1
|
McElwee KJ, Sundberg JP. Innovative strategies for the discovery of new drugs against androgenetic alopecia. Expert Opin Drug Discov 2025; 20:517-536. [PMID: 40029254 DOI: 10.1080/17460441.2025.2473905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Androgenetic alopecia (AGA) is the most common cause of hair loss worldwide. The significant psychological and social impact of AGA continues to drive demand for more effective treatments beyond the limited options currently available. AREAS COVERED The authors review the key components of AGA pathogenesis, as well as current treatments, and therapeutic techniques under development. Innovative strategies for AGA drug discovery are still needed, given the significant unmet medical needs and the limited efficacy of both current and emerging treatments. The authors outline relevant preclinical models, such as hair follicle (HF) cell cultures, 3D spheroids, organoids, follicle explants, and animal models, highlighting their advantages and limitations in AGA research. Finally, they summarize the primary objectives in AGA treatment development, including direct hair growth promotion, interference with androgen signaling, and HF rejuvenation, identifying key pathogenesis intervention points for treatment development. EXPERT OPINION Developing better in vitro models, possibly using induced pluripotent stem cell (iPSC) systems, could greatly accelerate drug discovery. Similarly, a superior in vivo model could significantly expedite drug discovery. Near future development research should focus on drug delivery improvements. Longer term, treatments targeting AGA's underlying pathophysiology and promoting HF rejuvenation or true regeneration would provide the most benefit to prospective patients.
Collapse
Affiliation(s)
- Kevin J McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| | - John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Sugeno A, Sumi T, Sato-Yazawa H, Yazawa T, Inoue H, Miyata S. Multilayered Gel-Spotting Device for In Vitro Reconstruction of Hair Follicle-like Microstructure. MICROMACHINES 2023; 14:1651. [PMID: 37763814 PMCID: PMC10535646 DOI: 10.3390/mi14091651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Hair follicles play an important role in hair development. This study aimed to develop a microgel-spotting device to fabricate a multilayered gel bead culture model and to mimic the early development of skin appendages to regenerate hair follicles in vitro. The model consists of an alginate gel layer containing cytokines as the core layer, a collagen gel layer containing mouse embryonic stem cells as the middle layer, and a collagen gel layer containing fetus-derived epidermal cells as the outer layer. A concentration gradient of cytokines is formed, which promotes interactions between epidermal and stem cells. Histological and immunnohistological analyses confirmed the reconstruction of hair follicle structures. As a result, the cell number and gel bead size could be precisely controlled by the developed microgel-spotting device. In the multilayered gel bead, the embryonic and epidermal cells cultured with the cytokine gradient formed cell aggregates with keratinized tissue in the center similar to "native" hair follicle structure. Sweat gland-like luminal tissue and erector pilorum-like structures were also observed around aggregates with concentric structures. In conclusion, the multilayered gel bead culture model demonstrated potential for in vitro hair follicle regeneration. The findings of this study provide insight into the early development of skin appendages.
Collapse
Affiliation(s)
- Aki Sugeno
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Takahiro Sumi
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Hanako Sato-Yazawa
- Department of Pathology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Takuya Yazawa
- Department of Pathology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Hajime Inoue
- Department of Plastic and Reconstructive Surgery, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
3
|
Abstract
Pathological hair loss (also known as alopecia) and shortage of hair follicle (HF) donors have posed an urgent requirement for HF regeneration. With the revelation of mechanisms in tissue engineering, the proliferation of HFs in vitro has achieved more promising trust for the treatments of alopecia and other skin impairments. Theoretically, HF organoids have great potential to develop into native HFs and attachments such as sweat glands after transplantation. However, since the rich extracellular matrix (ECM) deficiency, the induction characteristics of skin-derived cells gradually fade away along with their trichogenic capacity after continuous cell passaging in vitro. Therefore, ECM-mimicking support is an essential prelude before HF transplantation is implemented. This review summarizes the status of providing various epidermal and dermal cells with a three-dimensional (3D) scaffold to support the cell homeostasis and better mimic in vivo environments for the sake of HF regeneration. HF-relevant cells including dermal papilla cells (DPCs), hair follicle stem cells (HFSCs), and mesenchymal stem cells (MSCs) are able to be induced to form HF organoids in the vitro culture system. The niche microenvironment simulated by different forms of biomaterial scaffold can offer the cells a network of ordered growth environment to alleviate inductivity loss and promote the expression of functional proteins. The scaffolds often play the role of ECM substrates and bring about epithelial-mesenchymal interaction (EMI) through coculture to ensure the functional preservation of HF cells during in vitro passage. Functional HF organoids can be formed either before or after transplantation into the dermis layer. Here, we review and emphasize the importance of 3D culture in HF regeneration in vitro. Finally, the latest progress in treatment trials and critical analysis of the properties and benefits of different emerging biomaterials for HF regeneration along with the main challenges and prospects of HF regenerative approaches are discussed.
