1
|
Jia Z, Zhang Y, Cao L, Wang J, Liang H. Research hotspots and trends of immunotherapy and melanoma: A bibliometric analysis during 2014-2024. Hum Vaccin Immunother 2025; 21:2464379. [PMID: 40012099 PMCID: PMC11869780 DOI: 10.1080/21645515.2025.2464379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
Over the last decade, the increasing global prevalence of melanoma has sparked growing interest in immunotherapies, which show significant potential against this form of skin cancer. This research aims to offer a framework to guide future studies and inspire new research directions. In this study, we used the Web of Science Core Collection to collect papers on immunotherapy and melanoma published between 2014 and 2024. With Excel and visualization tools like VOSviewer, COOC 13.2, Citespace, and Bibliometrix (R-Tool of R-Studio), we analyzed the data to spot trends and new focuses in the research. Our findings indicate a substantial surge in research activity concerning immunotherapy and melanoma between 2014 and 2024. The USA and China emerged as leading contributors, engaging in extensive and close collaborative efforts with European counterparts. Furthermore, seven of the top 10 research institutions are located in the USA, with the MD Anderson Cancer Center in Texas being the most productive. In addition, the Journal of Cancer Immunotherapy is the journal with the most articles published in the field. Professor Georgina V. Long from the Melanoma Institute at the University of Sydney was one of the most productive scholars. Keyword analysis shows that immune checkpoint inhibitors, tumor microenvironment and targeted therapies are key areas of interest for the research community. This paper uses bibliometric analysis to outline research trends and key points in immunotherapy and melanoma from 2014 to 2024, which helps understand the current research and guides future research directions.
Collapse
Affiliation(s)
- Zixuan Jia
- Department of Urology, People’s Hospital of Longhua, Shenzhen, Guangdong, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Youao Zhang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, Guangdong, China
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Luyan Cao
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| | - Jieyan Wang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, Guangdong, China
| | - Hui Liang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Liu Y, Chen X, Zhang W, Yu B, Cen Y, Liu Q, Tang Y, Li S. A CXCR4-targeted immunomodulatory nanomedicine for photodynamic amplified immune checkpoint blockade therapy against breast cancer. Acta Biomater 2025:S1742-7061(25)00223-5. [PMID: 40154764 DOI: 10.1016/j.actbio.2025.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The therapeutic efficacy of immune checkpoint blockade (ICB) is critically compromised by inadequate T lymphocyte infiltration, low T cell-induced pro-inflammatory responses, and the accumulation of immunosuppressive cells within the tumor microenvironment (TME). In this work, a chimeric peptide-engineered immunomodulatory nanomedicine (designated as CXNP-CeBM) is developed for photodynamic amplified ICB therapy against breast cancer. CXNP-CeBM is composed of a CXCR4-targeting peptide ((C16)2-KLGASWHRPDK) loaded with the photosensitizer of Ce6 and the PD-1/PD-L1 inhibitor of BMS8. CXNP-CeBM specifically recognizes CXCR4 on breast cancer, thus suppressing CXCR4-mediated signaling pathways and enhancing the intracellular delivery of therapeutic agents. The photodynamic therapy (PDT) of CXNP-CeBM damages primary tumor cells to initiate immunogenic cell death (ICD), leading to the release of high mobility group box 1 (HMGB1) and the exposure of calreticulin (CRT). Simultaneously, the interruption of CXCR4 signaling reduces tumor fibrosis, promotes T-cell infiltration, and decreases the number of immunosuppressive cells, thereby enhancing the immunotherapeutic effect of ICB. Treatment with CXNP-CeBM would activate systemic anti-tumor immunity, leading to effective inhibition of both primary and lung metastatic tumors, while maintaining low systemic toxicity. This work provides a reliable strategy for the delivery of multi-synergistic agents, effectively activating breast cancer immunity through a multifaceted mechanism. STATEMENT OF SIGNIFICANCE: Although immune checkpoint blockade (ICB) has shown great potential for malignant tumor therapy, its efficacy is compromised by immunosuppressive microenvironments. Herein, a CXCR4-targeted immunomodulatory nanomedicine (CXNP-CeBM) was constructed for photodynamic amplified ICB therapy of breast cancer. CXNP-CeBM could selectively deliver photosensitizers and PD-1/PD-L1 inhibitors to breast cancer cells that overexpressed the chemokine receptor CXCR4, while interrupting CXCR4 signaling to reduce tumor fibrosis, promote T-cell infiltration, and decrease the number of immunosuppressive cells. Moreover, CXNP-CeBM induced photodynamic therapy to trigger immunogenic cell death while downregulating the PD-L1 level to destroy immune evasion mechanisms, thus activating immunological cascades to treat both primary and lung metastatic tumors. This study provided a multi-synergistic strategy for breast cancer immunotherapy through a multifaceted mechanism.
Collapse
Affiliation(s)
- Yibin Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiayun Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Baixue Yu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qianqian Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Youzhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
3
|
Esmaeilpour D, Ghomi M, Zare EN, Sillanpää M. Recent advances in DNA nanotechnology for cancer detection and therapy: A review. Int J Biol Macromol 2025; 307:142136. [PMID: 40107552 DOI: 10.1016/j.ijbiomac.2025.142136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Deoxyribonucleic acid (DNA) nanotechnology has rapidly emerged as a transformative field in biomedical research, offering innovative solutions for the detection and treatment of cancer. This review provides a comprehensive analysis of the role of DNA-based nanosystems in oncology, emphasizing their potential to address the limitations of conventional diagnostic and therapeutic approaches. Key advancements in DNA nanotechnology include the development of highly specific and sensitive nanostructures for early cancer detection, as well as precision-targeted delivery systems that enhance the efficacy of cancer therapies while minimizing side effects. The objectives of this review are threefold: first, to summarize the latest advancements in DNA nanotechnology, highlighting innovations in cancer biomarker detection and therapeutic applications; second, to explore the molecular mechanisms that enable these DNA-based nanosystems to interact with cancer cells with remarkable precision, including their design principles, self-assembly processes, and biological interactions; and third, to discuss the future implications of these technologies, considering the challenges, potential breakthroughs, and the steps needed to integrate DNA nanotechnology into clinical practice. By achieving these objectives, the review aims to offer insights into how DNA nanotechnology could revolutionize cancer care, providing new strategies for more personalized and effective treatments, and ultimately improving patient outcomes in the battle against cancer.
Collapse
Affiliation(s)
- Donya Esmaeilpour
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Science, Shiraz 71345-1583, Iran.
| | - Matineh Ghomi
- Department of Chemistry, Jundi-Shapur University of Technology, Dezful, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
4
|
Singh P, Pandit S, Balusamy SR, Madhusudanan M, Singh H, Amsath Haseef HM, Mijakovic I. Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications. Adv Healthc Mater 2025; 14:e2403059. [PMID: 39501968 PMCID: PMC11804848 DOI: 10.1002/adhm.202403059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Indexed: 01/05/2025]
Abstract
Cancer remains one of the most challenging health issues globally, demanding innovative therapeutic approaches for effective treatment. Nanoparticles, particularly those composed of gold, silver, and iron oxide, have emerged as promising candidates for changing cancer therapy. This comprehensive review demonstrates the landscape of nanoparticle-based oncological interventions, focusing on the remarkable advancements and therapeutic potentials of gold, silver, and iron oxide nanoparticles. Gold nanoparticles have garnered significant attention for their exceptional biocompatibility, tunable surface chemistry, and distinctive optical properties, rendering them ideal candidates for various cancer diagnostic and therapeutic strategies. Silver nanoparticles, renowned for their antimicrobial properties, exhibit remarkable potential in cancer therapy through multiple mechanisms, including apoptosis induction, angiogenesis inhibition, and drug delivery enhancement. With their magnetic properties and biocompatibility, iron oxide nanoparticles offer unique cancer diagnosis and targeted therapy opportunities. This review critically examines the recent advancements in the synthesis, functionalization, and biomedical applications of these nanoparticles in cancer therapy. Moreover, the challenges are discussed, including toxicity concerns, immunogenicity, and translational barriers, and ongoing efforts to overcome these hurdles are highlighted. Finally, insights into the future directions of nanoparticle-based cancer therapy and regulatory considerations, are provided aiming to accelerate the translation of these promising technologies from bench to bedside.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Santosh Pandit
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and BiotechnologySejong UniversityGwangjin‐GuSeoul05006Republic of Korea
| | - Mukil Madhusudanan
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Hina Singh
- Division of Biomedical SciencesSchool of MedicineUniversity of CaliforniaRiversideCA92521USA
| | | | - Ivan Mijakovic
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| |
Collapse
|
5
|
Heidari R, Assadollahi V, Marashi SN, Elahian F, Mirzaei SA. Identification of Novel lncRNAs Related to Colorectal Cancer Through Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2025; 2025:5538575. [PMID: 39949372 PMCID: PMC11824705 DOI: 10.1155/bmri/5538575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/15/2024] [Indexed: 02/16/2025]
Abstract
Long noncoding RNA (lncRNA) plays a critical role in cancer cell proliferation, invasion, metastasis, and chemoresistance. The current study introduces novel lncRNAs in colorectal cancer (CRC) through bioinformatics analysis. GSE134834 CRC-related microarray of Gene Expression Omnibus (GEO) was analyzed to identify differentially expressed genes (DEGs) in CRC samples against normal samples. Analysis revealed 6763 DEGs (p < 0.05 and |log fold change (FC)| ≥ 0.5) that include differentially expressed mRNA (DEmRNA) and differentially expressed long noncoding RNA (DElncRNA). Novel lncRNAs were identified, and to better understand the biological function of the identified lncRNAs, gene modules were constructed using weighted gene coexpression network analysis (WGCNA), and finally, two modules for lncRNAs were obtained. The coexpression modules with these lncRNAs were subjected to enrichment analysis in FunRich software to predict their functions through their coexpressed genes. Gene ontology results of modules related to novel lncRNA revealed they significantly enriched the cellular pathways regulation in cancer. The protein-protein interaction (PPI) network of novel lncRNAs-related modules was constructed using Search Tool for the Retrieval of Interacting Genes (STRING) and visualized using the Cytoscape software. Hub genes were screened from the PPI network by the CytoHubba plug-in of Cytoscape. The hub genes were MRTO4, CDK1, CDC20, RPF2, NOP58, NIFK, GTPBP4, BUB1, BUB1B, and BOP1 for the lightpink4 module and BYSL, RPS23 (ribosomal protein S23), RSL1D1 (ribosomal L1 domain containing 1), NAT10, NOP14, GNL2, MRPS12, NOL6 (nucleolar protein 6), IMP4, and RRP12 (ribosomal RNA processing 12 homolog) for the pink module. The expression levels of the top DEmRNA and module hub genes in CRC were validated using the Gene Expression Profiling Interactive Analysis (GEPIA) database. Generally, our findings offer crucial insight into the hub genes and novel lncRNAs in the development of CRC by bioinformatics analysis, information that may prove useful in the identification of new biomarkers and treatment targets in CRC; however, more experimental investigation is required to validate the findings of the present study.
