1
|
Wang JJ, Zheng Y, Li YL, Xiao Y, Ren YY, Tian YQ. Emerging role of mesenchymal stem cell-derived exosomes in the repair of acute kidney injury. World J Stem Cells 2025; 17:103360. [DOI: 10.4252/wjsc.v17.i3.103360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/26/2024] [Accepted: 02/13/2025] [Indexed: 03/21/2025] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid deterioration in kidney function and has a significant impact on patient health and survival. Mesenchymal stem cells (MSCs) have the potential to enhance renal function by suppressing the expression of cell cycle inhibitors and reducing the expression of senescence markers and microRNAs via paracrine and endocrine mechanisms. MSC-derived exosomes can alleviate AKI symptoms by regulating DNA damage, apoptosis, and other related signaling pathways through the delivery of proteins, microRNAs, long-chain noncoding RNAs, and circular RNAs. This technique is both safe and effective. MSC-derived exosomes may have great application prospects in the treatment of AKI. Understanding the underlying mechanisms will foster the development of new and promising therapeutic strategies against AKI. This review focused on recent advancements in the role of MSCs in AKI repair as well as the mechanisms underlying the role of MSCs and their secreted exosomes. It is anticipated that novel and profound insights into the functionality of MSCs and their derived exosomes will emerge.
Collapse
Affiliation(s)
- Juan-Juan Wang
- Clinical Laboratory, The First People’s Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224000, Jiangsu Province, China
| | - Yu Zheng
- Clinical Laboratory, The First People’s Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224000, Jiangsu Province, China
| | - Yan-Lin Li
- Clinical Laboratory, The First People’s Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224000, Jiangsu Province, China
| | - Yin Xiao
- Department of Medical Imaging, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Yang-Yang Ren
- Clinical Laboratory, Xinyi People’s Hospital, Xuzhou 221000, Jiangsu Province, China
| | - Yi-Qing Tian
- Clinical Laboratory, Xuzhou Central Hospital, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
2
|
Wei X, Guo H, Huang G, Luo H, Gong L, Meng P, Liu J, Zhang W, Mei Z. SIRT1 Alleviates Mitochondrial Fission and Necroptosis in Cerebral Ischemia/Reperfusion Injury via SIRT1-RIP1 Signaling Pathway. MedComm (Beijing) 2025; 6:e70118. [PMID: 40008377 PMCID: PMC11850763 DOI: 10.1002/mco2.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Programmed cell death, including necroptosis, plays a critical role in the pathogenesis of cerebral ischemia/reperfusion injury (CIRI). Silent information regulator 1 (SIRT1) has been identified as a potential therapeutic target for CIRI, yet its precise role in regulating necroptosis remains controversial. Furthermore, the potential interaction between SIRT1 and receptor-interacting protein kinase 1 (RIP1) in this context is not fully understood. Sanpian Decoction (SPD), a classical traditional herbal formula, was previously shown to enhance SIRT1 expression in our studies. Our findings demonstrated that, both in vivo and in vitro, CIRI was associated with a decrease in SIRT1 levels and phosphorylated dynamin-related protein 1 (p-DRP1) at Ser637, alongside an increase in RIP1 and other necroptosis-related proteins. Co-immunoprecipitation and immunofluorescence analyses revealed a weakened interaction between SIRT1 and RIP1. Furthermore, abnormal mitochondrial fission and dysfunction were mediated through the phosphoglycerate mutase 5-DRP1 pathway. Notably, SPD treatment improved neurological outcomes and reversed these pathological changes by enhancing the SIRT1-RIP1 interaction. In conclusion, this study suggests that SIRT1 is a promising therapeutic target for CIRI, capable of inhibiting necroptosis and mitigating mitochondrial fission via the SIRT1-RIP1 pathway. SPD exhibits therapeutic potential by activating SIRT1, thereby attenuating necroptosis and mitochondrial fission during CIRI.
Collapse
Affiliation(s)
- Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Hanjing Guo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Guangshan Huang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Haoyue Luo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Lipeng Gong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Pan Meng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine DiagnosticsHunan University of Chinese MedicineChangshaHunanChina
| | - Wenli Zhang
- School of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
- Third‐Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese MedicineCollege of Medicine and Health SciencesChina Three Gorges UniversityYichangHubeiChina
| |
Collapse
|
3
|
Jin C, Wu P, Wu W, Chen W, Liu W, Zhu Y, Wu Q, Chen B, Ji C, Qian H. Therapeutic role of hucMSC-sEV-enriched miR-13896 in cisplatin-induced acute kidney injury through M2 macrophage polarization. Cell Biol Toxicol 2025; 41:50. [PMID: 39992453 PMCID: PMC11850457 DOI: 10.1007/s10565-025-09998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (hucMSC-sEV) have recently garnered attention as a potential therapeutic approach for kidney diseases with anti-inflammatory effects. Infiltrated macrophages play an important role in facilitating tissue regeneration. However, the intricate regulatory effects of hucMSC-sEV on macrophages during cisplatin-induced acute kidney injury (AKI) remain unknown. In this study, we uncovered that hucMSC-sEV exhibited potent anti-inflammation and effectively inhibited the polarization of M1 phenotype macrophages. Mechanically, miRNA sequencing analysis and qRT-PCR indicated that a novel miRNA, named miR-13896, was enriched in hucMSC-sEV. When transfected with miR-13896 mimic, macrophages displayed M2 phenotype with elevated levels of Arg1 and IL-10, while miR-13896 inhibitor promoted M1 phenotype. Furthermore, we firstly established that miR-13896 repressed Tradd expression by targeting its 3' untranslated region and subsequently inhibited NF-κB signaling pathway in macrophages. Additionally, to improve therapeutic effects, hucMSC-sEV were engineered with elevated levels of miR-13896 through electroporation, which resulted in promoting M2 phenotype macrophages, inhibiting inflammatory factors, and enhancing kidney repair. Conclusively, our findings provide novel insights into the mechanisms underlying the effects of hucMSC-sEV on macrophages and AKI, while also highlighting electroporation as a promising strategy for treating cisplatin-induced AKI.
Collapse
Affiliation(s)
- Can Jin
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wei Wu
- Department of Emergency Surgery, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, 810007, Qinghai, China
| | - Wenya Chen
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wanzhu Liu
- Department of Emergency Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Yuan Zhu
- Department of Emergency Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - QiShun Wu
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Binghai Chen
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China.
| | - Cheng Ji
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China.
