGFR-2 expression in ECs of colorectal cancer (CRC) using immunohistochemistry. VEGF, VEGFR-1 and -2 expression in ECs was quantitatively evaluated by digital image analysis in a retrospective series of 204 tumor tissue samples and related to clinical variables. The data show that the VEGF, VEGFR-1 and VEGFR-2 expression in ECs is heterogeneous. Multivariate analysis including a set of clinicopathological variables reveals that high EC VEGFR-1 expression is an independent prognostic factor for overall survival (OS). The combination of low VEGFR-1 and high VEGFR-2 expression in ECs outperforms models integrating VEGFR-1 and VEGFR-2 as separate markers. Indeed, this VEGFR-1_VEGFR-2 combination is an independent negative prognostic factor for OS (p = 0.012) and metastasis-free survival (p = 0.007). In conclusion, this work illustrates the importance of studying the distribution of VEGF members in ECs of CRC. Interestingly, our preliminary data suggest that high VEGFR-1 and low VEGFR-2 expression in ECs appear to be involved in the progression of CRC, suggesting that targeting EC VEGFR-1 could offer novel opportunities for CRC treatment. However, a prospective validation study is needed.
Collapse
|
37
|
Abstract
The natural ability of stem cells to self-organize into functional tissue has been harnessed for the production of functional human intestinal organoids. Although dynamic mechanical forces play a central role in intestinal development and morphogenesis, conventional methods for the generation of intestinal organoids have relied solely on biological factors. Here, we show that the incorporation of uniaxial strain, by using compressed nitinol springs, in human intestinal organoids transplanted into the mesentery of mice induces growth and maturation of the organoids. Assessment of morphometric parameters, transcriptome profiling, and functional assays of the strain-exposed tissue revealed higher similarities to native human intestine, with regards to tissue size and complexity, and muscle tone. Our findings suggest that the incorporation of physiologically relevant mechanical cues during the development of human intestinal tissue enhances its maturation and enterogenesis.
Collapse
|
38
|
Gurung S, Deane JA, Darzi S, Werkmeister JA, Gargett CE. In Vivo Survival of Human Endometrial Mesenchymal Stem Cells Transplanted Under the Kidney Capsule of Immunocompromised Mice. Stem Cells Dev 2018; 27:35-43. [DOI: 10.1089/scd.2017.0177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shanti Gurung
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - James A. Deane
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Saeedeh Darzi
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Jerome A. Werkmeister
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- CSIRO Manufacturing, Clayton South, Victoria, Australia
| | - Caroline E. Gargett
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
39
|
Weinberger F, Breckwoldt K, Pecha S, Kelly A, Geertz B, Starbatty J, Yorgan T, Cheng KH, Lessmann K, Stolen T, Scherrer-Crosbie M, Smith G, Reichenspurner H, Hansen A, Eschenhagen T. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci Transl Med 2017; 8:363ra148. [PMID: 27807283 DOI: 10.1126/scitranslmed.aaf8781] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022]
Abstract
Myocardial injury results in a loss of contractile tissue mass that, in the absence of efficient regeneration, is essentially irreversible. Transplantation of human pluripotent stem cell-derived cardiomyocytes has beneficial but variable effects. We created human engineered heart tissue (hEHT) strips from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and hiPSC-derived endothelial cells. The hEHTs were transplanted onto large defects (22% of the left ventricular wall, 35% decline in left ventricular function) of guinea pig hearts 7 days after cryoinjury, and the results were compared with those obtained with human endothelial cell patches (hEETs) or cell-free patches. Twenty-eight days after transplantation, the hearts repaired with hEHT strips exhibited, within the scar, human heart muscle grafts, which had remuscularized 12% of the infarct area. These grafts showed cardiomyocyte proliferation, vascularization, and evidence for electrical coupling to the intact heart tissue in a subset of engrafted hearts. hEHT strips improved left ventricular function by 31% compared to that before implantation, whereas the hEET or cell-free patches had no effect. Together, our study demonstrates that three-dimensional human heart muscle constructs can repair the injured heart.
