1
|
Niu Q, Li D, Zhang J, Piao Z, Xu B, Xi Y, Mohamed Kamal NNSN, Lim V, Li P, Yin Y. The new perspective of Alzheimer's Disease Research: Mechanism and therapeutic strategy of neuronal senescence. Ageing Res Rev 2024; 102:102593. [PMID: 39566741 DOI: 10.1016/j.arr.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD), commonly known as senile dementia, is a neurodegenerative disease with insidious onset and gradually worsening course. The brain is particularly sensitive to senescence, and neuronal senescence is an important risk factor for the occurrence of AD. However, the exact pathogenesis between neuronal senescence and AD has not been fully elucidated so far. Neuronal senescence is characterized by the permanent stagnation of the cell cycle, and the changes in its structure, function, and microenvironment are closely related to the pathogenesis and progression of AD. In recent years, studies such as the Aβ cascade hypothesis and Tau protein phosphorylation have provided new strategies for the therapy of AD, but due to the complexity of the etiology of AD, there are still no effective treatment measures. This article aims to deeply analyze the pathogenesis between AD and neuronal senescence, and sort out various existing therapeutic methods, to provide new ideas and references for the clinical treatment of AD.
Collapse
Affiliation(s)
- Qianqian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Danjie Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Jiayin Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Zhengji Piao
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Bo Xu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Yuting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia; Dementia Multidisciplinary Research Program of IPPT (DMR-IPPT), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Vuanghao Lim
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China.
| | - Yaling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
2
|
Gopal A, Gangadaran P, Rajendran RL, Oh JM, Lee HW, Hong CM, Kalimuthu S, Han MH, Lee J, Ahn BC. Extracellular vesicle mimetics engineered from mesenchymal stem cells and curcumin promote fibrosis regression in a mouse model of thioacetamide-induced liver fibrosis. Regen Ther 2024; 26:911-921. [PMID: 39502438 PMCID: PMC11535984 DOI: 10.1016/j.reth.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Recent research suggests that advanced liver fibrosis could be reversed, but the therapeutic agents needed for the prevention of liver fibrosis remain to be elucidated. The beneficial effects of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) on liver fibrosis have been reported. However, the large-scale production of MSC-EVs remains challenging. The present study investigated the therapeutic effects of mouse MSC-derived EV mimetics (MEVMs) in combination with curcumin (antifibrotic compound) using a mouse model of thioacetamide-induced liver fibrosis. MEVMs were prepared through the serial extrusion of MSCs. These MEVMs were similar in size and morphology to the EVs. The biodistribution study showed that fluorescently labeled MEVMs predominantly accumulated in the liver. The establishment of liver fibrosis was confirmed via increased collagen (histology), liver fibrosis score, α-smooth muscle actin (α-SMA), and vimentin proteins levels. Treatment with MEVMs, curcumin, or their combination decreased the amount of collagen in liver tissues, with the antifibrotic effects of MEVMs being further confirmed by the liver fibrosis score. All treatments decreased the expression of collagen 1α, α-SMA, and vimentin. MEVMs showed superior effects than curcumin. Thus, MSC-derived EVMs could be a potential alternative for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Arunnehru Gopal
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Pathology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Song LJ, Sui RX, Wang J, Miao Q, He Y, Yin JJ, An J, Ding ZB, Han QX, Wang Q, Yu JZ, Xiao BG, Ma CG. Targeting the differentiation of astrocytes by Bilobalide in the treatment of Parkinson's disease model. Int J Neurosci 2024; 134:274-291. [PMID: 36037147 DOI: 10.1080/00207454.2022.2100778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/27/2022]
Abstract
Background: The etiology of Parkinson's disease (PD), a chronic and progressive neurodegenerative disease, is multifactorial but not fully unknown. Until now, no drug has been proven to have neuroprotective or neuroregenerative effects in patients with PD. Objectives: To observe the therapeutic potential of Bilobalide (BB), a constituent of ginkgo biloba, in MPTP-induced PD model, and explore its possible mechanisms of action. Material and Methods: Mice were randomly divided into three groups: healthy group, MPTP group and MPTP + BB group. PD-related phenotypes were induced by intraperitoneal injection of MPTP into male C57BL/6 mice, and BB (40 mg/kg/day) was intraperitoneally given for 7 consecutive days at the end of modeling. The injection of saline was set up as the control in a similar manner. Results: BB induced M2 polarization of microglia, accompanied by inhibition of neuroinflammation in the brain. Simultaneously, BB promoted the expression of BDNF in astrocytes and neurons, and expression of GDNF in neurons. Most interestingly, BB enhanced the formation of GFAP+ astrocytes expressing nestin, Brn2 and Ki67, as well as the transformation of GFAP+ astrocytes expressing tyrosine hydroxylase around subventricular zone, providing experimental evidence that BB could promote the conversion of astrocytes into TH+ dopamine neurons in vivo and in vitro. Conclusions: These results suggest the natural product BB may utilize multiple pathways to modify degenerative process of TH+ neurons, revealing an exciting opportunity for novel neuroprotective therapeutics. However, its multi-target and important mechanisms need to be further explored.
Collapse
Affiliation(s)
- Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Ruo-Xuan Sui
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wang
- The Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Qiang Miao
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yan He
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jun An
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhi-Bin Ding
- The Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Qing-Xian Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jie-Zhong Yu
- The NO. 1 Affiliated Hospital/Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
- The Department of Neurology, Shanxi Medical University, Taiyuan, China
- The NO. 1 Affiliated Hospital/Institute of Brain Science, Shanxi Datong University, Datong, China
| |
Collapse
|
4
|
Hazell AS. Stem Cell Therapy and Thiamine Deficiency-Induced Brain Damage. Neurochem Res 2024; 49:1450-1467. [PMID: 38720090 DOI: 10.1007/s11064-024-04137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/18/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024]
Abstract
Wernicke's encephalopathy (WE) is a major central nervous system disorder resulting from thiamine deficiency (TD) in which a number of brain regions can develop serious damage including the thalamus and inferior colliculus. Despite decades of research into the pathophysiology of TD and potential therapeutic interventions, little progress has been made regarding effective treatment following the development of brain lesions and its associated cognitive issues. Recent developments in our understanding of stem cells suggest they are capable of repairing damage and improving function in different maladys. This article puts forward the case for the potential use of stem cell treatment as a therapeutic strategy in WE by first examining the effects of TD on brain functional integrity and its consequences. The second half of the paper will address the future benefits of treating TD with these cells by focusing on their nature and their potential to effectively treat neurodegenerative diseases that share some overlapping pathophysiological features with TD. At the same time, some of the obstacles these cells will have to overcome in order to become a viable therapeutic strategy for treating this potentially life-threatening illness in humans will be highlighted.
Collapse
Affiliation(s)
- Alan S Hazell
- Department of Medicine, University of Montreal, 2335 Bennett Avenue, Montreal, QC, H1V 2T6, Canada.
| |
Collapse
|
5
|
Alavi O, Alizadeh A, Dehghani F, Alipour H, Tanideh N. Anti-inflammatory Effects of Umbilical Cord Mesenchymal Stem Cell and Autologous Conditioned Serum on Oligodendrocyte, Astrocyte, and Microglial Specific Gene in Cuprizone Animal Model. Curr Stem Cell Res Ther 2024; 19:71-82. [PMID: 36852798 DOI: 10.2174/1574888x18666230228102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/23/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023]
Abstract
BACKGROUND Inflammation, myelin loss, astrocytosis, and microgliosis are pathological signs of the autoimmune and demyelinating disease known as multiple sclerosis (MS). Axonal and neuronal degenerations have basic molecular pathways. The remyelination process can be influenced by the secretome of mesenchymal stem cells due to their capacity for immunomodulation, differentiation, and neuroprotection. Microglial cells are divided into two subgroups: M1 and M2 phenotypes. A crucial component of the microglial function is the colony stimulating factor 1 receptor (CSF1R). We aimed to evaluate the immunomodulating effects of secretome and conditioned serum on the microglial phenotypes and improvement of demyelination in a cuprizone model of MS. METHODS The study used 48 male C57BL/6 mice, which were randomly distributed into 6 subgroups (n = 8), i.e., control, cuprizone, MSC (confluency 40% and 80%) secretome group, and blood derived conditioned serum (autologous and humanized). The animals were fed with 0.2% cuprizone diet for 12 weeks. Supplements were injected into the lateral tail vein using a 27-gauge needle every 3 days 500 μl per injection. RESULTS At 14 days after transplantation, animals from each group were sacrificed and analyzed by Real time PCR. The results showed that the administration of MSC secretome can efficiently reduce expression of pro-inflammatory cytokines (IL-1, IL6 and TNF-α) in the corpus callosum; also, conditioned serum downregulated IL-1. Moreover, the oligodendrocyte-specific gene was upregulated by secretome and conditioned serum treatment. Also, the expression of microglial- specific gene was reduced after treatment. CONCLUSION These findings demonstrated that the secretome isolated from MSCs used as a therapy decreased and increased the M1 and M2 levels, respectively, to control neuroinflammation in CPZ mice. In conclusion, the current study showed the viability of devising a method to prepare suitable MSCs and secreted factor to cure neurodegenerative diseases, as well as the capability of regulating MSC secretome patterns by manipulating the cell density.
Collapse
Affiliation(s)
- Omid Alavi
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aliakbar Alizadeh
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Dehghani
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Alipour
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iranaz Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Li F, Wang X, Shi J, Wu S, Xing W, He Y. Anti-inflammatory effect of dental pulp stem cells. Front Immunol 2023; 14:1284868. [PMID: 38077342 PMCID: PMC10701738 DOI: 10.3389/fimmu.2023.1284868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have received a lot of attention as a regenerative medicine tool with strong immunomodulatory capabilities. The excessive inflammatory response involves a variety of immune cells, cytokines, and has a considerable impact on tissue regeneration. The use of DPSCs for controlling inflammation for the purpose of treating inflammation-related diseases and autoimmune disorders such as supraspinal nerve inflammation, inflammation of the pulmonary airways, systemic lupus erythematosus, and diabetes mellitus is likely to be safer and more regenerative than traditional medicines. The mechanism of the anti-inflammatory and immunomodulatory effects of DPSCs is relatively complex, and it may be that they themselves or some of the substances they secrete regulate a variety of immune cells through inflammatory immune-related signaling pathways. Most of the current studies are still at the laboratory cellular level and animal model level, and it is believed that through the efforts of more researchers, DPSCs/SHED are expected to be transformed into excellent drugs for the clinical treatment of related diseases.