- Institute of Translational Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Jiajia D, Wen Y, Enyan J, Xiaojian Z, Zhen F, Jia Z, Jikai W, Xiaoxin Y, Aihua L, Fangen K, Fei L. PGAM5 promotes RIPK1-PANoptosome activity by phosphorylating and activating RIPK1 to mediate PANoptosis after subarachnoid hemorrhage in rats. Exp Neurol 2025; 384:115072. [PMID: 39603487 DOI: 10.1016/j.expneurol.2024.115072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Neuronal death plays a crucial role in early brain injury after subarachnoid hemorrhage (SAH). PANoptosis is a programmed form of cell death regulated by the PANoptosome, which possesses key characteristics of pyroptosis, apoptosis and necroptosis. Phosphoglycerate mutase family member 5 (PGAM5) has specific phosphatase activity that phosphorylates or dephosphorylates serine and threonine residues on bound proteins such as receptor-interacting protein kinase 1 (RIPK1), which are involved in programmed cell death. This study aimed to explore whether PANoptosis occurs after subarachnoid hemorrhage and to investigate the role of PGAM5 in early brain injury after SAH. A monofilament perforation SAH model in Sprague-Dawley rats was established, and PGAM5 siRNA (siPGAM5) was administered via intracerebroventricular injection 48 h before SAH modeling. The efficacy of siPGAM5 treatment was assessed via neurological scoring, and the impact of siPGAM5 on PANoptosis was evaluated via Western blotting, TUNEL staining and ELISA. To investigate its potential mechanism, the RIPK1 activator birinapant was administered intraperitoneally 0.5 h after SAH. The role of RIPK in PGAM5-mediated PANoptosis was evaluated by Western blotting and coimmunoprecipitation. Our findings indicate that PANoptosis occurs in neurons after SAH and that reducing PGAM5 in the cytosol after SAH can reduce PANoptosis and enhance the short-term and long-term neurological functions of SAH rats. Mechanistically, we discovered that PGAM5 can directly bind to and phosphorylate and activate RIPK1 (ser 166), triggering the assembly of the RIPK1-PANoptosome complex. In conclusion, our study revealed that the increased PGAM5 in the mitochondria-free cytosol after SAH can bind to and activate RIPK1 (ser 166), driving the assembly of the RIPK1-PANoptosome and mediating PANoptosis after SAH. PGAM5 and PANoptosis might be novel therapeutic targets for SAH.
Collapse
Affiliation(s)
- Duan Jiajia
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yuan Wen
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, China
| | - Jiang Enyan
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhang Xiaojian
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Fang Zhen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zeng Jia
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wang Jikai
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yan Xiaoxin
- Department of Anatomy and Neurobiology, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Liu Aihua
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kong Fangen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China.
| | - Liu Fei
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
5
|
Yu W, Jia X, Qiao H, Liu D, Sun Y, Yan R, Zhang C, Yu N, Song Y, Ling M, Zhang Z, Li X, Zhao C, Xing Y. Phosphoproteomic analysis reveals the mechanisms of human umbilical cord mesenchymal stem cell-derived exosomes attenuate renal aging. J Proteomics 2025; 310:105335. [PMID: 39433154 DOI: 10.1016/j.jprot.2024.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Aging is a critical biological process, with particularly notable impacts on the kidneys. Exosomes derived from human umbilical cord mesenchymal stem cells (hUC-MSCs) are capable of transferring various bioactive molecules, which exhibit beneficial therapeutic effects on kidney diseases. This study demonstrates that exosomes derived from hUC-MSCs ameliorate cellular senescence in the kidneys of naturally aging mice. These exosomes reduce the protein expression of senescence markers and senescence-associated secretory phenotypes (SASP) leading to fewer DNA damage foci and increased expression of the proliferation indicator Ki67. During the aging process, many proteins undergo phosphorylation modifications. We utilized data-independent acquisition (DIA) phosphoproteomics to study kidneys of naturally aging mice and those treated with hUC-MSC-derived exosomes. We observed elevated phosphorylation levels of the differentially phosphorylated proteins, Lamin A/C, at Ser390 and Ser392 sites, which were subsequently verified by western blotting. Overall, this study provides a new molecular characterization of hUC-MSC-derived exosomes in mitigating cellular senescence in the kidneys. SIGNIFICANCE: DIA phosphoproteomics was employed to investigate phosphorylated proteins in the kidney tissues of naturally aging mice with hUCMSC-exos treated. The results demonstrated that the DIA technique detected a higher abundance of phosphorylated proteins. We identified 24 significantly differentially phosphorylated proteins, and found that the phosphorylation of specific Lamin A/C sites is crucial for preventing cellular senescence. This study will help to better reveal the related phosphorylated proteins involved in hUCMSC-exos intervention in the kidneys of naturally aging mice, providing a foundation for future research on specific phosphorylation sites of proteins as potential therapeutic targets for renal aging-related diseases.
Collapse
Affiliation(s)
- Wenzhuo Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Xu Jia
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Han Qiao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Di Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Yan Sun
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Rong Yan
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Chenglong Zhang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Na Yu
- Division of Bacterial Anti-tumor Drugs, Shandong Precision Medicine Engineering Laboratory, Shandong Xinchuang Biotechnology Co., LTD, Jinan, Shandong, China
| | - Yiping Song
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Mingying Ling
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Zhen Zhang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Xuehui Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Chuanli Zhao
- Department of Hematology, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China.
| | - Yanqiu Xing
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China.
| |
Collapse
|
6
|
Zhang A, Li Q, Chen Z. Therapeutic Efficacy and Promise of Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles in Aging and Age-Related Disorders. Int J Mol Sci 2024; 26:225. [PMID: 39796081 PMCID: PMC11719504 DOI: 10.3390/ijms26010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The global issue of aging populations has become increasingly prominent, thus the research and development for anti-aging therapies to assure longevity as well as to ameliorate age-related complications is put high on the agenda. The young humoral milieu has been substantiated to impart youthful characteristics to aged cells or organs. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membrane-limited structures that serve as couriers of proteins and genetic material to regulate intercellular communication. Of note, EVs appeared to be an indispensable component of young blood in prolonging lifespans, and circulating EVs have been indicated to mediate the beneficial effect of a young milieu on aging. Human umbilical cord mesenchymal stem cell-derived EVs (HUCMSC-EVs), isolated from the youngest adult stem cell source, are speculated to reproduce the function of circulating EVs in young blood and partially revitalize numerous organs in old animals. Robust evidence has suggested HUCMSC-EVs as muti-target therapeutic agents in combating aging and alleviating age-related degenerative disorders. Here, we provide a comprehensive overview of the anti-aging effects of HUCMSC-EVs in brain, heart, vasculature, kidney, muscle, bone, and other organs. Furthermore, we critically discuss the current investigation on engineering strategies of HUCMSC-EVs, intending to unveil their full potential in the field of anti-aging research.
Collapse
Affiliation(s)
- Anyuan Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Qiubai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhichao Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
7
|
Wei B, Wei M, Huang H, Fan T, Zhang Z, Song X. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Strategy for Age-Related Diseases. Cell Prolif 2024:e13795. [PMID: 39704104 DOI: 10.1111/cpr.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
The global increase in the aging population has led to a concurrent rise in the incidence of age-related diseases, posing substantial challenges to healthcare systems and affecting the well-being of the elderly. Identifying and securing effective treatments has become an urgent priority. In this context, mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as a promising and innovative modality in the field of anti-aging medicine, offering a multifaceted therapeutic approach. MSC-Exos demonstrate significant potential due to their immunomodulatory and anti-inflammatory properties, their ability to inhibit oxidative stress, and their reparative effects on senescent tissues. These attributes make them valuable in combating a range of conditions associated with aging, such as cardiovascular diseases, neurodegeneration, skin aging, and osteoarthritis. The integration of exosomes with membrane-penetrating peptides introduces a novel strategy for the delivery of biomolecules, surmounting traditional cellular barriers and enhancing therapeutic efficacy. This review provides a comprehensive synthesis of the current understanding of MSC-Exos, underscoring their role as a novel and potent therapeutic strategy against the intricate challenges of age-related diseases.