Collapse
Affiliation(s)
- Razieh Heidari
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyedeh Negar Marashi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Advanced Technologies Core, Baylor College of Medicine, Houston, Texas, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Castro A, Pittini Á, Berois N, Faccio R, Miranda P, Mombrú ÁW, Osinaga E, Pardo H. Development, Characterization, and Evaluation of Chi-Tn mAb-Functionalized DOTAP-PLGA Hybrid Nanoparticles Loaded with Docetaxel for Lung Cancer Therapy. Pharmaceutics 2025; 17:164. [PMID: 40006531 PMCID: PMC11859453 DOI: 10.3390/pharmaceutics17020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The focus of this study was to prepare and characterize docetaxel (DCX)-loaded lipid/polymer hybrid nanoparticles (LPHNps) functionalized with the monoclonal antibody (mAb) Chi-Tn for a potential active targeting approach in lung cancer treatment. Methods: We synthesized DOTAP-PLGA hybrid nanoparticles loaded with DCX and functionalized them with Chi-Tn mAb through a biotin-avidin approach. The physicochemical characterization involved dynamic light scattering, transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The in vitro and in vivo evaluations encompassed uptake studies, cell viability tests, and the assessment of tumor growth control in a lung cancer model. Results: The nanoparticles featured a hydrophobic PLGA core with 99.9% DCX encapsulation efficiency, surrounded by a DOTAP lipid shell ensuring colloidal stability with a high positive surface charge. The incorporation of PEGylated lipids on their surface helps evade the immune system and facilitate Chi-Tn mAb attachment. The resulting nanoparticles exhibit a spherical shape with monodisperse particle sizes averaging 250 nm, and demonstrate sustained drug release. In vitro uptake studies and viability assays conducted in A549 cancer cells show that the Chi-Tn mAb enhances nanoparticle internalization and significantly reduces cell viability. In vivo studies demonstrate a notable reduction in tumor volume and an increased survival rate in the A549 tumor xenograft mice model when DCX was encapsulated in nanoparticles and targeted with Chi-Tn mAb in comparison to the free drug. Conclusions: Therefore, Chi-Tn-functionalized LPHNps hold promise as carriers for actively targeting DCX to Tn-expressing carcinomas.
Collapse
Affiliation(s)
- Analía Castro
- Centro NanoMat, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Canelones 91000, Uruguay; (A.C.); (R.F.); (P.M.); (Á.W.M.)
| | - Álvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (Á.P.); (N.B.); (E.O.)
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (Á.P.); (N.B.); (E.O.)
| | - Ricardo Faccio
- Centro NanoMat, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Canelones 91000, Uruguay; (A.C.); (R.F.); (P.M.); (Á.W.M.)
- Cátedra de Física, Facultad de Química, DETEMA, Universidad de la República, Montevideo 11800, Uruguay
| | - Pablo Miranda
- Centro NanoMat, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Canelones 91000, Uruguay; (A.C.); (R.F.); (P.M.); (Á.W.M.)
| | - Álvaro W. Mombrú
- Centro NanoMat, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Canelones 91000, Uruguay; (A.C.); (R.F.); (P.M.); (Á.W.M.)
- Cátedra de Física, Facultad de Química, DETEMA, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (Á.P.); (N.B.); (E.O.)
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Helena Pardo
- Centro NanoMat, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Canelones 91000, Uruguay; (A.C.); (R.F.); (P.M.); (Á.W.M.)
- Cátedra de Física, Facultad de Química, DETEMA, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
7
|
Tantray J, Patel A, Parveen H, Prajapati B, Prajapati J. Nanotechnology-based biomedical devices in the cancer diagnostics and therapy. Med Oncol 2025; 42:50. [PMID: 39828813 DOI: 10.1007/s12032-025-02602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Nanotechnology has significantly transformed the field of cancer diagnostics and therapeutics by introducing advanced biomedical devices. These nanotechnology-based devices exhibit remarkable capabilities in detecting and treating various cancers, addressing the limitations of traditional approaches, such as limited specificity and sensitivity. This review aims to explore the advancements in nanotechnology-driven biomedical devices, emphasizing their role in the diagnosis and treatment of cancer. Through a comprehensive analysis, we evaluate various nanotechnology-based devices across different cancer types, detailing their diagnostic and therapeutic effectiveness. The review also discusses FDA-approved nanotechnology products, patents, and regulatory trends, highlighting the innovation and clinical impact in oncology. Nanotechnology-based devices, including nanobots, smart pills, and multifunctional nanoparticles, enable precise targeting and treatment, reducing adverse effects on healthy tissues. Devices such as DNA-based nanorobots, quantum dots, and biodegradable stents offer noninvasive diagnostic and therapeutic options, showing high efficacy in preclinical and clinical settings. FDA-approved products underscore the acceptance of these technologies. Nanotechnology-based biomedical devices offer a promising future for oncology, with the potential to revolutionize cancer care through early detection, targeted treatment, and minimal side effects. Continued research and technological improvements are essential to fully realize their potential in personalized cancer therapy.
Collapse
Affiliation(s)
- Junaid Tantray
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Akhilesh Patel
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Hiba Parveen
- Faculty of Pharmacy, Veer Madho Singh Bhandari Uttrakhand Technical University, Dehradun, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Jigna Prajapati
- Faculty of Computer Application, Ganpat University, Mehsana, Gujarat, 384012, India.
| |
Collapse
|
8
|
Puttasiddaiah R, Basavegowda N, Lakshmanagowda NK, Raghavendra VB, Sagar N, Sridhar K, Dikkala PK, Bhaswant M, Baek KH, Sharma M. Emerging Nanoparticle-Based Diagnostics and Therapeutics for Cancer: Innovations and Challenges. Pharmaceutics 2025; 17:70. [PMID: 39861718 PMCID: PMC11768644 DOI: 10.3390/pharmaceutics17010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant growth is expected to surpass other significant causes of death as one of the top reasons for dismalness and mortality worldwide. According to a World Health Organization (WHO) study, this illness causes approximately between 9 and 10 million instances of deaths annually. Chemotherapy, radiation, and surgery are the three main methods of treating cancer. These methods seek to completely eradicate all cancer cells while having the fewest possible unintended impacts on healthy cell types. Owing to the lack of target selectivity, the majority of medications have substantial side effects. On the other hand, nanomaterials have transformed the identification, diagnosis, and management of cancer. Nanostructures with biomimetic properties have been grown as of late, fully intent on observing and treating the sickness. These nanostructures are expected to be consumed by growth in areas with profound disease. Furthermore, because of their extraordinary physicochemical properties, which incorporate nanoscale aspects, a more prominent surface region, explicit geometrical features, and the ability to embody different substances within or on their outside surfaces, nanostructures are remarkable nano-vehicles for conveying restorative specialists to their designated regions. This review discusses recent developments in nanostructured materials such as graphene, dendrimers, cell-penetrating peptide nanoparticles, nanoliposomes, lipid nanoparticles, magnetic nanoparticles, and nano-omics in the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Rachitha Puttasiddaiah
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | | | - Niju Sagar
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| |
Collapse
|
9
|
Sindhi K, Kanugo A. Recent Developments in Nanotechnology and Immunotherapy for the Diagnosis and Treatment of Pancreatic Cancer. Curr Pharm Biotechnol 2025; 26:143-168. [PMID: 38415488 DOI: 10.2174/0113892010284407240212110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Pancreatic cancer kills millions of people worldwide each year and is one of the most prevalent causes of mortality that requires prompt therapy. A large number of people suffering from pancreatic cancer are detected at an advanced stage, with incurable and drug-resistant tumor, hence the overall survival rate of pancreatic cancer is less. The advance phase of this cancer is generated because of expression of the cancer-causing gene, inactivation of the tumorsuppressing gene, and deregulation of molecules in different cellular signalling pathways. The prompt diagnosis through the biomarkers significantly evades the progress and accelerates the survival rates. The overexpression of Mesothelin, Urokinase plasminogen activator, IGFR, Epidermal growth factor receptor, Plectin-1, Mucin-1 and Zinc transporter 4 were recognized in the diagnosis of pancreatic cancer. Nanotechnology has led to the development of nanocarriersbased formulations (lipid, polymer, inorganic, carbon based and advanced nanocarriers) which overcome the hurdles of conventional therapy, chemotherapy and radiotherapy which causes toxicity to adjacent healthy tissues. The biocompatibility, toxicity and large-scale manufacturing are the hurdles associated with the nanocarriers-based approaches. Currently, Immunotherapybased techniques emerged as an efficient therapeutic alternative for the prevention of cancer. Immunological checkpoint targeting techniques have demonstrated significant efficacy in human cancers. Recent advancements in checkpoint inhibitors, adoptive T cell therapies, and cancer vaccines have shown potential in overcoming the immune evasion mechanisms of pancreatic cancer cells. Combining these immunotherapeutic approaches with nanocarriers holds great promise in enhancing the antitumor response and improving patient survival.
Collapse
Affiliation(s)
- Komal Sindhi
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, 425405, India
| | - Abhishek Kanugo
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, 425405, India
- Department of Pharmaceutical Quality Assurance, SVKM Institute of Pharmacy, Dhule, 424001, India
| |
Collapse
|
10
|
Nagarajan Y, Chandrasekaran N, Deepa Parvathi V. Functionalized Nanomaterials In Pancreatic Cancer Theranostics And Molecular Imaging. ChemistryOpen 2025; 14:e202400232. [PMID: 39434498 PMCID: PMC11726697 DOI: 10.1002/open.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal malignancies in the world. This lethality persists due to lack of effective and efficient treatment strategies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive epithelial malignancy which has a high incidence rate and contributes to overall cancer fatalities. As of 2022, pancreatic cancer contributes to about 3 % of all cancers globally. Over the years, research has characterised germline predisposition, the origin cell, precursor lesions, genetic alterations, structural alterations, transcriptional changes, tumour heterogeneity, metastatic progression, and the tumour microenvironment, which has improved the understanding of PDAC carcinogenesis. By using molecular-based target therapies, these fundamental advancements support primary prevention, screening, early detection, and treatment. The focus of this review is the use of targeted nanoparticles as an alternative to conventional pancreatic cancer treatment due to the various side effects of the latter. The principles of nanoparticle based cancer therapy is efficient targeting of tumour cells via enhanced permeability and retention (EPR) effects and decrease the chemotherapy side effects due to their non-specificity. To increase the efficiency of existing therapies and modify target nanoparticles, several molecular markers of pancreatic cancer cells have been identified. Thus pancreatic cancer cells can be detected using appropriately functionalized nanoparticles with specific signalling molecules. Once cancer has been identified, these nanoparticles can kill the tumour by inducing hyperthermia, medication delivery, immunotherapy or gene therapy. As potent co-delivery methods for adjuvants and tumor-associated antigens; nanoparticles (NPs) have demonstrated significant promise as delivery vehicles in cancer therapy. This ensures the precise internalization of the functionalized nanoparticle and thus also activates the immune system effectively against tumor cells. This review also discusses the immunological factors behind the uptake of functionalized nanoparticles in cancer therapies. Theranostics, which combine imaging and therapeutic chemicals in a single nanocarrier, are the next generation of medicines. Pancreatic cancer treatment may be revolutionised by the development of a tailored nanocarrier with diagnostic, therapeutic, and imaging capabilities. It is extremely difficult to incorporate various therapeutic modalities into a single nanocarrier without compromising the individual functionalities. Surface modification of nanocarriers with antibodies or proteins will enable to attain multifunctionality which increases the efficiency of pancreatic cancer therapy.