Collapse
Affiliation(s)
- Wei Zheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
| | - Chang-Hua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, P.R. China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|
4
|
Andl T, Zhou L, Zhang Y. The dermal papilla dilemma and potential breakthroughs in bioengineering hair follicles. Cell Tissue Res 2023; 391:221-233. [PMID: 36562864 PMCID: PMC9898212 DOI: 10.1007/s00441-022-03730-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The generation and growing of de novo hair follicles is the most daring hair replacement approach to treat alopecia. This approach has been explored at least since the 1960s without major success. Latest in the 1980s, the realization that the mesenchymal compartment of hair follicles, the dermal papilla (DP), is the crucial signaling center and element required for fulfilling this vision of hair follicle engineering, propelled research into the fibroblasts that occupy the DP. However, working with DP fibroblasts has been stubbornly frustrating. Decades of work in understanding the nature of DP fibroblasts in vitro and in vivo have led to the appreciation that hair follicle biology is complex, and the dermal papilla is an enigma. Functional DP fibroblasts tend to aggregate in 2D culture, while impaired DP cells do not. This fact has stimulated recent approaches to overcome the hurdles to DP cell culture by mimicking their natural habitat, such as growing DP fibroblasts in three dimensions (3D) by their self-aggregation, adopting 3D matrix scaffold, or bioprinting 3D microstructures. Furthermore, including keratinocytes in the mix to form hair follicle-like composite structures has been explored but remains a far cry from a useful and affordable method to generate human hair follicles in sufficient quantity and quality in a practical time frame for patients. This suggests that the current strategies may have reached their limitations in achieving successful hair follicle bioengineering for clinical applications. Novel approaches are required to overcome these barriers, such as focusing on embryonic cell types and processes in combination with emerging techniques.
Collapse
Affiliation(s)
- Thomas Andl
- Burnett School of Biological Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Linli Zhou
- Division of Pharmaceutical Science, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yuhang Zhang
- Division of Pharmaceutical Science, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
5
|
Kageyama T, Shimizu A, Anakama R, Nakajima R, Suzuki K, Okubo Y, Fukuda J. Reprogramming of three-dimensional microenvironments for in vitro hair follicle induction. SCIENCE ADVANCES 2022; 8:eadd4603. [PMID: 36269827 PMCID: PMC9586475 DOI: 10.1126/sciadv.add4603] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/02/2022] [Indexed: 06/08/2023]
Abstract
During embryonic development, reciprocal interactions between epidermal and mesenchymal layers trigger hair follicle morphogenesis. This study revealed that microenvironmental reprogramming via control over these interactions enabled hair follicle induction in vitro. A key approach is to modulate spatial distributions of epithelial and mesenchymal cells in their spontaneous organization. The de novo hair follicles with typical morphological features emerged in aggregates of the two cell types, termed hair follicloids, and hair shafts sprouted with near 100% efficiency in vitro. The hair shaft length reached ~3 mm in culture. Typical trichogenic signaling pathways were up-regulated in hair follicloids. Owing to replication of hair follicle morphogenesis in vitro, melanosome production and transportation were also monitored in the hair bulb region. This in vitro hair follicle model might be valuable for better understanding hair follicle induction, evaluating hair growth and inhibition of hair growth by drugs, and modeling gray hairs in a well-defined environment.
Collapse
Affiliation(s)
- Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
- Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Akihiro Shimizu
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Riki Anakama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Rikuma Nakajima
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Kohei Suzuki
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Nissan Chemical Corporation, 2-5-1 Nihonbashi, Chuo-ku, Tokyo 103-6119, Japan
| | - Yusuke Okubo
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| |
Collapse
|
6
|
Žnidarič M, Žurga ŽM, Maver U. Design of In Vitro Hair Follicles for Different Applications in the Treatment of Alopecia-A Review. Biomedicines 2021; 9:biomedicines9040435. [PMID: 33923738 PMCID: PMC8072628 DOI: 10.3390/biomedicines9040435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
The hair research field has seen great improvement in recent decades, with in vitro hair follicle (HF) models being extensively developed. However, due to the cellular complexity and number of various molecular interactions that must be coordinated, a fully functional in vitro model of HFs remains elusive. The most common bioengineering approach to grow HFs in vitro is to manipulate their features on cellular and molecular levels, with dermal papilla cells being the main focus. In this study, we focus on providing a better understanding of HFs in general and how they behave in vitro. The first part of the review presents skin morphology with an emphasis on HFs and hair loss. The remainder of the paper evaluates cells, materials, and methods of in vitro growth of HFs. Lastly, in vitro models and assays for evaluating the effects of active compounds on alopecia and hair growth are presented, with the final emphasis on applications of in vitro HFs in hair transplantation. Since the growth of in vitro HFs is a complicated procedure, there is still a great number of unanswered questions aimed at understanding the long-term cycling of HFs without losing inductivity. Incorporating other regions of HFs that lead to the successful formation of different hair classes remains a difficult challenge.