Collapse
Affiliation(s)
- Bohua Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Mengting Wei
- School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Haonan Huang
- China Medical University, Shenyang, Liaoning Province, China
| | - Ting Fan
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
8
|
Xu J, Wang Y, Shao Z, Zhou Y, Bin X, Liu L, Huang W, Wang X, Hu Y, Li K. Adipose-derived stem cell exosomes attenuates myofibroblast transformation via inhibiting autophagy through TGF-β/Smad2 axis in oral submucosal fibrosis. J Nanobiotechnology 2024; 22:780. [PMID: 39702233 DOI: 10.1186/s12951-024-03067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Oral submucous fibrosis (OSF) is a precancerous condition that poses substantial health risks. OSF is mainly caused by betel nut chewing behavior, but its pathogenesis is still unclear and there is no effective treatment strategy. The transformation of fibroblasts to myofibroblast is the key pathological change in the development of OSF. We isolated fibroblasts from human oral mucosa and induced them into myofibroblasts by arecoline, during which autophagy was significantly activated. Here, we found that adipose-derived stem cell exosomes (ADSCs-EXO) could inhibit autophagy to regulate myofibroblast phenotype, and transcriptome sequencing analysis suggested that this process is closely related to the TGF-β pathway. The interplay between autophagy and TGF-β pathway was examined through modulation the two with autophagy activators and inhibitors, TGF-β receptor activators and inhibitors. Results showed that in vitro, the TGF-β/Smad2 pathway augmented autophagy and promoted myofibroblast transformation. The transcriptome information of ADSCs-EXO showed that it contains a large number of miRNAs. Among them, miR-125a-5p could target Smad2. In vivo, injection of ADSCs-EXO alleviated OSF in mice, during which TGF-β and autophagy signals were inhibited. We suggested that ADSCs-EXO could inhibit myofibroblast transformation via inhibiting autophagy through TGF-β/Smad2 axis in OSF, providing new insights for autophagy-based intervention strategies.
Collapse
Affiliation(s)
- Jinhao Xu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Yujing Wang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Zifei Shao
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Yuxi Zhou
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Xin Bin
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Lian Liu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Weiman Huang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Xidi Wang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Yanjia Hu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China.
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
9
|
Guo Q, Li P, Chen M, Yu Y, Wan Y, Zhang Z, Ren C, Shen L, Liu X, He D, Zhang Y, Wei G, Zhang D. Exosomes From Human Umbilical Cord Stem Cells Suppress Macrophage-to-myofibroblast Transition, Alleviating Renal Fibrosis. Inflammation 2024; 47:2094-2107. [PMID: 38662165 DOI: 10.1007/s10753-024-02027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Renal fibrosis, a progressive scarring of the kidney, lacks effective treatment. Human umbilical cord mesenchymal stem cell-derived exosomes (HucMSC-Exos) hold promise for treating kidney diseases due to their anti-inflammatory properties. This study investigates their potential to lessen renal fibrosis by targeting macrophage-to-myofibroblast transformation (MMT), a key driver of fibrosis. We employed a mouse model of unilateral ureteral obstruction (UUO) and cultured cells exposed to transforming growth factor-β (TGF-β) to mimic MMT. HucMSC-Exos were administered to UUO mice, and their effects on kidney function and fibrosis were assessed. Additionally, RNA sequencing and cellular analysis were performed to elucidate the mechanisms by which HucMSC-Exos inhibit MMT. HucMSC-Exos treatment significantly reduced kidney damage and fibrosis in UUO mice. They downregulated markers of fibrosis (Collagen I, vimentin, alpha-smooth muscle actin) and suppressed MMT (α-SMA + F4/80 + cells). Furthermore, ARNTL, a specific molecule, emerged as a potential target of HucMSC-Exos in hindering MMT and consequently preventing fibrosis. HucMSC-Exos effectively lessen renal fibrosis by suppressing MMT, suggesting a novel therapeutic strategy for managing kidney damage and fibrosis.
Collapse
Affiliation(s)
- Qitong Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Ping Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Meiling Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yonghong Wan
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China.
| |
Collapse
|
10
|
Wu T, Zhu W, Duan R, Sun J, Bao S, Chen K, Han B, Chen Y, Lu Y. Magnetic vagus nerve stimulation ameliorates contrast-induced acute kidney injury by circulating plasma exosomal miR-365-3p. J Nanobiotechnology 2024; 22:666. [PMID: 39468562 PMCID: PMC11520859 DOI: 10.1186/s12951-024-02928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Contrast-induced acute kidney injury (CI-AKI) is manifested by a rapid decline in renal function occurring within 48-72 h in patients exposed to iodinated contrast media (CM). Although intravenous hydration is currently the effective method confirmed to prevent CI-AKI, it has several drawbacks. Some investigations have demonstrated the nephroprotective effects of vagus nerve stimulation (VNS) against kidney ischemia-reperfusion injury, but no direct research has investigated the use of VNS for treating CI-AKI. Additionally, most current VNS treatment applies invasive electrical stimulator implantation, which is largely limited by the complications. Our recent publications introduce the magnetic vagus nerve stimulation (mVNS) system pioneered and successfully used for the treatment of myocardial infarction. However, it remains uncertain whether mVNS can mitigate CI-AKI and its specific underlying mechanisms. Therefore, we herein evaluate the potential therapeutic effects of mVNS on CM-induced nephropathy in rats and explore the underlying mechanisms. RESULTS mVNS treatment was found to significantly improve the damaged renal function, including the reduction of elevated serum creatinine (Scr), blood urea nitrogen (BUN), and urinary N-acetyl-β-D-glucosaminidase (NAG) with increased urine output. Pathologically, mVNS treatment alleviated the renal tissue structure injury, and suppressed kidney injury molecule-1 (KIM-1) expression and apoptosis in renal tubular epithelial cells. Mechanistically, increased circulating plasma exosomal miR-365-3p after mVNS treatment enhanced the autophagy and reduced CM-induced apoptosis in renal tubular epithelial cells by targeting Ras homolog enriched in brain (Rheb). CONCLUSIONS In summary, we demonstrated that mVNS can improve CI-AKI through enhanced autophagy and apoptosis inhibition, which depended on plasma exosomal miR-365-3p. Our findings highlight the therapeutic potential of mVNS for CI-AKI in clinical practice. However, further research is needed to determine the optimal stimulation parameters to achieve the best therapeutic effects.
Collapse
Affiliation(s)
- Tianyu Wu
- XuZhou Clinical School of Xuzhou Medical University, Department of Central Laboratory, Xuzhou Central Hospital, No.199 Jiefang South Road, Xuzhou, 221009, P.R. China
| | - Wenwu Zhu
- XuZhou Clinical School of Xuzhou Medical University, Department of Cardiology, Xuzhou Central Hospital, XuZhou Institute of Cardiovascular disease, No.199 Jiefang South Road, Xuzhou, 221009, P.R. China
| | - Rui Duan
- XuZhou Clinical School of Xuzhou Medical University, Department of Cardiology, Xuzhou Central Hospital, XuZhou Institute of Cardiovascular disease, No.199 Jiefang South Road, Xuzhou, 221009, P.R. China
| | - Jianfei Sun
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P.R. China
| | - Siyuan Bao
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P.R. China
| | - Kaiyan Chen
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, P.R. China
| | - Bing Han
- XuZhou Clinical School of Xuzhou Medical University, Department of Cardiology, Xuzhou Central Hospital, XuZhou Institute of Cardiovascular disease, No.199 Jiefang South Road, Xuzhou, 221009, P.R. China.
| | - Yuqiong Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, PR China.
| | - Yao Lu
- XuZhou Clinical School of Xuzhou Medical University, Department of Cardiology, Xuzhou Central Hospital, XuZhou Institute of Cardiovascular disease, No.199 Jiefang South Road, Xuzhou, 221009, P.R. China.
| |
Collapse
|
11
|
Cao L, Wang XL, Chu T, Wang YW, Fan YQ, Chen YH, Zhu YW, Zhang J, Ji XY, Wu DD. Role of gasotransmitters in necroptosis. Exp Cell Res 2024; 442:114233. [PMID: 39216662 DOI: 10.1016/j.yexcr.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.
