1
|
Wang C, Wu Y, Jiang J. The role and mechanism of mesenchymal stem cells in immunomodulation of type 1 diabetes mellitus and its complications: recent research progress and challenges: a review. Stem Cell Res Ther 2025; 16:308. [PMID: 40528233 DOI: 10.1186/s13287-025-04431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 06/02/2025] [Indexed: 06/20/2025] Open
Abstract
BACKGROUND Mesenchymal stem cells are of great interest because of their multipotency, immune modulation capacity, and tissue and vascular regeneration effects. They are used in treating type 1 diabetes mellitus, helping improve the pancreatic environment and insulin secretion. Type 1 diabetes mellitus predominantly affects children and adolescents, with early onset and a prolonged course that can lead to multiorgan complications and related disorders. Studies using mesenchymal stem cells to treat type 1 diabetes mellitus have yielded promising results. This review discusses the common animal models of type 1 diabetes mellitus, mesenchymal stem cell immunotherapy mechanisms, and combined diabetes treatments. Its purpose is to summarize the current evidence on mesenchymal stem cell use in type 1 diabetes, providing insights for further research directions. MAIN FINDINGS Current studies show that mesenchymal stem cells play an active role in the treatment of type 1 diabetes; however, clinical trials remain rare, necessitating more basic and preclinical research to identify optimal treatments. CONCLUSIONS Mesenchymal stem cells can treat type 1 diabetes through a variety of immune mechanisms and also play a positive role in the treatment of type 1 diabetes complications. At the same time, it can be combined with other therapies to play a better therapeutic role.
Collapse
Affiliation(s)
- Chengran Wang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China
| | - Yimeng Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, China.
| |
Collapse
|
2
|
Saadh MJ, Ahmed HH, Sanghvi G, Bin Awang Isa MZ, Singh P, Kaur K, Kumar MR, Husseen B. Recent advances in the delivery of microRNAs via exosomes derived from MSCs, and their role in regulation of ferroptosis. Pathol Res Pract 2025; 270:155984. [PMID: 40315562 DOI: 10.1016/j.prp.2025.155984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025]
Abstract
Mesenchymal stem cell (MSC) therapy, with its unique properties, has garnered interest in cancer treatment. Exosomes (EXOs)-derived from MSC retain the paracrine components of MSCs and demonstrate increased stability, minimal immunogenicity, and low risk of unintended tumorigenesis. Enhanced endocytosis methods make them versatile delivery vehicles for therapeutic cargo. MSC-EXOs can either promote or inhibit carcinogenesis, mediated by paracrine factors and various RNA molecules, particularly microRNAs (miRNAs). The prospect of using MSC-EXOs as a delivery tool for antitumor miRNAs in solid tumor therapy is promising. Exosomes' intrinsic tumor-targeting abilities and low immunogenicity make them ideal for delivering miRNAs, which have shown potential as cancer therapeutics. miRNAs within MSC-EXOs molecules can stimulate tumor growth or induce non-apoptotic cell death pathways, such as ferroptosis, depending on context. Ferroptosis is a kind of controlled cell death that is associated with the pathophysiology of several illnesses and includes iron metabolism. There is growing evidence that miRNAs carried by exosomes derived from MSCs may control ferroptosis in tumor cells by altering key genes related to antioxidant defense, lipid peroxidation, and iron metabolism. Understanding their complex mechanisms in the tumor microenvironment and optimizing their cargo are critical steps toward harnessing their full therapeutic potential. This review provides a comprehensive overview of MSC-EXOs and their role in cancer treatment. We also discuss the potential of MSC-EXOs as delivery vehicles for miRNAs to enhance therapeutic efficacy, as well as the role of exosomal miRNAs in the induction of ferroptosis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | | | - Priyanka Singh
- NIMS School of Allied Sciences and Technology, NIMS University, Jaipur, Rajasthan 303121, India
| | - Kiranjeet Kaur
- Chandigarh Pharmacy College, Chandigarh Group of colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
3
|
Barilani M, Peli V, Manzini P, Pistoni C, Rusconi F, Pinatel EM, Pischiutta F, Tace D, Iachini MC, Elia N, Tribuzio F, Banfi F, Sessa A, Cherubini A, Dolo V, Bollati V, Fiandra L, Longhi E, Zanier ER, Lazzari L. Extracellular Vesicles from Human Induced Pluripotent Stem Cells Exhibit a Unique MicroRNA and CircRNA Signature. Int J Biol Sci 2024; 20:6255-6278. [PMID: 39664576 PMCID: PMC11628337 DOI: 10.7150/ijbs.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Extracellular vesicles (EV) have emerged as promising cell-free therapeutics in regenerative medicine. However, translating primary cell line-derived EV to clinical applications requires large-scale manufacturing and several challenges, such as replicative senescence, donor heterogeneity, and genetic instability. To address these limitations, we used a reprogramming approach to generate human induced pluripotent stem cells (hiPSC) from the young source of cord blood mesenchymal stem/stromal cells (CBMSC). Capitalizing on their inexhaustible supply potential, hiPSC offer an attractive EV reservoir. Our approach encompassed an exhaustive characterization of hiPSC-EV, aligning with the rigorous MISEV2023 guidelines. Analyses demonstrated physical features compatible with small EV (sEV) and established their identity and purity. Moreover, the sEV-shuttled non-coding (nc) RNA landscape, focusing on the microRNA and circular RNA cargo, completed the molecular signature. The kinetics of the hiPSC-sEV release and cell internalization assays unveiled robust EV production and consistent uptake by human neurons. Furthermore, hiPSC-sEV demonstrated ex vivo cell tissue-protective properties. Finally, via bioinformatics, the potential involvement of the ncRNA cargo in the hiPSC-sEV biological effects was explored. This study significantly advances the understanding of pluripotent stem cell-derived EV. We propose cord blood MSC-derived hiPSC as a promising source for potentially therapeutic sEV.
Collapse
Affiliation(s)
- Mario Barilani
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valeria Peli
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Paolo Manzini
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Clelia Pistoni
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Francesco Rusconi
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Eva Maria Pinatel
- ITB-CNR, Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Francesca Pischiutta
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Dorian Tace
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria Chiara Iachini
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Noemi Elia
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Tribuzio
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Federica Banfi
- San Raffaele Scientific Institute, Division of Neuroscience, Neuroepigenetics Unit, Milano, Italy
| | - Alessandro Sessa
- San Raffaele Scientific Institute, Division of Neuroscience, Neuroepigenetics Unit, Milano, Italy
| | - Alessandro Cherubini
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milano, Italy
| | - Elena Longhi
- Laboratory of Transplant Immunology SC Trapianti Lombardia - NITp. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elisa R Zanier
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Lorenza Lazzari
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
4
|
Zhao H, Zhao H, Ji S. A Mesenchymal stem cell Aging Framework, from Mechanisms to Strategies. Stem Cell Rev Rep 2024; 20:1420-1440. [PMID: 38727878 DOI: 10.1007/s12015-024-10732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 08/13/2024]
Abstract
Mesenchymal stem cells (MSCs) are extensively researched for therapeutic applications in tissue engineering and show significant potential for clinical use. Intrinsic or extrinsic factors causing senescence may lead to reduced proliferation, aberrant differentiation, weakened immunoregulation, and increased inflammation, ultimately limiting the potential of MSCs. It is crucial to comprehend the molecular pathways and internal processes responsible for the decline in MSC function due to senescence in order to devise innovative approaches for rejuvenating senescent MSCs and enhancing MSC treatment. We investigate the main molecular processes involved in senescence, aiming to provide a thorough understanding of senescence-related issues in MSCs. Additionally, we analyze the most recent advancements in cutting-edge approaches to combat MSC senescence based on current research. We are curious whether the aging process of stem cells results in a permanent "memory" and if cellular reprogramming may potentially revert the aging epigenome to a more youthful state.
Collapse
Affiliation(s)
- Hongqing Zhao
- Nanbu County People's Hospital, Nanchong City, 637300, Sichuan Province, China
- Jinzhou Medical University, No.82 Songpo Road, Guta District, Jinzhou, 121001, Liaoning Province, China
| | - Houming Zhao
- Graduate School of PLA Medical College, Chinese PLA General Hospital, Beijing, 100083, China
| | - Shuaifei Ji
- Graduate School of PLA Medical College, Chinese PLA General Hospital, Beijing, 100083, China.