Collapse
Affiliation(s)
- Yoghalakshmi Nagarajan
- Department of Biomedical SciencesFaculty of Biomedical Sciences & TechnologySri Ramachandra Institute of Higher Education and Research (SRIHER)Tamil NaduChennai600116India
| | - Natarajan Chandrasekaran
- Senior Professor & Former DirectorCentre for NanobiotechnologyVellore Institute of Technology (VIT)Vellore Campus, Tiruvalam roadTamil NaduKatpadiVellore 632014
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical SciencesFaculty of Biomedical Sciences & TechnologySri Ramachandra Institute of Higher Education and Research (SRIHER)Tamil NaduChennai600116India
| |
Collapse
|
11
|
Zhang S, Wang H. Targeting the lung tumour stroma: harnessing nanoparticles for effective therapeutic interventions. J Drug Target 2025; 33:60-86. [PMID: 39356091 DOI: 10.1080/1061186x.2024.2410462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Lung cancer remains an influential global health concern, necessitating the development of innovative therapeutic strategies. The tumour stroma, which is known as tumour microenvironment (TME) has a central impact on tumour expansion and treatment resistance. The stroma of lung tumours consists of numerous cells and molecules that shape an environment for tumour expansion. This environment not only protects tumoral cells against immune system attacks but also enables tumour stroma to attenuate the action of antitumor drugs. This stroma consists of stromal cells like cancer-associated fibroblasts (CAFs), suppressive immune cells, and cytotoxic immune cells. Additionally, the presence of stem cells, endothelial cells and pericytes can facilitate tumour volume expansion. Nanoparticles are hopeful tools for targeted drug delivery because of their extraordinary properties and their capacity to devastate biological obstacles. This review article provides a comprehensive overview of contemporary advancements in targeting the lung tumour stroma using nanoparticles. Various nanoparticle-based approaches, including passive and active targeting, and stimuli-responsive systems, highlighting their potential to improve drug delivery efficiency. Additionally, the role of nanotechnology in modulating the tumour stroma by targeting key components such as immune cells, extracellular matrix (ECM), hypoxia, and suppressive elements in the lung tumour stroma.
Collapse
Affiliation(s)
- Shushu Zhang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Hui Wang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Jiao F, Meng L, Du K, Li X. The autophagy-lysosome pathway: a potential target in the chemical and gene therapeutic strategies for Parkinson's disease. Neural Regen Res 2025; 20:139-158. [PMID: 38767483 PMCID: PMC11246151 DOI: 10.4103/nrr.nrr-d-23-01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 05/22/2024] Open
Abstract
Parkinson's disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such as α-synuclein in neurons. As one of the major intracellular degradation pathways, the autophagy-lysosome pathway plays an important role in eliminating these proteins. Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance of α-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson's disease. Moreover, multiple genes associated with the pathogenesis of Parkinson's disease are intimately linked to alterations in the autophagy-lysosome pathway. Thus, this pathway appears to be a promising therapeutic target for treatment of Parkinson's disease. In this review, we briefly introduce the machinery of autophagy. Then, we provide a description of the effects of Parkinson's disease-related genes on the autophagy-lysosome pathway. Finally, we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy-lysosome pathway and their applications in Parkinson's disease.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Lingyan Meng
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Kang Du
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Xuezhi Li
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
13
|
Parihar A, Gaur K, Sarbadhikary P. Advanced 2D Nanomaterials for Phototheranostics of Breast Cancer: A Paradigm Shift. Adv Biol (Weinh) 2025; 9:e2400441. [PMID: 39543015 DOI: 10.1002/adbi.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Breast cancer is the leading cause of women's deaths and associated comorbidities. The advanced and targeted strategies against breast cancer have gained considerable attention due to their potential enhanced therapeutic efficacy over conventional therapies. In this context, phototherapies like photodynamic therapy (PDT) and photothermal therapy (PTT) have shown promise as an effective and alternative strategy due to reduced side effects, noninvasiveness, and spatiotemporal specificity. With the advent of nanotechnology, several types of nanomaterials that have shown excellent prospects in increasing the efficacy of photo therapies have been exploited in cancer treatment. In recent years, 2D nanomaterials have stood out promising because of their unique ultrathin planar structure, chemical, physical, tunable characteristics, and corresponding remarkable physiochemical/biological properties. In this review, the potential and the current status of several types of 2D nanomaterials such as graphene-based nanomaterials, Mxenes, Black phosphorous, and Transition Metal Dichalcogenides for photo/thermo and combination-based imaging and therapy of breast cancer have been discussed. The current challenges and prospects in terms of translational potential in future clinical oncology are highlighted.
Collapse
Affiliation(s)
- Arpana Parihar
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Kritika Gaur
- Central Sheep and wool research institute, ICAR- Indian Council of Agricultural Research, Avikanagr, Malpura, Rajasthan, 304501, India
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
14
|
Velapure P, Kansal D, Bobade C. Tumor microenvironment-responsive nanoformulations for breast cancer. DISCOVER NANO 2024; 19:212. [PMID: 39708097 DOI: 10.1186/s11671-024-04122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 12/23/2024]
Abstract
Nanomedicine, the most promising approach for regulated and targeted drug delivery, is frequently applied in cancer treatment. Essentially, accumulating evidence indicates that nanomedicine has positive results in the treatment of breast cancer (BC), with many BC patients benefiting from nanomedicine-related treatments. Currently, nanodrug delivery systems based on stimulus responses are gaining popularity because of their additional ability to manage drug release depending on the interior environment of the cancer. This review includes a synopsis of several types of internal (pH, redox, enzyme, reactive oxygen species, and hypoxia) stimuli-responsive nanoparticle drug delivery systems as well as perspectives for forthcoming times. Stimulus-responsive nanoparticles can remain stable under physiological conditions while being rapidly activated to release drugs in response to specific stimuli, prolonging blood circulation and increasing cancer cellular uptake, resulting in excellent therapeutic performance and improved biosafety. In this paper, we discuss tumor microenvironment responsive Nanoformulation for breast cancer treatment.
Collapse
Affiliation(s)
- Pallavi Velapure
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India
| | - Divyanshi Kansal
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India
| | - Chandrashekhar Bobade
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India.
| |
Collapse
|
15
|
Wu Y, Shang J, Zhang X, Li N. Advances in molecular imaging and targeted therapeutics for lymph node metastasis in cancer: a comprehensive review. J Nanobiotechnology 2024; 22:783. [PMID: 39702277 PMCID: PMC11657939 DOI: 10.1186/s12951-024-02940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/19/2024] [Indexed: 12/21/2024] Open
Abstract
Lymph node metastasis is a critical indicator of cancer progression, profoundly affecting diagnosis, staging, and treatment decisions. This review article delves into the recent advancements in molecular imaging techniques for lymph nodes, which are pivotal for the early detection and staging of cancer. It provides detailed insights into how these techniques are used to visualize and quantify metastatic cancer cells, resident immune cells, and other molecular markers within lymph nodes. Furthermore, the review highlights the development of innovative, lymph node-targeted therapeutic strategies, which represent a significant shift towards more precise and effective cancer treatments. By examining cutting-edge research and emerging technologies, this review offers a comprehensive overview of the current and potential impact of lymph node-centric approaches on cancer diagnosis, staging, and therapy. Through its exploration of these topics, the review aims to illuminate the increasingly sophisticated landscape of cancer management strategies focused on lymph node assessment and intervention.
Collapse
Affiliation(s)
- Yunhao Wu
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jin Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinyue Zhang
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Nu Li
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
16
|
El-Saadony MT, Fang G, Yan S, Alkafaas SS, El Nasharty MA, Khedr SA, Hussien AM, Ghosh S, Dladla M, Elkafas SS, Ibrahim EH, Salem HM, Mosa WFA, Ahmed AE, Mohammed DM, Korma SA, El-Tarabily MK, Saad AM, El-Tarabily KA, AbuQamar SF. Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review. Int J Nanomedicine 2024; 19:12889-12937. [PMID: 39651353 PMCID: PMC11624689 DOI: 10.2147/ijn.s487188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024] Open
Abstract
Over the last decade, biomedical nanomaterials have garnered significant attention due to their remarkable biological properties and diverse applications in biomedicine. Metal oxide nanoparticles (NPs) are particularly notable for their wide range of medicinal uses, including antibacterial, anticancer, biosensing, cell imaging, and drug/gene delivery. Among these, zinc oxide (ZnO) NPs stand out for their versatility and effectiveness. Recently, ZnO NPs have become a primary material in various sectors, such as pharmaceutical, cosmetic, antimicrobials, construction, textile, and automotive industries. ZnO NPs can generate reactive oxygen species and induce cellular apoptosis, thus underpinning their potent anticancer and antibacterial properties. To meet the growing demand, numerous synthetic approaches have been developed to produce ZnO NPs. However, traditional manufacturing processes often involve significant economic and environmental costs, prompting a search for more sustainable alternatives. Intriguingly, biological synthesis methods utilizing plants, plant extracts, or microorganisms have emerged as ideal for producing ZnO NPs. These green production techniques offer numerous medicinal, economic, environmental, and health benefits. This review highlights the latest advancements in the green synthesis of ZnO NPs and their biomedical applications, showcasing their potential to revolutionize the field with eco-friendly and cost-effective solutions.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Guihong Fang
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Si Yan
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A El Nasharty
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta, 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21531, Egypt
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, Menofia, 32511, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, 12611, Egypt
| | - Heba Mohammed Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
17
|
Xiao Y, Zhong L, Liu J, Chen L, Wu Y, Li G. Progress and application of intelligent nanomedicine in urinary system tumors. J Pharm Anal 2024; 14:100964. [PMID: 39582528 PMCID: PMC11582553 DOI: 10.1016/j.jpha.2024.100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 11/26/2024] Open
Abstract
Urinary system tumors include malignancies of the bladder, kidney, and prostate, and present considerable challenges in diagnosis and treatment. The conventional therapeutic approaches against urinary tumors are limited by the lack of targeted drug delivery and significant adverse effects, thereby necessitating novel solutions. Intelligent nanomedicine has emerged as a promising therapeutic alternative for cancer in recent years, and uses nanoscale materials to overcome the inherent biological barriers of tumors, and enhance diagnostic and therapeutic accuracy. In this review, we have explored the recent advances and applications of intelligent nanomedicine for the diagnosis, imaging, and treatment of urinary tumors. The principles of nanomedicine design pertaining to drug encapsulation, targeting and controlled release have been discussed, with emphasis on the strategies for overcoming renal clearance and tumor heterogeneity. Furthermore, the therapeutic applications of intelligent nanomedicine, its advantages over traditional chemotherapy, and the challenges currently facing clinical translation of nanomedicine, such as safety, regulation and scalability, have also been reviewed. Finally, we have assessed the potential of intelligent nanomedicine in the management of urinary system tumors, emphasizing emerging trends such as personalized nanomedicine and combination therapies. This comprehensive review underscores the substantial contributions of nanomedicine to the field of oncology and offers a promising outlook for more effective and precise treatment strategies for urinary system tumors.
Collapse
Affiliation(s)
- Yingming Xiao
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Lei Zhong
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jinpeng Liu
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Li Chen
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yi Wu
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ge Li
- Emergency Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| |
Collapse
|
18
|
Surya C, Lakshminarayana ABV, Ramesh SH, Kunjiappan S, Theivendren P, Santhana Krishna Kumar A, Ammunje DN, Pavadai P. Advancements in breast cancer therapy: The promise of copper nanoparticles. J Trace Elem Med Biol 2024; 86:127526. [PMID: 39298835 DOI: 10.1016/j.jtemb.2024.127526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent cancer among women worldwide and poses significant treatment challenges. Traditional therapies often lead to adverse side effects and resistance, necessitating innovative approaches for effective management. OBJECTIVE This review aims to explore the potential of copper nanoparticles (CuNPs) in enhancing breast cancer therapy through targeted drug delivery, improved imaging, and their antiangiogenic properties. METHODS The review synthesizes existing literature on the efficacy of CuNPs in breast cancer treatment, addressing common challenges in nanotechnology, such as nanoparticle toxicity, scalability, and regulatory hurdles. It proposes a novel hybrid method that combines CuNPs with existing therapeutic modalities to optimize treatment outcomes. RESULTS CuNPs demonstrate the ability to selectively target cancer cells while sparing healthy tissues, leading to improved therapeutic efficacy. Their unique physicochemical properties facilitate efficient biodistribution and enhanced imaging capabilities. Additionally, CuNPs exhibit antiangiogenic activity, which can inhibit tumor growth by preventing the formation of new blood vessels. CONCLUSION The findings suggest that CuNPs represent a promising avenue for advancing breast cancer treatment. By addressing the limitations of current therapies and proposing innovative solutions, this review contributes valuable insights into the future of nanotechnology in oncology.