Collapse
Affiliation(s)
- Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Jing Zhang
- Department of Stomatology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475001, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Kaifeng, Henan, 475000, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
12
|
Li B, Qi C, Zhang Y, Shi L, Zhang J, Qian H, Ji C. Frontier role of extracellular vesicles in kidney disease. J Nanobiotechnology 2024; 22:583. [PMID: 39304945 DOI: 10.1186/s12951-024-02852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Kidney diseases represent a diverse range of conditions that compromise renal function and structure which characterized by a progressive deterioration of kidney function, may ultimately necessitate dialysis or kidney transplantation as end-stage treatment options. This review explores the complex landscape of kidney diseases, highlighting the limitations of existing treatments and the pressing need for innovative strategies. The paper delves into the role of extracellular vesicles (EVs) as emerging biomarkers and therapeutic agents in the context of kidney pathophysiology. Urinary extracellular vesicles (uEVs), in particular, offer a non-invasive means of assessing renal injury and monitoring disease progression. Additionally, mesenchymal stem cell-derived EVs (MSC-EVs) are examined for their immunomodulatory and tissue repair capabilities, presenting a promising avenue for novel therapeutic interventions. And discusses the potential of engineering EVs to enhance their targeting and therapeutic efficacy. This paper systematically integrates the latest research findings and aims to provide a comprehensive overview of the role of EVs in kidney disease, providing cutting-edge insights into their potential as a diagnostic and therapeutic tool.
Collapse
Affiliation(s)
- Bei Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chen Qi
- Department of Clinical Laboratory, Suzhou Municipal Hospital of Anhui Province, Anhui, 234000, China
| | - Yifan Zhang
- College of Medical Imaging, Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
13
|
Shi L, Zeng H, An Z, Chen W, Shan Y, Ji C, Qian H. Extracellular vesicles: Illuminating renal pathophysiology and therapeutic frontiers. Eur J Pharmacol 2024; 978:176720. [PMID: 38880217 DOI: 10.1016/j.ejphar.2024.176720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Extracellular vesicles (EVs) are minute sacs released by cells into the extracellular milieu, harboring an array of biomolecules including proteins, nucleic acids, and lipids. Notably, a large number of studies have demonstrated the important involvement of EVs in both physiological and pathological aspects of renal function. EVs can facilitate communication between different renal cells, but it is important to recognize their dual role: they can either transmit beneficial information or lead to renal damage and worsening of existing conditions. The composition of EVs in the context of the kidneys offers valuable insights into the intricate mechanisms underlying specific renal functions or disease states. In addition, mesenchymal stem cell-derived EVs have the potential to alleviate acute and chronic kidney diseases. More importantly, the innate nanoparticle properties of EVs, coupled with their engineering potential, make them effective tools for drug delivery and therapeutic intervention. In this review, we focus on the intricate biological functions of EVs in the kidney. In addition, we explore the emerging role of EVs as diagnostic tools and innovative therapeutic agents in a range of renal diseases.
Collapse
Affiliation(s)
- Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Houcheng Zeng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhongwu An
- Department of Laboratory, Lianyungang Oriental Hospital, Lianyungang, 222042, Jiangsu, China
| | - Wenya Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yunjie Shan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
14
|
Patel AA, Mohamed AH, Rizaev J, Mallick AK, Qasim MT, Abdulmonem WA, Jamal A, Hattiwale HM, Kamal MA, Ahmad F. Application of mesenchymal stem cells derived from the umbilical cord or Wharton's jelly and their extracellular vesicles in the treatment of various diseases. Tissue Cell 2024; 89:102415. [PMID: 38851032 DOI: 10.1016/j.tice.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024]
Abstract
Mesenchymal stem cells (MSCs) originating from the umbilical cord (UC) or Wharton's jelly (WJ) have attracted substantial interest due to their potential to augment therapeutic approaches for a wide range of disorders. These cells demonstrate a wide range of capabilities in the process of differentiating into a multitude of cell types. Additionally, they possess a significant capacity for proliferation and are conveniently accessible. Furthermore, they possess a status of being immune-privileged, exhibit minimal tumorigenic characteristics, and raise minimal ethical concerns. Consequently, they are well-suited candidates for tissue regeneration and the treatment of diseases. Additionally, UC-derived MSCs offer a substantial yield compared to other sources. The therapeutic effects of these MSCs are closely associated with the release of nanosized extracellular vesicles (EVs), including exosomes and microvesicles (MVs), containing lipids, microRNAs, and proteins that facilitate intercellular communication. Due to their reduced tumorigenic and immunogenic characteristics, in addition to their convenient manipulability, EVs have arisen as a viable alternative for the management of disorders. The favorable characteristics of UC-MSCs or WJ-MSCs and their EVs have generated significant attention in clinical investigations encompassing diverse pathologies. Therefore, we present a review encompassing current preclinical and clinical investigations, examining the implications of UC-MSCs in diverse diseases, including those affecting bone, cartilage, skin, liver, kidney, neural, lung, cardiovascular, muscle, and retinal tissues, as well as conditions like cancer, diabetes, sepsis, and others.
Collapse
Affiliation(s)
- Ayyub Ali Patel
- Clinical Biochemistry Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hilla, Babil 51001, Iraq.
| | - Jasur Rizaev
- Department of Public Health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Ayaz Khurram Mallick
- Clinical Biochemistry Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Haroonrashid M Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| |
Collapse
|
15
|
Feng M, Zhang L, Yin A, Zhang H, Wu X, Qian L. Peptide PDRPS6 attenuates myocardial ischemia injury by improving mitochondrial function. Eur J Pharmacol 2024; 974:176570. [PMID: 38688398 DOI: 10.1016/j.ejphar.2024.176570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
Mitochondrial dynamics play a crucial role in myocardial ischemia-reperfusion (I/R) injury, where an imbalance between fusion and fission processes occurs. However, effective measures to regulate mitochondrial dynamics in this context are currently lacking. Peptide derived from the 40 S ribosomal protein S6 (PDRPS6), a peptide identified via peptidomics, is associated with hypoxic stress. This study aimed to investigate the function and mechanism of action of PDRPS6 in I/R injury. In vivo, PDRPS6 ameliorated myocardial tissue injury and cardiomyocyte apoptosis and decreased cardiac function induced by I/R injury in rats. PDRPS6 supplementation significantly reduced apoptosis in vitro. Mechanistically, PDRPS6 improved mitochondrial function by decreasing reactive oxygen species (ROS) levels, maintaining mitochondrial membrane potential (MMP), and inhibiting mitochondrial fission. Pull-down assay analyses revealed that phosphoglycerate mutase 5 (PGAM5) may be the target of PDRPS6, which can lead to the dephosphorylation of dynamin-related protein1 (Drp1) at ser616 site. Overexpression of PGAM5 partially eliminated the effect of PDRPS6 on improving mitochondrial function. These findings suggest that PDRPS6 supplementation is a novel method for treating myocardial injuries caused by I/R.