| |
Collapse
|
5
|
Velikova T, Dekova T, Miteva DG. Controversies regarding transplantation of mesenchymal stem cells. World J Transplant 2024; 14:90554. [PMID: 38947963 PMCID: PMC11212595 DOI: 10.5500/wjt.v14.i2.90554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 06/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tantalized regenerative medicine with their therapeutic potential, yet a cloud of controversies looms over their clinical transplantation. This comprehensive review navigates the intricate landscape of MSC controversies, drawing upon 15 years of clinical experience and research. We delve into the fundamental properties of MSCs, exploring their unique immunomodulatory capabilities and surface markers. The heart of our inquiry lies in the controversial applications of MSC transplantation, including the perennial debate between autologous and allogeneic sources, concerns about efficacy, and lingering safety apprehensions. Moreover, we unravel the enigmatic mechanisms surrounding MSC transplantation, such as homing, integration, and the delicate balance between differentiation and paracrine effects. We also assess the current status of clinical trials and the ever-evolving regulatory landscape. As we peer into the future, we examine emerging trends, envisioning personalized medicine and innovative delivery methods. Our review provides a balanced and informed perspective on the controversies, offering readers a clear understanding of the complexities, challenges, and potential solutions in MSC transplantation.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Tereza Dekova
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1164, Bulgaria
| | | |
Collapse
|
6
|
Massidda MW, Demkov A, Sices A, Lee M, Lee J, Paull TT, Kim J, Baker AB. Mechanical Rejuvenation of Mesenchymal Stem Cells from Aged Patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597781. [PMID: 38895474 PMCID: PMC11185588 DOI: 10.1101/2024.06.06.597781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mesenchymal stem cells (MSC) are an appealing therapeutic cell type for many diseases. However, patients with poor health or advanced age often have MSCs with poor regenerative properties. A major limiter of MSC therapies is cellular senescence, which is marked by limited proliferation capability, diminished multipotency, and reduced regenerative properties. In this work, we explored the ability of applied mechanical forces to reduce cellular senescence in MSCs. Our studies revealed that mechanical conditioning caused a lasting enhancement in proliferation, overall cell culture expansion potential, multipotency, and a reduction of senescence in MSCs from aged donors. Mechanistic studies suggested that these functional enhancements were mediated by oxidative stress and DNA damage repair signaling with mechanical load altering the expression of proteins of the sirtuin pathway, the DNA damage repair protein ATM, and antioxidant proteins. In addition, our results suggest a biophysical mechanism in which mechanical stretch leads to improved recognition of damaged DNA in the nucleus. Analysis of the cells through RNA-seq and ATAC-seq, demonstrated that mechanical loading alters the cell's genetic landscape to cause broad shifts in transcriptomic patterns that related to senescence. Overall, our results demonstrate that mechanical conditioning can rejuvenate mesenchymal stem cells derived from aged patients and improve their potential as a therapeutic cell type. GRAPHICAL ABSTRACT
Collapse
|
7
|
Hughes AM, Kuek V, Oommen J, Kotecha RS, Cheung LC. Murine bone-derived mesenchymal stem cells undergo molecular changes after a single passage in culture. Sci Rep 2024; 14:12396. [PMID: 38811646 PMCID: PMC11137146 DOI: 10.1038/s41598-024-63009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
The rarity of the mesenchymal stem cell (MSC) population poses a significant challenge for MSC research. Therefore, these cells are often expanded in vitro, prior to use. However, long-term culture has been shown to alter primary MSC properties. Additionally, early passage primary MSCs in culture are often assumed to represent the primary MSC population in situ, however, little research has been done to support this. Here, we compared the transcriptomic profiles of murine MSCs freshly isolated from the bone marrow to those that had been expanded in culture for 10 days. We identified that a single passage in culture extensively altered MSC molecular signatures associated with cell cycling, differentiation and immune response. These findings indicate the critical importance of the MSC source, highlighting the need for optimization of culture conditions to minimize the impact on MSC biology and a transition towards in vivo methodologies for the study of MSC function.
Collapse
Affiliation(s)
- Anastasia M Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Joyce Oommen
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA, 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, 6009, Australia
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia.
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia.
| |
Collapse
|
8
|
Wang H, Zhang N, Wang X, Tian J, Yi J, Yao L, Huang G. Emerging role of mesenchymal stem cell-derived exosome microRNA in radiation injury. Int J Radiat Biol 2024; 100:996-1008. [PMID: 38776447 DOI: 10.1080/09553002.2024.2347348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Radiation injury (RI) is a common occurrence in malignant tumors patients receiving radiation therapy. While killing tumor cells, normal tissue surrounding the target area is inevitably irradiated at a certain dose, which can cause varying results of radiation injury. Currently, there are limited clinical treatments available for radiation injuries. In recent years, the negative effects of stem cell therapy have been reported more clearly and non-cellular therapies such as exosomes have become a focus of attention for researchers. As a type of vesicle-like substances secreted by mesenchymal stem cells (MSC), MSC derived exosomes (MSC-exo) carry DNA, mRNA, microRNA (miRNAs), specific proteins, lipids, and other active substances involved in intercellular information exchange. miRNAs released by MSC-exo are capable of alleviating and repairing damaged tissues through anti-apoptosis, modulating immune response, regulating inflammatory response and promoting angiogenesis, which indicates that MSC-exo miRNAs have great potential for application in the prevention and treatment of radiation injury. Therefore, it is necessary to explore the underlying therapeutic mechanisms of MSC-exo miRNAs in this process, which may shed new lights on the treatment of radiation injury. CONCLUSIONS Increasing evidence confirms that MSC-exo has shown encouraging applications in tissue repair due to the anti-apoptotic, immunoreactive, and pro-angiogenesis effects of the miRNAs it carries as intercellular communication carriers. However, miRNA-based therapeutics are still in their infancy and many practical issues remain to be addressed for clinical applications.
Collapse
Affiliation(s)
- Huike Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Nini Zhang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Xue Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jia Tian
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jie Yi
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | | | - Guilin Huang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
9
|
Zhu S, Xuan J, Shentu Y, Kida K, Kobayashi M, Wang W, Ono M, Chang D. Effect of chitin-architected spatiotemporal three-dimensional culture microenvironments on human umbilical cord-derived mesenchymal stem cells. Bioact Mater 2024; 35:291-305. [PMID: 38370866 PMCID: PMC10869358 DOI: 10.1016/j.bioactmat.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has been explored for the clinical treatment of various diseases. However, the current two-dimensional (2D) culture method lacks a natural spatial microenvironment in vitro. This limitation restricts the stable establishment and adaptive maintenance of MSC stemness. Using natural polymers with biocompatibility for constructing stereoscopic MSC microenvironments may have significant application potential. This study used chitin-based nanoscaffolds to establish a novel MSC three-dimensional (3D) culture. We compared 2D and 3D cultured human umbilical cord-derived MSCs (UCMSCs), including differentiation assays, cell markers, proliferation, and angiogenesis. When UCMSCs are in 3D culture, they can differentiate into bone, cartilage, and fat. In 3D culture condition, cell proliferation is enhanced, accompanied by an elevation in the secretion of paracrine factors, including vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), Interleukin-6 (IL-6), and Interleukin-8 (IL-8) by UCMSCs. Additionally, a 3D culture environment promotes angiogenesis and duct formation with HUVECs (Human Umbilical Vein Endothelial Cells), showing greater luminal area, total length, and branching points of tubule formation than a 2D culture. MSCs cultured in a 3D environment exhibit enhanced undifferentiated, as well as higher cell activity, making them a promising candidate for regenerative medicine and therapeutic applications.
Collapse
Affiliation(s)
- Shuoji Zhu
- Department of Cardiac Surgery, University of Tokyo, Tokyo, 113-8655, Japan
| | - Junfeng Xuan
- Department of Cell Therapy in Regenerative Medicine, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Yunchao Shentu
- Department of Cell Therapy in Regenerative Medicine, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | | | | | - Wei Wang
- Winhealth Pharma, 999077, Hong Kong
| | - Minoru Ono
- Department of Cardiac Surgery, University of Tokyo, Tokyo, 113-8655, Japan
| | - Dehua Chang
- Department of Cell Therapy in Regenerative Medicine, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| |
Collapse
|
10
|
Tian L, Wang W, Li X, Chen Y, Song Q, Yuan L, Hao T, Gu J, Dong J. Whole transcriptome scanning and validation of negatively related genes in UC-MSCs. Heliyon 2024; 10:e27996. [PMID: 38510024 PMCID: PMC10951646 DOI: 10.1016/j.heliyon.2024.e27996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
Background Human umbilical cord mesenchymal stem cells (UC-MSCs) are one of the most extensively researched stem cell types due to their potential for multi-lineage differentiation, secretion of regenerative factors, modulations of immunological activities, and the release of regenerative substances and influence immunological processes. Since UC-MSCs must be cultivated on a large scale for clinical use, selecting the appropriate storing passage, such as the usage-based passage of UC-MSCs, is critical for long-term autologous or allogeneic usage. Long-term cultivation of stem cells, on the other hand, causes them to lose their pluripotent differentiation capacity. As a result, distinguishing between high and low passages of UC-MSCs and identifying the particular variations associated with stem cells and their modes of action is essential for regenerative medicine. Therefore, we investigated the biological features and transcriptional changes of UC-MSCs over passages. Methods UC-MSCs were isolated from the tissues of the human umbilical cord, and UC-MSCs from five passages (P1, P3, P5, P10 and P15) with three repetitions were compared and identified based on morphology, cell markers, differentiation capacity, and aging-related characteristics. It was previously assumed that the phenotype of cells before the P10 passage was stable, defined as early passage, and that culture could be continued until the 15th passage, defined as late passage. Next, the five passages of UC-MSCs were sequenced using high-throughput complete transcriptome sequencing. Fuzzy C-Means Clustering (FCM) and Weighted Gene Co-expression Network Analysis (WGCNA) were used to find hub genes, and gene silencing was performed to investigate the impact of missing genes on the stemness of UC-MSC cells. Results UC-MSCs of different passages displayed similar surface markers, including CD73, CD105, CD90, CD34, CD45 and HLA-DR. However, the proliferation time of late-phase UC-MSCs was longer than that of early-phase UC-MSCs, and the expression of the senescence-associated (SA)-β-gal staining marker was higher. At the same time, pluripotency markers (NANOG, OCT4, SOX2 and KIF4A) were down-regulated, and the multi-differentiation potential was reduced. Meanwhile, KIFC1 and UBE2C were down-regulated in late-phase UC-MSCs, which were involved in the maintenance of stemness. Conclusions KIFC1 and UBE2C were highly expressed in early-UC-MSCs and showed a downward gradient trend with cell expansion in vitro. They regulated UC-MSC proliferation, colony sphere formation, multiple differentiation, stemness maintenance, and other biological manifestations. Therefore, they are anticipated to be new biomarkers for UC-MSCs quality identification in regenerative medicine applications.
