1
|
Dickerson DA, Fortier LA, Nauman EA, Potter HG, Quinlan C. Novel Osteochondral Biotemplate Improves Long-term Cartilage Repair Compared With Microfracture in an Ovine Model. Am J Sports Med 2023; 51:3288-3303. [PMID: 37602735 DOI: 10.1177/03635465231189808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND Current cartilage repair therapies do not re-create the complex mechanical interface between cartilage and bone, which is critical for long-term repair durability. New biomaterial designs that include hard tissue-soft tissue interface structures offer promise to improve clinical outcomes. PURPOSE/HYPOTHESIS The purpose of this study was to evaluate the efficacy and safety of a naturally derived osteochondral biotemplate with a novel contiguous hard tissue-soft tissue interface in an ovine model as a regenerative solution for articular cartilage defects. It was hypothesized that the osteochondral biotemplate would produce structurally superior repair tissue compared with microfracture over a 13-month period. STUDY DESIGN Controlled laboratory study. METHODS Osteochondral biotemplates were manufactured from porcine cancellous bone. Skeletally mature sheep (N = 30) were randomly allocated to 3 groups: early healing stage (euthanasia at 4 months), 6-month treatment, and 13-month treatment. In the early healing stage group, an 8 mm-diameter by 5 mm-deep osteochondral defect was created on the medial femoral condyle and treated at the time of iatrogenic injury with an osteochondral biotemplate. The contralateral limb received the same treatment 2 months later. In the 6- and 13-month treatment groups, 1 limb received the same osteochondral procedure as the early healing stage group. In the contralateral limb, an 8 mm-diameter, full-thickness cartilage defect (1-2 mm deep) was created and treated with microfracture. Cartilage repair and integration were quantitatively and qualitatively assessed with gross inspection, histological evaluation, and magnetic resonance imaging (MRI). Wilcoxon signed-rank and McNemar tests were used to compare the treatments. RESULTS At 6 and 13 months after treatment, the biotemplate was not present histologically. At 13 months, the biotemplate treatment demonstrated statistically higher histological scores than microfracture for integration with surrounding cartilage (biotemplate: 74 ± 31; microfracture: 28 ± 39; P = .03), type 2 collagen (biotemplate: 72 ± 33; microfracture: 40 ± 38; P = .02), total cartilage (biotemplate: 71 ± 9; microfracture: 59 ± 9; P = .01), and total integration (biotemplate: 85 ± 15; microfracture: 66 ± 20; P = .04). The osteochondral biotemplate treatment produced a notable transient nonneutrophilic inflammatory response that appeared to approach resolution at 13 months. MRI results were not statistically different between the 2 treatments. CONCLUSION Even with the inflammatory response, after 13 months, the osteochondral biotemplate outperformed microfracture in cartilage regeneration and demonstrated superiority in integration between the repair tissue and host tissue as well as integration between the newly formed cartilage and the underlying bone. CLINICAL RELEVANCE This work has demonstrated the clinical potential of a novel biomaterial template to regenerate the complex mechanical interface between cartilage and the subchondral bone.
Collapse
Affiliation(s)
- Darryl A Dickerson
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, New York, USA
| | - Eric A Nauman
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hollis G Potter
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Cassandra Quinlan
- Department of Clinical Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Ledesma AV, Mueller ML, Van Eenennaam AL. Review: Progress in producing chimeric ungulate livestock for agricultural applications. Animal 2023; 17 Suppl 1:100803. [PMID: 37567671 DOI: 10.1016/j.animal.2023.100803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 08/13/2023] Open
Abstract
The progress made in recent years in the derivation and culture of pluripotent stem cells from farm animals opens up the possibility of creating livestock chimeras. Chimeras producing gametes exclusively derived from elite donor stem cells could pass superior genetics on to the next generation and thereby reduce the genetic lag that typically exists between the elite breeding sector and the commercial production sector, especially for industries like beef and sheep where genetics is commonly disseminated through natural service mating. Chimeras carrying germ cells generated from genome-edited or genetically engineered pluripotent stem cells could further disseminate useful genomic alterations such as climate adaptation, animal welfare improvements, the repair of deleterious genetic conditions, and/or the elimination of undesired traits such as disease susceptibility to the next generation. Despite the successful production of chimeras with germ cells generated from pluripotent donor stem cells injected into preimplantation-stage blastocysts in model species, there are no documented cases of this occurring in livestock. Here, we review the literature on the derivation of pluripotent stem cells from ungulates, and progress in the production of chimeric ungulate livestock for agricultural applications, drawing on insights from studies done in model species, and discuss future possibilities of this fast-moving and developing field. Aside from the technical aspects, the consistency of the regulatory approach taken by different jurisdictions towards chimeric ungulate livestock with germ cells generated from pluripotent stem cells and their progeny will be an important determinant of breeding industry uptake and adoption in animal agriculture.