Collapse
Affiliation(s)
- Chandana Surya
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India
| | | | - Sameera Hammigi Ramesh
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - A Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung City 80424, Taiwan; Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India.
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India.
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India.
| |
Collapse
|
19
|
Wang R, Li Q, Chu X, Li N, Liang H, He F. Nanoparticles (NPs)-meditated si-lncRNA NONHSAT159592.1 inhibits glioblastoma progression and invasion through targeting the ITGA3/FAK/PI3K/AKT pathway. Metab Brain Dis 2024; 40:31. [PMID: 39570470 DOI: 10.1007/s11011-024-01471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/09/2024] [Indexed: 11/22/2024]
Abstract
The study aims to investigate the regulatory role of NPs lncRNA NONHSAT159592.1 in glioblastoma cells and its molecular mechanism. We have designed a reduction-responsive nanoparticle (NP) platform for efficient delivery of si-lncRNA (si-lnc). The size of siRNA nanoparticles was observed and determined by transmission electron microscopy. The distribution size of nanoparticles was analyzed by the NanoSight nanoparticle tracking analyzer. The fluorescence spectrum and UV spectrum were determined. The level of lncRNA in glioblastoma cells was detected by RT-qPCR analysis. The localization of lncRNA NONHSAT159592.1 in glioblastoma cells was detected by fluorescence in situ hybridization. Cell proliferation activity was evaluated by clonal formation experiment and CCK-8 kit. Cell migration and invasion were detected by wound healing assay and Transwell experiment. Western blot assay was used to detect the expression level of EMT-related proteins in cells. EdU staining was used to detect cell proliferation. NPs or PBS and IR780 were injected intravenously into nude mice with tumors, and fluorescence imaging was performed in vivo to evaluate the proliferation of tumor tissue. The positive rate of Ki67 and Vimentin in tumor tissue was detected by immunohistochemical staining. We found that lncRNA NONHSAT159592.1 was significantly down-regulated in glioblastoma cell lines, localized in the nucleus and cytoplasm. In U87 and U251 cells, we found that NPs-si-lncRNA NONHSAT159592.1 significantly inhibited glioblastoma cell proliferation, invasion, and EMT progression. In the orthotopic xenograft model, we found that silencing lncRNA could significantly inhibit tumor proliferation and prolong the survival time of tumor-bearing mice. Further studies confirmed that overexpression of ITGA3 reversed the inhibitory effects of NPs-si-lnc on the proliferation, invasion, and migration of glioblastoma cell lines. Our study suggested that NPs (si-lnc) could inhibit the malignant development of glioma by a mechanism that may be linked to the activation of the ITGA3/FAK/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Renjie Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Institute of Traumatic Brain Injury and Neurology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Qi Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaolei Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Li
- Institute of Traumatic Brain Injury and Neurology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Haiqian Liang
- Institute of Traumatic Brain Injury and Neurology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Feng He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
20
|
Shahzad A, Teng Z, Yameen M, Liu W, Cui K, Liu X, Sun Y, Duan Q, Xia J, Dong Y, Bai Z, Peng D, Zhang J, Xu Z, Pi J, Yang Z, Zhang Q. Innovative lipid nanoparticles: A cutting-edge approach for potential renal cell carcinoma therapeutics. Biomed Pharmacother 2024; 180:117465. [PMID: 39321512 DOI: 10.1016/j.biopha.2024.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
The kidney plays a crucial role in regulating homeostasis within the human body. Renal cell carcinoma (RCC) is the most common form of kidney cancer, accounting for nearly 90 % of all renal malignancies. Despite the availability of various therapeutic strategies, RCC remains a challenging disease due to its resistance to conventional treatments. Nanotechnology has emerged as a promising field, offering new opportunities in cancer therapeutics. It presents several advantages over traditional methods, enabling diverse biomedical applications, including drug delivery, prevention, diagnosis, and treatment. Lipid nanoparticles (LNPs), approximately 100 nm in size, are derived from a range of lipids and other biochemical compounds. these particulates are designed to overcome biological barriers, allowing them to selectively accumulate at diseased target sites for effective therapeutic action. Many pharmaceutically important compounds face challenges such as poor solubility in aqueous solutions, chemical and physiological instability, or toxicity. LNP technology stands out as a promising drug delivery system for bioactive organic compounds. This article reviews the applications of LNPs in RCC treatment and explores their potential clinical translation, identifying the most viable LNPs for medical use. With ongoing advancement in LNP-based anticancer strategies, there is a growing potential to improve the management and treatment of renal cancer.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Muhammad Yameen
- Department of Biochemistry, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - JiaoJiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yurong Dong
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ziyuan Bai
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dongmei Peng
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
21
|
Leng G, Duan B, Liu J, Li S, Zhao W, Wang S, Hou G, Qu J. The advancements and prospective developments in anti-tumor targeted therapy. Neoplasia 2024; 56:101024. [PMID: 39047659 PMCID: PMC11318541 DOI: 10.1016/j.neo.2024.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Cancer poses a major threat to human health worldwide. The development of anti-tumor materials provides new modalities for cancer diagnosis and treatment. In this review, we comprehensively summarize the research progress and clinical applications of anti-tumor materials. First, we introduce the etiology and pathogenesis of cancer, and the significance and challenges of anti-tumor materials research. Then, we classify anti-tumor materials and discuss their mechanisms of action. After that, we elaborate the research advances and clinical applications of anti-tumor materials, including those targeting tumor cells and therapeutic instruments. Finally, we discuss the future perspectives and challenges in the field of anti-tumor materials. This review aims to provide an overview of the current status of anti-tumor materials research and application, and to offer insights into future directions in this rapidly evolving field, which holds promise for more precise, efficient and customized treatment of cancer.
Collapse
Affiliation(s)
- Guorui Leng
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Baorong Duan
- Research Center for Leather and Protein of College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Junjie Liu
- Department of Physics, Binzhou Medical University, Yantai 264003, China
| | - Song Li
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Wenwen Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Shanshan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Jiale Qu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China.
| |
Collapse
|
22
|
Sueyoshi S, Vitor Silva J, Guizze F, Giarolla J. Dendrimers as drug delivery systems for oncotherapy: Current status of promising applications. Int J Pharm 2024; 663:124573. [PMID: 39134292 DOI: 10.1016/j.ijpharm.2024.124573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Cancer affects millions of people worldwide, causing death and serious health problems. Despite significant investment in the development of new anticancer compounds, there are still several limitations that can still be found. Many compounds exhibit high levels of toxicity and low bioavailability. Therefore, it is urgent to design safer, more effective, and particularly more selective compounds for oncological treatment. Dendrimers are polymeric structures that have been shown to be potential drug nanocarriers to overcome physicochemical, pharmacokinetic, and indirect pharmacodynamic issues. Due to their versatility, they can be used in the design of nanovaccines, lipophilic complexes, amphiphilic complexes, smart nanocomplexes, and others. This work targets the use of dendrimers in oncological treatment and their importance and effectiveness as drug delivery systems for the development of new therapies. For this review, only publications from the last two years are considered in this review.
Collapse
Affiliation(s)
- Sophia Sueyoshi
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil
| | - João Vitor Silva
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil
| | - Felipe Guizze
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Manescu (Paltanea) V, Antoniac I, Paltanea G, Nemoianu IV, Mohan AG, Antoniac A, Rau JV, Laptoiu SA, Mihai P, Gavrila H, Al-Moushaly AR, Bodog AD. Magnetic Hyperthermia in Glioblastoma Multiforme Treatment. Int J Mol Sci 2024; 25:10065. [PMID: 39337552 PMCID: PMC11432100 DOI: 10.3390/ijms251810065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents one of the most critical oncological diseases in neurological practice, being considered highly aggressive with a dismal prognosis. At a worldwide level, new therapeutic methods are continuously being researched. Magnetic hyperthermia (MHT) has been investigated for more than 30 years as a solution used as a single therapy or combined with others for glioma tumor assessment in preclinical and clinical studies. It is based on magnetic nanoparticles (MNPs) that are injected into the tumor, and, under the effect of an external alternating magnetic field, they produce heat with temperatures higher than 42 °C, which determines cancer cell death. It is well known that iron oxide nanoparticles have received FDA approval for anemia treatment and to be used as contrast substances in the medical imagining domain. Today, energetic, efficient MNPs are developed that are especially dedicated to MHT treatments. In this review, the subject's importance will be emphasized by specifying the number of patients with cancer worldwide, presenting the main features of GBM, and detailing the physical theory accompanying the MHT treatment. Then, synthesis routes for thermally efficient MNP manufacturing, strategies adopted in practice for increasing MHT heat performance, and significant in vitro and in vivo studies are presented. This review paper also includes combined cancer therapies, the main reasons for using these approaches with MHT, and important clinical studies on human subjects found in the literature. This review ends by describing the most critical challenges associated with MHT and future perspectives. It is concluded that MHT can be successfully and regularly applied as a treatment for GBM if specific improvements are made.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iosif Vasile Nemoianu
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Department of Neurosurgery, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya St. 8, Build.2, 119048 Moscow, Russia
| | - Stefan Alexandru Laptoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Petruta Mihai
- Faculty of Entrepreneurship, Business Engineering and Management, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Horia Gavrila
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
- Technical Sciences Academy of Romania, 26 Bulevardul Dacia, RO-030167 Bucharest, Romania
| | | | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
| |
Collapse
|
24
|
Xie W, Xu Z. (Nano)biotechnological approaches in the treatment of cervical cancer: integration of engineering and biology. Front Immunol 2024; 15:1461894. [PMID: 39346915 PMCID: PMC11427397 DOI: 10.3389/fimmu.2024.1461894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is one of the most malignant gynaecological tumors characterised with the aggressive behaviour of the tumor cells. In spite of the development of different strategies for the treatment of cervical cancer, the tumor cells have developed resistance to conventional therapeutics. On the other hand, nanoparticles have been recently applied for the treatment of human cancers through delivery of drugs and facilitate tumor suppression. The stimuli-sensitive nanostructures can improve the release of therapeutics at the tumor site. In the present review, the nanostructures for the treatment of cervical cancer are discussed. Nanostructures can deliver both chemotherapy drugs and natural compounds to increase anti-cancer activity and prevent drug resistance in cervical tumor. Moreover, the genetic tools such as siRNA can be delivered by nanoparticles to enhance their accumulation at tumor site. In order to enhance selectivity, the stimuli-responsive nanoparticles such as pH- and redox-responsive nanocarriers have been developed to suppress cervical tumor. Moreover, nanoparticles can induce photo-thermal and photodynamic therapy to accelerate cell death in cervical tumor. In addition, nanobiotechnology demonstrates tremendous potential in the treatment of cervical cancer, especially in the context of tumor immunotherapy. Overall, metal-, carbon-, lipid- and polymer-based nanostructures have been utilized in cervical cancer therapy. Finally, hydrogels have been developed as novel kinds of carriers to encapsulate therapeutics and improve anti-cancer activity.