Collapse
Affiliation(s)
- Linghan Tian
- Department of Yunnan Tumor Research Institute, Kunming, 650118, China
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Yunnan Cancer Hospital, Kunming, 650118, China
| | - Weibin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China
| | - Xuzhen Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China
| | - Yan Chen
- Department of Yunnan Tumor Research Institute, Kunming, 650118, China
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Yunnan Cancer Hospital, Kunming, 650118, China
| | - Qian Song
- Department of Yunnan Tumor Research Institute, Kunming, 650118, China
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Yunnan Cancer Hospital, Kunming, 650118, China
| | - Lu Yuan
- Department of Yunnan Tumor Research Institute, Kunming, 650118, China
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Yunnan Cancer Hospital, Kunming, 650118, China
| | - Tingting Hao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China
| | - Jiaming Gu
- Department of Yunnan Tumor Research Institute, Kunming, 650118, China
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Yunnan Cancer Hospital, Kunming, 650118, China
| | - Jian Dong
- Department of Yunnan Tumor Research Institute, Kunming, 650118, China
- The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Yunnan Cancer Hospital, Kunming, 650118, China
| |
Collapse
|
11
|
Sun B, Meng XH, Li YM, Lin H, Xiao ZD. MicroRNA-18a prevents senescence of mesenchymal stem cells by targeting CTDSPL. Aging (Albany NY) 2024; 16:4904-4919. [PMID: 38460957 PMCID: PMC10968691 DOI: 10.18632/aging.205642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/26/2023] [Indexed: 03/11/2024]
Abstract
Stem cell therapy requires massive-scale homogeneous stem cells under strict qualification control. However, Prolonged ex vivo expansion impairs the biological functions and results in senescence of mesenchymal stem cells (MSCs). We investigated the function of CTDSPL in the premature senescence process of MSCs and clarified that miR-18a-5p played a prominent role in preventing senescence of long-term cultured MSCs and promoting the self-renewal ability of MSCs. Over-expression of CTDSPL resulted in an enlarged morphology, up-regulation of p16 and accumulation of SA-β-gal of MSCs. The reduced phosphorylated RB suggested cell cycle arrest of MSCs. All these results implied that CTDSPL induced premature senescence of MSCs. We further demonstrated that miR-18a-5p was a putative regulator of CTDSPL by luciferase reporter assay. Inhibition of miR-18a-5p promoted the expression of CTDSPL and induced premature senescence of MSCs. Continuous overexpression of miR-18a-5p improved self-renewal of MSCs by reducing ROS level, increased expression of Oct4 and Nanog, and promoted growth rate and differentiation capability. We reported for the first time that the dynamic interaction of miR-18a-5p and CTDSPL is crucial for stem cell senescence.
Collapse
Affiliation(s)
- Bo Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xian-Hui Meng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu-Min Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhong-Dang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
12
|
Wang X, Tian H, Yang X, Zhao H, Liang X, Li Y. Mesenchymal Stem Cells‐Derived Extracellular Vesicles in Orthopedic Diseases: Recent Advances and Therapeutic Potential. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202300193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 01/06/2025]
Abstract
AbstractEver since the first application of mesenchymal stem cell (MSC) transplantation treating human hematologic malignancies in 1995, MSC‐based treatments have demonstrated great therapeutic potential in clinical settings. However, only a few MSC‐based cell therapy products have been clinically approved. Accumulating evidence suggests that the beneficial effects of MSCs are mainly attributed to the release of paracrine factors or extracellular vesicles (EVs) rather than their mesodermal differentiation potential. Therefore, MSC‐derived EVs (MSC‐EVs), such as exosomes and microvesicles, have merged as promising alternatives to traditional cell‐based therapeutics in clinical practice. They offer several advantages such as better safety, lower immunogenicity, protection of cargoes from degradation, and the ability to overcome biological barriers. Moreover, there have been multiple clinical studies exploring the potential of MSC‐EVs for treating various diseases, including orthopedic disorders. However, there is no definitive “cure” for conditions such as osteoporosis and other bone disorders, but MSC‐EVs have displayed significant therapeutic potential for these orthopedic ailments. Therefore, the objective of this study is to conduct a systematic review of current knowledge related to MSC‐EVs and emphasize their potential application in treating orthopedic diseases, such as bone defects, osteoarthritis, osteoporosis, intervertebral disc degeneration, osteosarcoma, and osteoradionecrosis.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Haodong Tian
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Xinquan Yang
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Xiaojun Liang
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| | - Yi Li
- Department of Foot and Ankle Surgery, Honghui Hospital Xi'an Jiaotong University Xi'an Shaanxi Province 710054 P. R. China
| |
Collapse
|
13
|
Ramamurthy RM, Rodriguez M, Ainsworth HC, Shields J, Meares D, Bishop C, Farland A, Langefeld CD, Atala A, Doering CB, Spencer HT, Porada CD, Almeida-Porada G. Comparison of different gene addition strategies to modify placental derived-mesenchymal stromal cells to produce FVIII. Front Immunol 2022; 13:954984. [PMID: 36591257 PMCID: PMC9800010 DOI: 10.3389/fimmu.2022.954984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Placenta-derived mesenchymal cells (PLCs) endogenously produce FVIII, which makes them ideally suited for cell-based fVIII gene delivery. We have previously reported that human PLCs can be efficiently modified with a lentiviral vector encoding a bioengineered, expression/secretion-optimized fVIII transgene (ET3) and durably produce clinically relevant levels of functionally active FVIII. The objective of the present study was to investigate whether CRISPR/Cas9 can be used to achieve location-specific insertion of a fVIII transgene into a genomic safe harbor, thereby eliminating the potential risks arising from the semi-random genomic integration inherent to lentiviral vectors. We hypothesized this approach would improve the safety of the PLC-based gene delivery platform and might also enhance the therapeutic effect by eliminating chromatin-related transgene silencing. Methods We used CRISPR/Cas9 to attempt to insert the bioengineered fVIII transgene "lcoET3" into the AAVS1 site of PLCs (CRISPR-lcoET3) and determined their subsequent levels of FVIII production, comparing results with this approach to those achieved using lentivector transduction (LV-lcoET3) and plasmid transfection (Plasmid-lcoET3). In addition, since liver-derived sinusoidal endothelial cells (LSECs) are the native site of FVIII production in the body, we also performed parallel studies in human (h)LSECs). Results PLCs and hLSECs can both be transduced (LV-lcoET3) with very high efficiency and produce high levels of biologically active FVIII. Surprisingly, both cell types were largely refractory to CRISPR/Cas9-mediated knockin of the lcoET3 fVIII transgene in the AAVS1 genome locus. However, successful insertion of an RFP reporter into this locus using an identical procedure suggests the failure to achieve knockin of the lcoET3 expression cassette at this site is likely a function of its large size. Importantly, using plasmids, alone or to introduce the CRISPR/Cas9 "machinery", resulted in dramatic upregulation of TLR 3, TLR 7, and BiP in PLCs, compromising their unique immune-inertness. Discussion Although we did not achieve our primary objective, our results validate the utility of both PLCs and hLSECs as cell-based delivery vehicles for a fVIII transgene, and they highlight the hurdles that remain to be overcome before primary human cells can be gene-edited with sufficient efficiency for use in cell-based gene therapy to treat HA.
Collapse
Affiliation(s)
- Ritu M. Ramamurthy
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Martin Rodriguez
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Hannah C. Ainsworth
- Department of Biostatistics and Data Sciences Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Jordan Shields
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Diane Meares
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Colin Bishop
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Andrew Farland
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Carl D. Langefeld
- Department of Biostatistics and Data Sciences Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Anthony Atala
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Christopher D. Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Graça Almeida-Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| |
Collapse
|
14
|
Suyama T, Takemoto Y, Miyauchi H, Kato Y, Matsuzaki Y, Kato R. Morphology-based noninvasive early prediction of serial-passage potency enhances the selection of clone-derived high-potency cell bank from mesenchymal stem cells. Inflamm Regen 2022; 42:30. [PMID: 36182958 PMCID: PMC9526913 DOI: 10.1186/s41232-022-00214-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/29/2022] [Indexed: 11/12/2022] Open
Abstract
Background Rapidly expanding clones (RECs) are one of the single-cell-derived mesenchymal stem cell clones sorted from human bone marrow mononuclear cells (BMMCs), which possess advantageous features. The RECs exhibit long-lasting proliferation potency that allows more than 10 repeated serial passages in vitro, considerably benefiting the manufacturing process of allogenic MSC-based therapeutic products. Although RECs aid the preparation of large-variation clone libraries for a greedy selection of better-quality clones, such a selection is only possible by establishing multiple-candidate cell banks for quality comparisons. Thus, there is a high demand for a novel method that can predict “low-risk and high-potency clones” early and in a feasible manner given the excessive cost and effort required to maintain such an establishment. Methods LNGFR and Thy-1 co-positive cells from BMMCs were single-cell-sorted into 96-well plates, and only fast-growing clones that reached confluency in 2 weeks were picked up and passaged as RECs. Fifteen RECs were prepared as passage 3 (P3) cryostock as the primary cell bank. From this cryostock, RECs were passaged until their proliferation limitation; their serial-passage limitation numbers were labeled as serial-passage potencies. At the P1 stage, phase-contrast microscopic images were obtained over 6–90 h to identify time-course changes of 24 morphological descriptors describing cell population information. Machine learning models were constructed using the morphological descriptors for predicting serial-passage potencies. The time window and field-of-view-number effects were evaluated to identify the most efficient image data usage condition for realizing high-performance serial-passage potency models. Results Serial-passage test results indicated variations of 7–13-repeated serial-passage potencies within RECs. Such potency values were predicted quantitatively with high performance (RMSE < 1.0) from P1 morphological profiles using a LASSO model. The earliest and minimum effort predictions require 6–30 h with 40 FOVs and 6–90 h with 15 FOVs, respectively. Conclusion We successfully developed a noninvasive morphology-based machine learning model to enhance the efficiency of establishing cell banks with single-cell-derived RECs for quantitatively predicting the future serial-passage potencies of clones. Conventional methods that can make noninvasive and quantitative predictions without wasting precious cells in the early stage are lacking; the proposed method will provide a more efficient and robust cell bank establishment process for allogenic therapeutic product manufacturing. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00214-w.