Collapse
Affiliation(s)
- Alba V Ledesma
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Maci L Mueller
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Alison L Van Eenennaam
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Andersen C, Uvebrant K, Mori Y, Aarsvold S, Jacobsen S, Berg LC, Lundgren-Åkerlund E, Lindegaard C. Human integrin α10β1-selected mesenchymal stem cells home to cartilage defects in the rabbit knee and assume a chondrocyte-like phenotype. Stem Cell Res Ther 2022; 13:206. [PMID: 35578319 PMCID: PMC9109317 DOI: 10.1186/s13287-022-02884-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown promising results in stimulating cartilage repair and in the treatment of osteoarthritis (OA). However, the fate of the MSCs after intra-articular injection and their role in cartilage regeneration is not clear. To address these questions, this study investigated (1) homing of labeled human adipose tissue derived integrin α10β1-selected MSCs (integrin α10-MSCs) to a cartilage defect in a rabbit model and (2) the ability of the integrin α10-MSCs to differentiate to chondrocytes and to produce cartilage matrix molecules in vivo. DESIGN Integrin α10-MSCs were labeled with superparamagnetic iron oxide nanoparticles (SPIONs) co-conjugated with Rhodamine B to allow visualization by both MRI and fluorescence microscopy. A cartilage defect was created in the articular cartilage of the intertrochlear groove of the femur of rabbits. Seven days post-surgery, labeled integrin α10-MSCs or vehicle were injected into the joint. Migration and distribution of the SPION-labeled integrin α10-MSCs was evaluated by high-field 9.4 T MRI up to 10 days after injection. Tissue sections from the repair tissue in the defects were examined by fluorescence microscopy. RESULTS In vitro characterization of the labeled integrin α10-MSCs demonstrated maintained viability, proliferation rate and trilineage differentiation capacity compared to unlabeled MSCs. In vivo MRI analysis detected the labeled integrin α10-MSCs in the cartilage defects at all time points from 12 h after injection until day 10 with a peak concentration between day 1 and 4 after injection. The labeled MSCs were also detected lining the synovial membrane at the early time points. Fluorescence analysis confirmed the presence of the labeled integrin α10-MSCs in all layers of the cartilage repair tissue and showed co-localization between the labeled cells and the specific cartilage molecules aggrecan and collagen type II indicating in vivo differentiation of the MSCs to chondrocyte-like cells. No adverse effects of the α10-MSC treatment were detected during the study period. CONCLUSION Our results demonstrated migration and homing of human integrin α10β1-selected MSCs to cartilage defects in the rabbit knee after intra-articular administration as well as chondrogenic differentiation of the MSCs in the regenerated cartilage tissue.
Collapse
Affiliation(s)
- Camilla Andersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Højbakkegaard Allé 5, 2630, Taastrup, Denmark.
| | | | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | | | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Højbakkegaard Allé 5, 2630, Taastrup, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Højbakkegaard Allé 5, 2630, Taastrup, Denmark
| | | | - Casper Lindegaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Højbakkegaard Allé 5, 2630, Taastrup, Denmark
| |
Collapse
|
4
|
The transplantation of particulated juvenile allograft cartilage and synovium for the repair of meniscal defect in a lapine model. J Orthop Translat 2022; 33:72-89. [PMID: 35281522 PMCID: PMC8897607 DOI: 10.1016/j.jot.2022.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Synovium has been confirmed to be the primary contributor to meniscal repair. Particulated Juvenile Allograft Cartilage (PJAC) has demonstrated promising clinical effect on repairing cartilage. The synergistic effect of synovium and PJAC transplant on meniscal fibrocartilaginous repair is unclear. We hypothesize that the transplantation of synovium and PJAC synergistically facilitates meniscal regeneration and the donor cells within graft tissues still survive in the regenerated tissue at the last follow up (16 weeks postoperatively). Methods The study included 24 mature female rabbits, which were randomly divided into experimental and control groups. A cylindrical full-thickness defect measuring 2.0 mm was prepared in the avascular portion of the anterior horn of medial meniscus in both knees. The synovium and PJAC transplant were harvested from juvenile male rabbits (2 months after birth). The experimental group received synovium and PJAC transplant encapsulated with fibrin gel. The control groups received synovium transplant encapsulated with fibrin gel, pure fibrin gel and nothing. The macroscopic, imageological and histological evaluations of repaired tissue were performed at 8 weeks and 16 weeks postoperatively. The in situ hybridization (ISH) of male-specific sex-determining region Y-linked (SRY) gene was performed to detect the transplanted cells. Results The regenerated tissue in experimental group showed superior structural integrity, superficial smoothness, and marginal integration compared to control groups at 8 weeks or 16 weeks postoperatively. More meniscus-like fibrochondrocytes filled the repaired tissue in the experimental group, and the matrix surrounding these cell clusters demonstrated strongly positive safranin O and type 2 collagen immunohistochemistry staining. By SRY gene ISH, the positive SRY signal of experimental group could be detected at 8 weeks (75.72%, median) and 16 weeks (48.69%, median). The expression of SOX9 in experimental group was the most robust, with median positive rates of 65.52% at 8 weeks and 67.55% at 16 weeks. Conclusion The transplantation of synovium and PJAC synergistically facilitates meniscal regeneration. The donor cells survive for at least 16 weeks in the recipient. The translational potential of this article This study highlighted the positive effect of PJAC and synovium transplant on meniscal repair. We also clarified the potential repair mechanisms reflected by the survival of donor cells and upregulated expression of meniscal fibrochondrocytes related genes. Thus, based on our study, further clinical experiments are needed to investigate synovium and PJAC transplant as a possible treatment to meniscal defects.
Collapse
|
5
|
Rejuvenated Stem/Progenitor Cells for Cartilage Repair Using the Pluripotent Stem Cell Technology. Bioengineering (Basel) 2021; 8:bioengineering8040046. [PMID: 33920285 PMCID: PMC8070387 DOI: 10.3390/bioengineering8040046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023] Open
Abstract
It is widely accepted that chondral defects in articular cartilage of adult joints are never repaired spontaneously, which is considered to be one of the major causes of age-related degenerative joint disorders, such as osteoarthritis. Since mobilization of subchondral bone (marrow) cells and addition of chondrocytes or mesenchymal stromal cells into full-thickness defects show some degrees of repair, the lack of self-repair activity in adult articular cartilage can be attributed to lack of reparative cells in adult joints. In contrast, during a fetal or embryonic stage, joint articular cartilage has a scar-less repair activity, suggesting that embryonic joints may contain cells responsible for such activity, which can be chondrocytes, chondroprogenitors, or other cell types such as skeletal stem cells. In this respect, the tendency of pluripotent stem cells (PSCs) to give rise to cells of embryonic characteristics will provide opportunity, especially for humans, to obtain cells carrying similar cartilage self-repair activity. Making use of PSC-derived cells for cartilage repair is still in a basic or preclinical research phase. This review will provide brief overviews on how human PSCs have been used for cartilage repair studies.
Collapse
|
6
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
7
|
Yamashita A, Tsumaki N. Recent progress of animal transplantation studies for treating articular cartilage damage using pluripotent stem cells. Dev Growth Differ 2021; 63:72-81. [PMID: 33411345 DOI: 10.1111/dgd.12706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Focal articular cartilage damage can eventually lead to the onset of osteoarthritis with degradation around healthy articular cartilage. Currently, there are no drugs available that effectively repair articular cartilage damage. Several surgical techniques exist and are expected to prevent progression to osteoarthritis, but they do not offer a long-term clinical solution. Recently, regenerative medicine approaches using human pluripotent stem cells (PSCs) have gained attention as new cell sources for therapeutic products. To translate PSCs to clinical application, appropriate cultures that produce large amounts of chondrocytes and hyaline cartilage are needed. So too are assays for the safety and efficacy of the cellular materials in preclinical studies including animal transplantation models. To confirm safety and efficacy, transplantation into the subcutaneous space and articular cartilage defects have been performed in animal models. All but one study we reviewed that transplanted PSC-derived cellular products into articular cartilage defects found safe and effective recovery. However, for most of those studies, the quality of the PSCs was not verified, and the evaluations were done with small animals over short observation periods. Large animals and longer observation times are preferred. We will discuss the recent progress and future direction of the animal transplantation studies for the treatment of focal articular cartilage damages using PSCs.