Collapse
Affiliation(s)
- FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jin Shi
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Gschwendtberger T, Thau-Habermann N, von der Ohe J, Luo T, Hass R, Petri S. Protective effects of EVs/exosomes derived from permanently growing human MSC on primary murine ALS motor neurons. Neurosci Lett 2023; 816:137493. [PMID: 37774774 DOI: 10.1016/j.neulet.2023.137493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
In recent years, the neuroprotective potential of mesenchymal stroma-/stem-like cells (MSC) as well as of MSC-derived extracellular vesicles (EVs) like exosomes has been intensively explored. This included preclinical evaluation regarding treatment of neurodegenerative disorders such as the fatal motor neuron disease amyotrophic Lateral Sclerosis (ALS). Several studies have reported that MSC-derived exosomes can stimulate tissue regeneration and reduce inflammation. MSC release EVs and trophic factors and thereby modify cell-to-cell communication. These cell-free products may protect degenerating motor neurons (MNs) and represent a potential therapeutic approach for ALS. In the present study we investigated the effects of exosomes derived from a permanently growing MSC line on both, wild type and ALS (SOD1G93A transgenic) primary motor neurons. Following application in a normal and stressed environment we could demonstrate beneficial effects of MSC exosomes on neurite growth and morphology indicating the potential for further preclinical evaluation and clinical therapeutic development. Investigation of gene expression profiles detected transcripts of several antioxidant and anti-inflammatory genes in MSC exosomes. Characterization of their microRNA (miRNA) content revealed miRNAs capable of regulating antioxidant and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Thomas Gschwendtberger
- Department of Neurology, Hannover Medical School, Hannover 30625, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany
| | | | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover 30625, Germany
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover 30625, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover 30625, Germany.
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover 30625, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany.
| |
Collapse
|
8
|
Quan M, Cao S, Wang Q, Wang S, Jia J. Genetic Phenotypes of Alzheimer's Disease: Mechanisms and Potential Therapy. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:333-349. [PMID: 37589021 PMCID: PMC10425323 DOI: 10.1007/s43657-023-00098-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023]
Abstract
Years of intensive research has brought us extensive knowledge on the genetic and molecular factors involved in Alzheimer's disease (AD). In addition to the mutations in the three main causative genes of familial AD (FAD) including presenilins and amyloid precursor protein genes, studies have identified several genes as the most plausible genes for the onset and progression of FAD, such as triggering receptor expressed on myeloid cells 2, sortilin-related receptor 1, and adenosine triphosphate-binding cassette transporter subfamily A member 7. The apolipoprotein E ε4 allele is reported to be the strongest genetic risk factor for sporadic AD (SAD), and it also plays an important role in FAD. Here, we reviewed recent developments in genetic and molecular studies that contributed to the understanding of the genetic phenotypes of FAD and compared them with SAD. We further reviewed the advancements in AD gene therapy and discussed the future perspectives based on the genetic phenotypes.
Collapse
Affiliation(s)
- Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shuman Cao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shiyuan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053 China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053 China
- Center of Alzheimer’s Disease, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100053 China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053 China
| |
Collapse
|
9
|
Gorthi SP, Gupta D. Alzheimer's Disease: Treatment Today and Tomorrow. Ann Indian Acad Neurol 2023; 26:326-333. [PMID: 37970257 PMCID: PMC10645267 DOI: 10.4103/aian.aian_254_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 11/17/2023] Open
Abstract
Background and Aims The scope of treatment in Alzheimer's Disease has widened in recent times with FDA approval of new drugs. This review looks at established treatments in AD as well as critically analyses the newer drugs available. Methods Data in this review was gathered from PubMed; Google Scholar and MEDLINE from January-March 2023. Search words used were 'Alzheimer's Disease treatment' and 'Dementia treatment'. Results Older time tested drugs like Acetyl Choline Receptor Inhibitors and NMDA Receptor antagonists remain the mainstay of pharmacological treatment in AD. Despite a lot of excitement about newer FDA approved drugs; we have to be cautious in their use. Aducanumab showed good reduction in CSF amyloid levels (biomarker of AD); but this did not necessarily translate into better clinical outcomes of patients. Conclusion Despite the recent advances and approval of drugs in treatment of AD, we have to exhibit caution while prescribing these drugs. Even with a sound mechanism of action, these drugs do not always show improvement in clinical outcomes. More clinical trials are required for development of drugs in treatment of AD which explore various different mechanisms of action.
Collapse
Affiliation(s)
- Sankar P. Gorthi
- Department of Neurology, Bharati Vidyapeeth Medical College (DTU) and Hospital, Pune, Maharashtra, India
| | - Dulari Gupta
- Department of Neurology, Bharati Vidyapeeth Medical College (DTU) and Hospital, Pune, Maharashtra, India
| |
Collapse
|
10
|
Aghaei Z, Karbalaei N, Namavar MR, Haghani M, Razmkhah M, Ghaffari MK, Nemati M. Neuroprotective Effect of Wharton's Jelly-Derived Mesenchymal Stem Cell-Conditioned Medium (WJMSC-CM) on Diabetes-Associated Cognitive Impairment by Improving Oxidative Stress, Neuroinflammation, and Apoptosis. Stem Cells Int 2023; 2023:7852394. [PMID: 37081849 PMCID: PMC10113062 DOI: 10.1155/2023/7852394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
According to strong evidence, diabetes mellitus increases the risk of cognitive impairment. Mesenchymal stem cells have been shown to be potential therapeutic agents for neurological disorders. In the current study, we aimed to examine the effects of Wharton's jelly-derived mesenchymal stem cell-conditioned medium (WJMSC-CM) on learning and memory, oxidative stress, apoptosis, and histological changes in the hippocampus of diabetic rats. Randomly, 35 male Sprague Dawley rats weighing 260-300 g were allocated into five groups: control, diabetes, and three diabetic groups treated with insulin, WJMSC-CM, and DMEM. The injections of insulin (3 U/day, S.C.) and WJMSC-CM (10 mg/week, I.P.) were done for 60 days. The Morris water maze and open field were used to measure cognition and anxiety-like behaviors. Colorimetric assays were used to determine hippocampus glutathione (GSH), malondialdehyde (MDA) levels, and antioxidant enzyme activity. The histopathological evaluation of the hippocampus was performed by Nissl staining. The expression levels of Bax, Bcl-2, BDNF, and TNF-α were detected by real-time polymerase chain reaction (RT-PCR). According to our findings, WJMSC-CM significantly reduced and increased blood glucose and insulin levels, respectively. Enhanced cognition and improved anxiety-like behavior were also found in WJMSC-CM-treated diabetic rats. In addition, WJMSC-CM treatment reduced oxidative stress by lowering MDA and elevating GSH and antioxidant enzyme activity. Reduced TNF-α and enhanced Bcl-2 gene expression levels and elevated neuronal and nonneuronal (astrocytes and oligodendrocytes) cells were detected in the hippocampus of WJMSC-CM-treated diabetic rats. In conclusion, WJMSC-CM alleviated diabetes-related cognitive impairment by reducing oxidative stress, neuroinflammation, and apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Zohre Aghaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Fan M, Shi H, Yao H, Wang W, Zhang Y, Jiang C, Lin R. BMSCs Promote Differentiation of Enteric Neural Precursor Cells to Maintain Neuronal Homeostasis in Mice With Enteric Nerve Injury. Cell Mol Gastroenterol Hepatol 2022; 15:511-531. [PMID: 36343901 PMCID: PMC9880979 DOI: 10.1016/j.jcmgh.2022.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND & AIMS Our previous study showed that transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) promoted functional enteric nerve regeneration in denervated mice but not through direct transdifferentiation. Homeostasis of the adult enteric nervous system (ENS) is maintained by enteric neural precursor cells (ENPCs). Whether ENPCs are a source of regenerated nerves in denervated mice remains unknown. METHODS Genetically engineered mice were used as recipients, and ENPCs were traced during enteric nerve regeneration. The mice were treated with benzalkonium chloride to establish a denervation model and then transplanted with BMSCs 3 days later. After 28 days, the gastric motility and ENS regeneration were analyzed. The interaction between BMSCs and ENPCs in vitro was further assessed. RESULTS Twenty-eight days after transplantation, gastric motility recovery (gastric emptying capacity, P < .01; gastric contractility, P < .01) and ENS regeneration (neurons, P < .01; glial cells, P < .001) were promoted in BMSCs transplantation groups compared with non-transplanted groups in denervated mice. More importantly, we found that ENPCs could differentiate into enteric neurons and glial cells in denervated mice after BMSCs transplantation, and the proportion of Nestin+/Ngfr+ cells differentiated into neurons was significantly higher than that of Nestin+ cells. A small number of BMSCs located in the myenteric plexus differentiated into glial cells. In vitro, glial cell-derived neurotrophic factor (GDNF) from BMSCs promotes the migration, proliferation, and differentiation of ENPCs. CONCLUSIONS In the case of enteric nerve injury, ENPCs can differentiate into enteric neurons and glial cells to promote ENS repair and gastric motility recovery after BMSCs transplantation. BMSCs expressing GDNF enhance the migration, proliferation, and differentiation of ENPCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong Lin
- Correspondence Address correspondence to: Rong Lin, MD, PhD, Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
López-Ornelas A, Jiménez A, Pérez-Sánchez G, Rodríguez-Pérez CE, Corzo-Cruz A, Velasco I, Estudillo E. The Impairment of Blood-Brain Barrier in Alzheimer's Disease: Challenges and Opportunities with Stem Cells. Int J Mol Sci 2022; 23:ijms231710136. [PMID: 36077533 PMCID: PMC9456198 DOI: 10.3390/ijms231710136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and its prevalence is increasing. Nowadays, very few drugs effectively reduce AD symptoms and thus, a better understanding of its pathophysiology is vital to design new effective schemes. Presymptomatic neuronal damage caused by the accumulation of Amyloid β peptide and Tau protein abnormalities remains a challenge, despite recent efforts in drug development. Importantly, therapeutic targets, biomarkers, and diagnostic techniques have emerged to detect and treat AD. Of note, the compromised blood-brain barrier (BBB) and peripheral inflammation in AD are becoming more evident, being harmful factors that contribute to the development of the disease. Perspectives from different pre-clinical and clinical studies link peripheral inflammation with the onset and progression of AD. This review aims to analyze the main factors and the contribution of impaired BBB in AD development. Additionally, we describe the potential therapeutic strategies using stem cells for AD treatment.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City 06800, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Alejandro Corzo-Cruz
- Laboratorio Traslacional, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Correspondence:
| |
Collapse
|
13
|
Gordon J, Lockard G, Monsour M, Alayli A, Choudhary H, Borlongan CV. Sequestration of Inflammation in Parkinson's Disease via Stem Cell Therapy. Int J Mol Sci 2022; 23:ijms231710138. [PMID: 36077534 PMCID: PMC9456021 DOI: 10.3390/ijms231710138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease. Insidious and progressive, this disorder is secondary to the gradual loss of dopaminergic signaling and worsening neuroinflammation, affecting patients’ motor capabilities. Gold standard treatment includes exogenous dopamine therapy in the form of levodopa–carbidopa, or surgical intervention with a deep brain stimulator to the subcortical basal ganglia. Unfortunately, these therapies may ironically exacerbate the already pro-inflammatory environment. An alternative approach may involve cell-based therapies. Cell-based therapies, whether endogenous or exogenous, often have anti-inflammatory properties. Alternative strategies, such as exercise and diet modifications, also appear to play a significant role in facilitating endogenous and exogenous stem cells to induce an anti-inflammatory response, and thus are of unique interest to neuroinflammatory conditions including Parkinson’s disease. Treating patients with current gold standard therapeutics and adding adjuvant stem cell therapy, alongside the aforementioned lifestyle modifications, may ideally sequester inflammation and thus halt neurodegeneration.