Collapse
Affiliation(s)
- Takashi Suyama
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.,PuREC Co. Ltd, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Yuto Takemoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Hiromi Miyauchi
- PuREC Co. Ltd, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Yuko Kato
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.,PuREC Co. Ltd, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan. .,PuREC Co. Ltd, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan. .,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
15
|
Zhu H, Wu Z, Ding X, Post MJ, Guo R, Wang J, Wu J, Tang W, Ding S, Zhou G. Production of cultured meat from pig muscle stem cells. Biomaterials 2022; 287:121650. [PMID: 35872554 DOI: 10.1016/j.biomaterials.2022.121650] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/13/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
Abstract
Cultured meat is meat for consumption produced in a more sustainable way. It involves cell harvesting and expansion, differentiation into myotubes, construction into muscle fibres and meat structuring. We isolated 5.3 × 104 porcine muscle stem cells from 1 g of neonatal pig muscle tissue. According to calculations, we need to expand muscle stem cells 106-107 times to produce 100 g or 1 kg of cultured meat. However, the cells gradually lost the ability to express stemness and mature muscle cell markers (PAX7, MyHC). To tackle this critical issue and maintain cell function during cell expansion, we found that long-term culture with (100 μM) l-Ascorbic acid 2-phosphate (Asc-2P) accelerated cell proliferation while preserving the muscle cell differentiation. We further optimized a scalable PDMS mold. Porcine muscle stem cells formed structurally-organized myotubes similar to muscle fibres in the mold. Asc-2P enhanced porcine muscle cells grown as 3D tissue networks that can produce a relatively large 3D tissue networks as cultured meat building blocks, which showed improved texture and amino acid content. These results established a realistic workflow for the production of cultured meat that mimics the pork meat structurally and is potentially scalable for industry.
Collapse
Affiliation(s)
- Haozhe Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; National Center of Meat Quality and Safety Control, MOST; Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, 210095, Jiangsu, China
| | - Zhongyuan Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; National Center of Meat Quality and Safety Control, MOST; Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, 210095, Jiangsu, China
| | - Xi Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; National Center of Meat Quality and Safety Control, MOST; Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, 210095, Jiangsu, China
| | - Mark J Post
- Department of Physiology, Maastricht University, CARIM, Maastricht, the Netherlands
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jie Wang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210031, China
| | - Junjun Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wenlai Tang
- School of Electrical and Automation Engineering, and Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Shijie Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; National Center of Meat Quality and Safety Control, MOST; Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, 210095, Jiangsu, China.
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; National Center of Meat Quality and Safety Control, MOST; Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, 210095, Jiangsu, China.
| |
Collapse
|
16
|
Malvandi AM, Shahba S, Mehrzad J, Lombardi G. Metabolic Disruption by Naturally Occurring Mycotoxins in Circulation: A Focus on Vascular and Bone Homeostasis Dysfunction. Front Nutr 2022; 9:915681. [PMID: 35811967 PMCID: PMC9263741 DOI: 10.3389/fnut.2022.915681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Naturally occurring food/feed contaminants have become a significant global issue due to animal and human health implications. Despite risk assessments and legislation setpoints on the mycotoxins' levels, exposure to lower amounts occurs, and it might affect cell homeostasis. However, the inflammatory consequences of this possible everyday exposure to toxins on the vascular microenvironment and arterial dysfunction are unexplored in detail. Circulation is the most accessible path for food-borne toxins, and the consequent metabolic and immune shifts affect systemic health, both on vascular apparatus and bone homeostasis. Their oxidative nature makes mycotoxins a plausible underlying source of low-level toxicity in the bone marrow microenvironment and arterial dysfunction. Mycotoxins could also influence the function of cardiomyocytes with possible injury to the heart. Co-occurrence of mycotoxins can modulate the metabolic pathways favoring osteoblast dysfunction and bone health losses. This review provides a novel insight into understanding the complex events of coexposure to mixed (low levels) mycotoxicosis and subsequent metabolic/immune disruptions contributing to chronic alterations in circulation.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- *Correspondence: Amir Mohammad Malvandi ; orcid.org/0000-0003-1243-2372
| | - Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
17
|
Olmedo-Moreno L, Aguilera Y, Baliña-Sánchez C, Martín-Montalvo A, Capilla-González V. Heterogeneity of In Vitro Expanded Mesenchymal Stromal Cells and Strategies to Improve Their Therapeutic Actions. Pharmaceutics 2022; 14:1112. [PMID: 35631698 PMCID: PMC9146397 DOI: 10.3390/pharmaceutics14051112] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
Beneficial properties of mesenchymal stromal cells (MSCs) have prompted their use in preclinical and clinical research. Accumulating evidence has been provided for the therapeutic effects of MSCs in several pathologies, including neurodegenerative diseases, myocardial infarction, skin problems, liver disorders and cancer, among others. Although MSCs are found in multiple tissues, the number of MSCs is low, making in vitro expansion a required step before MSC application. However, culture-expanded MSCs exhibit notable differences in terms of cell morphology, physiology and function, which decisively contribute to MSC heterogeneity. The changes induced in MSCs during in vitro expansion may account for the variability in the results obtained in different MSC-based therapy studies, including those using MSCs as living drug delivery systems. This review dissects the different changes that occur in culture-expanded MSCs and how these modifications alter their therapeutic properties after transplantation. Furthermore, we discuss the current strategies developed to improve the beneficial effects of MSCs for successful clinical implementation, as well as potential therapeutic alternatives.
Collapse
Affiliation(s)
| | | | | | | | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, 41092 Seville, Spain; (L.O.-M.); (Y.A.); (C.B.-S.); (A.M.-M.)
| |
Collapse
|
18
|
Ruiz-Aparicio PF, Vernot JP. Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. J Pers Med 2022; 12:jpm12050716. [PMID: 35629139 PMCID: PMC9147878 DOI: 10.3390/jpm12050716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Bone marrow aging is associated with multiple cellular dysfunctions, including perturbed haematopoiesis, the propensity to haematological transformation, and the maintenance of leukaemia. It has been shown that instructive signals from different leukemic cells are delivered to stromal cells to remodel the bone marrow into a supportive leukemic niche. In particular, cellular senescence, a physiological program with both beneficial and deleterious effects on the health of the organisms, may be responsible for the increased incidence of haematological malignancies in the elderly and for the survival of diverse leukemic cells. Here, we will review the connection between BM aging and cellular senescence and the role that these processes play in leukaemia progression. Specifically, we discuss the role of mesenchymal stem cells as a central component of the supportive niche. Due to the specificity of the genetic defects present in leukaemia, one would think that bone marrow alterations would also have particular changes, making it difficult to envisage a shared therapeutic use. We have tried to summarize the coincident features present in BM stromal cells during aging and senescence and in two different leukaemias, acute myeloid leukaemia, with high frequency in the elderly, and B-acute lymphoblastic leukaemia, mainly a childhood disease. We propose that mesenchymal stem cells are similarly affected in these different leukaemias, and that the changes that we observed in terms of cellular function, redox balance, genetics and epigenetics, soluble factor repertoire and stemness are equivalent to those occurring during BM aging and cellular senescence. These coincident features may be used to explore strategies useful to treat various haematological malignancies.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
19
|
Tracy EP, Stielberg V, Rowe G, Benson D, Nunes SS, Hoying JB, Murfee WL, LeBlanc AJ. State of the field: cellular and exosomal therapeutic approaches in vascular regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H647-H680. [PMID: 35179976 PMCID: PMC8957327 DOI: 10.1152/ajpheart.00674.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023]
Abstract
Pathologies of the vasculature including the microvasculature are often complex in nature, leading to loss of physiological homeostatic regulation of patency and adequate perfusion to match tissue metabolic demands. Microvascular dysfunction is a key underlying element in the majority of pathologies of failing organs and tissues. Contributing pathological factors to this dysfunction include oxidative stress, mitochondrial dysfunction, endoplasmic reticular (ER) stress, endothelial dysfunction, loss of angiogenic potential and vascular density, and greater senescence and apoptosis. In many clinical settings, current pharmacologic strategies use a single or narrow targeted approach to address symptoms of pathology rather than a comprehensive and multifaceted approach to address their root cause. To address this, efforts have been heavily focused on cellular therapies and cell-free therapies (e.g., exosomes) that can tackle the multifaceted etiology of vascular and microvascular dysfunction. In this review, we discuss 1) the state of the field in terms of common therapeutic cell population isolation techniques, their unique characteristics, and their advantages and disadvantages, 2) common molecular mechanisms of cell therapies to restore vascularization and/or vascular function, 3) arguments for and against allogeneic versus autologous applications of cell therapies, 4) emerging strategies to optimize and enhance cell therapies through priming and preconditioning, and, finally, 5) emerging strategies to bolster therapeutic effect. Relevant and recent clinical and animal studies using cellular therapies to restore vascular function or pathologic tissue health by way of improved vascularization are highlighted throughout these sections.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Virginia Stielberg
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Daniel Benson
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | - James B Hoying
- Advanced Solutions Life Sciences, Manchester, New Hampshire
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Amanda Jo LeBlanc
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
20
|
Egger D, Lavrentieva A, Kugelmeier P, Kasper C. Physiologic isolation and expansion of human mesenchymal stem/stromal cells for manufacturing of cell-based therapy products. Eng Life Sci 2022; 22:361-372. [PMID: 35382547 PMCID: PMC8961040 DOI: 10.1002/elsc.202100097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
The utilization of mesenchymal stem/stromal cells raises new hopes in treatment of diseases and pathological conditions, while at the same time bringing immense challenges for researchers, manufacturers and physicians. It is essential to consider all steps along the in vitro fabrication of cell-based products in order to reach efficient and reproducible treatment outcomes. Here, the optimal protocols for isolation, cultivation and differentiation of mesenchymal stem cells are required. In this review we discuss these aspects and their influence on the final cell-based product quality. We demonstrate that physiological in vitro cell cultivation conditions play a crucial role in therapeutic functionalities of cultivated cells. We show that three-dimensional cell culture, dynamic culture conditions and physiologically relevant in vitro oxygen concentrations during isolation and expansion make a decisive contribution towards the improvement of cell-based products in regenerative medicine.