Collapse
|
7
|
Tan JJ, Nguyen DV, Common JE, Wu C, Ho PC, Kang L. Investigating PEGDA and GelMA Microgel Models for Sustained 3D Heterotypic Dermal Papilla and Keratinocyte Co-Cultures. Int J Mol Sci 2021; 22:2143. [PMID: 33670029 PMCID: PMC7926670 DOI: 10.3390/ijms22042143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
Hair follicle morphogenesis is heavily dependent on reciprocal, sequential, and epithelial-mesenchymal interaction (EMI) between epidermal stem cells and the specialized cells of the underlying mesenchyme, which aggregate to form the dermal condensate (DC) and will later become the dermal papilla (DP). Similar models were developed with a co-culture of keratinocytes and DP cells. Previous studies have demonstrated that co-culture with keratinocytes maintains the in vivo characteristics of the DP. However, it is often challenging to develop three-dimensional (3D) DP and keratinocyte co-culture models for long term in vitro studies, due to the poor intercellular adherence between keratinocytes. Keratinocytes exhibit exfoliative behavior, and the integrity of the DP and keratinocyte co-cultured spheroids cannot be maintained over prolonged culture. Short durations of culture are unable to sufficiently allow the differentiation and re-programming of the keratinocytes into hair follicular fate by the DP. In this study, we explored a microgel array approach fabricated with two different hydrogel systems. Using poly (ethylene glycol) diacrylate (PEGDA) and gelatin methacrylate (GelMA), we compare their effects on maintaining the integrity of the cultures and their expression of important genes responsible for hair follicle morphogenesis, namely Wnt10A, Wnt10B, and Shh, over prolonged duration. We discovered that low attachment surfaces such as PEGDA result in the exfoliation of keratinocytes and were not suitable for long-term culture. GelMA, on the hand, was able to sustain the integrity of co-cultures and showed higher expression of the morphogens overtime.
Collapse
Affiliation(s)
- Justin J.Y. Tan
- Department of Pharmacy, National University of Singapore, Lower Kent Ridge Road, 18 Science Drive 4, Singapore 117543, Singapore; (J.J.Y.T.); (P.C.L.H.)
| | - Duc-Viet Nguyen
- Nusmetics Pte. Ltd., i4 Building, 3 Research Link, Singapore 117602, Singapore;
| | - John E. Common
- Skin Research Institute of Singapore, Immunos, 8A Biomedical Grove, Singapore 138648, Singapore;
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China;
| | - Paul C.L. Ho
- Department of Pharmacy, National University of Singapore, Lower Kent Ridge Road, 18 Science Drive 4, Singapore 117543, Singapore; (J.J.Y.T.); (P.C.L.H.)
| | - Lifeng Kang
- School of Pharmacy, University of Sydney, Pharmacy and Bank Building A15, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Advanced Medical Therapies in the Management of Non-Scarring Alopecia: Areata and Androgenic Alopecia. Int J Mol Sci 2020; 21:ijms21218390. [PMID: 33182308 PMCID: PMC7664905 DOI: 10.3390/ijms21218390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022] Open
Abstract
Alopecia is a challenging condition for both physicians and patients. Several topical, intralesional, oral, and surgical treatments have been developed in recent decades, but some of those therapies only provide partial improvement. Advanced medical therapies are medical products based on genes, cells, and/or tissue engineering products that have properties in regenerating, repairing, or replacing human tissue. In recent years, numerous applications have been described for advanced medical therapies. With this background, those therapies may have a role in the treatment of various types of alopecia such as alopecia areata and androgenic alopecia. The aim of this review is to provide dermatologists an overview of the different advanced medical therapies that have been applied in the treatment of alopecia, by reviewing clinical and basic research studies as well as ongoing clinical trials.
Collapse
|
9
|
Chen Y, Huang J, Chen R, Yang L, Wang J, Liu B, Du L, Yi Y, Jia J, Xu Y, Chen Q, Ngondi DG, Miao Y, Hu Z. Sustained release of dermal papilla-derived extracellular vesicles from injectable microgel promotes hair growth. Am J Cancer Res 2020; 10:1454-1478. [PMID: 31938074 PMCID: PMC6956798 DOI: 10.7150/thno.39566] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Hair regeneration has long captured researchers' attention because alopecia is a common condition and current therapeutic approaches have significant limitations. Dermal papilla (DP) cells serve as a signaling center in hair follicles and regulate hair formation and cycling by paracrine secretion. Secreted EVs are important signaling mediators for intercellular communication, and DP-derived extracellular vesicles (DP-EVs) may play an important role in hair regeneration. However, the instability of EVs in vivo and their low long-term retention after transplantation hinder their use in clinical applications. Methods: Human DP-EVs were encapsulated in partially oxidized sodium alginate (OSA) hydrogels, yielding OSA-encapsulated EVs (OSA-EVs), which act as a sustained-release system to increase the potential therapeutic effect of DP-EVs. The ability of the OSA-EVs to protect protein was assessed. The hair regeneration capacity of OSA-EVs, as well as the underlying mechanism, was explored in hair organ culture and a mouse model of depilation. Results: The OSA-EVs were approximately 100 μm in diameter, and as the hydrogel degraded, DP-EVs were gradually released. In addition, the hydrogel markedly increased the stability of vesicular proteins and increased the retention of EVs in vitro and in vivo. The OSA-EVs significantly facilitated proliferation of hair matrix cells, prolonged anagen phase in cultured human hairs, and accelerated the regrowth of back hair in mice after depilation. These effects may be due to upregulation of hair growth-promoting signaling molecules such as Wnt3a and β-catenin, and downregulation of inhibitory molecule BMP2. Conclusion: This study demonstrated that OSA hydrogels promote the therapeutic effects of DP-EVs, and indicate that our novel OSA-EVs could be used to treat alopecia.