Collapse
Affiliation(s)
- Jonah Gordon
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Gavin Lockard
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Molly Monsour
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Adam Alayli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Hassan Choudhary
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
14
|
Human gingival mesenchymal stem cells improve movement disorders and tyrosine hydroxylase neuronal damage in Parkinson disease rats. Cytotherapy 2022; 24:1105-1120. [PMID: 35973920 DOI: 10.1016/j.jcyt.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AIMS Gingival mesenchymal stem cells (GMSCs) demonstrate high proliferation, trilineage differentiation and immunomodulatory properties. Parkinson disease (PD) is the second most common type of neurodegenerative disease. This study aimed to explore the effect and mechanism of GMSC-based therapy in 6-hydroxydopamine-induced PD rats. METHODS RNA sequencing and quantitative proteomics technology was used to validate the neuroprotective role of GMSCs therapeutic in 6-Hydroxydopamine -induced PD model in vitro and in vivo. Western blotting, immunofluorescence and real-time quantitative PCR verified the molecular mechanism of GMSCs treatment. RESULTS Intravenous injection of GMSCs improved rotation and forelimb misalignment behavior, enhanced the anti-apoptotic B-cell lymphoma 2/B-cell lymphoma 2-associated X axis, protected tyrosine hydroxylase neurons, decreased the activation of astrocytes and reduced the astrocyte marker glial fibrillary acidic protein and microglia marker ionized calcium-binding adaptor molecule 1 in the substantia nigra and striatum of PD rats. The authors found that GMSCs upregulated nerve regeneration-related molecules and inhibited metabolic disorders and the activation of signal transducer and activator of transcription 3. GMSCs showed a strong ability to protect neurons and reduce mitochondrial membrane potential damage and reactive oxygen species accumulation. The safety of GMSC transplantation was confirmed by the lack of tumor formation following subcutaneous transplantation into nude mice for up to 8 weeks. CONCLUSIONS The authors' research helps to explain the mechanism of GMSC-based therapeutic strategies and promote potential clinical application in Parkinson disease.
Collapse
|
15
|
Al-Zikri PNH, Huat TJ, Khan AA, Patar A, Reza MF, Idris FM, Abdullah JM, Jaafar H. Transplantation of IGF-1-induced BMSC-derived NPCs promotes tissue repair and motor recovery in a rat spinal cord injury model. Heliyon 2022; 8:e10384. [PMID: 36090221 PMCID: PMC9449758 DOI: 10.1016/j.heliyon.2022.e10384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have therapeutic potential for spinal cord injury (SCI). We have shown that insulin-like growth factor 1 (IGF-1) enhances the cellular proliferation and survivability of BMSCs-derived neural progenitor cells (NPCs) by downregulating miR-22-3p. However, the functional application of BMSCs-derived NPCs has not been investigated fully. In this study, we demonstrate that knockdown of endogenous miR-22-3p in BMSCs-derived NPCs upregulates Akt1 expression, leading to enhanced cellular proliferation. RNASeq analysis reveals 3,513 differentially expressed genes in NPCs. The upregulated genes in NPCs enrich the gene ontology term associated with nervous system development. Terminally differentiated NPCs generate cells with neuronal-like morphology and phenotypes. Transplantation of NPCs in the SCI rat model results in better recovery in locomotor and sensory functions 4 weeks after transplantation. Altogether, the result of this study demonstrate that NPCs derived with IGF-1 supplementation could be differentiated into functional neural lineage cells and are optimal for stem cell therapy in SCI.
Collapse
|
16
|
Robinson AM, Stavely R, Miller S, Eri R, Nurgali K. Mesenchymal stem cell treatment for enteric neuropathy in the Winnie mouse model of spontaneous chronic colitis. Cell Tissue Res 2022; 389:41-70. [PMID: 35536444 DOI: 10.1007/s00441-022-03633-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gut inflammation with periods of acute flares and remission. Beneficial effects of a single dose of mesenchymal stem cell (MSC)-based treatment have been demonstrated in acute models of colitis. No studies investigated therapeutic effects of MSCs for the attenuation of enteric neuropathy in a chronic model of colitis. The short and long-term effects of MSC treatment in modulating inflammation and damage to the enteric nervous system (ENS) were studied in the Winnie mouse model of spontaneous chronic colitis highly representative of human IBD. Winnie mice received a single dose of either 1 × 106 human bone marrow-derived MSCs or 100µL PBS by intracolonic enema. C57BL/6 mice received 100µL PBS. Colon tissues were collected at 3 and 60 days post MSC administration to evaluate the short-term and long-term effects of MSCs on inflammation and enteric neuropathy by histological and immunohistochemical analyses. In a separate set of experiments, multiple treatments with 4 × 106 and 2 × 106 MSCs were performed and tissue collected at 3 days post treatment. Chronic intestinal inflammation in Winnie mice was associated with persistent diarrhea, perianal bleeding, morphological changes, and immune cell infiltration in the colon. Significant changes to the ENS, including impairment of cholinergic, noradrenergic and sensory innervation, and myenteric neuronal loss were prominent in Winnie mice. Treatment with a single dose of bone marrow-derived MSCs was ineffective in attenuating chronic inflammation and enteric neuropathy in Winnie.
Collapse
Affiliation(s)
- Ainsley M Robinson
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah Miller
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rajaraman Eri
- University of Tasmania, School of Health Sciences, Launceston, TAS, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Levin M. Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds. Front Syst Neurosci 2022; 16:768201. [PMID: 35401131 PMCID: PMC8988303 DOI: 10.3389/fnsys.2022.768201] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology and bioengineering provide the opportunity to create novel embodied cognitive systems (otherwise known as minds) in a very wide variety of chimeric architectures combining evolved and designed material and software. These advances are disrupting familiar concepts in the philosophy of mind, and require new ways of thinking about and comparing truly diverse intelligences, whose composition and origin are not like any of the available natural model species. In this Perspective, I introduce TAME-Technological Approach to Mind Everywhere-a framework for understanding and manipulating cognition in unconventional substrates. TAME formalizes a non-binary (continuous), empirically-based approach to strongly embodied agency. TAME provides a natural way to think about animal sentience as an instance of collective intelligence of cell groups, arising from dynamics that manifest in similar ways in numerous other substrates. When applied to regenerating/developmental systems, TAME suggests a perspective on morphogenesis as an example of basal cognition. The deep symmetry between problem-solving in anatomical, physiological, transcriptional, and 3D (traditional behavioral) spaces drives specific hypotheses by which cognitive capacities can increase during evolution. An important medium exploited by evolution for joining active subunits into greater agents is developmental bioelectricity, implemented by pre-neural use of ion channels and gap junctions to scale up cell-level feedback loops into anatomical homeostasis. This architecture of multi-scale competency of biological systems has important implications for plasticity of bodies and minds, greatly potentiating evolvability. Considering classical and recent data from the perspectives of computational science, evolutionary biology, and basal cognition, reveals a rich research program with many implications for cognitive science, evolutionary biology, regenerative medicine, and artificial intelligence.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, MA, United States
| |
Collapse
|
18
|
Recent Advances in the Application of Mesenchymal Stem Cell-Derived Exosomes for Cardiovascular and Neurodegenerative Disease Therapies. Pharmaceutics 2022; 14:pharmaceutics14030618. [PMID: 35335993 PMCID: PMC8949563 DOI: 10.3390/pharmaceutics14030618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Exosomes are naturally occurring nanoscale vesicles that are released and received by almost all cells in the body. Exosomes can be transferred between cells and contain various molecular constitutes closely related to their origin and function, including proteins, lipids, and RNAs. The importance of exosomes in cellular communication makes them important vectors for delivering a variety of drugs throughout the body. Exosomes are ubiquitous in the circulatory system and can reach the site of injury or disease through a variety of biological barriers. Due to its unique structure and rich inclusions, it can be used for the diagnosis and treatment of diseases. Mesenchymal stem-cell-derived exosomes (MSCs-Exo) inherit the physiological functions of MSCs, including repairing and regenerating tissues, suppressing inflammatory responses, and regulating the body’s immunity; therefore, MSCs-Exo can be used as a natural drug delivery carrier with therapeutic effects, and has been increasingly used in the treatment of cardiovascular diseases and neurodegenerative diseases. Here, we summarize the research progress of MSCs-Exo as drug delivery vectors and their application for various drug deliveries, providing ideas and references for the study of MSCs-Exo in recent years.
Collapse
|
19
|
Tsagkaris C, Moysidis DV, Papazoglou AS, Khan A, Papadakos S, Louka AM, Scordilis DM, Shkodina A, Varmpompiti K, Batiha GES, Alexiou A. Current Trends of Stem Cells in Neurodegenerative Diseases. NUTRITIONAL NEUROSCIENCES 2022:311-339. [DOI: 10.1007/978-981-15-9781-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
20
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
21
|
Zhao H, Li S, He L, Tang F, Han X, Deng W, Lin Z, Huang R, Li Z. Ameliorating Effect of Umbilical Cord Mesenchymal Stem Cells in a Human Induced Pluripotent Stem Cell Model of Dravet Syndrome. Mol Neurobiol 2021; 59:748-761. [PMID: 34766239 DOI: 10.1007/s12035-021-02633-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023]
Abstract
Dravet syndrome (DS) is a form of severe childhood-onset refractory epilepsy typically caused by a heterozygous loss-of-function mutation. DS patient-derived induced pluripotent stem cells (iPSCs) are appropriate human cells for exploring disease mechanisms and testing new therapeutic strategies in vitro. Repeated spontaneous seizures can cause neuroinflammatory reactions and oxidative stress, resulting in neuronal toxicity, neuronal dysfunction, blood-brain barrier disruption, and hippocampal inflammation. Antiepileptic drug therapy does not delay the development of chronic epilepsy. The application of mesenchymal stem cells (MSCs) is one therapeutic strategy for thwarting epilepsy development. This study evaluated the effects of human umbilical cord mesenchymal stem cell-conditioned medium (HUMSC-CM) in a new in vitro model of neurons differentiated from DS patient-derived iPSCs. In the presence of HUMSC-CM, increases in superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase (GPX), and glutathione (GSH) levels were found to contribute to a reduction in reactive oxygen species (ROS) levels. In parallel, inflammation was rescued in DS patient-derived neuronal cells via increased expression of anti-inflammatory cytokines (TGF-β, IL-6, and IL-10) and significant downregulation of tumor necrosis factor-α and interleukin-1β expression. The intracellular calcium concentration ([Ca2+]i) and malondialdehyde (MDA) and ROS levels were decreased in DS patient-derived cells. In addition, action potential (AP) firing ability was enhanced by HUMSC-CM. In conclusion, HUMSC-CM can effectively eliminate ROS, affect migration and neurogenesis, and promote neurons to enter a highly functional state. Therefore, HUMSC-CM is a promising therapeutic strategy for the clinical treatment of refractory epilepsy such as DS.