Collapse
Affiliation(s)
- Dominik Egger
- Department of BiotechnologyUniversity of Natural Resources and Life ScienceViennaAustria
| | | | | | - Cornelia Kasper
- Department of BiotechnologyUniversity of Natural Resources and Life ScienceViennaAustria
| |
Collapse
|
21
|
Muthu S, Kartheek RR, Jeyaraman N, Rajendran RL, Khanna M, Jeyaraman M, Packkyarathinam RP, Gangadaran P, Ahn BC. Is Culture Expansion Necessary in Autologous Mesenchymal Stromal Cell Therapy to Obtain Superior Results in the Management of Knee Osteoarthritis?-Meta-Analysis of Randomized Controlled Trials. Bioengineering (Basel) 2021; 8:220. [PMID: 34940373 PMCID: PMC8698637 DOI: 10.3390/bioengineering8120220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
Study Design: Meta-analysis. Objectives: We aimed to analyze the impact of cultured expansion of autologous mesenchymal stromal cells (MSCs) in the management of osteoarthritis of the knee from randomized controlled trials (RCTs) available in the literature. Materials and Methods: We conducted independent and duplicate electronic database searches including PubMed, Embase, Web of Science, and Cochrane Library until August 2021 for RCTs analyzing the efficacy and safety of culture-expanded compared to non-cultured autologous MSCs in the management of knee osteoarthritis. The Visual Analog Score (VAS) for pain, Western Ontario McMaster University's Osteoarthritis Index (WOMAC), Lysholm score, Knee Osteoarthritis Outcome Score (KOOS), and adverse events were the analyzed outcomes. Analysis was performed in R-platform using OpenMeta [Analyst] software. Results: Overall, 17 studies involving 767 patients were included for analysis. None of the studies made a direct comparison of the culture expanded and non-cultured MSCs, hence we pooled the results of all the included studies of non-cultured and cultured types of MSC sources and made a comparative analysis of the outcomes. At six months, culture expanded MSCs showed significantly better improvement (p < 0.001) in VAS outcome. Uncultured MSCs, on the other hand, demonstrated significant VAS improvement in the long term (12 months) in VAS (p < 0.001), WOMAC (p = 0.025), KOOS score (p = 0.016) where cultured-expanded MSCs failed to demonstrate a significant change. Culturing of MSCs did not significantly increase the complications noted (p = 0.485). On sub-group analysis, adipose-derived uncultured MSCs outperformed culture-expanded MSCs at both short term (six months) and long term (12 months) in functional outcome parameters such as WOMAC (p < 0.001, p = 0.025), Lysholm (p < 0.006), and KOOS (p < 0.003) scores, respectively, compared to their controls. Conclusions: We identified a void in literature evaluating the impact of culture expansion of MSCs for use in knee osteoarthritis. Our indirect analysis of literature showed that culture expansion of autologous MSCs is not a necessary factor to obtain superior results in the management of knee osteoarthritis. Moreover, while using uncultured autologous MSCs, we recommend MSCs of adipose origin to obtain superior functional outcomes. However, we urge future trials of sufficient quality to validate our findings to arrive at a consensus on the need for culture expansion of MSCs for use in cellular therapy of knee osteoarthritis.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, Tamil Nadu, India;
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India; (R.R.K.); (N.J.); (M.K.)
| | - Randhi Rama Kartheek
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India; (R.R.K.); (N.J.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India; (R.R.K.); (N.J.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India; (R.R.K.); (N.J.); (M.K.)
- Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow 226401, Uttar Pradesh, India
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India; (R.R.K.); (N.J.); (M.K.)
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
| | - Rathinavelpandian Perunchezhian Packkyarathinam
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India; (R.R.K.); (N.J.); (M.K.)
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
22
|
Maartens M, Kruger MJ, van de Vyver M. The Effect of N-Acetylcysteine and Ascorbic Acid-2-Phosphate Supplementation on Mesenchymal Stem Cell Function in B6.C-Lep ob/J Type 2 Diabetic Mice. Stem Cells Dev 2021; 30:1179-1189. [PMID: 34544266 DOI: 10.1089/scd.2021.0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diabetes is a complex multifactorial disorder associated with hyperglycemia, oxidative stress, and inflammation. The pathological microenvironment impairs mesenchymal stem cell (MSC) viability and dysregulates their proregenerative and immune-modulatory function causing maladaptive tissue damage. Targeting stem cells to protect them against impairment could thus delay the onset of complications and enhance the quality of life in diabetes mellitus patients. The aim of this study was to investigate the efficacy of N-acetylcysteine (NAC) and ascorbic-acid-2-phosphate (AAP) oral supplementation as preventative measure against MSC impairment. Healthy wild-type control (C57BL/6J) (male, n = 24) and obese diabetic (B6.C-Lepob/J) (ob/ob) (male, n = 24) mice received either placebo or antioxidant (NAC/AAP) supplementation for a period of 6 weeks. Metabolic parameters (weight and blood glucose) and the oxidative status (serum total serum antioxidant capacity, malondialdehyde) of animals were assessed. At the end of the 6-week supplementation period, bone marrow MSCs were isolated and their functionality (growth rate, viability, adipogenesis, and osteogenesis) assessed ex vivo. Real time quantitative polymerase chain reaction microarray analysis was also performed to assess the expression of 84 genes related to oxidative stress in MSCs. Despite no change in the metabolic profile, NAC/AAP supplementation improved the antioxidant status of diabetic animals and reduced lipid peroxidation, which is indicative of cellular damage. NAC/AAP also improved the population doubling time of MSCs (first 6-days postisolation) and significantly downregulated the expression of two genes (Nox1 and Rag2) associated with oxidative stress compared to placebo treatment. Taken together, this study has shown reduced oxidative stress and improvements in MSC function following in vivo antioxidant supplementation in healthy control and type 2 diabetic mice.
Collapse
Affiliation(s)
- Michelle Maartens
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Maria Jacoba Kruger
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mari van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
23
|
Li A, Guo F, Pan Q, Chen S, Chen J, Liu HF, Pan Q. Mesenchymal Stem Cell Therapy: Hope for Patients With Systemic Lupus Erythematosus. Front Immunol 2021; 12:728190. [PMID: 34659214 PMCID: PMC8516390 DOI: 10.3389/fimmu.2021.728190] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Although previous studies have demonstrated that SLE is related to the imbalance of cells in the immune system, including B cells, T cells, and dendritic cells, etc., the mechanisms underlying SLE pathogenesis remain unclear. Therefore, effective and low side-effect therapies for SLE are lacking. Recently, mesenchymal stem cell (MSC) therapy for autoimmune diseases, particularly SLE, has gained increasing attention. This therapy can improve the signs and symptoms of refractory SLE by promoting the proliferation of Th2 and Treg cells and inhibiting the activity of Th1, Th17, and B cells, etc. However, MSC therapy is also reported ineffective in some patients with SLE, which may be related to MSC- or patient-derived factors. Therefore, the therapeutic effects of MSCs should be further confirmed. This review summarizes the status of MSC therapy in refractory SLE treatment and potential reasons for the ineffectiveness of MSC therapy from three perspectives. We propose various MSC modification methods that may be beneficial in enhancing the immunosuppression of MSCs in SLE. However, their safety and protective effects in patients with SLE still need to be confirmed by further experimental and clinical evidence.
Collapse
Affiliation(s)
- Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
24
|
Delben PB, Zomer HD, Acordi da Silva C, Gomes RS, Melo FR, Dillenburg-Pilla P, Trentin AG. Human adipose-derived mesenchymal stromal cells from face and abdomen undergo replicative senescence and loss of genetic integrity after long-term culture. Exp Cell Res 2021; 406:112740. [PMID: 34303697 DOI: 10.1016/j.yexcr.2021.112740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Body fat depots are heterogeneous concerning their embryonic origin, structure, exposure to environmental stressors, and availability. Thus, investigating adipose-derived mesenchymal stromal cells (ASCs) from different sources is essential to standardization for future therapies. In vitro amplification is also critical because it may predispose cell senescence and mutations, reducing regenerative properties and safety. Here, we evaluated long-term culture of human facial ASCs (fASCs) and abdominal ASCs (aASCs) and showed that both met the criteria for MSCs characterization but presented differences in their immunophenotypic profile, and differentiation and clonogenic potentials. The abdominal tissue yielded more ASCs, and these had higher proliferative potential, but facial cells displayed fewer mitotic errors at higher passages. However, both cell types reduced clonal efficiency over time and entered replicative senescence around P12, as evaluated by progressive morphological alterations, reduced proliferative capacity, and SA-β-galactosidase expression. Loss of genetic integrity was detected by a higher proportion of cells showing nuclear alterations and γ-H2AX expression. Our findings indicate that the source of ASCs can substantially influence their phenotype and therefore should be carefully considered in future cell therapies, avoiding, however, long-term culture to ensure genetic stability.
Collapse
Affiliation(s)
- Priscilla Barros Delben
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Brazil.
| | - Helena Debiazi Zomer
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Brazil; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, USA.
| | - Camila Acordi da Silva
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Brazil.
| | | | | | | | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Jin L, Lu N, Zhang W, Zhou Y. Altered properties of human adipose-derived mesenchymal stromal cell during continuous in vitro cultivation. Cytotechnology 2021; 73:657-667. [PMID: 34349354 DOI: 10.1007/s10616-021-00486-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
Adipose-derived stromal cells (ASCs) are now recognized as an accessible, abundant, and reliable stem cells for tissue engineering and regenerative medicine. However, ASCs should be expanded long term in order to harvest higher cell number for clinical application. In this study, ASCs isolated from human subcutaneous adipose tissue and senescence after long-term expansion was evaluated. The results showed that following in vitro expansion to the 15th passage, ASCs show changes in morphology (toward the "fried egg" morphology) and decrease in proliferation potential. Nonetheless, ASCs maintained differentiation potential toward osteoblasts, chondrocytes, and adipocytes. The senescent ASCs show impaired migration capacity under the same basal conditions. OXPHOS and glycolysis decreased slightly in culture from passage 5 to passage 15. ASCs also showed increased accumulation of beta-galactosidase in culture. Expression of senescence markers p53, p16, and p21 were also increased accompanied with the increase of passages. Experiment data showed that ASCs biological characteristics depended and changed with age. We recommend the use of early-passage cells, particularly those before passage 5, for efficacious therapeutic application of stem cells.