Collapse
Affiliation(s)
- Akihiro Yamashita
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Noriyuki Tsumaki
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Zhang C, Ao Y, Cao J, Yang L, Duan X. Donor Cell Fate in Particulated Juvenile Allograft Cartilage for the Repair of Articular Cartilage Defects. Am J Sports Med 2020; 48:3224-3232. [PMID: 32966105 DOI: 10.1177/0363546520958700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Particulated juvenile allograft cartilage (PJAC) has demonstrated good clinical efficacy in repairing articular cartilage defects, but the related repair mechanism after transplant and the biological characteristics of the transplanted cells are still unclear. PURPOSE To study the efficacy of PJAC in repairing full-thickness cartilage defects and the specific fate of donor cells to provide experimental evidence for its clinical application. STUDY DESIGN Controlled laboratory study. METHODS Twenty female Guizhou minipigs were randomly divided into an experimental group and a control group. An 8-mm cylindrical full-thickness cartilage defect was created in the femoral trochlea of 1 knee in all minipigs. The experimental group received transplant of PJAC from 5 male juvenile Guizhou minipigs (PJAC group; n = 10) and the control group received autologous cartilage chips (ACC group; n = 10). Follow-up assessments were conducted at 1 month and 3 months to track the transplanted cells by the male-specific sex-determining region Y-linked (SRY) gene; tissue sections were hybridized in situ, and O'Driscoll histological scoring was performed according to hematoxylin and eosin staining, safranin O and fast green staining, and toluidine blue O staining, as well as immunohistochemical evaluation of aggrecan and Sry-type HMG-box 9 (SOX9). RESULTS All 20 Guizhou minipigs were followed; no infection or incision healing disorder occurred after the operation. By SRY in situ hybridization, the SRY signal of the transplanted cells was positive in the repaired tissue of the defect, and the SRY positive signal could still be detected in repaired tissue at 3 months postoperatively. The average number of positive cells was 68.6 ± 11.91 at 1 month and 32.6 ± 3.03 at 3 months (confocal microscope: ×400), and the difference was statistically significant. The O'Driscoll histological scores were 14 ± 0.71 in the ACC group and 9.8 ± 0.84 in the PJAC group at 1 month, and 18 ± 1.20 in the ACC group and 17.4 ± 1.14 in the PJAC group at 3 months. The scores were statistically significant between the ACC group and PJAC group at 1 month. The positive rates of SOX9 in the PJAC and ACC groups at 1 month were 67.6% ± 3.78% and 63.4% ± 5.30%, respectively, and the difference was not statistically significant (P > .05). The positive rates of SOX9 in the PJAC and ACC groups at 3 months were 68.8% ± 2.69% and 17.1% ± 1.26%, respectively, and the difference was statistically significant (P < .05). The positive rates of aggrecan in the PJAC and ACC groups at 1 month were 40.5% ± 2.78% and 42.4% ± 0.54% respectively, and the difference was not statistically significant (P > .05). The positive rates of aggrecan in the PJAC and ACC groups at 3 months were 40.8% ± 1.50% and 30.1% ± 2.44%, respectively, and the difference was not statistically significant (P > .05). CONCLUSION An animal model was established with Guizhou minipigs, and the cartilage defect was repaired with PJAC from male minipigs. The SRY gene positive signal could be detected from the repaired tissue by in situ hybridization, indicating that the transplanted cells survived at least 3 months. The key genes of cartilage formation, SOX9 and aggrecan, were expressed at 1 month and 3 months, and SOX9 expression was stronger in the PJAC group than the ACC group at 3 months. CLINICAL RELEVANCE This study suggests that it is feasible to study the biological characteristics of transplanted cells in the cartilage region by the sex-determining gene.
Collapse
Affiliation(s)
- Changgui Zhang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunong Ao
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin Cao
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaojun Duan
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|