Collapse
Affiliation(s)
- Huifang Zhao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shuai Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lang He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Tang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobo Han
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangzhou Medical University, Guangzhou, 511436, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyue Deng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zuoxian Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhiyuan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
22
|
Zhou Q, Yuan M, Qiu W, Cao W, Xu R. Preclinical studies of mesenchymal stem cells transplantation in amyotrophic lateral sclerosis: a systemic review and metaanalysis. Neurol Sci 2021; 42:3637-3646. [PMID: 33433755 DOI: 10.1007/s10072-020-05036-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To assess the quality of preclinical evidence for mesenchymal stromal cell (MSCs) therapy of amyotrophic lateral sclerosis (ALS), decide the effect size of MSCs treatment, and identify clinical parameters that associate with differences in MSCs effects. METHODS A literature search identified studies of MSCs in animal models of ALS. Four main indicators (age of onset, disease progression deceleration, survival time, hazard ratio reduction) obtained through specific neurobehavioral assessment, and 14 relative clinical parameters were extracted for metaanalysis and systematic review. Subgroup analysis and metaregression were performed to explore sources of heterogeneity. RESULTS A total of 25 studies and 41 independent treated arms were used for systematic review and metaanalysis. After adjusted by sensitivity analysis, the mean effect sizes were significantly improved by 0.28 for the age of onset, 0.25 for the disease progression deceleration, 0.54 for the survival time, and 0.48 for hazard ratio reduction. With further analysis, we demonstrated that both the clinical parameter of animal gender and immunosuppressive drug of cyclosporin A (CSA) had a close correlation with disease progression deceleration effect size. CONCLUSIONS These results showed that MSCs transplantation was beneficial for neurobehavioral improvement in the treatment of ALS animal model and recommended that all potential reparative roles of MSCs postdelivery, should be carefully considered and fused to maximize the effectiveness of MSCs therapy in ALS.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, No. 152, Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Min Yuan
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, No. 152, Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Weiwen Qiu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, No. 152, Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Wenfeng Cao
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, No. 152, Aiguo Road, Nanchang, 330006, Jiangxi, China.
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, No. 152, Aiguo Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
23
|
Janockova J, Slovinska L, Harvanova D, Spakova T, Rosocha J. New therapeutic approaches of mesenchymal stem cells-derived exosomes. J Biomed Sci 2021; 28:39. [PMID: 34030679 PMCID: PMC8143902 DOI: 10.1186/s12929-021-00736-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been demonstrated to have a great potential in the treatment of several diseases due to their differentiation and immunomodulatory capabilities and their ability to be easily cultured and manipulated. Recent investigations revealed that their therapeutic effect is largely mediated by the secretion of paracrine factors including exosomes. Exosomes reflect biophysical features of MSCs and are considered more effective than MSCs themselves. Alternative approaches based on MSC-derived exosomes can offer appreciable promise in overcoming the limitations and practical challenges observed in cell-based therapy. Furthermore, MSC-derived exosomes may provide a potent therapeutic strategy for various diseases and are promising candidates for cell-based and cell-free regenerative medicine. This review briefly summarizes the development of MSCs as a treatment for human diseases as well as describes our current knowledge about exosomes: their biogenesis and molecular composition, and how they exert their effects on target cells. Particularly, the therapeutic potential of MSC-derived exosomes in experimental models and recent clinical trials to evaluate their safety and efficacy are summarized in this study. Overall, this paper provides a current overview of exosomes as a new cell-free therapeutic agent.
Collapse
Affiliation(s)
- Jana Janockova
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University in Kosice, Tr. SNP 1, 04011, Kosice, Slovakia.
| | - Lucia Slovinska
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University in Kosice, Tr. SNP 1, 04011, Kosice, Slovakia
| | - Denisa Harvanova
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University in Kosice, Tr. SNP 1, 04011, Kosice, Slovakia
| | - Timea Spakova
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University in Kosice, Tr. SNP 1, 04011, Kosice, Slovakia
| | - Jan Rosocha
- Associated Tissue Bank, Faculty of Medicine, P. J. Safarik University in Kosice, Tr. SNP 1, 04011, Kosice, Slovakia
| |
Collapse
|
24
|
Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE. Human Mesenchymal Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:340-348. [PMID: 32178619 DOI: 10.2174/1574888x15666200316164051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/03/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Spinal Cord Injury (SCI), as a devastating and life-altering neurological disorder, is one of the most serious health issues. Currently, the management of acute SCI includes pharmacotherapy and surgical decompression. Both the approaches have been observed to have adverse physiological effects on SCI patients. Therefore, novel therapeutic targets for the management of SCI are urgently required for developing cell-based therapies. Multipotent stem cells, as a novel strategy for the treatment of tissue injury, may provide an effective therapeutic option against many neurological disorders. Mesenchymal stem cells (MSCs) or multipotent stromal cells can typically self-renew and generate various cell types. These cells are often isolated from bone marrow (BM-MSCs), adipose tissues (AD-MSCs), umbilical cord blood (UCB-MSCs), and placenta (PMSCs). MSCs have remarkable potential for the development of regenerative therapies in animal models and humans with SCI. Herein, we summarize the therapeutic potential of human MSCs in the treatment of SCI.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed E Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Hydrogen Peroxide-Preconditioned Human Adipose-Derived Stem Cells Enhance the Recovery of Oligodendrocyte-Like Cells after Oxidative Stress-Induced Damage. Int J Mol Sci 2020; 21:ijms21249513. [PMID: 33327653 PMCID: PMC7765141 DOI: 10.3390/ijms21249513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress associated with neuroinflammation is a key process involved in the pathophysiology of neurodegenerative diseases, and therefore, has been proposed as a crucial target for new therapies. Recently, the therapeutic potential of human adipose-derived stem cells (hASCs) has been investigated as a novel strategy for neuroprotection. These cells can be preconditioned by exposing them to mild stress in order to improve their response to oxidative stress. In this study, we evaluate the therapeutic potential of hASCs preconditioned with low doses of H2O2 (called HC016 cells) to overcome the deleterious effect of oxidative stress in an in vitro model of oligodendrocyte-like cells (HOGd), through two strategies: i, the culture of oxidized HOGd with HC016 cell-conditioned medium (CM), and ii, the indirect co-culture of oxidized HOGd with HC016 cells, which had or had not been exposed to oxidative stress. The results demonstrated that both strategies had reparative effects, oxidized HC016 cell co-culture being the one associated with the greatest recovery of the damaged HOGd, increasing their viability, reducing their intracellular reactive oxygen species levels and promoting their antioxidant capacity. Taken together, these findings support the view that HC016 cells, given their reparative capacity, might be considered an important breakthrough in cell-based therapies.
Collapse
|
26
|
Mukherjee A, Becerra Calixto AD, Chavez M, Delgado JP, Soto C. Mitochondrial transplant to replenish damaged mitochondria: A novel therapeutic strategy for neurodegenerative diseases? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 177:49-63. [PMID: 33453942 DOI: 10.1016/bs.pmbts.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Neurodegenerative diseases are currently some of the most debilitating and incurable illness, including highly prevalent disorders, such as Alzheimer's and Parkinson's disease. Despite impressive advances in understanding the molecular basis of neurodegenerative diseases, several clinical trials have failed in identifying drugs that successfully delay or stop disease progression. New targets are likely necessary to successfully combat these devastating diseases. In this chapter, we review the evidence indicating that impairment in the cellular energy machinery in the form of mitochondrial damage and dysfunction may be at the root of neurodegeneration. We also propose that transplant of functional isolated mitochondria may overcome the energetic damage and delay the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Abhisek Mukherjee
- Mitchell Center Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Houston Medical School, Houston, TX, United States
| | - Andrea D Becerra Calixto
- Mitchell Center Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Houston Medical School, Houston, TX, United States
| | - Melissa Chavez
- Mitchell Center Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Houston Medical School, Houston, TX, United States
| | - Jean Paul Delgado
- Grupo Genética, Regeneración & Cáncer, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Claudio Soto
- Mitchell Center Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Houston Medical School, Houston, TX, United States.
| |
Collapse
|
27
|
Terashima T, Kobashi S, Watanabe Y, Nakanishi M, Honda N, Katagi M, Ohashi N, Kojima H. Enhancing the Therapeutic Efficacy of Bone Marrow-Derived Mononuclear Cells with Growth Factor-Expressing Mesenchymal Stem Cells for ALS in Mice. iScience 2020; 23:101764. [PMID: 33251493 PMCID: PMC7677706 DOI: 10.1016/j.isci.2020.101764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
Several treatments have been attempted in amyotrophic lateral sclerosis (ALS) animal models and patients. Recently, transplantation of bone marrow-derived mononuclear cells (MNCs) was investigated as a regenerative therapy for ALS, but satisfactory treatments remain to be established. To develop an effective treatment, we focused on mesenchymal stem cells (MSCs) expressing hepatocyte growth factor, glial cell line-derived neurotrophic factor, and insulin-like growth factor using human artificial chromosome vector (HAC-MSCs). Here, we demonstrated the transplantation of MNCs with HAC-MSCs in ALS mice. As per our results, the progression of motor dysfunction was significantly delayed, and their survival was prolonged dramatically. Additional analysis revealed preservation of motor neurons, suppression of gliosis, engraftment of numerous MNCs, and elevated chemotaxis-related cytokines in the spinal cord of treated mice. Therefore, growth factor-expressing MSCs enhance the therapeutic effects of bone marrow-derived MNCs for ALS and have a high potential as a novel cell therapy for patients with ALS.
MNCs with growth factor-expressing MSCs is an effective cell therapy for ALS mice The MSCs enhance therapeutic effects by migration of MNCs into ALS mice spinal cord This cell therapy suppresses neuronal loss and gliosis in ALS mice spinal cord This cell therapy induces several cytokines expression in ALS mice spinal cord
Collapse
Affiliation(s)
- Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Shuhei Kobashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yasuhiro Watanabe
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Mami Nakanishi
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Naoto Honda
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Natsuko Ohashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
28
|
Guy R, Offen D. Promising Opportunities for Treating Neurodegenerative Diseases with Mesenchymal Stem Cell-Derived Exosomes. Biomolecules 2020; 10:E1320. [PMID: 32942544 PMCID: PMC7564210 DOI: 10.3390/biom10091320] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disease refers to any pathological condition in which there is a progressive decline in neuronal function resulting from brain atrophy. Despite the immense efforts invested over recent decades in developing treatments for neurodegenerative diseases, effective therapy for these conditions is still an unmet need. One of the promising options for promoting brain recovery and regeneration is mesenchymal stem cell (MSC) transplantation. The therapeutic effect of MSCs is thought to be mediated by their secretome, and specifically, by their exosomes. Research shows that MSC-derived exosomes retain some of the characteristics of their parent MSCs, such as immune system modulation, regulation of neurite outgrowth, promotion of angiogenesis, and the ability to repair damaged tissue. Here, we summarize the functional outcomes observed in animal models of neurodegenerative diseases following MSC-derived exosome treatment. We will examine the proposed mechanisms of action through which MSC-derived exosomes mediate their therapeutic effects and review advanced studies that attempt to enhance the improvement achieved using MSC-derived exosome treatment, with a view towards future clinical use.