Collapse
Affiliation(s)
- Lianhua Jin
- Pediatric Cardiovascular Department, The First Hospital of Jilin University, Jilin, China
| | - Na Lu
- Pediatric Cardiovascular Department, The First Hospital of Jilin University, Jilin, China
| | - Wenxin Zhang
- School of Clinical Medicine, Jilin University, Jilin, China
| | - Yan Zhou
- Pediatric Cardiovascular Department, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
26
|
Crippa S, Santi L, Berti M, De Ponti G, Bernardo ME. Role of ex vivo Expanded Mesenchymal Stromal Cells in Determining Hematopoietic Stem Cell Transplantation Outcome. Front Cell Dev Biol 2021; 9:663316. [PMID: 34017834 PMCID: PMC8129582 DOI: 10.3389/fcell.2021.663316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Overall, the human organism requires the production of ∼1 trillion new blood cells per day. Such goal is achieved via hematopoiesis occurring within the bone marrow (BM) under the tight regulation of hematopoietic stem and progenitor cell (HSPC) homeostasis made by the BM microenvironment. The BM niche is defined by the close interactions of HSPCs and non-hematopoietic cells of different origin, which control the maintenance of HSPCs and orchestrate hematopoiesis in response to the body’s requirements. The activity of the BM niche is regulated by specific signaling pathways in physiological conditions and in case of stress, including the one induced by the HSPC transplantation (HSCT) procedures. HSCT is the curative option for several hematological and non-hematological diseases, despite being associated with early and late complications, mainly due to a low level of HSPC engraftment, impaired hematopoietic recovery, immune-mediated graft rejection, and graft-versus-host disease (GvHD) in case of allogenic transplant. Mesenchymal stromal cells (MSCs) are key elements of the BM niche, regulating HSPC homeostasis by direct contact and secreting several paracrine factors. In this review, we will explore the several mechanisms through which MSCs impact on the supportive activity of the BM niche and regulate HSPC homeostasis. We will further discuss how the growing understanding of such mechanisms have impacted, under a clinical point of view, on the transplantation field. In more recent years, these results have instructed the design of clinical trials to ameliorate the outcome of HSCT, especially in the allogenic setting, and when low doses of HSPCs were available for transplantation.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| |
Collapse
|
27
|
Rühle A, Grosu AL, Nicolay NH. The Particle Radiobiology of Multipotent Mesenchymal Stromal Cells: A Key to Mitigating Radiation-Induced Tissue Toxicities in Cancer Treatment and Beyond? Front Oncol 2021; 11:616831. [PMID: 33912447 PMCID: PMC8071947 DOI: 10.3389/fonc.2021.616831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent stromal cells that have gained attention for the treatment of irradiation-induced normal tissue toxicities due to their regenerative abilities. As the vast majority of studies focused on the effects of MSCs for photon irradiation-induced toxicities, little is known about the regenerative abilities of MSCs for particle irradiation-induced tissue damage or the effects of particle irradiation on the stem cell characteristics of MSCs themselves. MSC-based therapies may help treat particle irradiation-related tissue lesions in the context of cancer radiotherapy. As the number of clinical proton therapy centers is increasing, there is a need to decidedly investigate MSC-based treatments for particle irradiation-induced sequelae. Furthermore, therapies with MSCs or MSC-derived exosomes may also become a useful tool for manned space exploration or after radiation accidents and nuclear terrorism. However, such treatments require an in-depth knowledge about the effects of particle radiation on MSCs and the effects of MSCs on particle radiation-injured tissues. Here, the existing body of evidence regarding the particle radiobiology of MSCs as well as regarding MSC-based treatments for some typical particle irradiation-induced toxicities is presented and critically discussed.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| |
Collapse
|
28
|
Yu H, Xu Z, Qu G, Wang H, Lin L, Li X, Xie X, Lei Y, He X, Chen Y, Li Y. Hypoxic Preconditioning Enhances the Efficacy of Mesenchymal Stem Cells-Derived Conditioned Medium in Switching Microglia toward Anti-inflammatory Polarization in Ischemia/Reperfusion. Cell Mol Neurobiol 2021; 41:505-524. [PMID: 32424775 PMCID: PMC11448619 DOI: 10.1007/s10571-020-00868-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Activation of pro-inflammatory microglia is an important mechanism of the cerebral ischemia-reperfusion (I/R)-induced neuronal injury and dysfunction. Mesenchymal stem cells (MSCs) together with their paracrine factors demonstrated curative potential in immune disorders and inflammatory diseases, as well as in ischemic diseases. However, it remains unclear whether conditioned medium from MSCs could effectively regulate the activation and polarization of microglia exposed to I/R stimulation. In this study, we investigated the effects of conditioned medium from bone marrow MSCs (BMSCs-CM) on I/R-stimulated microglia and the potential mechanism involved, as well as the way to obtain more effective BMSCs-CM. First, cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) was established in microglia to mimic the I/R. BMSCs-CM from different culture conditions (normoxic: 21% O2; hypoxic: 1% O2; hypoxia preconditioning: preconditioning with 1% O2 for 24 h) was used to treat the microglia. Our results showed that BMSCs-CM effectively promoted the survival and alleviated the injury of microglia. Moreover, in microglia exposed to OGD/R, BMSCs-CM inhibited significantly the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), CD86 and inducible nitric oxide synthase, whereas upregulated the levels of anti-inflammatory cytokine (IL-10), CD206 and Arginase-1. These results suggested that BMSCs-CM promoted the polarization of anti-inflammatory microglia. In particular, BMSCs-CM from cultures with hypoxia preconditioning was more effective in alleviating cell injury and promoting anti-inflammatory microglia polarization than BMSCs-CM from normoxic cultures and from hypoxic cultures. Furthermore, inhibition of exosomes secretion could largely mitigate these effects of BMSCs-CM. In conclusion, our results suggested that hypoxia preconditioning of BMSCs could enhance the efficacy of BMSCs-CM in alleviating OGD/R-induced injury and in promoting the anti-inflammatory polarization of microglia, and these beneficial effects of BMSCs-CM owed substantially to exosomes.
Collapse
Affiliation(s)
- Han Yu
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Pathology, The Affiliated Hospital of Hubei University of Medicine, The First People's Hospital of Xiangyang, Xiangyang, 441000, China
| | - Zhihong Xu
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaojing Qu
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Huimin Wang
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lulu Lin
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xianyu Li
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaolin Xie
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yifeng Lei
- The Institute of Technological Sciences & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Xiaohua He
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yinping Li
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
29
|
Zhai W, Tan J, Russell T, Chen S, McGonagle D, Win Naing M, Yong D, Jones E. Multi-pronged approach to human mesenchymal stromal cells senescence quantification with a focus on label-free methods. Sci Rep 2021; 11:1054. [PMID: 33441693 PMCID: PMC7807049 DOI: 10.1038/s41598-020-79831-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Human mesenchymal stromal cells (hMSCs) have demonstrated, in various preclinical settings, consistent ability in promoting tissue healing and improving outcomes in animal disease models. However, translation from the preclinical model into clinical practice has proven to be considerably more difficult. One key challenge being the inability to perform in situ assessment of the hMSCs in continuous culture, where the accumulation of the senescent cells impairs the culture’s viability, differentiation potential and ultimately leads to reduced therapeutic efficacies. Histochemical \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upbeta $$\end{document}β-galactosidase staining is the current standard for measuring hMSC senescence, but this method is destructive and not label-free. In this study, we have investigated alternatives in quantification of hMSCs senescence, which included flow cytometry methods that are based on a combination of cell size measurements and fluorescence detection of SA-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upbeta $$\end{document}β-galactosidase activity using the fluorogenic substrate, C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${_{12}}$$\end{document}12FDG; and autofluorescence methods that measure fluorescence output from endogenous fluorophores including lipopigments. For identification of senescent cells in the hMSC batches produced, the non-destructive and label-free methods could be a better way forward as they involve minimum manipulations of the cells of interest, increasing the final output of the therapeutic-grade hMSC cultures. In this work, we have grown hMSC cultures over a period of 7 months and compared early and senescent hMSC passages using the advanced flow cytometry and autofluorescence methods, which were benchmarked with the current standard in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upbeta $$\end{document}β-galactosidase staining. Both the advanced methods demonstrated statistically significant values, (r = 0.76, p \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\le $$\end{document}≤ 0.001 for the fluorogenic C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${_{12}}$$\end{document}12FDG method, and r = 0.72, p \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\le $$\end{document}≤ 0.05 for the forward scatter method), and good fold difference ranges (1.120–4.436 for total autofluorescence mean and 1.082–6.362 for lipopigment autofluorescence mean) between early and senescent passage hMSCs. Our autofluroescence imaging and spectra decomposition platform offers additional benefit in label-free characterisation of senescent hMSC cells and could be further developed for adoption for future in situ cellular senescence evaluation by the cell manufacturers.
Collapse
Affiliation(s)
- Weichao Zhai
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, Centros, 06-01, Singapore
| | - Jerome Tan
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, Centros, 06-01, Singapore
| | - Tobias Russell
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
| | - Sixun Chen
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, Centros, 06-01, Singapore
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK
| | - May Win Naing
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, Centros, 06-01, Singapore.,Singapore Institute of Manufacturing Technology, A*STAR, 2 Fusionopolis Way, Innovis, 08-04, Singapore
| | - Derrick Yong
- Singapore Institute of Manufacturing Technology, A*STAR, 2 Fusionopolis Way, Innovis, 08-04, Singapore.