Collapse
Affiliation(s)
- Mengwen Feng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China; Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Li Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China
| | - Anwen Yin
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Han Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China
| | - Xueping Wu
- Department of Anatomy, Histology and Embryology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, Pudding New District, Shanghai, 201318, China.
| | - Lingmei Qian
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
16
|
Huang D, Shen H, Xie F, Hu D, Jin Q, Hu Y, Zhong T. Role of mesenchymal stem cell-derived exosomes in the regeneration of different tissues. J Biol Eng 2024; 18:36. [PMID: 38845032 PMCID: PMC11155050 DOI: 10.1186/s13036-024-00431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Exosomes are nanovesicles with multiple components used in several applications. Mesenchymal stem cells (MSCs) are well known for their great potential in clinical applications. MSC-derived exosomes (MSC-Exos) have been shown to mediate tissue regeneration in various diseases, including neurological, autoimmune, and inflammatory diseases, cancer, ischemic heart disease, lung injury, and liver fibrosis. They can modulate the immune response by interacting with immune effector cells in the presence of anti-inflammatory compounds and are involved in intercellular communication through various types of cargo. This review summarizes the MSC-Exos-mediated tissue regeneration in various diseases, including neurological, cardiovascular, liver, kidney, articular cartilage, and oral tissue applications. In addition, we discuss the challenges and prospects of MSC-Exos in tissue regeneration.
Collapse
Affiliation(s)
- Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangfang Xie
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Die Hu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yuexin Hu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
17
|
Zhou Y, Huang J, Zeng L, Yang Q, Bai F, Mai Q, Deng K. Human mesenchymal stem cells derived exosomes improve ovarian function in chemotherapy-induced premature ovarian insufficiency mice by inhibiting ferroptosis through Nrf2/GPX4 pathway. J Ovarian Res 2024; 17:80. [PMID: 38622725 PMCID: PMC11017636 DOI: 10.1186/s13048-024-01403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/30/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Chemotherapy exposure has become a main cause of premature ovarian insufficiency (POI). This study aimed to evaluate the role and molecular mechanism of human umbilical cord mesenchymal stem cell-derived exosomes (hUMSC-Exos) in ovarian function protection after chemotherapy. METHODS hUMSC-Exos were applied to cyclophosphamide-induced premature ovarian insufficiency mice and human ovarian granulosa tumor cells (KGN) to determine their effects on follicular development and granulosa cell apoptosis. Evaluation was done for iron ion and reactive oxygen species (ROS) production, lipid peroxidation levels, and changes in iron death-related molecules (nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Glutathione Peroxidase enzyme 4 (GPX4), and Solute carrier family 7 member 11 cystine glutamate transporter (SLC7A11; xCT)). Furthermore, rescue experiments using an Nrf2 inhibitor were performed to assess the therapeutic effects of hUMSC-Exos on granulosa cells. RESULTS hUMSC-Exos promoted ovarian hormone levels and primary follicle development in POI mice and reduced granulosa cell apoptosis. After hUMSC-Exos treatment, the ROS production, free iron ions and lipid peroxidation levels of granulosa cells decreased, and the iron death marker proteins Nrf2, xCT and GPX4 also decreased. Furthermore, the Nrf2 inhibitor ML385 significantly attenuated the effects of hUMSC-Exos on granulosa cells. CONCLUSION hUMSC-Exos inhibit ferroptosis and protect against CTX-induced ovarian damage and granulosa cell apoptosis through the Nrf2/GPX4 signaling pathway, revealing a novel mechanism of hUMSC-Exos in POI therapy.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China
| | - Jinfa Huang
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China
| | - Lingling Zeng
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China
| | - Qian Yang
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China
| | - Fangjuan Bai
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China
| | - Qiqing Mai
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China
| | - Kaixian Deng
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China.
| |
Collapse
|
18
|
Zhou Z, Shi L, Chen B, Qian H. Regulation of regulated cell death by extracellular vesicles in acute kidney injury and chronic kidney disease. Cytokine Growth Factor Rev 2024; 76:99-111. [PMID: 38182464 DOI: 10.1016/j.cytogfr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The imbalance between proliferation and death of kidney resident cells is a crucial factor in the development of acute or chronic renal dysfunction. Acute kidney injury (AKI) is often associated with the rapid loss of tubular epithelial cells (TECs). Sustained injury leads to the loss of glomerular endothelial cells (GECs) and podocytes, which is a key mechanism in the pathogenesis of glomerular diseases. This irreversible damage resulting from progressive cell loss eventually leads to deterioration of renal function characterized by glomerular compensatory hypertrophy, tubular degeneration, and renal fibrosis. Regulated cell death (RCD), which involves a cascade of gene expression events with tight structures, plays a certain role in regulating kidney health by determining the fate of kidney resident cells. Under pathological conditions, cells in the nephron have been demonstrated to constitutively release extracellular vesicles (EVs) which act as messengers that specifically interact with recipient cells to regulate their cell death process. For therapeutic intervention, exogenous EVs have exhibited great potential for the prevention and treatment of kidney disease by modulating RCD, with enhanced effects through engineering modification. Based on the functional role of EVs, this review comprehensively explores the regulation of RCD by EVs in AKI and chronic kidney disease (CKD), with emphasis on pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Zixuan Zhou
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Binghai Chen
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Hui Qian
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
19
|
Lin M, Xu X, Zhou X, Feng H, Wang R, Yang Y, Li J, Fan N, Jiang Y, Li X, Guan F, Tan Z. Sialylation on vesicular integrin β1 determined endocytic entry of small extracellular vesicles into recipient cells. Cell Mol Biol Lett 2024; 29:46. [PMID: 38561669 PMCID: PMC10983696 DOI: 10.1186/s11658-024-00562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Small extracellular vesicles (sEV) are closely associated with the development and metastasis of many types of mammalian cancer. Glycoconjugates are highly expressed on sEV and play important roles in sEV biogenesis and their interaction with other cells. However, the study on vesicular glycoconjugates are far behind proteins and nucleic acids. Especially, the functions of sialic acids which are the terminal components of glycoconjugates, are poorly understood in sEV. METHODS Sialic acid levels on sEV from plasma and bladder cancer cells were determined by ELISA and lectin blotting. Effects of sialylation on sEV uptake were determined by flow cytometry. Vesicular glycoproteins bearing sialic acids responsible for sEV uptake was identified by proteomics and density gradient centrifugation, and their site-specific sialylation functions were assayed by N-glycosylation site mutation. Effects of integrin β1 bearing sialic acids on the pro-metastatic function of sEV in vivo were explored using Balb/c nu/nu mice. RESULTS (1) Increased sialic acid levels were observed in sEV from malignant bladder cancer cells. (2) Elimination of sialic acids on sEV impaired sEV uptake by recipient cells. (3) Vesicular integrin β1 bearing sialic acids was identified to play a key role in sEV uptake. (4) Desialylation of the hybrid domain of vesicular integrin β1 inhibited its binding to matrix fibronectin, and reduced sEV entry into recipient cells. (5) Sialylation on integrin β1 affected pro-metastatic function of sEV in Balb/c nu/nu mice. CONCLUSIONS Taken together, our findings indicate important functional roles of sialic acids in sEV uptake and reprogramming plasticity of surrounding normal epithelial cells.