Collapse
Affiliation(s)
| | - Zhengmei Xu
- Department of Gynecology, Affiliated Hengyang Hospital of Hunan Normal University &
Hengyang Central Hospital, Hengyang, China
| |
Collapse
|
25
|
Li W, Gong Y, Zhang J, Liu J, Li J, Fu S, Ren WX, Shu J. Construction of CXCR4 Receptor-Targeted CuFeSe 2 Nano Theranostic Platform and Its Application in MR/CT Dual Model Imaging and Photothermal Therapy. Int J Nanomedicine 2024; 19:9213-9226. [PMID: 39263631 PMCID: PMC11389715 DOI: 10.2147/ijn.s470367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction Targeting, imaging, and treating tumors represent major clinical challenges. Developing effective theranostic agents to address these issues is an urgent need. Methods We introduce an "all-in-one" tumor-targeted theranostic platform using CuFeSe2-based composite nanoparticles (CuFeSe2@PA) for magnetic resonance (MR) and computed tomography (CT) dual model imaging-guided hyperthermia tumor ablation. Plerixafor (AMD3100) is bonded to the surface of CuFeSe2 as a targeting unit. Due to the robust interaction between AMD3100 and the overexpressed Chemokine CXC type receptor 4 (CXCR4) on the membrane of 4T1 cancer cells, CuFeSe2@PA specifically recognizes 4T1 cancer cells, enriching the tumor region. Results CuFeSe2@PA serves as a contrast agent for T2-weighted MR imaging (relaxivity value of 1.61 mM-1 s-1) and CT imaging. Moreover, it effectively suppresses tumor growth through photothermal therapy (PTT) owing to its high photothermal conversion capability and stability, with minimized side effects demonstrated both in vitro and in vivo. Discussion CuFeSe2@PA nanoparticles show potential as dual-mode imaging contrast agents for MR and CT and provide an effective means of tumor treatment through photothermal therapy. The surface modification with Plerixafor enhances the targeting ability of the nanoparticles, performing more significant efficacy and biocompatibility in the 4T1 cancer cell model. The study demonstrates that CuFeSe2@PA is a promising multifunctional theranostic platform with clinical application potential.
Collapse
Affiliation(s)
- Wenlu Li
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yaolin Gong
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jing Zhang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jiong Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jiali Li
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Wen Xiu Ren
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
26
|
Chen Y, Zhou Q, Jia Z, Cheng N, Zhang S, Chen W, Wang L. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharm Sin B 2024; 14:3834-3854. [PMID: 39309502 PMCID: PMC11413684 DOI: 10.1016/j.apsb.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy is an important cancer treatment method that offers hope for curing cancer patients. While immunotherapy has achieved initial success, a major obstacle to its widespread adoption is the inability to benefit the majority of patients. The success or failure of immunotherapy is closely linked to the tumor's immune microenvironment. Recently, there has been significant attention on strategies to regulate the tumor immune microenvironment in order to stimulate anti-tumor immune responses in cancer immunotherapy. The distinctive physical properties and design flexibility of nanomedicines have been extensively utilized to target immune cells (including tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated fibroblasts (TAFs)), offering promising advancements in cancer immunotherapy. In this article, we have reviewed treatment strategies aimed at targeting various immune cells to regulate the tumor immune microenvironment. The focus is on cancer immunotherapy models that are based on nanomedicines, with the goal of inducing or enhancing anti-tumor immune responses to improve immunotherapy. It is worth noting that combining cancer immunotherapy with other treatments, such as chemotherapy, radiotherapy, and photodynamic therapy, can maximize the therapeutic effects. Finally, we have identified the challenges that nanotechnology-mediated immunotherapy needs to overcome in order to design more effective nanosystems.
Collapse
Affiliation(s)
- Yunna Chen
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Zhou
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Zongfang Jia
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Nuo Cheng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Sheng Zhang
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weidong Chen
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Lei Wang
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
27
|
Dubey R, Makhija R, Sharma A, Sahu A, Asati V. Unveiling the promise of pyrimidine-modified CDK inhibitors in cancer treatment. Bioorg Chem 2024; 149:107508. [PMID: 38850781 DOI: 10.1016/j.bioorg.2024.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Cyclin-dependent kinases (CDKs) constitute a vital family of protein-serine kinases, pivotal in regulating various cellular processes such as the cell cycle, metabolism, proteolysis, and neural functions. Dysregulation or overexpression of CDK kinases is directly linked to the development of cancer. However, the currently approved CDK inhibitors by the US FDA, such as palbociclib, ribociclib, Trilaciclib, Abemaciclib, etc., although effective, exhibit limited specificity and often lead to undesirable adverse effects. First and second-generation CDK inhibitors have not gained significant clinical interaction due to their high toxicity and lack of specificity. To address these challenges, a combined approach is being employed in the quest for newer CDK inhibitors aimed at mitigating toxicity and side effects associated with CDKIs. The discovery of therapeutic agents selectively targeting tumorous cells, such as CDK inhibitors, has demonstrated promise in treating various cancers, including breast cancer. Extensive literature reviews have facilitated the development of novel CDK inhibitors by combining medicinally preferred pyrimidine derivatives with other heterocyclic rings. Pyrimidine derivatives substituted with pyrazole, imidazole, benzamide, benzene sulfonamide, indole carbohydrazide, and other privileged heterocyclic rings have shown encouraging efficacy in inhibiting cyclin-dependent kinase activity. This review provides comprehensive data, including structure-activity relationship (SAR), anticancer activity, and kinetics studies of potent compounds. Additionally, molecular docking studies with compounds under clinical trial and patents filed on pyrimidine based CDK inhibitors in cancer treatment are included. This review serves as a valuable resource for further development of CDK kinase inhibitors for cancer treatment, offering insights into their efficacy, specificity, and potential clinical applications.
Collapse
Affiliation(s)
- Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Rahul Makhija
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Adarsh Sahu
- Amity Institute of Pharmacy, Amity University Jaipur (Rajasthan), India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
| |
Collapse
|
28
|
Yang H, Niu S, Guo M, Xue Y. Applications of 3D organoids in toxicological studies: a comprehensive analysis based on bibliometrics and advances in toxicological mechanisms. Arch Toxicol 2024; 98:2309-2330. [PMID: 38806717 DOI: 10.1007/s00204-024-03777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
A mechanism exploration is an important part of toxicological studies. However, traditional cell and animal models can no longer meet the current needs for in-depth studies of toxicological mechanisms. The three-dimensional (3D) organoid derived from human embryonic stem cells (hESC) or induced pluripotent stem cells (hiPSC) is an ideal experimental model for the study of toxicological effects and mechanisms, which further recapitulates the human tissue microenvironment and provides a reliable method for studying complex cell-cell interactions. This article provides a comprehensive overview of the state of the 3D organoid technology in toxicological studies, including a bibliometric analysis of the existing literature and an exploration of the latest advances in toxicological mechanisms. The use of 3D organoids in toxicology research is growing rapidly, with applications in disease modeling, organ-on-chips, and drug toxicity screening being emphasized, but academic communications among countries/regions, institutions, and research scholars need to be further strengthened. Attempts to study the toxicological mechanisms of exogenous chemicals such as heavy metals, nanoparticles, drugs and organic pollutants are also increasing. It can be expected that 3D organoids can be better applied to the safety evaluation of exogenous chemicals by establishing a standardized methodology.
Collapse
Affiliation(s)
- Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
29
|
Summer M, Hussain T, Ali S, Khan RRM, Muhammad G, Liaqat I. Exploring the underlying modes of organic nanoparticles in diagnosis, prevention, and treatment of cancer: a review from drug delivery to toxicity. INT J POLYM MATER PO 2024:1-17. [DOI: 10.1080/00914037.2024.2375337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, Pakistan
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences, Lahore, Pakistan
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences, Lahore, Pakistan
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
30
|
Hheidari A, Mohammadi J, Ghodousi M, Mahmoodi M, Ebrahimi S, Pishbin E, Rahdar A. Metal-based nanoparticle in cancer treatment: lessons learned and challenges. Front Bioeng Biotechnol 2024; 12:1436297. [PMID: 39055339 PMCID: PMC11269265 DOI: 10.3389/fbioe.2024.1436297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer, being one of the deadliest diseases, poses significant challenges despite the existence of traditional treatment approaches. This has led to a growing demand for innovative pharmaceutical agents that specifically target cancer cells for effective treatment. In recent years, the use of metal nanoparticles (NPs) as a promising alternative to conventional therapies has gained prominence in cancer research. Metal NPs exhibit unique properties that hold tremendous potential for various applications in cancer treatment. Studies have demonstrated that certain metals possess inherent or acquired anticancer capabilities through their surfaces. These properties make metal NPs an attractive focus for therapeutic development. In this review, we will investigate the applicability of several distinct classes of metal NPs for tumor targeting in cancer treatment. These classes may include gold, silver, iron oxide, and other metals with unique properties that can be exploited for therapeutic purposes. Additionally, we will provide a comprehensive summary of the risk factors associated with the therapeutic application of metal NPs. Understanding and addressing these factors will be crucial for successful clinical translation and to mitigate any potential challenges or failures in the translation of metal NP-based therapies. By exploring the therapeutic potential of metal NPs and identifying the associated risk factors, this review aims to contribute to the advancement of cancer treatment strategies. The anticipated outcome of this review is to provide valuable insights and pave the way for the advancement of effective and targeted therapies utilizing metal NPs specifically for cancer patients.
Collapse
Affiliation(s)
- Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Javad Mohammadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Ghodousi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States
| | - Mohammadreza Mahmoodi
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| |
Collapse
|
31
|
Rahimkhoei V, Alzaidy AH, Abed MJ, Rashki S, Salavati-Niasari M. Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics. Adv Colloid Interface Sci 2024; 329:103204. [PMID: 38797070 DOI: 10.1016/j.cis.2024.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Theranostic nanoparticles (NPs) have the potential to dramatically improve cancer management by providing personalized medicine. Inorganic NPs have attracted widespread interest from academic and industrial communities because of their unique physicochemical properties (including magnetic, thermal, and catalytic performance) and excellent functions with functional surface modifications or component dopants (e.g., imaging and controlled release of drugs). To date, only a restricted number of inorganic NPs are deciphered into clinical practice. This review highlights the recent advances of inorganic NPs in breast cancer therapy. We believe that this review can provides various approaches for investigating and developing inorganic NPs as promising compounds in the future prospects of applications in breast cancer treatment and material science.
Collapse
Affiliation(s)
- Vahid Rahimkhoei
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Asaad H Alzaidy
- Department of Laboratory and Clinical Science, College of Pharmacy, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - May Jaleel Abed
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Somaye Rashki
- Department of Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Islamic Republic of Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran.
| |
Collapse
|
32
|
Gromek P, Senkowska Z, Płuciennik E, Pasieka Z, Zhao LY, Gielecińska A, Kciuk M, Kłosiński K, Kałuzińska-Kołat Ż, Kołat D. Revisiting the standards of cancer detection and therapy alongside their comparison to modern methods. World J Methodol 2024; 14:92982. [PMID: 38983668 PMCID: PMC11229876 DOI: 10.5662/wjm.v14.i2.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.