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK.
| |
Collapse
|
30
|
Sun C, Zhang K, Yue J, Meng S, Zhang X. Deconstructing transcriptional variations and their effects on immunomodulatory function among human mesenchymal stromal cells. Stem Cell Res Ther 2021; 12:53. [PMID: 33422149 PMCID: PMC7796611 DOI: 10.1186/s13287-020-02121-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stromal cell (MSC)-based therapies are being actively investigated in various inflammatory disorders. However, functional variability among MSCs cultured in vitro will lead to distinct therapeutic efficacies. Until now, the mechanisms behind immunomodulatory functional variability in MSCs are still unclear. Methods We systemically investigated transcriptomic variations among MSC samples derived from multiple tissues to reveal their effects on immunomodulatory functions of MSCs. We then analyzed transcriptomic changes of MSCs licensed with INFγ to identify potential molecular mechanisms that result in distinct MSC samples with different immunomodulatory potency. Results MSCs were clustered into distinct groups showing different functional enrichment according to transcriptomic patterns. Differential expression analysis indicated that different groups of MSCs deploy common regulation networks in response to inflammatory stimulation, while expression variation of genes in the networks could lead to different immunosuppressive capability. These different responsive genes also showed high expression variability among unlicensed MSC samples. Finally, a gene panel was derived from these different responsive genes and was able to regroup unlicensed MSCs with different immunosuppressive potencies. Conclusion This study revealed genes with expression variation that contribute to immunomodulatory functional variability of MSCs and provided us a strategy to identify candidate markers for functional variability assessment of MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02121-8.
Collapse
Affiliation(s)
- Changbin Sun
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Kehua Zhang
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jianhui Yue
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shufang Meng
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xi Zhang
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.
| |
Collapse
|
31
|
Pu X, Ma S, Gao Y, Xu T, Chang P, Dong L. Mesenchymal Stem Cell-Derived Exosomes: Biological Function and Their Therapeutic Potential in Radiation Damage. Cells 2020; 10:cells10010042. [PMID: 33396665 PMCID: PMC7823972 DOI: 10.3390/cells10010042] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced damage is a common occurrence in cancer patients who undergo radiotherapy. In this setting, radiation-induced damage can be refractory because the regeneration responses of injured tissues or organs are not well stimulated. Mesenchymal stem cells have become ideal candidates for managing radiation-induced damage. Moreover, accumulating evidence suggests that exosomes derived from mesenchymal stem cells have a similar effect on repairing tissue damage mainly because these exosomes carry various bioactive substances, such as miRNAs, proteins and lipids, which can affect immunomodulation, angiogenesis, and cell survival and proliferation. Although the mechanisms by which mesenchymal stem cell-derived exosomes repair radiation damage have not been fully elucidated, we intend to translate their biological features into a radiation damage model and aim to provide new insight into the management of radiation damage.
Collapse
Affiliation(s)
- Xiaoyu Pu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Siyang Ma
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Yan Gao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Tiankai Xu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
| | - Pengyu Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China
- Correspondence: (P.C.); (L.D.); Tel.: +86-431-8878-3840 (P.C. & L.D.)
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Bethune Hospital of Jilin University, Changchun 130021, China; (X.P.); (S.M.); (Y.G.); (T.X.)
- National Health Commission Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: (P.C.); (L.D.); Tel.: +86-431-8878-3840 (P.C. & L.D.)
| |
Collapse
|
32
|
Adipose-Derived Stem Cells: Current Applications and Future Directions in the Regeneration of Multiple Tissues. Stem Cells Int 2020; 2020:8810813. [PMID: 33488736 PMCID: PMC7787857 DOI: 10.1155/2020/8810813] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) can maintain self-renewal and enhanced multidifferentiation potential through the release of a variety of paracrine factors and extracellular vesicles, allowing them to repair damaged organs and tissues. Consequently, considerable attention has increasingly been paid to their application in tissue engineering and organ regeneration. Here, we provide a comprehensive overview of the current status of ADSC preparation, including harvesting, isolation, and identification. The advances in preclinical and clinical evidence-based ADSC therapy for bone, cartilage, myocardium, liver, and nervous system regeneration as well as skin wound healing are also summarized. Notably, the perspectives, potential challenges, and future directions for ADSC-related researches are discussed. We hope that this review can provide comprehensive and standardized guidelines for the safe and effective application of ADSCs to achieve predictable and desired therapeutic effects.
Collapse
|
33
|
Liu Y, Chen Q. Senescent Mesenchymal Stem Cells: Disease Mechanism and Treatment Strategy. CURRENT MOLECULAR BIOLOGY REPORTS 2020; 6:173-182. [PMID: 33816065 PMCID: PMC8011589 DOI: 10.1007/s40610-020-00141-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Mesenchymal stem cells (MSCs) have been extensively studied for therapeutic application in tissue engineering and regenerative medicine. Despite their promise, recent findings suggest that MSC replication during repair process may lead to replicative senescence and stem cell exhaustion. Here, we review the basic mechanisms of MSC senescence, how it leads to degenerative diseases, and potential treatments for such diseases. RECENT FINDINGS Emerging evidence has shown a link between senescent MSCs and degenerative diseases, especially age-related diseases such as osteoarthritis and idiopathic pulmonary fibrosis. During these disease processes, MSCs undergo cell senescence and mediate Senescence Associated Secretory Phenotypes (SASP) to affect the surrounding microenvironment. Thus, senescent MSCs can accelerate tissue aging by increasing the number of senescent cells and spreading inflammation to neighboring cells. SUMMARY Senescent MSCs not only hamper tissue repair through cell senescence associated stem cell exhaustion, but also mediate tissue degeneration by initiating and spreading senescence-associated inflammation. It suggests new strategies of MSC-based cell therapy to remove, rejuvenate, or replace (3Rs) the senescent MSCs.
Collapse
Affiliation(s)
- Yajun Liu
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Qian Chen
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
34
|
Gurung S, Ulrich D, Sturm M, Rosamilia A, Werkmeister JA, Gargett CE. Comparing the Effect of TGF-β Receptor Inhibition on Human Perivascular Mesenchymal Stromal Cells Derived from Endometrium, Bone Marrow and Adipose Tissues. J Pers Med 2020; 10:jpm10040261. [PMID: 33271899 PMCID: PMC7712261 DOI: 10.3390/jpm10040261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Rare perivascular mesenchymal stromal cells (MSCs) with therapeutic properties have been identified in many tissues. Their rarity necessitates extensive in vitro expansion, resulting in spontaneous differentiation, cellular senescence and apoptosis, producing therapeutic products with variable quality and decreased potency. We previously demonstrated that A83-01, a transforming growth factor beta (TGF-β) receptor inhibitor, maintained clonogenicity and promoted the potency of culture-expanded premenopausal endometrial MSCs using functional assays and whole-transcriptome sequencing. Here, we compared the effects of A83-01 on MSCs derived from postmenopausal endometrium, menstrual blood, placenta decidua-basalis, bone marrow and adipose tissue. Sushi-domain-containing-2 (SUSD2+) and CD34+CD31−CD45− MSCs were isolated. Expanded MSCs were cultured with or without A83-01 for 7 days and assessed for MSC properties. SUSD2 identified perivascular cells in the placental decidua-basalis, and their maternal origin was validated. A83-01 promoted MSC proliferation from all sources except bone marrow and only increased SUSD2 expression and prevented apoptosis in MSCs from endometrial-derived tissues. A83-01 only improved the cloning efficiency of postmenopausal endometrial MSCs (eMSCs), and expanded adipose tissue MSCs (adMSCs) underwent significant senescence, which was mitigated by A83-01. MSCs derived from bone marrow (bmMSCs) were highly apoptotic, but A83-01 was without effect. A83-01 maintained the function and phenotype in MSCs cultured from endometrial, but not other, tissues. Our results also demonstrated that cellular SUSD2 expression directly correlates with the functional phenotype.
Collapse
Affiliation(s)
- Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (D.U.); (J.A.W.); (C.E.G.)
- Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia;
- Correspondence: ; Tel.: +61-03-8572-2813
| | - Daniela Ulrich
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (D.U.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz, 8036 Graz, Austria
| | - Marian Sturm
- Cell & Tissue Therapies WA, Royal Perth Hospital, Perth, WA 6000, Australia;
- Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Anna Rosamilia
- Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia;
- Monash Health, Clayton, VIC 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (D.U.); (J.A.W.); (C.E.G.)
- Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia;
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (D.U.); (J.A.W.); (C.E.G.)
- Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia;
| |
Collapse
|
35
|
Meng QS, Liu J, Wei L, Fan HM, Zhou XH, Liang XT. Senescent mesenchymal stem/stromal cells and restoring their cellular functions. World J Stem Cells 2020; 12:966-985. [PMID: 33033558 PMCID: PMC7524698 DOI: 10.4252/wjsc.v12.i9.966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have various properties that make them promising candidates for stem cell-based therapies in clinical settings. These include self-renewal, multilineage differentiation, and immunoregulation. However, recent studies have confirmed that aging is a vital factor that limits their function and therapeutic properties as standardized clinical products. Understanding the features of senescence and exploration of cell rejuvenation methods are necessary to develop effective strategies that can overcome the shortage and instability of MSCs. This review will summarize the current knowledge on characteristics and functional changes of aged MSCs. Additionally, it will highlight cell rejuvenation strategies such as molecular regulation, non-coding RNA modifications, and microenvironment controls that may enhance the therapeutic potential of MSCs in clinical settings.
Collapse
Affiliation(s)
- Qing-Shu Meng
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Lu Wei
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Hui-Min Fan
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Hui Zhou
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Ting Liang
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| |
Collapse
|
36
|
Kale VP. Transforming growth factor-β boosts the functionality of human bone marrow-derived mesenchymal stromal cells. Cell Biol Int 2020; 44:2293-2306. [PMID: 32749730 DOI: 10.1002/cbin.11437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/17/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022]
Abstract
Transforming growth factor β1 (TGFβ1) is a negative regulator of hematopoiesis, and yet, it is frequently found at the active sites of hematopoiesis. Here, we show for the first time that bone marrow-derived mononuclear cells (BM MNCs) secrete TGFβ1 in response to erythropoietin (EPO). We further show that human bone marrow-derived mesenchymal stromal cells (BMSCs) briefly exposed to the conditioned medium of EPO-primed MNCs, or purified TGFβ1, gain significantly increased hematopoiesis-supportive ability. Mechanistically, we show that this phenomenon involves TGFβ1-mediated activation of nitric oxide (NO) signalling pathway in the BMSCs. The data suggest that EPO-MNC-TGFβ1 could be one of the regulatory axes operative in the bone marrow microenvironment involved in maintaining the functionality of the resident BMSCs.