Collapse
Affiliation(s)
| | - Daniel Offen
- Felsenstein Medical Research Center, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
29
|
Chia YC, Anjum CE, Yee HR, Kenisi Y, Chan MKS, Wong MBF, Pan SY. Stem Cell Therapy for Neurodegenerative Diseases: How Do Stem Cells Bypass the Blood-Brain Barrier and Home to the Brain? Stem Cells Int 2020; 2020:8889061. [PMID: 32952573 PMCID: PMC7487096 DOI: 10.1155/2020/8889061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 01/14/2023] Open
Abstract
Blood-brain barrier (BBB) is a term describing the highly selective barrier formed by the endothelial cells (ECs) of the central nervous system (CNS) homeostasis by restricting movement across the BBB. An intact BBB is critical for normal brain functions as it maintains brain homeostasis, modulates immune cell transport, and provides protection against pathogens and other foreign substances. However, it also prevents drugs from entering the CNS to treat neurodegenerative diseases. Stem cells, on the other hand, have been reported to bypass the BBB and successfully home to their target in the brain and initiate repair, making them a promising approach in cellular therapy, especially those related to neurodegenerative disease. This review article discusses the mechanism behind the successful homing of stem cells to the brain, their potential role as a drug delivery vehicle, and their applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yvonne Cashinn Chia
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Clarice Evey Anjum
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Hui Rong Yee
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Yenny Kenisi
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Mike K. S. Chan
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Michelle B. F. Wong
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| | - Shing Yi Pan
- Baden R&D Laboratories GmbH, Germany
- Baden Research and Testing (Asia Pac) Sdn Bhd, Malaysia
| |
Collapse
|
30
|
Wei D, Hou J, Zheng K, Jin X, Xie Q, Cheng L, Sun X. Suicide Gene Therapy Against Malignant Gliomas by the Local Delivery of Genetically Engineered Umbilical Cord Mesenchymal Stem Cells as Cellular Vehicles. Curr Gene Ther 2020; 19:330-341. [PMID: 31657679 DOI: 10.2174/1566523219666191028103703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a malignant tumor that is difficult to eliminate, and new therapies are thus strongly desired. Mesenchymal stem cells (MSCs) have the ability to locate to injured tissues, inflammation sites and tumors and are thus good candidates for carrying antitumor genes for the treatment of tumors. Treating GBM with MSCs that have been transduced with the herpes simplex virus thymidine kinase (HSV-TK) gene has brought significant advances because MSCs can exert a bystander effect on tumor cells upon treatment with the prodrug ganciclovir (GCV). OBJECTIVE In this study, we aimed to determine whether HSV-TK-expressing umbilical cord mesenchymal stem cells (MSCTKs) together with prodrug GCV treatment could exert a bystander killing effect on GBM. METHODS AND RESULTS Compared with MSCTK: U87 ratio at 1:10,1:100 and 1:100, GCV concentration at 2.5µM or 250µM, when MSCTKs were cocultured with U87 cells at a ratio of 1:1, 25 µM GCV exerted a more stable killing effect. Higher amounts of MSCTKs cocultured with U87 cells were correlated with a better bystander effect exerted by the MSCTK/GCV system. We built U87-driven subcutaneous tumor models and brain intracranial tumor models to evaluate the efficiency of the MSCTK/GCV system on subcutaneous and intracranial tumors and found that MSCTK/GCV was effective in both models. The ratio of MSCTKs and tumor cells played a critical role in this therapeutic effect, with a higher MSCTK/U87 ratio exerting a better effect. CONCLUSION This research suggested that the MSCTK/GCV system exerts a strong bystander effect on GBM tumor cells, and this system may be a promising assistant method for GBM postoperative therapy.
Collapse
Affiliation(s)
- Dan Wei
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - JiaLi Hou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Ke Zheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Xin Jin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Qi Xie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Xuan Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| |
Collapse
|
31
|
Placenta-derived multipotent mesenchymal stromal cells: a promising potential cell-based therapy for canine inflammatory brain disease. Stem Cell Res Ther 2020; 11:304. [PMID: 32698861 PMCID: PMC7374910 DOI: 10.1186/s13287-020-01799-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
Background Canine inflammatory brain disease (IBD) is a severe inflammatory disorder characterized by infiltration of activated immune cell subsets into the brain and spinal cord. Multipotent mesenchymal stromal cells (MSCs) are a promising therapy for IBD, based on their potent pro-angiogenic, neuroprotective, and immunomodulatory properties. The aims of this study were to compare the immunomodulatory attributes of canine adipose-derived MSCs (ASCs) and placenta-derived MSCs (PMSCs) in vitro. These data will serve as potency information to help inform the optimal MSC cell source to treat naturally occurring canine IBD. Methods Indoleamine 2,3 dioxygenase (IDO) activity and prostaglandin E2 (PGE2) concentration at baseline and after stimulation with interferon gamma (IFNγ) and/or tumor necrosis factor alpha (TNFα) were measured from canine ASC and PMSC cultures. Leukocyte suppression assays (LSAs) were performed to compare the ability of ASCs and PMSCs to inhibit activated peripheral blood mononuclear cell (PBMC) proliferation. IDO activity and PGE2; interleukin (IL)-2, IL-6, and IL-8; TNFα; and vascular endothelial growth factor (VEGF) concentrations were also measured from co-culture supernatants. Cell cycle analysis was performed to determine how ASCs and PMSCs altered lymphocyte proliferation. Results Activated canine MSCs from both tissue sources secreted high concentrations of IDO and PGE2, after direct stimulation with IFNγ and TNFα, or indirect stimulation by activated PBMCs. Both ASCs and PMSCs inhibited activated PBMC proliferation in LSA assays; however, PMSCs inhibited PBMC proliferation significantly more than ASCs. Blocking PGE2 and IDO in LSA assays determined that PGE2 is important only for ASC inhibition of PBMC proliferation. Activated ASCs increased IL-6 and VEGF secretion and decreased TNFα secretion, while activated PMSCs increased IL-6, IL-8, and VEGF secretion. ASCs inhibited lymphocyte proliferation via cell cycle arrest in the G0/G1 and PMSCs inhibited lymphocyte proliferation via induction of lymphocyte apoptosis. Conclusion Our results demonstrate that ASCs and PMSCs have substantial in vitro potential as a cell-based therapy for IBD; however, PMSCs more potently inhibited lymphocyte proliferation by inducing apoptosis of activated lymphocytes. These data suggest that the mechanism by which ASCs and PMSCs downregulate PBMC proliferation differs. Additional studies may elucidate additional mechanisms by which canine MSCs modulate neuroinflammatory responses.
Collapse
|
32
|
Shen S, Wang F, Fernandez A, Hu W. Role of platelet-derived growth factor in type II diabetes mellitus and its complications. Diab Vasc Dis Res 2020; 17:1479164120942119. [PMID: 32744067 PMCID: PMC7510352 DOI: 10.1177/1479164120942119] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus is a type of metabolic disorder characterized by hyperglycaemia with multiple serious complications, such as diabetic neuropathies, diabetic nephropathy, diabetic retinopathy, and diabetic foot. Platelet-derived growth factors are growth factors that regulate cell growth and division, playing a critical role in diabetes and its harmful complications. This review focused on the cellular mechanism of platelet-derived growth factors and their receptors on diabetes development. Furthermore, we raise some proper therapeutic molecular targets for the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Sihong Shen
- BGI Genomics, BGI-Shenzhen, Shenzhen,
China
- Diabetes Research Center, Medical School
of Ningbo University, Ningbo, China
| | - Fuyan Wang
- Diabetes Research Center, Medical School
of Ningbo University, Ningbo, China
| | | | - Weining Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen,
China
| |
Collapse
|
33
|
Shariati A, Nemati R, Sadeghipour Y, Yaghoubi Y, Baghbani R, Javidi K, Zamani M, Hassanzadeh A. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier. Eur J Cell Biol 2020; 99:151097. [PMID: 32800276 DOI: 10.1016/j.ejcb.2020.151097] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are a variety of diseases including Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) along with some other less common diseases generally described by the advanced deterioration of central or peripheral nervous system, structurally or functionally. In the last two decades, mesenchymal stromal cells (MSCs) due to their unique assets encompassing self-renewal, multipotency and accessibility in association with low ethical concern open new frontiers in the context of neurodegenerative diseases therapy. Interestingly, MSCs can be differentiated into endodermal and ectodermal lineages (e.g., neurons, oligodendrocyte, and astrocyte), and thus could be employed to advance cell-based therapeutic strategy. Additionally, as inflammation ordinarily ensues as a local response provoked by microglia in the neurodegenerative diseases, MSCs therapy because of their pronounced immunomodulatory properties is noticed as a rational approach for their treatment. Recently, varied types of studies have been mostly carried out in vitro and rodent models using MSCs upon their procurement from various sources and expansion. The promising results of the studies in rodent models have motivated researchers to design and perform several clinical trials, with a speedily rising number. In the current review, we aim to deliver a brief overview of MSCs sources, expansion strategies, and their immunosuppressive characteristics and discuss credible functional mechanisms exerted by MSCs to treat neurodegenerative disorders, covering AD, PD, ALS, MS, and HD.
Collapse
Affiliation(s)
- Ali Shariati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Nemati
- Department of Medical Emergencies, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Yasin Sadeghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Baghbani
- Department of Medical Emergencies, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Kamran Javidi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Madadi S, Katebi M, Eftekharzadeh M, Mehdipour A, Pourheydar B, Mehdizadeh M. Partial Improvement of Spatial Memory Damages by Bone Marrow Mesenchymal Stem Cells Transplantation Following Trimethyltin Chloride Administration in the Rat CA1. Basic Clin Neurosci 2020; 10:567-577. [PMID: 32477474 PMCID: PMC7253807 DOI: 10.32598/bcn.9.10.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/20/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023] Open
Abstract
Introduction: Trimethyltin Chloride (TMT) is a neurotoxin that can kill neurons in the nervous system and activate astrocytes. This neurotoxin mainly damages the hippocampal neurons. After TMT injection, behavioral changes such as aggression and hyperactivity have been reported in animals along with impaired spatial and learning memory. Hence, TMT is a suitable tool for an experimental model of neurodegeneration. The present study aims to determine the palliative effects of Bone Marrow-derived Mesenchymal Stem Cells (BM-MSCs) on the hippocampi of rats damaged from TMT exposure. Methods: We assigned 28 male Wistar rats to the following groups: control, model, vehicle, and treatment. The groups received Intraperitoneal (IP) injections of 8 mg/kg TMT. After one week, stem cells were stereotactically injected into the CA1 of the right rats’ hippocampi. Spatial memory was determined by the Morris Water Maze (MWM) test 6 weeks after cell transplantation. Finally, the rats’ brains were perfused and stained by cresyl violet to determine the numbers of cells in the Cornus Ammonis (CA1) section of the hippocampus. We assessed the expressions of Glial Fibrillary Acidic Protein (GFAP) and Neuronal-specific Nuclear (NeuN) proteins in the right hippocampus by Western blot. Results: The MWM test showed that the treatment group had significantly higher traveled distances in the target quarter compared with the model and vehicle groups (P<0.05). Based on the result of cell count (Nissl staining), the number of cells increased in the treatment group compared with the model and vehicle groups (P<0.05). Western blot results showed up-regulation of GFAP and NeuN proteins in the model, vehicle, and treatment groups compared with the control group. Conclusion: Injection of BM-MSCs may lead to a behavioral and histological improvement in TMT-induced neurotoxicity by increasing the number of pyramidal neurons and improving memory.