Collapse
|
10
|
|
11
|
Nilforoushzadeh MA, Zare M, Zarrintaj P, Alizadeh E, Taghiabadi E, Heidari-Kharaji M, Amirkhani MA, Saeb MR, Mozafari M. Engineering the niche for hair regeneration - A critical review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:70-85. [PMID: 30201489 DOI: 10.1016/j.nano.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/06/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
Recent progress in hair follicle regeneration and alopecia treatment necessitates revisiting the concepts and approaches. In this sense, there is a need for shedding light on the clinical and surgical therapies benefitting from nanobiomedicine. From this perspective, this review attempts to recognize requirements upon which new hair therapies are grounded; to underline shortcomings and opportunities associated with recent advanced strategies for hair regeneration; and most critically to look over hair regeneration from nanomaterials and pluripotent stem cell standpoint. It is noteworthy that nanotechnology is able to illuminate a novel path for reprogramming cells and controlled differentiation to achieve the desired performance. Undoubtedly, this strategy needs further advancement and a lot of critical questions have yet to be answered. Herein, we introduce the salient features, the hurdles that must be overcome, the hopes, and practical constraints to engineer stem cell niches for hair follicle regeneration.
Collapse
Affiliation(s)
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Taghiabadi
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Ishida K, Mitsui T. Role of the boundary in feather bud formation on one-dimensional bioengineered skin. APL Bioeng 2018; 2:016107. [PMID: 31069292 PMCID: PMC6481706 DOI: 10.1063/1.4989414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/21/2017] [Indexed: 01/04/2023] Open
Abstract
The role of a boundary in pattern formation from a homogenous state in Turing's reaction–diffusion equations is important, particularly when the domain size is comparable to the pattern scale. Such experimental conditions may be achieved for in vitro regeneration of ectodermal appendages such as feathers, via reconstruction of embryonic single cells. This procedure can eliminate a predefined genetic map, such as the midline of chick feather bud formation, leaving uniformly distributed identical cells as a bioengineered skin. Here, the self-organizing nature of multiple feather bud formation was examined in bioengineered 1D-skin samples. Primal formation of feather buds occurred at a fixed length from the skin edge. This formation was numerically recapitulated by a standard two-component reaction-diffusion model, suggesting that the boundary effect caused this observation. The proper boundary conditions were nonstandard, either mixed Dirichlet–Neumann or partial-flux. In addition, the model implies imperfect or hindered bud formation as well as nearly equal distances between buds. In contrast, experimental observations indicated that the skin curvature, which was not included in our model, also strongly affected bud formation. Thus, bioengineered skin may provide an ideal template for modeling a self-organized process from a homogenous state. This study will examine the possible diffusion activities of activator or inhibitor molecular candidates and mechanical activities during cell aggregation, which will advance our understanding of skin appendage regeneration from pluripotent or embryonic stem cells.
Collapse
Affiliation(s)
- Kentaro Ishida
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan
| | - Toshiyuki Mitsui
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan
| |
Collapse
|
13
|
Hair Germ Model In Vitro via Human Postnatal Keratinocyte-Dermal Papilla Interactions: Impact of Hyaluronic Acid. Stem Cells Int 2017; 2017:9271869. [PMID: 29129979 PMCID: PMC5654293 DOI: 10.1155/2017/9271869] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/19/2017] [Indexed: 02/01/2023] Open
Abstract
Hair follicle (HF) reconstruction in vitro is a promising field in alopecia treatment and human HF development research. Here, we combined postnatal human dermal papilla (DP) cells and skin epidermal keratinocytes (KCs) in a hanging drop culture to develop an artificial HF germ. The method is based on DP cell hair-inducing properties and KC self-organization. We evaluated two protocols of aggregate assembling. Mixed HF germ-like structures demonstrated the initiation of epithelial-mesenchymal interaction, including WNT pathway activation and expression of follicular markers. We analyzed the influence of possible DP cell niche components including soluble factors and extracellular matrix (ECM) molecules in the process of the organoid assembling and growth. Our results demonstrated that soluble factors had little impact on HF germ generation and Ki67+ cell score inside the organoids although BMP6 and VD3 maintained effectively the DP identity in the monolayer culture. Aggrecan, biglycan, fibronectin, and hyaluronic acid (HA) significantly stimulated cell proliferation in DP cell monolayer culture without any effect on DP cell identity. Most of ECM compounds prevented the formation of cell aggregates while HA promoted the formation of larger organoids. In conclusion, our model could be suitable to study cell-cell and cell-niche interactions during HF reconstruction in vitro.
Collapse
|
14
|
Fan Z, Miao Y, Qu Q, Xiao S, Wang J, Du L, Liu B, Hu Z. Unlocking the vital role of host cells in hair follicle reconstruction by semi-permeable capsules. PLoS One 2017; 12:e0179279. [PMID: 28614369 PMCID: PMC5470686 DOI: 10.1371/journal.pone.0179279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/27/2017] [Indexed: 12/21/2022] Open
Abstract
Organ regeneration is becoming a promising choice for many patients; however, many details about the mechanisms underlying organ regeneration remain unknown. As regenerative organs, hair follicles offer a good model to study the mechanisms associated with regenerative medicine. The relevant studies have mainly focused on donor cells, and there are no systematic studies involving the effect of host factors on hair follicle reconstruction. Thus, we intend to explore the effect of host cells on hair follicle reconstruction. Epidermal and dermal cells from red fluorescent protein (RFP) transgenic newborn mice were injected into green fluorescent protein (GFP) transgenic mice. In addition, we wrapped the mixed dermal and epidermal cells from GFP transgenic and RFP transgenic mice by the Cell-in-a-Box kit to form "capsules," so that the cells within would be isolated from host cells. These capsules were cultured in vitro and transplanted in vivo. Fully developed reconstructed hair follicles were observed after the injection of mixed cells. These reconstructed follicles mainly consisted of donor cells, as well as a small number of host cells. The encapsulated cells gradually aggregated into cell spheres in vitro without apparent differentiation towards hair follicles. With respect to the transplanted capsules, concentric circle structures were observed, but no hair follicles or hair shafts formed. When the concentric circle structures were transplanted in vivo, mature hair follicles were observed 30 days later. Host cells were found in the reconstructed hair follicles. Thus, we conclude that host cells participate in the process of hair follicle reconstruction, and they play a vital role in the process, especially for the maturation of reconstructed hair follicles. Furthermore, we established a special hair follicle reconstruction system with the help of capsules: transplant cells were isolated from host, but other factors from host could exchange with cells inside.