Collapse
Affiliation(s)
- Piotr Gromek
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zuzanna Senkowska
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Karol Kłosiński
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| |
Collapse
|
33
|
Garg P, Pareek S, Kulkarni P, Salgia R, Singhal SS. Nanoengineering Solutions for Cancer Therapy: Bridging the Gap between Clinical Practice and Translational Research. J Clin Med 2024; 13:3466. [PMID: 38929995 PMCID: PMC11204592 DOI: 10.3390/jcm13123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Nanoengineering has emerged as a progressive method in cancer treatment, offering precise and targeted delivery of therapeutic agents while concurrently reducing overall toxicity. This scholarly article delves into the innovative strategies and advancements in nanoengineering that bridge the gap between clinical practice and research in the field of cancer treatment. Various nanoengineered platforms such as nanoparticles, liposomes, and dendrimers are scrutinized for their capacity to encapsulate drugs, augment drug efficacy, and enhance pharmacokinetics. Moreover, the article investigates research breakthroughs that drive the progression and enhancement of nanoengineered remedies, encompassing the identification of biomarkers, establishment of preclinical models, and advancement of biomaterials, all of which are imperative for translating laboratory findings into practical medical interventions. Furthermore, the integration of nanotechnology with imaging modalities, which amplify cancer detection, treatment monitoring, and response assessment, is thoroughly examined. Finally, the obstacles and prospective directions in nanoengineering, including regulatory challenges and issues related to scalability, are examined. This underscores the significance of fostering collaboration among various entities in order to efficiently translate nanoengineered interventions into enhanced cancer therapies and patient management.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Siddhika Pareek
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
34
|
Celebi D, Celebi O, Taghizadehghalehjoughi A, Baser S, Aydın E, Calina D, Charvalos E, Docea AO, Tsatsakis A, Mezhuev Y, Yildirim S. Activity of zinc oxide and zinc borate nanoparticles against resistant bacteria in an experimental lung cancer model. Daru 2024; 32:197-206. [PMID: 38366078 PMCID: PMC11087447 DOI: 10.1007/s40199-024-00505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Recent research indicates a prevalence of typical lung infections, such as pneumonia, in lung cancer patients. Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii stand out as antibiotic-resistant pathogens. Given this, there is a growing interest in alternative therapeutic avenues. Boron and zinc derivatives exhibit antimicrobial, antiviral, and antifungal properties. OBJECTIVES This research aimed to establish the effectiveness of ZnO and ZB NPs in combating bacterial infections in lung cancer cell lines. METHODS Initially, this study determined the minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of zinc oxide nanoparticles (ZnO NPs) and zinc borate (ZB) on chosen benchmark strains. Subsequent steps involved gauging treatment success through a lung cancer-bacteria combined culture and immunohistochemical analysis. RESULTS The inhibitory impact of ZnO NPs on bacteria was charted as follows: 0.97 µg/mL for K. pneumoniae 700603, 1.95 µg/mL for P. aeruginosa 27853, and 7.81 µg/mL for Acinetobacter baumannii 19,606. In comparison, the antibacterial influence of zinc borate was measured as 7.81 µg/mL for Klebsiella pneumoniae 700603 and 500 µg/mL for both P. aeruginosa 27853 and A.baumannii 19606. After 24 h, the cytotoxicity of ZnO NPs and ZB was analyzed using the MTT technique. The lowest cell viability was marked in the 500 µg/mL ZB NPs group, with a viability rate of 48.83% (P < 0.001). However, marked deviations appeared at ZB concentrations of 61.5 µg/mL (P < 0.05) and ZnO NPs at 125 µg/mL. CONCLUSION A synergistic microbial inhibitory effect was observed when ZnO NP and ZB were combined against the bacteria under investigation.
Collapse
Affiliation(s)
- Demet Celebi
- Faculty of Veterinary Medicine, Department of Microbiology, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
- Vaccine Application and Development Center, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
| | - Ozgur Celebi
- Faculty of Medicine, Department of Medical Microbiology, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
| | - Ali Taghizadehghalehjoughi
- Faculty of Medicine, Department of Medical Pharmacology, Seyh Edebali University, 27 Fatih Sultan Mehmet Avenue, Bilecik, 11000, Turkey
| | - Sumeyye Baser
- Faculty of Medicine, Department of Medical Microbiology, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
| | - Elif Aydın
- Tavsanli Vocational School of Health Services, Kutahya Health Sciences University, Sehit Ali Gaffar Okan Avenue, Kutahya, 430200, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003, Greece.
| | - Yaroslav Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia
- Laboratory of Heterochain Polymers, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st, Moscow, 119991, Russia
| | - Serkan Yildirim
- Faculty of Veterinary Medicine, Department of Pathology, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
| |
Collapse
|
35
|
Li R, Zhao W, Han Z, Feng N, Wu T, Xiong H, Jiang W. Self-Cascade Nanozyme Reactor as a Cuproptosis Inducer Synergistic Inhibition of Cellular Respiration Boosting Radioimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306263. [PMID: 38221757 DOI: 10.1002/smll.202306263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Indexed: 01/16/2024]
Abstract
Intrinsic or acquired radioresistance remained an important challenge in the successful management of cancer. Herein, a novel "smart" multifunctional copper-based nanocomposite (RCL@Pd@CuZ) to improve radiotherapy (RT) sensitivity is designed and developed. In this nanoplatform, DSPE-PEG-RGD modified on the liposome surface enhanced tumor targeting and permeability; capsaicin inserted into the phospholipid bilayer improved the hypoxic conditions in the tumor microenvironment (TME) by inhibiting mitochondrial respiration; a Cu MOF porous cube encapsulated in liposome generated highly active hydroxyl radicals (OH·), consumed GSH and promoted cuproptosis by releasing Cu2+; the ultrasmall palladium (Pd) nanozyme within the cubes exhibited peroxidase activity, catalyzing toxic OH· generation and releasing oxygen from hydrogen peroxide; and lastly, Pd, as an element with a relatively high atomic number (Z) enhanced the photoelectric and Compton effects of X-rays. Therefore, RCL@Pd@CuZ enhance RT sensitivity by ameliorating hypoxia, promoting cuproptosis, depleting GSH, amplifying oxidative stress, and enhancing X-ray absorption , consequently potently magnifying immunogenic cell death (ICD). In a mouse model , RCL@Pd@CuZ combined with RT yielded >90% inhibition compared with that obtained by RT alone in addition to a greater quantity of DC maturation and CD8+ T cell infiltration. This nanoplatform offered a promising remedial modality to facilitate cuproptosis-related cancer radioimmunotherapy.
Collapse
Affiliation(s)
- Rui Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China
- Department of Respiratory Intervention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127, Dongming Road, Jinshui, Zhengzhou, 450008, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zhuo Han
- Department of General Surgery, Tangdu Hospital, the Air Force Medical University, Xi'an, 710000, China
| | - Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Wu
- Nanozyme Medical Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
- Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Wei Jiang
- Nanozyme Medical Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
- Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
36
|
Joshi M, Bhatt P. Ameliorated in vitroanti-cancer efficacy of methotrexate loaded zinc oxide nanoparticles in breast cancer cell lines MCF-7 & MDA-MB-231 and its acute toxicity study. NANOTECHNOLOGY 2024; 35:335101. [PMID: 38746972 DOI: 10.1088/1361-6528/ad4b24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Traditional therapies often struggle with specificity and resistance in case of cancer treatments. It is therefore important to investigate new approaches for cancer treatment based on nanotechnology. Zinc oxide nanoparticles (ZnONPs) are known to exhibit anti-cancer properties by inducing oxidative stress, apoptosis, and cell cycle arrest. Methotrexate (MTX) a known anti-folate shows specificity to folate receptors and interrupts healthy functioning of cells. This study proposes the use of previously characterized biocompatible Methotrexate loaded Zinc oxide nanoparticles (MTX-ZnONPs) as a dual action therapeutic strategy against breast cancer cell lines, MCF-7 (MTX-sensitive) and MDA-MB-231 (MTX-resistant). To elucidate the cytotoxicity mechanism of MTX-ZnONPs an in depthIn vitrostudy was carried out.In vitroassays, including cell cycle analysis, apoptosis assay, and western blot analysis to study the protein expression were performed. Results of these assays, further supported the anti-cancer activity of MTX-ZnONPs showing apoptotic and necrotic activity in MCF-7 and MDA-MB-231 cell line respectively.In vivoacute oral toxicity study to identify the LD50in animals revealed no signs of toxicity and mortality up to 550 mg kg-1body weight of animal, significantly higher LD50values than anticipated therapeutic levels and safety of the synthesized nanosystem. The study concludes that MTX-ZnONPs exhibit anti-cancer potential against breast cancer cells offering a promising strategy for overcoming resistance.
Collapse
Affiliation(s)
- Mitesh Joshi
- Department of Biological Sciences, SVKM's NMIMS (Deemed-to-be University), Sunandan Divatia School of Science, Vile Parle (West), Mumbai 400056, India
| | - Purvi Bhatt
- Department of Biological Sciences, SVKM's NMIMS (Deemed-to-be University), Sunandan Divatia School of Science, Vile Parle (West), Mumbai 400056, India
| |
Collapse
|
37
|
Wang Y, Kilic O, Rozumalski L, Distefano MD, Wagner CR. Targeted Drug Delivery by MMAE Farnesyl-Bioconjugated Multivalent Chemically Self-Assembled Nanorings Induces Potent Receptor-Dependent Immunogenic Cell Death. Bioconjug Chem 2024; 35:582-592. [PMID: 38701361 PMCID: PMC11633779 DOI: 10.1021/acs.bioconjchem.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Antibody-drug conjugates, nanoparticles, and liposomes have been used for anticancer drug delivery. The success of targeted killing of cancer cells relies heavily on the selectivity of the drug delivery systems. In most systems, antibodies or their fragments were used as targeting ligands. In this study, we have investigated the potential for protein-based octomeric chemically self-assembled nanorings (CSANs) to be used for anticancer drug delivery. The CSANs are composed of a DHFR-DHFR fusion protein incorporating an EGFR-targeting fibronectin and the anticancer drug MMAE conjugated through a C-terminal farnesyl azide. The anti-EGFR-MMAE CSANs were shown to undergo rapid internalization and have potent cytotoxicity to cancer cells across a 9000-fold difference in EGFR expression. In addition, anti-EGFR-MMAE CSANs were shown to induce immunological cell death. Thus, multivalent and modular CSANs are a potential alternative anticancer drug delivery platform with the capability of targeting tumor cells with heterogeneous antigen expression while activating the anticancer immune response.