Collapse
Affiliation(s)
- Vaijayanti P Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, India
| |
Collapse
|
37
|
Allen A, Vaninov N, Li M, Nguyen S, Singh M, Igo P, Tilles AW, O'Rourke B, Miller BLK, Parekkadan B, Barcia RN. Mesenchymal Stromal Cell Bioreactor for Ex Vivo Reprogramming of Human Immune Cells. Sci Rep 2020; 10:10142. [PMID: 32576889 PMCID: PMC7311545 DOI: 10.1038/s41598-020-67039-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/22/2020] [Indexed: 11/20/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (MSCs) have been studied for decades as potent immunomodulators. Clinically, they have shown some promise but with limited success. Here, we report the ability of a scalable hollow fiber bioreactor to effectively maintain ideal MSC function as a single population while also being able to impart an immunoregulatory effect when cultured in tandem with an inflamed lymphocyte population. MSCs were seeded on the extraluminal side of hollow fibers within a bioreactor where they indirectly interact with immune cells flowing within the lumen of the fibers. MSCs showed a stable and predictable metabolite and secreted factor profile during several days of perfusion culture. Exposure of bioreactor-seeded MSCs to inflammatory stimuli reproducibly switched MSC secreted factor profiles and altered microvesicle composition. Furthermore, circulating, activated human peripheral blood mononuclear cells (PBMCs) were suppressed by MSC bioreactor culture confirmed by a durable change in their immunophenotype and function. This platform was useful to study a model of immobilized MSCs and circulating immune cells and showed that monocytes play an important role in MSC driven immunomodulation. This coculture technology can have broad implications for use in studying MSC-immune interactions under flow conditions as well as in the generation of ex vivo derived immune cellular therapeutics.
Collapse
Affiliation(s)
- Ashley Allen
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
| | | | - Matthew Li
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, 02114, USA
| | - Sunny Nguyen
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
| | - Maneet Singh
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
| | - Peter Igo
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
| | - Arno W Tilles
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
| | - Brian O'Rourke
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
| | | | - Biju Parekkadan
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, 02114, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, 02138, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Rita N Barcia
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA.
| |
Collapse
|
38
|
Bao X, Wang J, Zhou G, Aszodi A, Schönitzer V, Scherthan H, Atkinson MJ, Rosemann M. Extended in vitro culture of primary human mesenchymal stem cells downregulates Brca1-related genes and impairs DNA double-strand break recognition. FEBS Open Bio 2020; 10:1238-1250. [PMID: 32333827 PMCID: PMC7327915 DOI: 10.1002/2211-5463.12867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multilineage adult stem cells with considerable potential for cell‐based regenerative therapies. In vitro expansion changes their epigenetic and cellular properties, with a poorly understood impact on DNA damage response (DDR) and genome stability. We report here results of a transcriptome‐based pathway analysis of in vitro‐expanded human bone marrow‐derived mesenchymal stem cell (hBM‐MSCs), supplemented with cellular assays focusing on DNA double‐strand break (DSB) repair. Gene pathways affected by in vitro aging were mapped using gene ontology, KEGG, and GSEA, and were found to involve DNA repair, homologous recombination (HR), cell cycle control, and chromosomal replication. Assays for the recognition (γ‐H2AX + 53BP1 foci) and repair (pBRCA1 + γ‐H2AX foci) of X‐ray‐induced DNA DSBs in hBM‐MSCs show that over a period of 8 weeks of in vitro aging (i.e., about 10 doubling times), cells exhibit a reduced DDR and a higher fraction of residual DNA damage. Furthermore, a distinct subpopulation of cells with impaired DNA DSB recognition was observed. Several genes that participate in DNA repair by HR (e.g., Rad51, Rad54, BRCA1) show a 2.3‐ to fourfold reduction of their mRNA expression by qRT‐PCR. We conclude that the in vitro expansion of hMSCs can lead to aging‐related impairment of the recognition and repair of DNA breaks.
Collapse
Affiliation(s)
- Xuanwen Bao
- Institute of Radiation Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany.,Medical Graduate School, Technical University of Munich, Germany
| | - Jing Wang
- Institute of Radiation Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany.,Medical Graduate School, Technical University of Munich, Germany
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Attila Aszodi
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Veronika Schönitzer
- Laboratory of Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany.,Radiation Biology, Technical University of Munich, Germany
| | - Michael Rosemann
- Institute of Radiation Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany.,Medical Graduate School, Technical University of Munich, Germany
| |
Collapse
|
39
|
Zhou X, Hong Y, Zhang H, Li X. Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges. Front Cell Dev Biol 2020; 8:364. [PMID: 32582691 PMCID: PMC7283395 DOI: 10.3389/fcell.2020.00364] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, mesenchymal stem cell (MSC)-based therapy has been intensively investigated and shown promising results in the treatment of various diseases due to their easy isolation, multiple lineage differentiation potential and immunomodulatory effects. To date, hundreds of phase I and II clinical trials using MSCs have been completed and many are ongoing. Accumulating evidence has shown that transplanted allogeneic MSCs lose their beneficial effects due to immunorejection. Nevertheless, the function of autologous MSCs is adversely affected by age, a process termed senescence, thus limiting their therapeutic potential. Despite great advances in knowledge, the potential mechanisms underlying MSC senescence are not entirely clear. Understanding the molecular mechanisms that contribute to MSC senescence is crucial when exploring novel strategies to rejuvenate senescent MSCs. In this review, we aim to provide an overview of the biological features of senescent MSCs and the recent progress made regarding the underlying mechanisms including epigenetic changes, autophagy, mitochondrial dysfunction and telomere shortening. We also summarize the current approaches to rejuvenate senescent MSCs including gene modification and pretreatment strategies. Collectively, rejuvenation of senescent MSCs is a promising strategy to enhance the efficacy of autologous MSC-based therapy, especially in elderly patients.
Collapse
Affiliation(s)
- Xueke Zhou
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hao Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xin Li
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
40
|
Lavrentieva A, Hoffmann A, Lee-Thedieck C. Limited Potential or Unfavorable Manipulations? Strategies Toward Efficient Mesenchymal Stem/Stromal Cell Applications. Front Cell Dev Biol 2020; 8:316. [PMID: 32509777 PMCID: PMC7248306 DOI: 10.3389/fcell.2020.00316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Despite almost 50 years of research and over 20 years of preclinical and clinical studies, the question of curative potential of mesenchymal stem/stromal cells (MSCs) is still widely discussed in the scientific community. Non-reproducible treatment outcomes or even absence of treatment effects in comparison to control groups challenges the potential of these cells for routine application both in tissue engineering and in regenerative medicine. One of the reasons of such outcomes is non-standardized and often disadvantageous ex vivo manipulation of MSCs prior therapy. In most cases, clinically relevant cell numbers for MSC-based therapies can be only obtained by in vitro expansion of isolated cells. In this mini review, we will discuss point by point possible pitfalls in the production of human MSCs for cell therapies, without consideration of material-based applications. Starting with cell source, choice of donor and recipient, as well as isolation methods, we will then discuss existing expansion protocols (two-/three-dimensional cultivation, basal medium, medium supplements, static/dynamic conditions, and hypoxic/normoxic conditions) and influence of these strategies on the cell functionality after implantation. The role of potency assays will also be addressed. The final aim of this mini review is to illustrate the heterogeneity of current strategies for gaining MSCs for clinical applications with their strengths and weaknesses. Only a careful consideration and standardization of all pretreatment processes/methods for the different applications of MSCs will ensure robust and reproducible performance of these cell populations in the different experimental and clinical settings.
Collapse
Affiliation(s)
| | - Andrea Hoffmann
- Department of Orthopaedic Surgery, Graded Implants and Regenerative Strategies, Hannover Medical School, Hanover, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
41
|
Neri S, Borzì RM. Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules 2020; 10:E340. [PMID: 32098040 PMCID: PMC7072652 DOI: 10.3390/biom10020340] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a reservoir for tissue homeostasis and repair that age during organismal aging. Beside the fundamental in vivo role of MSCs, they have also emerged in the last years as extremely promising therapeutic agents for a wide variety of clinical conditions. MSC use frequently requires in vitro expansion, thus exposing cells to replicative senescence. Aging of MSCs (both in vivo and in vitro) can affect not only their replicative potential, but also their properties, like immunomodulation and secretory profile, thus possibly compromising their therapeutic effect. It is therefore of critical importance to unveil the underlying mechanisms of MSC senescence and to define shared methods to assess MSC aging status. The present review will focus on current scientific knowledge about MSC aging mechanisms, control and effects, including possible anti-aging treatments.
Collapse
Affiliation(s)
- Simona Neri
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy;
| | | |
Collapse
|
42
|
Polonio AM, García-Velasco JA, Herraiz S. Stem Cell Paracrine Signaling for Treatment of Premature Ovarian Insufficiency. Front Endocrinol (Lausanne) 2020; 11:626322. [PMID: 33716956 PMCID: PMC7943922 DOI: 10.3389/fendo.2020.626322] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
Premature ovarian insufficiency is a common disorder affecting young women and represents the worst-case ovarian scenario due to the substantial impact on the reproductive lifespan of these patients. Due to the complexity of this condition, which is not fully understood, non-effective treatments have yet been established for these patients. Different experimental approaches are being explored and strategies based on stem cells deserve special attention. The regenerative and immunomodulatory properties of stem cells have been successfully tested in different tissues, including ovary. Numerous works point out to the efficacy of stem cells in POI treatment, and a wide range of clinical trials have been developed in order to prove safety and effectiveness of stem cells therapy-in diminished ovarian reserve and POI women. The main purpose of this review is to describe the state of the art of the treatment of POI involving stem cells, especially those that use mobilization of stem cells or paracrine signaling.
Collapse
Affiliation(s)
- Alba M. Polonio
- IVI Foundation, Insituto de Investigación Sanitaria La Fe, Valencia, Spain
- *Correspondence: Alba M. Polonio,
| | - Juan A. García-Velasco
- IVI Foundation, Insituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVI RMA, Madrid, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| | - Sonia Herraiz
- IVI Foundation, Insituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|