Collapse
Affiliation(s)
- Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shune Xiao
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijuan Du
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bingcheng Liu
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Bassino E, Vallariello E, Gasparri F, Munaron L. Dermal-Epidermal Cross-Talk: Differential Interactions With Microvascular Endothelial Cells. J Cell Physiol 2016; 232:897-903. [PMID: 27764901 DOI: 10.1002/jcp.25657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
The biological importance of circulatory blood supply and angiogenesis for hair growth is now well recognized, but the their regulatory mechanisms require more mechanistic investigation. In vitro cocultures and tricultures can be successfully employed to greatly improve our knowledge on paracrine crosstalk between cell types that populate the dermal-epidermal interface and cutaneous vasculature. Here we report that human dermal fibroblasts (NHDF) promote viability and proliferation of microvascular endothelial cells (HMVEC), while HMVEC are not mitogenic for NHDF. In triculture setup, conditioned media (CM) obtained by cocultures (HMVEC/NHDF or HMVEC/follicle fibroblasts) differently modulate growth and proliferation of keratinocytes and alter the expression of metabolic and pro-inflammatory markers. In conclusion, tricultures were successfully employed to characterize in vitro dermal-epithelial and endothelial interactions and could integrate ex vivo and in vivo approaches by the use of high-throughput and standardized protocols in controlled conditions. J. Cell. Physiol. 232: 897-903, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eleonora Bassino
- Deparment of Life Sciences and Systems Biology, University of Turin, Italy
| | | | | | - Luca Munaron
- Deparment of Life Sciences and Systems Biology, University of Turin, Italy
| |
Collapse
|
16
|
Mohammadi P, Youssef KK, Abbasalizadeh S, Baharvand H, Aghdami N. Human Hair Reconstruction: Close, But Yet So Far. Stem Cells Dev 2016; 25:1767-1779. [PMID: 27649771 DOI: 10.1089/scd.2016.0137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Billions of dollars are annually invested in pharmaceutical industry and cosmetic sector with intent to develop new drugs and treatment strategies for alopecia. Because the hair looks an important characteristic of humans-an effective appendage in perception, expression of beauty, and preservation of self-esteem-the global market for hair loss treatment products is exponentially increasing. However, current methods to treat hair loss endure yet multiple challenges, such as unfavorable outcomes, nonpermanent and patient-dependent results, as well as unpredictable impacts, which limit their application. Over recent years, remarkable advances in the fields of regenerative medicine and hair tissue engineering have raised new hopes for introducing novel cell-based approaches to treat hair loss. Through cell-based approaches, it is possible to produce hair-like structures in the laboratory setting or manipulate cells in their native niche (in vivo lineage reprogramming) to reconstruct the hair follicle. However, challenging issues still exist with the functionality of cultured human hair cells, the proper selection of nonhair cell sources in cases of shortage of donor hair, and the development of defined culture conditions. Moreover, in the case of in vivo lineage reprogramming, selecting appropriate induction factors and their efficient delivery to guide resident cells into a hair fate-with the aim of reconstructing functional hair-still needs further explorations. In this study, we highlight recent advances and current challenges in hair loss treatment using cell-based approaches and provide novel insights for crucial steps, which must be taken into account to develop reproducible, safe, and efficient cell-based treatment.
Collapse
Affiliation(s)
- Parvaneh Mohammadi
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran .,2 Department of Developmental Biology, University of Science and Culture , Tehran, Iran
| | - Khalil Kass Youssef
- 3 Department of Developmental Neurobiology, Instituto de Neurociencias CSIC-UMH , San Juan de Alicante, Spain
| | - Saeed Abbasalizadeh
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran
| | - Hossein Baharvand
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran .,2 Department of Developmental Biology, University of Science and Culture , Tehran, Iran
| | - Nasser Aghdami
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran
| |
Collapse
|
17
|
Asgari AZ, Rufaut NW, Morrison WA, Dilley RJ, Knudsen R, Jones LN, Sinclair RD. Hair transplantation in mice: Challenges and solutions. Wound Repair Regen 2016; 24:679-85. [DOI: 10.1111/wrr.12435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Azar Z Asgari
- Department of Medicine (SVHM); the University of Melbourne; Melbourne
- O'Brien Institute, St. Vincent's Institute; Fitzroy
| | - Nicholas. W. Rufaut
- Department of Medicine (SVHM); the University of Melbourne; Melbourne
- Department of Dermatology; Epworth Hospital; Richmond
| | - Wayne A. Morrison
- O'Brien Institute, St. Vincent's Institute; Fitzroy
- Department of Surgery (SVHM); the University of Melbourne; Melbourne Victoria
| | - Rodney. J. Dilley
- Ear Science Institute Australia, and Ear Sciences Centre; University of Western Australia; Western Australia
| | | | - Leslie N. Jones
- Department of Medicine (SVHM); the University of Melbourne; Melbourne
- Department of Dermatology; Epworth Hospital; Richmond
| | - Rodney. D. Sinclair
- Department of Medicine (SVHM); the University of Melbourne; Melbourne
- Department of Dermatology; Epworth Hospital; Richmond
| |
Collapse
|
18
|
Balañá ME, Charreau HE, Leirós GJ. Epidermal stem cells and skin tissue engineering in hair follicle regeneration. World J Stem Cells 2015; 7:711-27. [PMID: 26029343 PMCID: PMC4444612 DOI: 10.4252/wjsc.v7.i4.711] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/02/2014] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge still pending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients' psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide three-dimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This field is attractive not only to academic researchers but also to the companies that own almost half of the patents in this field.