Collapse
Affiliation(s)
- Soheila Madadi
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Majid Katebi
- Department of Anatomy, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mina Eftekharzadeh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bagher Pourheydar
- Neurophysiology Research Center, Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Farahzadi R, Fathi E, Vietor I. Mesenchymal Stem Cells Could Be Considered as a Candidate for Further Studies in Cell-Based Therapy of Alzheimer's Disease via Targeting the Signaling Pathways. ACS Chem Neurosci 2020; 11:1424-1435. [PMID: 32310632 DOI: 10.1021/acschemneuro.0c00052] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are of particular interest because of their potential in regenerative medicine. Stem cell-based therapies cast a new hope for neurodegenerative disease treatment as a regeneration strategy, including treatment for Alzheimer's disease (AD). A multitude of cytokines and factors secreted from MSCs are known to give such multifunctional properties, but associated mechanisms of these factors have yet to be entirely understood. To better understand the in vitro effect of MSCs on a neurodegenerative disorder, we treated primary cortical and hippocampal neural cells with amyloid β (Aβ) as an in vitro cell line model for AD. For this purpose, bone marrow-derived MSCs (BMSCs) were cocultured with Aβ-treated neural cells, collected at day 3, and subjected to absolute telomere length measurement and telomerase activity assay. Next, the gene and protein expression levels of mTOR, p-mTOR, AMPK, p-AMPK, GSK-3β, p-GSK-3β, Wnt3, and β-catenin were investigated. Also, after 3 days of coculture treatment, the supernatant was collected from both groups for cytokine measurement. It was found that telomere length as a biomarker in neurodegenerative disorder as well as telomerase activity had significantly increased in the experimental group, and the presence of IL-6, IL-10, and TGF-β was obviously significant in the cocultured media. Also, BMSCs significantly changed the gene and protein expression of mTOR, AMPK, GSK-3β, and Wnt3/β-catenin signaling pathways components. It was concluded that the mentioned effects of MSCs on neural cells as an in vitro cell line model for AD as a therapeutic agent can be related to the signaling network.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Ilja Vietor
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| |
Collapse
|
36
|
Chen HX, Liang FC, Gu P, Xu BL, Xu HJ, Wang WT, Hou JY, Xie DX, Chai XQ, An SJ. Exosomes derived from mesenchymal stem cells repair a Parkinson's disease model by inducing autophagy. Cell Death Dis 2020; 11:288. [PMID: 32341347 PMCID: PMC7184757 DOI: 10.1038/s41419-020-2473-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a progressively debilitating neurodegenerative condition that leads to motor and cognitive dysfunction. At present, clinical treatment can only improve symptoms, but cannot effectively protect dopaminergic neurons. Several reports have demonstrated that human umbilical cord mesenchymal stem cells (hucMSCs) afford neuroprotection, while their application is limited because of their uncontrollable differentiation and other reasons. Stem cells communicate with cells through secreted exosomes (Exos), the present study aimed to explore whether Exos secreted by hucMSCs could function instead of hucMSCs. hucMSCs were successfully isolated and characterized, and shown to contribute to 6-hydroxydopamine (6-OHDA)-stimulated SH-SY5Y cell proliferation; hucMSC-derived Exos were also involved in this process. The Exos were purified and identified, and then labeled with PKH 26, it was found that the Exos could be efficiently taken up by SH-SY5Y cells after 12 h of incubation. Pretreatment with Exos promoted 6-OHDA-stimulated SH-SY5Y cells to proliferate and inhibited apoptosis by inducing autophagy. Furthermore, Exos reached the substantia nigra through the blood-brain barrier (BBB) in vivo, relieved apomorphine-induced asymmetric rotation, reduced substantia nigra dopaminergic neuron loss and apoptosis, and upregulated the level of dopamine in the striatum. These results demonstrate that hucMSCs-Exos have a treatment capability for PD and can traverse the BBB, indicating their potential for the effective treatment of PD.
Collapse
Affiliation(s)
- Hong-Xu Chen
- Department of Neurology, the First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shi Jiazhuang, 050031, Hebei, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi south Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China
| | - Fu-Chao Liang
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi south Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China
- Research Center, Hebei University of Chinese Medicine, No. 326 Xinshi south Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China
| | - Ping Gu
- Department of Neurology, the First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shi Jiazhuang, 050031, Hebei, China
| | - Bian-Ling Xu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi south Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China
- Department of Gynecology, the Second Hospital of Hebei Medical University, No. 215, HePing West Road, Shi Jiazhuang, 050000, Hebei, China
| | - Hong-Jun Xu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi south Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China
- Research Center, Hebei University of Chinese Medicine, No. 326 Xinshi south Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China
| | - Wen-Ting Wang
- Department of Neurology, the First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shi Jiazhuang, 050031, Hebei, China
| | - Jia-Yang Hou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi south Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China
- Research Center, Hebei University of Chinese Medicine, No. 326 Xinshi south Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China
| | - Dong-Xiao Xie
- Department of orthopaedic, Third hospital of Hebei Medical University, Shi Jiazhuang, 050000, Hebei, China
| | - Xi-Qing Chai
- Department of Neurology, the First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shi Jiazhuang, 050031, Hebei, China.
| | - Sheng-Jun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi south Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China.
- Research Center, Hebei University of Chinese Medicine, No. 326 Xinshi south Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China.
| |
Collapse
|
37
|
Han HS, Lee H, You D, Nguyen VQ, Song DG, Oh BH, Shin S, Choi JS, Kim JD, Pan CH, Jo DG, Cho YW, Choi KY, Park JH. Human adipose stem cell-derived extracellular nanovesicles for treatment of chronic liver fibrosis. J Control Release 2020; 320:328-336. [PMID: 31981658 DOI: 10.1016/j.jconrel.2020.01.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022]
Abstract
Liver fibrosis is an excessive wound healing process that occurs in response to liver damage depending on underlying aetiologies. Currently, there are no effective therapies and FDA-approved therapeutics for the treatment of liver fibrosis except liver transplantation. Multipotent adipose-derived stem cells (ADSCs) have received significant attention as regenerative medicine for liver fibrosis owing to their advantages over stem cells with other origins. However, intrinsic limitations of stem cell therapies, such as cellular rejection and tumor formation, have impeded clinical applications of the ADSC-based liver therapeutics. To overcome these problems, the extracellular nanovesicles (ENVs) responsible for the therapeutic effect of ADSCs (A-ENVs) have shown considerable promise as cell-free therapeutics for liver diseases. However, A-ENVs have not been used for the treatment of intractable chronic liver diseases including liver fibrosis and cirrhosis. Therefore, in this study, we investigated the in vitro and in vivo antifibrotic efficacy of A-ENVs in thioacetamide-induced liver fibrosis models. A-ENVs significantly downregulated the expression of fibrogenic markers, such as matrix metalloproteinase-2, collagen-1, and alpha-smooth muscle actin. The systemic administration of A-ENVs led to high accumulation in fibrotic liver tissue and the restoration of liver functionality in liver fibrosis models through a marked reduction in α-SMA and collagen deposition. These results demonstrate the significant potential of A-ENVs for use as extracellular nanovesicles-based therapeutics in the treatment of liver fibrosis and possibly other intractable chronic liver diseases.
Collapse
Affiliation(s)
- Hwa Seung Han
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Hansang Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - DongGil You
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae-Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Byeong Hoon Oh
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea; Research Institute, Exostemtech Inc., Ansan 15588, Republic of Korea
| | - Jae Dong Kim
- Research Institute, Exostemtech Inc., Ansan 15588, Republic of Korea
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea; Research Institute, Exostemtech Inc., Ansan 15588, Republic of Korea.
| | - Ki Young Choi
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
38
|
Muhammad SA. Mesenchymal stromal cell secretome as a therapeutic strategy for traumatic brain injury. Biofactors 2019; 45:880-891. [PMID: 31498511 DOI: 10.1002/biof.1563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a global health problem that is a common cause of disability and mortality. Despite the availability of many treatment options, none is capable of restoring functional and structural recovery of the damaged brain. Both the results of preclinical and clinical studies suggest the use of mesenchymal stromal cells (MSCs) as a therapeutic strategy for structural and functional recovery in TBI. However, recent evidence shows that the neuroprotective potential of MSCs is due to multiple secretions of bioactive molecules that modulate tissue microenvironment for tissue repair and regeneration. The results of preclinical studies indicate the therapeutic benefits of MSC secretome in TBI. Soluble bioactive molecules and extracellular vesicles are the various factors secreted by MSCs that can induce neurogenesis, angiogenesis, neovascularization, and anti-inflammatory activities. This review highlights the neuroprotective effect of MSC secretome for the treatment of TBI. In addition, the possible challenges of secretome as biotherapeutics are identified and how some of the issues raised could be overcome for effective clinical application are also discussed.
Collapse
|
39
|
Kumar A, Xu Y, Yang E, Wang Y, Du Y. Fidelity of long-term cryopreserved adipose-derived stem cells for differentiation into cells of ocular and other lineages. Exp Eye Res 2019; 189:107860. [PMID: 31655040 DOI: 10.1016/j.exer.2019.107860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
Adipose-Derived Stem Cells (ADSCs) have an important contribution in regenerative medicine ranging from testing stem cell therapy for disease treatment in pre-clinical models to clinical trials. For immediate use of stem cells for therapy, there is a requirement of the high dose of stem cells at different time points which can be met by cryopreservation. In this study, we evaluated the characteristics of long-term cryopreserved ADSCs and their regenerative potential after an average of twelve-year cryopreservation. Revived ADSCs were examined for cell viability and proliferation by trypan blue, Calcein/Hoechst and MTT assay. Expression of stem cell markers was examined by flow cytometry, immunostaining and qPCR. Colony forming efficiency and spheroid formation ability were also assessed. Multilineage differentiation potential was evaluated by induction into osteocytes, adipocytes, neural cells, corneal keratocytes and trabecular meshwork (TM) cells. Post-thaw, ADSCs maintained expression of stem cell markers CD90, CD73, CD105, CD166, NOTCH1, STRO-1, ABCG2, OCT4, KLF4. ADSCs retained colony and spheroid forming potential. These cells were able to differentiate into osteocytes, confirmed by Alizarin Red S staining and elevated expression of osteocalcin and osteopontin; into adipocytes by Oil Red O staining and elevated expression of PPARγ2. ADSCs could differentiate into neural cells, stained positive to β-III tubulin, neurofilament, GFAP as well as elevated expression of nestin and neurofilament mRNAs. ADSCs could also give rise to corneal keratocytes expressing keratocan, keratan sulfate, ALDH and collagen V, and to TM cells expressing CHI3L1 and AQP1. Differentiated TM cells responded to dexamethasone treatment with increased Myocilin expression, which could be used as in vitro glaucoma model for further studies. Conditioned medium from ADSCs was found to impart a regenerative effect on primary TM cells. In conclusion, ADSCs maintained their stemness and multipotency after long-term cryopreservation with variability between different donors. This study can have great repercussions in regenerative medicine and pave the way for future clinical trials using cryopreserved ADSCs.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yi Xu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Enzhi Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yiwen Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
40
|
Saeedi P, Halabian R, Imani Fooladi AA. A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies. Stem Cell Investig 2019; 6:34. [PMID: 31620481 DOI: 10.21037/sci.2019.08.11] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Multipotent mesenchymal stem cells (MSCs) have been considerably inspected as effective tool for cell-based therapy of inflammatory, immune-mediated, and degenerative diseases, attributed to their immunomodulatory, immunosuppressive, and regenerative potentials. In the present review, we focus on recent research findings of the clinical applications and therapeutic potential of this cell type, MSCs' mechanisms of therapy, strategies to improve their therapeutic potentials such as manipulations and preconditioning, and potential/unexpected risks which should be considered as a prerequisite step before clinical use. The potential risks would probably include undesirable immune responses, tumor formation and the transmission of incidental agents. Then, we also review some of the milestones in the field, briefly discuss challenges and highlight the new guideline suggested for future directions and perspectives.