Collapse
Affiliation(s)
- Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ozgun Kilic
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lakmal Rozumalski
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Carston R. Wagner
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
38
|
Ghaznavi H, Afzalipour R, Khoei S, Sargazi S, Shirvalilou S, Sheervalilou R. New insights into targeted therapy of glioblastoma using smart nanoparticles. Cancer Cell Int 2024; 24:160. [PMID: 38715021 PMCID: PMC11077767 DOI: 10.1186/s12935-024-03331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
In recent times, the intersection of nanotechnology and biomedical research has given rise to nanobiomedicine, a captivating realm that holds immense promise for revolutionizing diagnostic and therapeutic approaches in the field of cancer. This innovative fusion of biology, medicine, and nanotechnology aims to create diagnostic and therapeutic agents with enhanced safety and efficacy, particularly in the realm of theranostics for various malignancies. Diverse inorganic, organic, and hybrid organic-inorganic nanoparticles, each possessing unique properties, have been introduced into this domain. This review seeks to highlight the latest strides in targeted glioblastoma therapy by focusing on the application of inorganic smart nanoparticles. Beyond exploring the general role of nanotechnology in medical applications, this review delves into groundbreaking strategies for glioblastoma treatment, showcasing the potential of smart nanoparticles through in vitro studies, in vivo investigations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Reza Afzalipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
39
|
Tao T, Rehman SU, Xu S, Zhang J, Xia H, Guo Z, Li Z, Ma K, Wang J. A biomimetic camouflaged metal organic framework for enhanced siRNA delivery in the tumor environment. J Mater Chem B 2024; 12:4080-4096. [PMID: 38577851 DOI: 10.1039/d3tb02827e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Gene silencing through RNA interference (RNAi), particularly using small double-stranded RNA (siRNA), has been identified as a potent strategy for targeted cancer treatment. Yet, its application faces challenges such as nuclease degradation, inefficient cellular uptake, endosomal entrapment, off-target effects, and immune responses, which have hindered its effective delivery. In the past few years, these challenges have been addressed significantly by using camouflaged metal-organic framework (MOF) nanocarriers. These nanocarriers protect siRNA from degradation, enhance cellular uptake, and reduce unintended side effects by effectively targeting desired cells while evading immune detection. By combining the properties of biomimetic membranes and MOFs, these nanocarriers offer superior benefits such as extended circulation times, enhanced stability, and reduced immune responses. Moreover, through ligand-receptor interactions, biomimetic membrane-coated MOFs achieve homologous targeting, minimizing off-target adverse effects. The MOFs, acting as the core, efficiently encapsulate and protect siRNA molecules, while the biomimetic membrane-coated surface provides homologous targeting, further increasing the precision of siRNA delivery to cancer cells. In particular, the biomimetic membranes help to shield the MOFs from the immune system, avoiding unwanted immune responses and improving their biocompatibility. The combination of siRNA with innovative nanocarriers, such as camouflaged-MOFs, presents a significant advancement in cancer therapy. The ability to deliver siRNA with precision and effectiveness using these camouflaged nanocarriers holds great promise for achieving more personalized and efficient cancer treatments in the future. This review article discusses the significant progress made in the development of siRNA therapeutics for cancer, focusing on their effective delivery through novel nanocarriers, with a particular emphasis on the role of metal-organic frameworks (MOFs) as camouflaged nanocarriers.
Collapse
Affiliation(s)
- Tongxiang Tao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
| | - Sajid Ur Rehman
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Shuai Xu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Jing Zhang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Haining Xia
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Zeyong Guo
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Zehua Li
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Kun Ma
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Junfeng Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, P. R. China
| |
Collapse
|
40
|
Scattolin T, Tonon G, Botter E, Canale VC, Hasanzadeh M, Cuscela DM, Buschini A, Zarepour A, Khosravi A, Cordani M, Rizzolio F, Zarrabi A. Synergistic applications of cyclodextrin-based systems and metal-organic frameworks in transdermal drug delivery for skin cancer therapy. J Mater Chem B 2024; 12:3807-3839. [PMID: 38529820 DOI: 10.1039/d4tb00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This review article explores the innovative field of eco-friendly cyclodextrin-based coordination polymers and metal-organic frameworks (MOFs) for transdermal drug delivery in the case of skin cancer therapy. We critically examine the significant advancements in developing these nanocarriers, with a focus on their unique properties such as biocompatibility, targeted drug release, and enhanced skin permeability. These attributes are instrumental in addressing the limitations inherent in traditional skin cancer treatments and represent a paradigm shift towards more effective and patient-friendly therapeutic approaches. Furthermore, we discuss the challenges faced in optimizing the synthesis process for large-scale production while ensuring environmental sustainability. The review also emphasizes the immense potential for clinical applications of these nanocarriers in skin cancer therapy, highlighting their role in facilitating targeted, controlled drug release which minimizes systemic side effects. Future clinical applications could see these nanocarriers being customized to individual patient profiles, potentially revolutionizing personalized medicine in oncology. With further research and clinical trials, these nanocarriers hold the promise of transforming the landscape of skin cancer treatment. With this study, we aim to provide a comprehensive overview of the current state of research in this field and outline future directions for advancing the development and clinical application of these innovative nanocarriers.
Collapse
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giovanni Tonon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Eleonora Botter
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Viviana Claudia Canale
- Department of Chemical Science and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran
| | - Denise Maria Cuscela
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid 28040, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, Aviano, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
41
|
Cheng Y, Cai S, Wu H, Pan J, Su M, Wei X, Ye J, Ke L, Liu G, Chu C. Revolutionizing eye care: the game-changing applications of nano-antioxidants in ophthalmology. NANOSCALE 2024; 16:7307-7322. [PMID: 38533621 DOI: 10.1039/d4nr00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Since the theory of free radical-induced aging was proposed in 1956, it has been constantly proven that reactive oxygen species (ROS) produced by oxidative stress play a vital role in the occurrence and progression of eye diseases. However, the inherent limitations of traditional drug therapy hindered the development of ophthalmic disease treatment. In recent years, great achievements have been made in the research of nanomedicine, which promotes the rapid development of safe theranostics in ophthalmology. In this review, we focus on the applications of antioxidant nanomedicine in the treatment of ophthalmology. The eye diseases were mainly classified into two categories: ocular surface diseases and posterior eye diseases. In each part, we first introduced the pathology of specific diseases about oxidative stress, and then presented the representative application examples of nano-antioxidants in eye disease therapy. Meanwhile, the nanocarriers that were used, the mechanism of function, and the therapeutic effect were also presented. Finally, we summarized the latest research progress and limitations of antioxidant nanomedicine for eye disease treatment and put forward the prospects of future development.
Collapse
Affiliation(s)
- Yuhang Cheng
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shundong Cai
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Han Wu
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jintao Pan
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China.
| | - Xingyuan Wei
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jinfa Ye
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lang Ke
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
| | - Chengchao Chu
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
42
|
Ruiz-Robles MA, Solís-Pomar FJ, Travieso Aguilar G, Márquez Mijares M, Garrido Arteaga R, Martínez Armenteros O, Gutiérrez-Lazos CD, Pérez-Tijerina EG, Fundora Cruz A. Physico-Chemical Properties of CdTe/Glutathione Quantum Dots Obtained by Microwave Irradiation for Use in Monoclonal Antibody and Biomarker Testing. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:684. [PMID: 38668178 PMCID: PMC11054025 DOI: 10.3390/nano14080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
In this report, we present the results on the physicochemical characterization of cadmium telluride quantum dots (QDs) stabilized with glutathione and prepared by optimizing the synthesis conditions. An excellent control of emissions and the composition of the nanocrystal surface for its potential application in monoclonal antibody and biomarker testing was achieved. Two samples (QDYellow, QDOrange, corresponding to their emission colors) were analyzed by dynamic light scattering (DLS), and their hydrodynamic sizes were 6.7 nm and 19.4 nm, respectively. Optical characterization by UV-vis absorbance spectroscopy showed excitonic peaks at 517 nm and 554 nm. Photoluminescence spectroscopy indicated that the samples have a maximum intensity emission at 570 and 606 nm, respectively, within the visible range from yellow to orange. Infrared spectroscopy showed vibrational modes corresponding to the functional groups OH-C-H, C-N, C=C, C-O, C-OH, and COOH, which allows for the formation of functionalized QDs for the manufacture of biomarkers. In addition, the hydrodynamic radius, zeta potential, and approximate molecular weight were determined by dynamic light scattering (DLS), electrophoretic light scattering (ELS), and static light scattering (SLS) techniques. Size dispersion and the structure of nanoparticles was obtained by Transmission Electron Microscopy (TEM) and by X-ray diffraction. In the same way, we calculated the concentration of Cd2+ ions expressed in mg/L by using the Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-OES). In addition to the characterization of the nanoparticles, the labeling of murine myeloid cells was carried out with both samples of quantum dots, where it was demonstrated that quantum dots can diffuse into these cells and connect mostly with the cell nucleus.
Collapse
Affiliation(s)
- M. A. Ruiz-Robles
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Nuevo León, Mexico; (M.A.R.-R.); (C.D.G.-L.); (E.G.P.-T.)
| | - Francisco J. Solís-Pomar
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Nuevo León, Mexico; (M.A.R.-R.); (C.D.G.-L.); (E.G.P.-T.)
| | - Gabriela Travieso Aguilar
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, La Habana 10400, Cuba;
| | - Maykel Márquez Mijares
- Instituto Superior de Ciencias y Tecnologías Aplicadas (InSTEC), Universidad de La Habana, La Habana 10400, Cuba; (M.M.M.); (A.F.C.)
| | - Raine Garrido Arteaga
- Grupo de Análisis, Instituto Finlay de Vacunas, Avenida 21 No. 19810, Atabey, Playa, La Habana 10400, Cuba; (R.G.A.); (O.M.A.)
| | - Olivia Martínez Armenteros
- Grupo de Análisis, Instituto Finlay de Vacunas, Avenida 21 No. 19810, Atabey, Playa, La Habana 10400, Cuba; (R.G.A.); (O.M.A.)
| | - C. D. Gutiérrez-Lazos
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Nuevo León, Mexico; (M.A.R.-R.); (C.D.G.-L.); (E.G.P.-T.)
| | - Eduardo G. Pérez-Tijerina
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Nuevo León, Mexico; (M.A.R.-R.); (C.D.G.-L.); (E.G.P.-T.)
| | - Abel Fundora Cruz
- Instituto Superior de Ciencias y Tecnologías Aplicadas (InSTEC), Universidad de La Habana, La Habana 10400, Cuba; (M.M.M.); (A.F.C.)
| |
Collapse
|
43
|
Ma R, Hao L, Cheng J, He J, Yin Q, Li Z, Qi G, Zheng X, Wang D, Zhang T, Cong H, Li Z, Hu H, Wang Y. Hyaluronic acid-modified mesoporous silica nanoprobes for target identification of atherosclerosis. Biochem Biophys Res Commun 2024; 702:149627. [PMID: 38340655 DOI: 10.1016/j.bbrc.2024.149627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Rupture of vulnerable plaque and secondary thrombosis caused by atherosclerosis are one of the main causes of acute cardiovascular and cerebrovascular events, and it is urgent to develop an in-situ, noninvasive, sensitive and targeted detection method at molecular level. We chose CD44, a specific receptor highly expressed on the surface of macrophages, as the target of the molecular probe, and modified the CD44 ligand HA onto the surface of Gd2O3@MSN, constructing the MRI imaging nanoprobe HA-Gd2O3@MSN for targeted recognition of atherosclerosis. The fundamental properties of HA-Gd2O3@MSN were initially investigated. The CCK-8, hemolysis, hematoxylin-eosin staining tests and blood biochemical assays confirmed that HA-Gd2O3@MSN possessed excellent biocompatibility. Laser confocal microscopy, cellular magnetic resonance imaging, flow cytometry and immunohistochemistry were used to verify that the nanoprobes had good targeting properties. The in vivo targeting performance of the nanoprobes was further validated by employing a rabbit atherosclerosis animal model. In summary, the synthesized HA-Gd2O3@MSN nanoprobes have excellent biocompatibility properties as well as good targeting properties. It could provide a new technical tool for early identification of atherosclerosis.