Collapse
Affiliation(s)
- María Eugenia Balañá
- María Eugenia Balañá, Gustavo José Leirós, Fundación Pablo Cassará -Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Hernán Eduardo Charreau
- María Eugenia Balañá, Gustavo José Leirós, Fundación Pablo Cassará -Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Gustavo José Leirós
- María Eugenia Balañá, Gustavo José Leirós, Fundación Pablo Cassará -Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
19
|
Thangapazham RL, Klover P, Li S, Wang JA, Sperling L, Darling TN. A model system to analyse the ability of human keratinocytes to form hair follicles. Exp Dermatol 2015; 23:443-6. [PMID: 24758480 DOI: 10.1111/exd.12424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
Abstract
Earlier studies showed that dermal cells lose trichogenic capacity with passage, but studies on the effect of keratinocyte passage on human hair follicle neogenesis and graft quality have been hampered by the lack of a suitable model system. We recently documented human hair follicle neogenesis in grafted dermal-epidermal composites, and in the present study, we determined the effects of keratinocyte passage on hair follicle neogenesis. Dermal equivalents were made with cultured human dermal papilla cells and were overlaid with either primary or passaged human keratinocytes to form dermal-epidermal composites; these were then grafted onto immunodeficient mice. Superior hair follicle neogenesis was observed using early keratinocyte cultures. Characteristics such as formation of hair shafts and sebaceous glands, presence of hair follicles with features of anagen or telogen follicles, and reproducible hair and skin function parameters make this model a tool to study human hair follicle neogenesis and development.
Collapse
Affiliation(s)
- Rajesh L Thangapazham
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
20
|
Zhang P, Kling RE, Ravuri SK, Kokai LE, Rubin JP, Chai JK, Marra KG. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration. J Tissue Eng 2014; 5:2041731414556850. [PMID: 25383178 PMCID: PMC4221925 DOI: 10.1177/2041731414556850] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/11/2014] [Indexed: 12/22/2022] Open
Abstract
Alopecia is an exceedingly prevalent problem effecting men and women of all ages. The standard of care for alopecia involves either transplanting existing hair follicles to bald areas or attempting to stimulate existing follicles with topical and/or oral medication. Yet, these treatment options are fraught with problems of cost, side effects, and, most importantly, inadequate long-term hair coverage. Innovative cell-based therapies have focused on the dermal papilla cell as a way to grow new hair in previously bald areas. However, despite this attention, many obstacles exist, including retention of dermal papilla inducing ability and maintenance of dermal papilla productivity after several passages of culture. The use of adipocyte lineage cells, including adipose-derived stem cells, has shown promise as a cell-based solution to regulate hair regeneration and may help in maintaining or increasing dermal papilla cells inducing hair ability. In this review, we highlight recent advances in the understanding of the cellular contribution and regulation of dermal papilla cells and summarize adipocyte lineage cells in hair regeneration.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Russell E Kling
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sudheer K Ravuri
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren E Kokai
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA ; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Jia-Ke Chai
- Department of Burns and Plastic Surgery, First Hospital Affiliated to General Hospital of PLA, Beijing, China
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA ; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Epidermal stem cells in orthopaedic regenerative medicine. Int J Mol Sci 2013; 14:11626-42. [PMID: 23727934 PMCID: PMC3709750 DOI: 10.3390/ijms140611626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 01/01/2023] Open
Abstract
In the last decade, great advances have been made in epidermal stem cell studies at the cellular and molecular level. These studies reported various subpopulations and differentiations existing in the epidermal stem cell. Although controversies and unknown issues remain, epidermal stem cells possess an immune-privileged property in transplantation together with easy accessibility, which is favorable for future clinical application. In this review, we will summarize the biological characteristics of epidermal stem cells, and their potential in orthopedic regenerative medicine. Epidermal stem cells play a critical role via cell replacement, and demonstrate significant translational potential in the treatment of orthopedic injuries and diseases, including treatment for wound healing, peripheral nerve and spinal cord injury, and even muscle and bone remodeling.