Collapse
Affiliation(s)
- Pardis Saeedi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Ge S, Jiang X, Paul D, Song L, Wang X, Pachter JS. Human ES-derived MSCs correct TNF-α-mediated alterations in a blood-brain barrier model. Fluids Barriers CNS 2019; 16:18. [PMID: 31256757 PMCID: PMC6600885 DOI: 10.1186/s12987-019-0138-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Immune cell trafficking into the CNS is considered to contribute to pathogenesis in MS and its animal model, EAE. Disruption of the blood–brain barrier (BBB) is a hallmark of these pathologies and a potential target of therapeutics. Human embryonic stem cell-derived mesenchymal stem/stromal cells (hES-MSCs) have shown superior therapeutic efficacy, compared to bone marrow-derived MSCs, in reducing clinical symptoms and neuropathology of EAE. However, it has not yet been reported whether hES-MSCs inhibit and/or repair the BBB damage associated with neuroinflammation that accompanies EAE. Methods BMECs were cultured on Transwell inserts as a BBB model for all the experiments. Disruption of BBB models was induced by TNF-α, a pro-inflammatory cytokine that is a hallmark of acute and chronic neuroinflammation. Results Results indicated that hES-MSCs reversed the TNF-α-induced changes in tight junction proteins, permeability, transendothelial electrical resistance, and expression of adhesion molecules, especially when these cells were placed in direct contact with BMEC. Conclusions hES-MSCs and/or products derived from them could potentially serve as novel therapeutics to repair BBB disturbances in MS. Electronic supplementary material The online version of this article (10.1186/s12987-019-0138-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shujun Ge
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Xi Jiang
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.,Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Debayon Paul
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Li Song
- ImStem Biotechnology, Inc., 400 Farmington Ave., Farmington, CT, 06030, USA
| | - Xiaofang Wang
- ImStem Biotechnology, Inc., 400 Farmington Ave., Farmington, CT, 06030, USA
| | - Joel S Pachter
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| |
Collapse
|
42
|
Yu-Taeger L, Stricker-Shaver J, Arnold K, Bambynek-Dziuk P, Novati A, Singer E, Lourhmati A, Fabian C, Magg J, Riess O, Schwab M, Stolzing A, Danielyan L, Nguyen HHP. Intranasal Administration of Mesenchymal Stem Cells Ameliorates the Abnormal Dopamine Transmission System and Inflammatory Reaction in the R6/2 Mouse Model of Huntington Disease. Cells 2019; 8:E595. [PMID: 31208073 PMCID: PMC6628278 DOI: 10.3390/cells8060595] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Intrastriatal administration of mesenchymal stem cells (MSCs) has shown beneficial effects in rodent models of Huntington disease (HD). However, the invasive nature of surgical procedure and its potential to trigger the host immune response may limit its clinical use. Hence, we sought to evaluate the non-invasive intranasal administration (INA) of MSC delivery as an effective alternative route in HD. GFP-expressing MSCs derived from bone marrow were intranasally administered to 4-week-old R6/2 HD transgenic mice. MSCs were detected in the olfactory bulb, midbrain and striatum five days post-delivery. Compared to phosphate-buffered saline (PBS)-treated littermates, MSC-treated R6/2 mice showed an increased survival rate and attenuated circadian activity disruption assessed by locomotor activity. MSCs increased the protein expression of DARPP-32 and tyrosine hydroxylase (TH) and downregulated gene expression of inflammatory modulators in the brain 7.5 weeks after INA. While vehicle treated R6/2 mice displayed decreased Iba1 expression and altered microglial morphology in comparison to the wild type littermates, MSCs restored both, Iba1 level and the thickness of microglial processes in the striatum of R6/2 mice. Our results demonstrate significantly ameliorated phenotypes of R6/2 mice after MSCs administration via INA, suggesting this method as an effective delivering route of cells to the brain for HD therapy.
Collapse
Affiliation(s)
- Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Janice Stricker-Shaver
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Katrin Arnold
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), D-04103 Leipzig, Germany.
| | - Patrycja Bambynek-Dziuk
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Arianna Novati
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Elisabeth Singer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
| | - Claire Fabian
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), D-04103 Leipzig, Germany.
| | - Janine Magg
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, D-70376 Stuttgart, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Laboratory of Neuroscience, Yerevan State Medical University, 0025 Yerevan, Armenia.
| | - Alexandra Stolzing
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK.
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Laboratory of Neuroscience, Yerevan State Medical University, 0025 Yerevan, Armenia.
| | - Hoa Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany.
- Departments of Medical Chemistry and Biochemistry, Yerevan State Medical University, 0025 Yerevan, Armenia.
| |
Collapse
|
43
|
The Neuroprotective Effect of Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cells is Impaired by N-acetyl Cysteine Supplementation. Mol Neurobiol 2019; 55:13-25. [PMID: 28812231 DOI: 10.1007/s12035-017-0714-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxidative stress is a common feature in neurodegenerative diseases associated with neuroinflammation, and therefore, has been proposed as a key target for novel therapies for these diseases. Recently, adipose-derived stem cell (ASC)-based cell therapy has emerged as a novel strategy for neuroprotection. In this study, we evaluate the therapeutic role of ASC-conditioned medium (ASC-CM) against H2O2-induced neurotoxicity in a new in vitro model of ec23/brain-derived neurotrophic factor (BDNF)-differentiated human SH-SY5Y neuron-like cells (SH-SY5Yd). In the presence of ASC-CM, stressed SH-SY5Yd cells recover normal axonal morphology (with an almost complete absence of H2O2-induced axonal beading), electrophysiological features, and cell viability. This beneficial effect of ASC-CM was associated with its antioxidant capacity and the presence of growth factors, namely, BDNF, glial cell line-derived neurotrophic factor, and transforming growth factor β1. Moreover, the neuroprotective effect of ASC-CM was very similar to that obtained from treatment with BDNF, an essential factor for SH-SY5Yd cell survival. Importantly, we also found that the addition of the antioxidant agent N-acetyl cysteine to ASC-CM abolished its restorative effect; this was associated with a strong reduction in reactive oxygen species (ROS), in contrast to the moderate decrease in ROS produced by ASC-CM alone. These results suggest that neuronal restorative effect of ASC-CM is associated with not only the release of essential neurotrophic factors, but also the maintenance of an appropriate redox state to preserve neuronal function.
Collapse
|
44
|
Sugiyama K, Nagashima K, Miwa T, Shimizu Y, Kawaguchi T, Iida K, Tamaoki N, Hatakeyama D, Aoki H, Abe C, Morita H, Kunisada T, Shibata T, Fukumitsu H, Tezuka KI. FGF2-responsive genes in human dental pulp cells assessed using a rat spinal cord injury model. J Bone Miner Metab 2019; 37:467-474. [PMID: 30187276 DOI: 10.1007/s00774-018-0954-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
The central nervous system in adult mammals does not heal spontaneously after spinal cord injury (SCI). However, SCI treatment has been improved recently following the development of cell transplantation therapy. We recently reported that fibroblast growth factor (FGF) 2-pretreated human dental pulp cells (hDPCs) can improve recovery in a rat model of SCI. This study aimed to investigate mechanisms underlying the curative effect of SCI enhanced via FGF2 pretreatment; we selected three hDPC lines upon screening for the presence of mesenchymal stem cell markers and of their functionality in a rat model of SCI, as assessed using the Basso, Beattie, and Bresnahan score of locomotor functional scale, electrophysiological tests, and morphological analyses. We identified FGF2-responsive genes via gene expression analyses in these lines. FGF2 treatment upregulated GABRB1, MMP1, and DRD2, which suggested to contribute to SCI or central the nervous system. In an expanded screening of additional lines, GABRB1 displayed rather unique and interesting behavior; two lines with the lowest sensitivity of GABRB1 to FGF2 treatment displayed an extremely minor effect in the SCI model. These findings provide insights into the role of FGF2-responsive genes, especially GABRB1, in recovery from SCI, using hDPCs treated with FGF2.
Collapse
Affiliation(s)
- Ken Sugiyama
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Kosuke Nagashima
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, Gifu, 501-1196, Japan
| | - Takahiro Miwa
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, Gifu, 501-1196, Japan
| | - Yuta Shimizu
- Department of Periodontology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Tomoko Kawaguchi
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Kazuki Iida
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Naritaka Tamaoki
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Daijiro Hatakeyama
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, Gifu, 501-1196, Japan
| | - Ken-Ichi Tezuka
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan.
| |
Collapse
|
45
|
Li J, Xue H, Li T, Chu X, Xin D, Xiong Y, Qiu W, Gao X, Qian M, Xu J, Wang Z, Li G. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE -/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun 2019; 510:565-572. [PMID: 30739785 DOI: 10.1016/j.bbrc.2019.02.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the vasculature. Exosomes derived from mesenchymal stem cells (MSCs) exert immunomodulatory and immunosuppressive effects; however, the MSCs-exosomes administration on atherosclerosis was unknown. Here, our ApoE-/- mice were fed a high-fat diet and received intravenous injections of exosomes from MSCs for 12 weeks. After tail-vein injection, MSCs-exosomes were capable of migrating to atherosclerotic plaque and selectively taking up residence near macrophages. MSCs-exosomes treatment decreased the atherosclerotic plaque area of ApoE-/- mice and greatly reduced the infiltration of macrophages in the plaque, associating induced macrophage polarization towards M2. In vitro, MSCs-exosomes treatment markedly inhibited LPS-induced M1 markers expression, while increased M2 markers expression in macrophages. Moreover, miR-let7 family was found to be highly enriched in MSCs-exosomes. Endogenous miR-let7 expression was found in the aortic root of ApoE-/- mice, and MSCs-exosomes treatment further up-regulated miR-let7 levels. In addition, inhibition of miR-let7 in U937 cells significantly inhibited the migration and M2 polarization via IGF2BP1 and HMGA2 pathway respectively in vitro. Our study demonstrates that MSCs-exosomes ameliorated atherosclerosis in ApoE-/- and promoted M2 macrophage polarization in the plaque through miR-let7/HMGA2/NF-κB pathway. In addition, MSCs-exosomes suppressed macrophage infiltration via miR-let7/IGF2BP1/PTEN pathway in the plaque. This finding extends our knowledge on MSCs-exosomes affect inflammation in atherosclerosis plaque and provides a potential method to prevent the atherosclerosis. Exosomes from MSCs hold promise as therapeutic agents to reduce the residual risk of coronary artery diseases.