Collapse
Affiliation(s)
- Meixuan Lin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaoqiang Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaoman Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Hui Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Ruili Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Yunyun Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Ning Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Yazhuo Jiang
- Department of Urology, Provincial People's Hospital, Xi'an, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.
| | - Zengqi Tan
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
20
|
Sun T, Li M, Liu Q, Yu A, Cheng K, Ma J, Murphy S, McNutt PM, Zhang Y. Insights into optimizing exosome therapies for acute skin wound healing and other tissue repair. Front Med 2024; 18:258-284. [PMID: 38216854 PMCID: PMC11283324 DOI: 10.1007/s11684-023-1031-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/15/2023] [Indexed: 01/14/2024]
Abstract
Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.
Collapse
Affiliation(s)
- Tianjing Sun
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Mo Li
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Qi Liu
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Jianxing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sean Murphy
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Patrick Michael McNutt
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Yuanyuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
21
|
Fan X, Wang Y, Zhang J, Lin H, Bai Z, Li S. Bisphenol A Regulates the TNFR1 Pathway and Excessive ROS Mediated by miR-26a-5p/ADAM17 Axis to Aggravate Selenium Deficiency-Induced Necroptosis in Broiler Veins. Biol Trace Elem Res 2024; 202:1722-1740. [PMID: 37422542 DOI: 10.1007/s12011-023-03756-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Selenium (Se) deficiency can affect the expression of microRNA (miRNA) and induce necroptosis, apoptosis, etc., resulting in damage to various tissues and organs. Bisphenol A (BPA) exposure can cause adverse consequences such as oxidative stress, endothelial dysfunction, and atherosclerosis. The toxic effects of combined treatment with Se-deficiency and BPA exposure may have a synergistic effect. We replicated the BPA exposure and Se-deficiency model in broiler to investigate whether the combined treatment of Se-deficiency and BPA exposure induced necroptosis and inflammation of chicken vascular tissue via the miR-26A-5p/ADAM17 axis. We found that Se deficiency and BPA exposure significantly inhibited the expression of miR-26a-5p and increased the expression of ADAM17, thereby increasing reactive oxygen species (ROS) production. Subsequently, we discovered that the tumor necrosis factor receptor (TNFR1), which was highly expressed, activated the necroptosis pathway through receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like (MLKL), and regulated the heat shock proteins-related genes expressions and inflammation-related genes expressions after exposure to BPA and selenium deficiency. In vitro, we found that miR-26a-5p knockdown and increased ADAM17 can induce necroptosis by activating the TNFR1 pathway. Similarly, both N-Acetyl-L-cysteine (NAC), Necrostatin-1 (Nec-1), and miR-26a-5p mimic prevented necroptosis and inflammation caused by BPA exposure and Se deficiency. These results suggest that BPA exposure activates the miR-26a-5p/ADAM17 axis and exacerbates Se deficient-induced necroptosis and inflammation through the TNFR1 pathway and excess ROS. This study lays a data foundation for future ecological and health risk assessments of nutrient deficiencies and environmental toxic pollution.
Collapse
Affiliation(s)
- Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jintao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhikun Bai
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
22
|
Chen G, Li X, Zhou X, Li Y, Yu H, Peng X, Bai X, Zhang C, Feng Z, Mei Y, Li L, Liu Y, Gou X, Jiang Y. Extracellular vesicles secreted from mesenchymal stem cells ameliorate renal ischemia reperfusion injury by delivering miR-100-5p targeting FKBP5/AKT axis. Sci Rep 2024; 14:6720. [PMID: 38509215 PMCID: PMC10954733 DOI: 10.1038/s41598-024-56950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
The incidence of acute kidney injury (AKI) due to ischemia-reperfusion (IR) injury is increasing. There is no effective treatment for AKI, and because of this clinical challenge, AKI often progresses to chronic kidney disease, which is closely associated with poor patient outcomes and high mortality rates. Small extracellular vesicles from human umbilical cord mesenchymal stem cells (hUCMSC-sEVs) play increasingly vital roles in protecting tissue function from the effects of various harmful stimuli owing to their specific biological features. In this study, we found that miR-100-5p was enriched in hUCMSC-sEVs, and miR-100-5p targeted FKBP5 and inhibited HK-2 cell apoptosis by activating the AKT pathway. HK-2 cells that were exposed to IR injury were cocultured with hUCMSC-sEVs, leading to an increase in miR-100-5p levels, a decrease in FKBP5 levels, and an increase in AKT phosphorylation at Ser 473 (AKT-473 phosphorylation). Notably, these effects were significantly reversed by transfecting hUCMSCs with an miR-100-5p inhibitor. Moreover, miR-100-5p targeted FKBP5, as confirmed by a dual luciferase reporter assay. In vivo, intravenous infusion of hUCMSC-sEVs into mice suffering from IR injury resulted in significant apoptosis inhibition, functional maintenance and renal histological protection, which in turn decreased FKBP5 expression levels. Overall, this study revealed an effect of hUCMSC-sEVs on inhibiting apoptosis; hUCMSC-sEVs reduced renal IR injury by delivering miR-100-5p to HK-2 cells, targeting FKBP5 and thereby promoting AKT-473 phosphorylation to activate the AKT pathway. This study provides novel insights into the role of hUCMSC-sEVs in the treatment of AKI.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Yang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Haitao Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xiang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xuesong Bai
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Chunlin Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Zhenwei Feng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Yuhua Mei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Li Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Yu Liu
- Department of Urology, Chongqing Traditional Chinese Medicine Hospital, No.6, Panxi Road(Branch7), Jiangbei, Chongqing, 400021, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Yuanbin Jiang
- Department of Urology, Chongqing Traditional Chinese Medicine Hospital, No.6, Panxi Road(Branch7), Jiangbei, Chongqing, 400021, China.