Collapse
|
22
|
Cooley JE. Cell-based treatments for hair loss: research update on “hair cloning”. ACTA ACUST UNITED AC 2013. [DOI: 10.33589/23.2.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Hayek A, Kerstetter-Fogle AE, Sachlos E, Bollenbach T. Research Highlights: Highlights from the latest articles in regenerative medicine. Regen Med 2012; 7:473. [DOI: 10.2217/rme.12.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Alberto Hayek
- Pediatric Diabetes Research Center, University of California-San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0721, USA
| | - Amber E Kerstetter-Fogle
- Case Western Reserve University, Center for Translational Neuroscience, Department of Neurological Surgery, Cleveland, OH 44106, USA
| | | | - Thomas Bollenbach
- Organogenesis, Preclinical Research & Development, 150 Dan Road, Canton, MA 02021, USA
| |
Collapse
|
24
|
Mahjour SB, Ghaffarpasand F, Wang H. Hair follicle regeneration in skin grafts: current concepts and future perspectives. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:15-23. [PMID: 21883016 DOI: 10.1089/ten.teb.2011.0064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The repair and management of full-thickness skin defects resulting from burns and chronic wounds remain a significant unmet clinical challenge. For those skin defects exceeding 50%-60% of total body surface area, it is impractical to treat with autologous skin transplants because of the shortage of donor sites. The possibility of using tissue-engineered skin grafts for full-thickness wound repair is a promising approach. The primary goal of tissue-engineered skin grafts is to restore lost barrier function, but regeneration of appendages, such as hair follicles, has to be yet achieved. The successful regeneration of hair follicles in immunodeficient mice suggests that creating human hair follicles in tissue-engineered skin grafts is feasible. However, many limitations still need to be explored, particularly enriching isolated cells with trichogenic capacity, maintaining this ability during processing, and providing the cells with proper environmental cues. Current advances in hair follicle regeneration, in vitro and in vivo, are concisely summarized in this report, and key requirements to bioengineer a hair follicle are proposed, with emphasis on a three-dimensional approach.
Collapse
Affiliation(s)
- Seyed Babak Mahjour
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | | | | |
Collapse
|
25
|
Marazzi M, Crovato F, Bucco M, Sironi MC, Tosca MC, Antonioli B, Chlapanidas T, Lucconi G, Rapisarda V, Scalise A, Vigo D, Faustini M, Torre ML. GMP-compliant culture of human hair follicle cells for encapsulation and transplantation. Cell Transplant 2011; 21:373-8. [PMID: 21439132 DOI: 10.3727/096368911x565010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human hair follicle cells, both bulge and dermal papilla cells, were isolated and cultured in a GMP cell factory, in order to obtain an in vitro hair follicle source for encapsulation end transplantation in alopecia regenerative cell therapy. An in vitro model, constituted by organotypic cultures of human skin sample, was set up to simulate the dermal-epidermal interaction between bulge cells and dermal papilla cells, evaluating the possible new follicles formation and the regenerative potentiality of these hair follicle cells. Both the bulge and dermal papilla cells show an excellent cellular proliferation as well as an abundant extracellular matrix production. The immunofluorescence investigation revealed the positivity of both cell lines to CK15 and CD200, whereas both cell lines were negative to CD71 and Oct-4. The pool of cultured bulge and dermal papilla cells was injected into the deep dermis; at day 28 of culture, some organized areas with a higher cell density can be observed: the cells self-organize into papilla-like lengthened aggregates. In samples in which the follicular cells have been seeded on the dermis surface, an epidermis-like homogeneous monolayer on the dermis surface can be seen, therefore showing a potentiality of these cells for epidermis regeneration. These data show the efficacy of a cellular isolation and amplification approach to obtain an in vitro human hair follicle regenerative source on industrial scale in a GMP cell factory. The results also proved an intrinsic potentiality of follicular cells to in vitro recreate the epidermis for tissue engineering purposes. Thus, it is feasible to produce bioengineered hair follicles in a GMP cell factory, for encapsulation and transplantation in alopecic patients.
Collapse
Affiliation(s)
- Mario Marazzi
- Struttura Semplice Terapia Tissutale, A.O. Ospedale Niguarda Ca' Granda, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee LF, Jiang TX, Garner W, Chuong CM. A simplified procedure to reconstitute hair-producing skin. Tissue Eng Part C Methods 2011; 17:391-400. [PMID: 21034159 DOI: 10.1089/ten.tec.2010.0477] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the major objectives of tissue engineering is to reconstitute skin from stem cells. This requires multipotent skin stem cells and the ability to guide these cells to form a piece of skin with proper architecture and skin appendages. Based on previous progress, we develop a simplified procedure that can be useful for large-scale screening of factors that can modulate the hair formation ability of candidate cells. Newborn mouse cells are used. Dissociated epidermal and dermal cells in high-density suspension are allowed to reconstitute in vitro to generate its own matrix, or seeded into a scaffold-like matrix already used clinically. These cells self-organize and form a reconstituted skin with proper proportions and topological organization of different components. Large numbers of hair follicles form. The cellular and molecular events are characterized, showing a distinct but parallel morphogenetic process compared to those occurring in embryonic development. The formed hair follicles can cycle and regenerate and the reconstituted skin can heal after injury. The skins are in good condition 1 year after transplant. This procedure enables flexible size and shape of the reconstituted skin, so clinical applications can be envisioned for the future when large numbers of multipotential skin stem cells become available.