Collapse
Affiliation(s)
- Jiangbing Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China; Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Tingting Li
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Xili Chu
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Danqing Xin
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Ye Xiong
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Xiao Gao
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China; Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China
| | - Mingyu Qian
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Jiangye Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
46
|
Kantawong F, Saksiriwisitkul C, Riyapa C, Limpakdee S, Wanachantararak P, Kuboki T. Reprogramming of mouse fibroblasts into neural lineage cells using biomaterials. ACTA ACUST UNITED AC 2018; 8:129-138. [PMID: 29977834 PMCID: PMC6026523 DOI: 10.15171/bi.2018.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/30/2017] [Accepted: 01/04/2018] [Indexed: 11/24/2022]
Abstract
![]()
Introduction: Induced neural stem cells (iNSCs) have the ability of differentiation into neurons, astrocytes and oligodendrocytes. iNSCs are very useful in terms of research and treatment. The present study offers an idea that biomaterials could be one of the tools that could modulate reprogramming process in the fibroblasts.
Methods: Gelatin biomaterials were fabricated into 3 types, including (i) gelatin, (ii) gelatin with 1 mg/mL hydroxyapatite, and (iii) gelatin with hydroxyapatite and pig brain. NIH/3T3 fibroblasts were cultured on each type of biomaterial for 7, 9 and 14 days. RT-PCR was performed to investigate the gene expression of the fibroblasts on biomaterials compared to the fibroblasts on tissue culture plates. PI3K/Akt signaling was performed by flow cytometry after 24 hours seeding on the biomaterials. The biomaterials were also tested with the human APCs and PDL cells.
Results: The fibroblasts exhibited changes in the expression of the reprogramming factor; Klf4 and the neural transcription factors; NFIa, NFIb and Ptbp1 after 9 days culture. The cultivation of fibroblasts on the biomaterials for 7 days showed a higher expression of the transcription factor SOX9. The expression of epigenetic genes; Kat2a and HDAC3 were changed upon the cultivation on the biomaterials for 9 days. The fibroblasts cultured on the biomaterials showed an activation of PI3K/Akt signaling. The human APCs and human PDL cells developed mineralization process on biomaterials
Conclusion: Changes in the expression of Klf4, NFIa, NFIb, Ptbp1 and SOX9 indicated that fibroblasts were differentiated into an astrocytic lineage. It is possible that the well-designed biomaterials could work as powerful tools in the reprogramming process of fibroblasts into iNSCs.
Collapse
Affiliation(s)
- Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chanidapa Saksiriwisitkul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chanakan Riyapa
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suchalinee Limpakdee
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Thasaneeya Kuboki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
47
|
Han L, Zhou Y, Zhang R, Wu K, Lu Y, Li Y, Duan R, Yao Y, Zhu D, Jia Y. MicroRNA Let-7f-5p Promotes Bone Marrow Mesenchymal Stem Cells Survival by Targeting Caspase-3 in Alzheimer Disease Model. Front Neurosci 2018; 12:333. [PMID: 29872375 PMCID: PMC5972183 DOI: 10.3389/fnins.2018.00333] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/30/2018] [Indexed: 12/29/2022] Open
Abstract
Widespread death of transplanted mesenchymal stem cells (MSCs) hampers the development of stem cell therapy for Alzheimer disease (AD). Cell pre-conditioning might help cope with this challenge. We tested whether let-7f-5p-modified MSCs could prolong the survival of MSCs after transplantation. When exposed to Aβ25−35in vitro, MSCs showed significant early apoptosis with decrease in the let-7f-5p levels and increased caspase-3 expression. Upregulating microRNA let-7f-5p in MSCs alleviated Aβ25−35-induced apoptosis by decreasing the caspase-3 levels. After computerized analysis and the luciferase reporter assay, we identified that caspases-3 was the target gene of let-7f-5p. In vivo, hematoxylin and eosin staining confirmed the success of MSCs transplantation into the lateral ventricles, and the let-7f-5p upregulation group showed the lowest apoptotic rate of MSCs detected by TUNEL immunohistochemistry analysis and immunofluorescence. Similarly, bioluminescent imaging showed that let-7f-5p upregulation moderately prolonged the retention of MSCs in brain. In summary, we identified the anti-apoptotic role of let-7f-5p in Aβ25−35-induced cytotoxicity, as well as the protective effect of let-7f-5p on survival of grafted MSCs by targeting caspase-3 in AD models. These findings show a promising approach of microRNA-modified MSCs transplantation as a therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Linlin Han
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiyi Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaimin Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhui Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Department of Children Rehabilitation, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Cho JS, Lee J, Jeong DU, Kim HW, Chang WS, Moon J, Chang JW. Effect of Placenta-Derived Mesenchymal Stem Cells in a Dementia Rat Model via Microglial Mediation: a Comparison between Stem Cell Transplant Methods. Yonsei Med J 2018; 59:406-415. [PMID: 29611403 PMCID: PMC5889993 DOI: 10.3349/ymj.2018.59.3.406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a therapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modality has not yet been established. In this study, we studied the therapeutic effects of human placenta-derived mesenchymal stem cells (pMSCs) in dementia rat model using either intracerebroventricular (ICV) or intravenous (IV) injections and analyzed their mechanisms of therapeutic action. MATERIALS AND METHODS Dementia modeling was established by intraventricular injection of 192 IgG-saporin, which causes lesion of cholinergic neurons. Sixty-five male Sprague-Dawley rats were divided into five groups: control, lesion, lesion+ICV injection of pMSCs, lesion+IV injection of pMSCs, and lesion+donepezil. Rats were subjected to the Morris water maze and subsequent immunostaining analyses. RESULTS Both ICV and IV pMSC administrations allowed significant cognitive recovery compared to the lesioned rats. Acetylcholinesterase activity was significantly rescued in the hippocampus of rats injected with pMSCs post-lesion. Choline acetyltransferase did not co-localize with pMSCs, showing that pMSCs did not directly differentiate into cholinergic cells. Number of microglial cells increased in lesioned rats and significantly decreased back to normal levels with pMSC injection. CONCLUSION Our results suggest that ICV and IV injections of pMSCs facilitate the recovery of cholinergic neuronal populations and cognitive behavior. This recovery likely occurs through paracrine effects that resemble microglia function rather than direct differentiation of injected pMSCs into cholinergic neurons.
Collapse
Affiliation(s)
- Jae Sung Cho
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jihyeon Lee
- Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Da Un Jeong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Han Wool Kim
- General Research Institute, Gangnam CHA General Hospital, Seoul, Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jisook Moon
- General Research Institute, Gangnam CHA General Hospital, Seoul, Korea
- Department of Bioengineering, College of Life Science, CHA University, Seoul, Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
49
|
Therapeutic Potential of a Combination of Electroacupuncture and TrkB-Expressing Mesenchymal Stem Cells for Ischemic Stroke. Mol Neurobiol 2018; 56:157-173. [PMID: 29682700 DOI: 10.1007/s12035-018-1067-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/08/2018] [Indexed: 12/15/2022]
Abstract
We prepared and grafted tropomyosin receptor kinase B (TrkB) gene-transfected mesenchymal stem cells (TrkB-MSCs) into the ischemic penumbra and investigated whether electroacupuncture (EA) treatment could promote functional recovery from ischemic stroke. For the behavioral test, TrkB-MSCs+EA resulted in significantly improved motor function compared to that obtained with MSCs+EA or TrkB-MSCs alone. At 30 days after middle cerebral artery occlusion (MCAO), the largest number of grafted MSCs was detected in the TrkB-MSC+EA group. Some differentiation into immature neuroblasts and astrocytes was detected; however, only a few mature neuron-like cells were found. Compared to other treatments, TrkB-MSCs+EA upregulated the expression of mature brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT4) and induced the activation of TrkB receptor and its transcription factor cAMP response element-binding protein (CREB). At 60 days after MCAO, EA highly promoted the differentiation of TrkB-MSCs into mature neuron-like cells compared to the effect in MSCs. A selective TrkB antagonist, ANA-12, reverted the effect of TrkB-MSCs+EA in motor function recovery and survival of grafted MSCs. Our results suggest that EA combined with grafted TrkB-MSCs promotes the expression of BDNF and NT4, induces the differentiation of TrkB-MSCs, and improves motor function. TrkB-MSCs could serve as effective therapeutic agents for ischemic stroke if used in combination with BDNF/NT4-inducing therapeutic approaches.
Collapse
|
50
|
Devetzi M, Goulielmaki M, Khoury N, Spandidos DA, Sotiropoulou G, Christodoulou I, Zoumpourlis V. Genetically‑modified stem cells in treatment of human diseases: Tissue kallikrein (KLK1)‑based targeted therapy (Review). Int J Mol Med 2018; 41:1177-1186. [PMID: 29328364 PMCID: PMC5819898 DOI: 10.3892/ijmm.2018.3361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
The tissue kallikrein-kinin system (KKS) is an endogenous multiprotein metabolic cascade which is implicated in the homeostasis of the cardiovascular, renal and central nervous system. Human tissue kallikrein (KLK1) is a serine protease, component of the KKS that has been demonstrated to exert pleiotropic beneficial effects in protection from tissue injury through its anti-inflammatory, anti-apoptotic, anti-fibrotic and anti-oxidative actions. Mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs) constitute populations of well-characterized, readily obtainable multipotent cells with special immunomodulatory, migratory and paracrine properties rendering them appealing potential therapeutics in experimental animal models of various diseases. Genetic modification enhances their inherent properties. MSCs or EPCs are competent cellular vehicles for drug and/or gene delivery in the targeted treatment of diseases. KLK1 gene delivery using adenoviral vectors or KLK1 protein infusion into injured tissues of animal models has provided particularly encouraging results in attenuating or reversing myocardial, renal and cerebrovascular ischemic phenotype and tissue damage, thus paving the way for the administration of genetically modified MSCs or EPCs with the human tissue KLK1 gene. Engraftment of KLK1-modified MSCs and/or KLK1-modified EPCs resulted in advanced beneficial outcome regarding heart and kidney protection and recovery from ischemic insults. Collectively, findings from pre-clinical studies raise the possibility that tissue KLK1 may be a novel future therapeutic target in the treatment of a wide range of cardiovascular, cerebrovascular and renal disorders.
Collapse
Affiliation(s)
- Marina Devetzi
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Nicolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Ioannis Christodoulou
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|