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China.
| |
Collapse
|
23
|
Yu C, Zhang J, Pei J, Luo J, Hong Y, Tian X, Liu Z, Zhu C, Long C, Shen L, He X, Wen S, Liu X, Wu S, Hua Y, Wei G. IL-13 alleviates acute kidney injury and promotes regeneration via activating the JAK-STAT signaling pathway in a rat kidney transplantation model. Life Sci 2024; 341:122476. [PMID: 38296190 DOI: 10.1016/j.lfs.2024.122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
AIMS To identify whether and how a younger systemic internal milieu alleviates acute kidney injury (AKI) in grafts after kidney transplantation. MATERIALS AND METHODS We conducted an allogenic heterotopic rat kidney transplantation model with young and adult recipients receiving similar donor kidneys. We evaluated the renal function, histological damage, apoptosis, dedifferentiation, proliferation, hub regulating cytokines, and signaling pathways involved in young and adult recipients based on transcriptomics, proteomics, and experimental validation. We also validated the protective effect and mechanism of interleukin-13 (IL-13) on tubular epithelial cell injury induced by transplantation in vivo and by cisplatin in vitro. KEY FINDINGS Compared with adult recipients, the young recipients had lower levels of renal histological damage and apoptosis, while had higher levels of dedifferentiation and proliferation. Serum IL-13 levels were higher in young recipients both before and after surgery. Pretreating with IL-13 decreased apoptosis and promoted regeneration in injured rat tubular epithelial cells induced by cisplatin, while this effect can be counteracted by a JAK2 and STAT3 specific inhibitor, AG490. Recipients pretreated with IL-13 also had lower levels of histological damage and improved renal function. SIGNIFICANCE Higher levels of IL-13 in young recipients ameliorates tubular epithelial cell apoptosis and promotes regeneration via activating the JAK-STAT signaling pathway both in vivo and in vitro. Our results suggest that IL-13 is a promising therapeutic strategy for alleviating AKI. The therapeutic potential of IL-13 in injury repair and immune regulation deserves further evaluation and clinical consideration.
Collapse
Affiliation(s)
- Chengjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Jie Zhang
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Jun Pei
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Jin Luo
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yifan Hong
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Xiaomao Tian
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Zhiyuan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Chumeng Zhu
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Chunlan Long
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Lianju Shen
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Xingyue He
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Sheng Wen
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Yi Hua
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| |
Collapse
|
24
|
Xue K, Mi B. Engineered Extracellular Vesicles in Chronic Kidney Diseases: A Comprehensive Review. Int J Nanomedicine 2024; 19:2377-2393. [PMID: 38469058 PMCID: PMC10926925 DOI: 10.2147/ijn.s452393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Chronic kidney diseases (CKD) present a formidable global health challenge, characterized by a deficiency of effective treatment options. Extracellular vesicles (EVs), recognized as multifunctional drug delivery systems in biomedicine, have gained accumulative interest. Specifically, engineered EVs have emerged as a promising therapeutic approach for targeted drug delivery, potentially addressing the complexities of CKD management. In this review, we systematically dissect EVs, elucidating their classification, biogenesis, composition, and cargo molecules. Furthermore, we explore techniques for EV engineering and strategies for their precise renal delivery, focusing on cargo loading and transportation, providing a comprehensive perspective. Moreover, this review also discusses and summarizes the diverse therapeutic applications of engineered EVs in CKD, emphasizing their anti-inflammatory, immunomodulatory, renoprotective, and tissue-regenerating effects. It critically evaluates the challenges and limitations in translating EV therapies from laboratory settings to clinical applications, while outlining future prospects and emerging trends.
Collapse
Affiliation(s)
- Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
25
|
Goleij P, Sanaye PM, Rezaee A, Tabari MAK, Arefnezhad R, Motedayyen H. RNA therapeutics for kidney injury. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:69-95. [PMID: 38458744 DOI: 10.1016/bs.pmbts.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
RNA therapy involves utilizing RNA-based molecules to control biological pathways, aiming to cure specific diseases. As our understanding of RNA functions and their roles has expanded, the application of RNA therapies has broadened to target various therapeutic points. This approach holds promise for treating a range of diseases, including kidney diseases. Therapeutic RNA can be employed to target specific genes or pathways implicated in the development of kidney conditions, such as inflammation, fibrosis, and oxidative stress. This review highlights the therapeutic potential of RNA-based therapies across different types of kidney diseases, encompassing infection, inflammation, nephrotoxicity, and ischemia/reperfusion injury. Furthermore, studies have pinpointed the specific kidney cells involved in RNA therapy. To address challenges hindering the potential impact of RNA-based drugs on their targets, nanotechnology is integrated, and RNA-loaded vehicles with ligands are explored for more efficient outcomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
26
|
Bravo-Vázquez LA, Paul S, Colín-Jurado MG, Márquez-Gallardo LD, Castañón-Cortés LG, Banerjee A, Pathak S, Duttaroy AK. Exploring the Therapeutic Significance of microRNAs and lncRNAs in Kidney Diseases. Genes (Basel) 2024; 15:123. [PMID: 38275604 PMCID: PMC10815231 DOI: 10.3390/genes15010123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two crucial classes of transcripts that belong to the major group of non-coding RNAs (ncRNAs). These RNA molecules have significant influence over diverse molecular processes due to their crucial role as regulators of gene expression. However, the dysregulated expression of these ncRNAs constitutes a fundamental factor in the etiology and progression of a wide variety of multifaceted human diseases, including kidney diseases. In this context, over the past years, compelling evidence has shown that miRNAs and lncRNAs could be prospective targets for the development of next-generation drugs against kidney diseases as they participate in a number of disease-associated processes, such as podocyte and nephron death, renal fibrosis, inflammation, transition from acute kidney injury to chronic kidney disease, renal vascular changes, sepsis, pyroptosis, and apoptosis. Hence, in this current review, we critically analyze the recent findings concerning the therapeutic inferences of miRNAs and lncRNAs in the pathophysiological context of kidney diseases. Additionally, with the aim of driving advances in the formulation of ncRNA-based drugs tailored for the management of kidney diseases, we discuss some of the key challenges and future prospects that should be addressed in forthcoming investigations.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Miriam Guadalupe Colín-Jurado
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Luis David Márquez-Gallardo
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Luis Germán Castañón-Cortés
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico (S.P.)
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai 603103, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai 603103, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| |
Collapse
|
27
|
Ling MTM, Govindaraju K, Lokanathan Y, Abidin AZ, Ibrahim B. Mesenchymal stem cell-derived extracellular vesicles for metabolic syndrome therapy: Assessing efficacy with nuclear magnetic resonance spectroscopy. Cell Biochem Funct 2023; 41:1044-1059. [PMID: 37933415 DOI: 10.1002/cbf.3881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/27/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Metabolic syndrome (MetS) represents a cluster of metabolic abnormalities. The prevalence of MetS has surged, transforming it into a pressing public health concern that could potentially affect around 20%-25% of the global population. As MetS continues its ascent, diverse interventions, pharmacological, nonpharmacological and combined have been deployed. Yet, a comprehensive remedy that fully eradicates MetS symptoms remains elusive, compounded by the risks of polypharmacy's emergence. Acknowledging the imperative to grasp MetS's intricate pathologies, deeper insights for future research and therapy optimisation become paramount. Conventional treatments often target specific syndrome elements. However, a novel approach emerges in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) therapy, promising a holistic shift. MSC-EVs, tiny membranous vesicles secreted by mesenchymal stem cells, have garnered immense attention for their multifaceted bioactivity and regenerative potential. Their ability to modulate inflammation, enhance tissue repair and regulate metabolic pathways has prompted researchers to explore their therapeutic application in MetS. This review primarily aims to provide an overview of how MSC-EVs therapy can improve metabolic parameters in subjects with MetS disease and also introduce the usefulness of NMR spectroscopy in assessing the efficacy of MSC-EVs therapy for treating MetS.