Collapse
Affiliation(s)
- Ruifan Ma
- Department of Molecular Imagine, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Liguo Hao
- Department of Molecular Imagine, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jianing Cheng
- Department of Molecular Imagine, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jun He
- Department of Anatomy, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Qiangqiang Yin
- Department of Molecular Imagine, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Zhongtao Li
- Department of Molecular Imagine, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Guiqiang Qi
- Department of Molecular Imagine, School of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Xiaoyang Zheng
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Dongxu Wang
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Tianyu Zhang
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Houyi Cong
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Zheng Li
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Haifeng Hu
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China
| | - Yuguang Wang
- Department of Image Center, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
44
|
Kim HJ, Kim YH. Molecular Frontiers in Melanoma: Pathogenesis, Diagnosis, and Therapeutic Advances. Int J Mol Sci 2024; 25:2984. [PMID: 38474231 DOI: 10.3390/ijms25052984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma, a highly aggressive skin cancer, is characterized by rapid progression and high mortality. Recent advances in molecular pathogenesis have shed light on genetic and epigenetic changes that drive melanoma development. This review provides an overview of these developments, focusing on molecular mechanisms in melanoma genesis. It highlights how mutations, particularly in the BRAF, NRAS, c-KIT, and GNAQ/GNA11 genes, affect critical signaling pathways. The evolution of diagnostic techniques, such as genomics, transcriptomics, liquid biopsies, and molecular biomarkers for early detection and prognosis, is also discussed. The therapeutic landscape has transformed with targeted therapies and immunotherapies, improving patient outcomes. This paper examines the efficacy, challenges, and prospects of these treatments, including recent clinical trials and emerging strategies. The potential of novel treatment strategies, including neoantigen vaccines, adoptive cell transfer, microbiome interactions, and nanoparticle-based combination therapy, is explored. These advances emphasize the challenges of therapy resistance and the importance of personalized medicine. This review underlines the necessity for evidence-based therapy selection in managing the increasing global incidence of melanoma.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
45
|
Arafat M, Sakkal M, Beiram R, AbuRuz S. Nanomedicines: Emerging Platforms in Smart Chemotherapy Treatment-A Recent Review. Pharmaceuticals (Basel) 2024; 17:315. [PMID: 38543101 PMCID: PMC10974155 DOI: 10.3390/ph17030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 01/06/2025] Open
Abstract
Cancer continues to pose one of the most critical challenges in global healthcare. Despite the wide array of existing cancer drugs, the primary obstacle remains in selectively targeting and eliminating cancer cells while minimizing damage to healthy ones, thereby reducing treatment side effects. The revolutionary approach of utilizing nanomaterials for delivering cancer therapeutic agents has significantly enhanced the efficacy and safety of chemotherapeutic drugs. This crucial shift is attributed to the unique properties of nanomaterials, enabling nanocarriers to transport therapeutic agents to tumor sites in both passive and active modes, while minimizing drug elimination from delivery systems. Furthermore, these nanocarriers can be designed to respond to internal or external stimuli, thus facilitating controlled drug release. However, the production of nanomedications for cancer therapy encounters various challenges that can impede progress in this field. This review aims to provide a comprehensive overview of the current state of nanomedication in cancer treatment. It explores a variety of nanomaterials, focusing on their unique properties that are crucial for overcoming the limitations of conventional chemotherapy. Additionally, the review delves into the properties and functionalities of nanocarriers, highlighting their significant impact on the evolution of nanomedicine. It also critically assesses recent advancements in drug delivery systems, covering a range of innovative delivery methodologies. Finally, the review succinctly addresses the challenges encountered in developing nanomedications, offering insightful perspectives to guide future research in this field.
Collapse
Affiliation(s)
- Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
46
|
Lu B, Lim JM, Yu B, Song S, Neeli P, Sobhani N, K P, Bonam SR, Kurapati R, Zheng J, Chai D. The next-generation DNA vaccine platforms and delivery systems: advances, challenges and prospects. Front Immunol 2024; 15:1332939. [PMID: 38361919 PMCID: PMC10867258 DOI: 10.3389/fimmu.2024.1332939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Vaccines have proven effective in the treatment and prevention of numerous diseases. However, traditional attenuated and inactivated vaccines suffer from certain drawbacks such as complex preparation, limited efficacy, potential risks and others. These limitations restrict their widespread use, especially in the face of an increasingly diverse range of diseases. With the ongoing advancements in genetic engineering vaccines, DNA vaccines have emerged as a highly promising approach in the treatment of both genetic diseases and acquired diseases. While several DNA vaccines have demonstrated substantial success in animal models of diseases, certain challenges need to be addressed before application in human subjects. The primary obstacle lies in the absence of an optimal delivery system, which significantly hampers the immunogenicity of DNA vaccines. We conduct a comprehensive analysis of the current status and limitations of DNA vaccines by focusing on both viral and non-viral DNA delivery systems, as they play crucial roles in the exploration of novel DNA vaccines. We provide an evaluation of their strengths and weaknesses based on our critical assessment. Additionally, the review summarizes the most recent advancements and breakthroughs in pre-clinical and clinical studies, highlighting the need for further clinical trials in this rapidly evolving field.
Collapse
Affiliation(s)
- Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Ming Lim
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Boyue Yu
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Praveen Neeli
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Navid Sobhani
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Pavithra K
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
47
|
Lotfalizadeh N, Sadr S, Morovati S, Lotfalizadeh M, Hajjafari A, Borji H. A potential cure for tumor-associated immunosuppression by Toxoplasma gondii. Cancer Rep (Hoboken) 2024; 7:e1963. [PMID: 38109851 PMCID: PMC10850000 DOI: 10.1002/cnr2.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Recently, immunotherapy has become very hopeful for cancer therapy. Cancer treatment through immunotherapy has excellent specificity and less toxicity than conventional chemoradiotherapy. Pathogens have been used in cancer immunotherapy for a long time. The current study aims to evaluate the possibility of Toxoplasma gondii (T. gondii) as a probable treatment for cancers such as melanoma, breast, ovarian, lung, and pancreatic cancer. RECENT FINDINGS Nonreplicating type I uracil auxotrophic mutants of T. gondii can stimulate immune responses against tumors by reverse immunosuppression at the cellular level. T. gondii can be utilized to research T helper 1 (Th1) cell immunity in intracellular infections. Avirulent T. gondii uracil auxotroph vaccine can change the tumor's immunosuppression and improve the production of type 1 helper cell cytokines, i.e., Interferon-gamma (IFN-γ) and Interleukin-12 (IL-12) and activate tumor-related Cluster of Differentiation 8 (CD8+) T cells to identify and destroy cancer cells. The T. gondii profilin protein, along with T. gondii secreted proteins, have been found to exhibit promising properties in the treatment of various cancers. These proteins are being studied for their potential to inhibit tumor growth and enhance the effectiveness of cancer therapies. Their unique mechanisms of action make them valuable candidates for targeted interventions in ovarian cancer, breast cancer, pancreatic cancer, melanoma, and lung cancer treatments. CONCLUSION In summary, the study underscores the significant potential of harnessing T. gondii, including its diverse array of proteins and antigens, particularly in its avirulent form, as a groundbreaking approach in cancer immunotherapy.
Collapse
Affiliation(s)
- Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary MedicineShiraz UniversityShirazIran
| | - Mohammadhassan Lotfalizadeh
- Board Certificate Oral and Maxillofacial RadiologistNorth Khorasan University of Medical Sciences (NKUMS)BojnurdIran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary MedicineIslamic Azad University, Science and Research BranchTehranIran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
48
|
Ding J, Ding X, Liao W, Lu Z. Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications. Mater Today Bio 2024; 24:100913. [PMID: 38188647 PMCID: PMC10767221 DOI: 10.1016/j.mtbio.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer has become an increasingly important public health issue owing to its high morbidity and mortality rates. Although traditional treatment methods are relatively effective, they have limitations such as highly toxic side effects, easy drug resistance, and high individual variability. Meanwhile, emerging therapies remain limited, and their actual anti-tumor effects need to be improved. Nanotechnology has received considerable attention for its development and application. In particular, artificial nanocarriers have emerged as a crucial approach for tumor therapy. However, certain deficiencies persist, including immunogenicity, permeability, targeting, and biocompatibility. The application of erythrocyte-derived materials will help overcome the above problems and enhance therapeutic effects. Erythrocyte-derived materials can be acquired via the application of physical and chemical techniques from natural erythrocyte membranes, or through the integration of these membranes with synthetic inner core materials using cell membrane biomimetic technology. Their natural properties such as biocompatibility and long circulation time make them an ideal choice for drug delivery or nanoparticle biocoating. Thus, red blood cell-derived materials are widely used in the field of biomedicine. However, further studies are required to evaluate their efficacy, in vivo metabolism, preparation, design, and clinical translation. Based on the latest research reports, this review summarizes the biology, synthesis, characteristics, and distribution of red blood cell-derived materials. Furthermore, we provide a reference for further research and clinical transformation by comprehensively discussing the applications and technical challenges faced by red blood cell-derived materials in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jianghua Ding
- Department of Hematology & Oncology, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
| | - Xinjing Ding
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| | - Weifang Liao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
- Department of Medical Laboratory, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Zhihui Lu
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| |
Collapse
|
49
|
Chan WJ, Li H. Recent advances in nano/micro systems for improved circulation stability, enhanced tumor targeting, penetration, and intracellular drug delivery: a review. Biomed Phys Eng Express 2024; 10:022001. [PMID: 38086099 DOI: 10.1088/2057-1976/ad14f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
In recent years, nanoparticles (NPs) have been extensively developed as drug carriers to overcome the limitations of cancer therapeutics. However, there are several biological barriers to nanomedicines, which include the lack of stability in circulation, limited target specificity, low penetration into tumors and insufficient cellular uptake, restricting the active targeting toward tumors of nanomedicines. To address these challenges, a variety of promising strategies were developed recently, as they can be designed to improve NP accumulation and penetration in tumor tissues, circulation stability, tumor targeting, and intracellular uptake. In this Review, we summarized nanomaterials developed in recent three years that could be utilized to improve drug delivery for cancer treatments.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
50
|
Uthman A, AL-Rawi N, Saeed MH, Eid B, Al-Rawi NH. Tunable theranostics: innovative strategies in combating oral cancer. PeerJ 2024; 12:e16732. [PMID: 38188167 PMCID: PMC10771769 DOI: 10.7717/peerj.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Objective This study aims to assess and compare the potential of advanced nano/micro delivery systems, including quantum dots, carbon nanotubes, magnetic nanoparticles, dendrimers, and microneedles, as theranostic platforms for oral cancer. Furthermore, we seek to evaluate their respective advantages and disadvantages over the past decade. Materials and Methods A comprehensive literature search was performed using Google Scholar and PubMed, with a focus on articles published between 2013 and 2023. Search queries included the specific advanced delivery system as the primary term, followed by oral cancer as the secondary term (e.g., "quantum dots AND oral cancer," etc.). Results The advanced delivery platforms exhibited notable diagnostic and therapeutic advantages when compared to conventional techniques or control groups. These benefits encompassed improved tumor detection and visualization, enhanced precision in targeting tumors with reduced harm to neighboring tissues, and improved drug solubility and distribution, leading to enhanced drug absorption and tumor uptake. Conclusion The findings suggest that advanced nano/micro delivery platforms hold promise for addressing numerous challenges associated with chemotherapy. By enabling precise targeting of cancerous cells, these platforms have the potential to mitigate adverse effects on surrounding healthy tissues, thus encouraging the development of innovative diagnostic and therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Asmaa Uthman
- Department of Diagnostic and Surgical Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Noor AL-Rawi
- Department of Pharmaceutics and Pharmaceutical Technology, University of Sharjah, Sharjah, United Arab Emirates
| | - Musab Hamed Saeed
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Ajman University, Centre of Medical and Bio-allied Health Sciences Research,, Ajman, United Arab Emirates
| | - Bassem Eid
- Department of Restorative Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, Ajman, United Arab Emirates
| | - Natheer H. Al-Rawi
- University of Sharjah, Sharjah Institute of Medical Research, Sharjah, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|