Collapse
Affiliation(s)
- Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Simon Pecha
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany.,Department of Cardiovascular Surgery, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Allen Kelly
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway.,Norwegian Council on Cardiovascular Disease, Oslo, Norway
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Jutta Starbatty
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai-Hung Cheng
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katrin Lessmann
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Tomas Stolen
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway.,Norwegian Council on Cardiovascular Disease, Oslo, Norway
| | | | - Godfrey Smith
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Hermann Reichenspurner
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany.,Department of Cardiovascular Surgery, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. .,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
40
|
Lee TM, Harn HJ, Chiou TW, Chuang MH, Chen CH, Lin PC, Lin SZ. Targeting the pathway of GSK-3β/nerve growth factor to attenuate post-infarction arrhythmias by preconditioned adipose-derived stem cells. J Mol Cell Cardiol 2017; 104:17-30. [PMID: 28130118 DOI: 10.1016/j.yjmcc.2017.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/01/2017] [Accepted: 01/23/2017] [Indexed: 10/20/2022]
Abstract
Adipose-derived stem cell (ADSC) transplantation is a promising new therapy to improve cardiac function after myocardial infarction. However, its low efficacy of transdifferentiation hampers its usefulness. Glycogen synthase kinase-3β (GSK-3β) signal has been shown to play a role in preconditioning-induced cardioprotection. We assessed whether n-butylidenephthalide (BP) primed ADSCs can attenuate arrhythmias by a GSK-3β-dependent pathway after myocardial infarction. Male Wistar rats after coronary ligation was randomly allocated to receive intramyocardial injection of vehicle, ADSCs, BP-preconditioned ADSCs, (BP+lithium)-preconditioned ADSCs, (BP+SB216763)-preconditioned ADSCs, and (BP+LY294002)-preconditioned ADSCs. ADSCs were primed for 16h before implantation. After 4weeks of implantation, ADSCs were retained in myocardium, reduced fibrosis and improved cardiac function. Sympathetic hyperinnervation was blunted after administering ADSCs, assessed by immunofluorescent analysis, and Western blotting and real-time quantitative RT-PCR of nerve growth factor. Arrhythmic scores during programmed stimulation in the ADSC-treated infarcted rats were significantly lower than vehicle. BP-preconditioned ADSCs had superior cardioprotection, greater ADSC engraftment and transdifferentiation, and antiarrhythmic effects compared with ADSCs alone. Simultaneously, BP increased the levels of phospho-Akt and down-regulated GSK-3β activity. The effects of BP against sympathetic hyperinnervation were blocked by LY294002, a PI3K inhibitor. Addition of either lithium or SB216763 did not have additional effects compared with BP alone. Compared with ADSC alone, BP-primed ADSC implantation improved stem cell engraftment and attenuated sympathetic hyperinnervation and arrhythmias through a PI3K/Akt/GSK-3β-dependent pathway, suggesting that a synergic action was achieved between BP pretreatment and ADSCs.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital, Tainan, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Tzu Chi Foundation; Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University
| | - Tzyy-Wen Chiou
- Department of Life Science, Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Ming-Hsi Chuang
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan; Department of Bioinformatics, Chung Hua University, Hsinchu, Taiwan
| | | | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation; Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University.
| |
Collapse
|
41
|
Nicaise C, Mitrecic D, Falnikar A, Lepore AC. Transplantation of stem cell-derived astrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury. World J Stem Cells 2015; 7:380-398. [PMID: 25815122 PMCID: PMC4369494 DOI: 10.4252/wjsc.v7.i2.380] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/07/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Neglected for years, astrocytes are now recognized to fulfill and support many, if not all, homeostatic functions of the healthy central nervous system (CNS). During neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI), astrocytes in the vicinity of degenerating areas undergo both morphological and functional changes that might compromise their intrinsic properties. Evidence from human and animal studies show that deficient astrocyte functions or loss-of-astrocytes largely contribute to increased susceptibility to cell death for neurons, oligodendrocytes and axons during ALS and SCI disease progression. Despite exciting advances in experimental CNS repair, most of current approaches that are translated into clinical trials focus on the replacement or support of spinal neurons through stem cell transplantation, while none focus on the specific replacement of astroglial populations. Knowing the important functions carried out by astrocytes in the CNS, astrocyte replacement-based therapies might be a promising approach to alleviate overall astrocyte dysfunction, deliver neurotrophic support to degenerating spinal tissue and stimulate endogenous CNS repair abilities. Enclosed in this review, we gathered experimental evidence that argue in favor of astrocyte transplantation during ALS and SCI. Based on their intrinsic properties and according to the cell type transplanted, astrocyte precursors or stem cell-derived astrocytes promote axonal growth, support mechanisms and cells involved in myelination, are able to modulate the host immune response, deliver neurotrophic factors and provide protective molecules against oxidative or excitotoxic insults, amongst many possible benefits. Embryonic or adult stem cells can even be genetically engineered in order to deliver missing gene products and therefore maximize the chance of neuroprotection and functional recovery. However, before broad clinical translation, further preclinical data on safety, reliability and therapeutic efficiency should be collected. Although several technical challenges need to be overcome, we discuss the major hurdles that have already been met or solved by targeting the astrocyte population in experimental ALS and SCI models and we discuss avenues for future directions based on latest molecular findings regarding astrocyte biology.
Collapse
|