Collapse
Affiliation(s)
- Lily F Lee
- Division of Plastic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
27
|
Hsieh CH, Wang JL, Huang YY. Large-scale cultivation of transplantable dermal papilla cellular aggregates using microfabricated PDMS arrays. Acta Biomater 2011; 7:315-24. [PMID: 20728585 DOI: 10.1016/j.actbio.2010.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/14/2010] [Accepted: 08/16/2010] [Indexed: 01/14/2023]
Abstract
In this work we have developed a strategy for cultivating dermal papilla (DP) cells to form multiple arrayed spheroidal microtissues for transplantation on a micropatterned polydimethylsiloxane (PDMS)-based tissue culture polystyrene (TCPS) plate system. We also describe the behavior of dermal papilla cells on this platform and the spontaneous formation of spheroidal microtissues by DP cells. We used a hydrophobic PDMS arrayed chip as a master to separate the seeded cells in the TCPS culture plate. By controlling the cell seeding densities, a microwell with arrayed DP spheroidal microtissues was easily formed. Formation of DP microtissues was associated with overlapping multilayered cells on the microwells and low cell-substrate adhesivity on the PDMS film. The microwell environment enhanced the aggregation of DP cells into spheroidal microtissues on the TCPS culture plate. The spheroidal microtissues preserved their hair induction potential in vitro and in vivo. A large quantity of DP spheroidal microtissues could be obtained rapidly and simply using this platform. We could harvest hundreds of DP microtissues (352 microtissues) with a cell seeding density of 1×10⁶ cells well⁻¹ after 3 days cultivation in one well of a 24-well plate. This is the first demonstration of the formation of DP spheres in large quantitites.
Collapse
Affiliation(s)
- Chin-Hsiung Hsieh
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
28
|
Application of mesenchymal stem cells derived from bone marrow and umbilical cord in human hair multiplication. J Dermatol Sci 2010; 60:74-83. [DOI: 10.1016/j.jdermsci.2010.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 08/22/2010] [Accepted: 08/26/2010] [Indexed: 11/20/2022]
|
29
|
Yang CC, Cotsarelis G. Review of hair follicle dermal cells. J Dermatol Sci 2010; 57:2-11. [PMID: 20022473 DOI: 10.1016/j.jdermsci.2009.11.005] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 11/30/2009] [Indexed: 12/16/2022]
Abstract
Hair follicle stem cells in the epithelial bulge are responsible for the continual regeneration of the hair follicle during cycling. The bulge cells reside in a niche composed of dermal cells. The dermal compartment of the hair follicle consists of the dermal papilla and dermal sheath. Interactions between hair follicle epithelial and dermal cells are necessary for hair follicle morphogenesis during development and in hair reconstitution assays. Dermal papilla and dermal sheath cells express specific markers and possess distinctive morphology and behavior in culture. These cells can induce hair follicle differentiation in epithelial cells and are required in hair reconstitution assays either in the form of intact tissue, dissociated freshly prepared cells or cultured cells. This review will focus on hair follicle dermal cells since most therapeutic efforts to date have concentrated on this aspect of the hair follicle, with the idea that enriching hair-inductive dermal cell populations and expanding their number by culture while maintaining their properties, will establish an efficient hair reconstitution assay that could eventually have therapeutic implications.
Collapse
Affiliation(s)
- Chao-Chun Yang
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
30
|
Optimization of the reconstruction of dermal papilla like tissues employing umbilical cord mesenchymal stem cells. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-3050-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
High-throughput reconstitution of epithelial-mesenchymal interaction in folliculoid microtissues by biomaterial-facilitated self-assembly of dissociated heterotypic adult cells. Biomaterials 2010; 31:4341-52. [PMID: 20206989 DOI: 10.1016/j.biomaterials.2010.02.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 02/05/2010] [Indexed: 12/16/2022]
Abstract
The aim of this study was to develop a method for efficient production of folliculoid keratinocyte-dermal papilla (DP) microtissues to facilitate epithelial-mesenchymal interaction. The behavior of DP cells and adult keratinocytes from hairless skin on poly(ethylene-co-vinyl alcohol) (EVAL) surface was investigated. Keratinocytes, poorly adherent both to substrate and between homotypic cells, become suspended disperse cells after homotypic cell seeding. Seeded simultaneously, keratinocytes and DP cells are able to aggregate into spheroidal microtissues. Dynamical analysis shows that DP cells act as a carrier in the process due to the heterotypic intercellular adhesion. DP cells attach faster to EVAL and start to aggregate. Keratinocytes adhere to DP cells and are then carried by DP cells to form initial hybrid aggregates. Due to the high motility of DP cells, these hybrid aggregates move collectively as clusters and merge into larger spheroids which subsequently detach from the substratum and can be easily collected. Compared with random cell distribution in spheroids generated in hanging drops, these hybrid spheroids have a preferential compartmented core-shell structure: an aggregated DP cell core surrounded by a keratinocyte shell. In addition to ameliorated DP signature gene expression, keratinocytes show down-regulated epidermal terminal differentiation and enhanced follicular differentiation. Functionally, these microtissues are able to grow hairs in vivo. This work sheds light on the complex effects and dynamics of cell-cell and cell-substratum interaction in the patterning of heterotypic cells into tissue forms and is of potential to be applied to mass generation of other epithelial organ primordia in vitro.
Collapse
|
32
|
Yoo BY, Shin YH, Yoon HH, Seo YK, Park JK. Hair follicular cell/organ culture in tissue engineering and regenerative medicine. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Affiliation(s)
- Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK
| | - Elisa Manzotti
- Future Medicine Ltd, Unitec House, 2 Albert Place, Finchley Central, London, N3 1QB, UK
| |
Collapse
|