Collapse
Affiliation(s)
- Magdalene Tan Mei Ling
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kayatri Govindaraju
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Asmaa' Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Xie W, Luo T, Ma Z, Xue S, Jia X, Yang T, Song Z. Tumor Necrosis Factor Alpha Preconditioned Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Enhance the Inhibition of Necroptosis of Acinar cells in Severe Acute Pancreatitis. Tissue Eng Part A 2023; 29:607-619. [PMID: 37565286 DOI: 10.1089/ten.tea.2023.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a common abdominal emergency with a high mortality rate and a lack of effective therapeutic options. Although mesenchymal stem cell (MSC) transplantation is a potential treatment for SAP, the mechanism remains unclear. It has been suggested that MSCs may act mainly through paracrine effects; therefore, we aimed to demonstrate the therapeutic efficacy of extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (UCMSCs) for SAP. Na-taurocholate was used to induce a rat SAP model through retrograde injection into the common biliopancreatic duct. After 72 h of EVs transplantation, pancreatic pathological damage was alleviated, along with a decrease in serum amylase activity and pro-inflammatory cytokine levels. Interestingly, when UCMSCs were preconditioned with 10 ng/mL tumor necrosis factor alpha (TNF-α) for 48 h, the obtained EVs (named TNF-α-EVs) performed an enhanced efficacy. Furthermore, both animal and cellular experiments showed that TNF-α-EVs alleviated the necroptosis of acinar cells of SAP through RIPK3/MLKL axis. In conclusion, our study demonstrated that TNF-α-EVs were able to enhance the therapeutic effect on SAP by inhibiting necroptosis compared to normal EVs. This study heralds that TNF-α-EVs may be a promising therapeutic approach for SAP in the future.
Collapse
Affiliation(s)
- Wangcheng Xie
- Department of General Surgery and Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingyi Luo
- Department of General Surgery and Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaobo Xue
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuyang Jia
- Department of Metabolic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery and Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenshun Song
- Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Guerrero-Mauvecin J, Villar-Gómez N, Rayego-Mateos S, Ramos AM, Ruiz-Ortega M, Ortiz A, Sanz AB. Regulated necrosis role in inflammation and repair in acute kidney injury. Front Immunol 2023; 14:1324996. [PMID: 38077379 PMCID: PMC10704359 DOI: 10.3389/fimmu.2023.1324996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Acute kidney injury (AKI) frequently occurs in patients with chronic kidney disease (CKD) and in turn, may cause or accelerate CKD. Therapeutic options in AKI are limited and mostly relate to replacement of kidney function until the kidneys recover spontaneously. Furthermore, there is no treatment that prevents the AKI-to-CKD transition. Regulated necrosis has recently emerged as key player in kidney injury. Specifically, there is functional evidence for a role of necroptosis, ferroptosis or pyroptosis in AKI and the AKI-to-CKD progression. Regulated necrosis may be proinflammatory and immunogenic, triggering subsequent waves of regulated necrosis. In a paradigmatic murine nephrotoxic AKI model, a first wave of ferroptosis was followed by recruitment of inflammatory cytokines such as TWEAK that, in turn, triggered a secondary wave of necroptosis which led to persistent kidney injury and decreased kidney function. A correct understanding of the specific forms of regulated necrosis, their timing and intracellular molecular pathways may help design novel therapeutic strategies to prevent or treat AKI at different stages of the condition, thus improving patient survival and the AKI-to-CKD transition. We now review key regulated necrosis pathways and their role in AKI and the AKI-to-CKD transition both at the time of the initial insult and during the repair phase following AKI.
Collapse
Affiliation(s)
- Juan Guerrero-Mauvecin
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Natalia Villar-Gómez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
| | - Sandra Rayego-Mateos
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-FJD-Universidad Autónoma, Madrid, Spain
| | - Adrian M. Ramos
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
| | - Marta Ruiz-Ortega
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-FJD-Universidad Autónoma, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Instituto Reina Sofia en Investigación en Nefrología (IRSIN), Madrid, Spain
| | - Ana B. Sanz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
| |
Collapse
|
30
|
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, Ziemak H, Chwarzyński M, Dzięgiel P, Zabel M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications. Cells 2023; 12:2559. [PMID: 37947637 PMCID: PMC10649218 DOI: 10.3390/cells12212559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 50-038 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
31
|
Zhang X, Wang J, Zhang J, Tan Y, Li Y, Peng Z. Exosomes Highlight Future Directions in the Treatment of Acute Kidney Injury. Int J Mol Sci 2023; 24:15568. [PMID: 37958550 PMCID: PMC10650293 DOI: 10.3390/ijms242115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Acute kidney injury (AKI) is a severe health problem associated with high morbidity and mortality rates. It currently lacks specific therapeutic strategies. This review focuses on the mechanisms underlying the actions of exosomes derived from different cell sources, including red blood cells, macrophages, monocytes, mesenchymal stem cells, and renal tubular cells, in AKI. We also investigate the effects of various exosome contents (such as miRNA, lncRNA, circRNA, mRNA, and proteins) in promoting renal tubular cell regeneration and angiogenesis, regulating autophagy, suppressing inflammatory responses and oxidative stress, and preventing fibrosis to facilitate AKI repair. Moreover, we highlight the interactions between macrophages and renal tubular cells through exosomes, which contribute to the progression of AKI. Additionally, exosomes and their contents show promise as potential biomarkers for diagnosing AKI. The engineering of exosomes has improved their clinical potential by enhancing isolation and enrichment, target delivery to injured renal tissues, and incorporating small molecular modifications for clinical use. However, further research is needed to better understand the specific mechanisms underlying exosome actions, their delivery pathways to renal tubular cells, and the application of multi-omics research in studying AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yuwei Tan
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
32
|
Al-Dhalimy AMB, Salim HM, Shather AH, Naser IH, Hizam MM, Alshujery MK. The pathological and therapeutically role of mesenchymal stem cell (MSC)-derived exosome in degenerative diseases; Particular focus on LncRNA and microRNA. Pathol Res Pract 2023; 250:154778. [PMID: 37683391 DOI: 10.1016/j.prp.2023.154778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
By releasing exosomes, which create the ideal milieu for the resolution of inflammation, mesenchymal stem cells (MSCs) enhance tissue healing and have strong immunomodulatory capabilities. MSCs-derived exosome also can affect tumor progress by a myriad of mechanisms. Exosomes function as a cell-cell communication tool to affect cellular activity in recipient cells and include an array of efficient bioactive chemicals. Understanding the fundamental biology of inflammation ablation, tissue homeostasis, and the creation of therapeutic strategies is particularly interested in the horizontal transfer of exosomal long non-coding RNAs (lncRNA) and microRNAs (miRNAs) to recipient cells, where they affect target gene expression. Herein, we propose an exosomal lncRNA and microRNA profile in neurological, renal, cardiac, lung, and liver diseases as well as skin wounds and arthritis.
Collapse
Affiliation(s)
| | - Haitham Mukhlif Salim
- Ministry of Health, Directorat of the Public Health, Health Promotion Departments, Baghdad, Iraq
| | - A H Shather
- Department of Computer Engineering Technology, Al Kitab University, Altun Kopru, Kirkuk 00964, Iraq
| | - Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, 51001 Hillah, Babil, Iraq
| | - Manar Mohammed Hizam
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | |
Collapse
|
33
|
Hao Y, Zhao L, Zhao JY, Han X, Zhou X. Unveiling the potential of mitochondrial dynamics as a therapeutic strategy for acute kidney injury. Front Cell Dev Biol 2023; 11:1244313. [PMID: 37635869 PMCID: PMC10456901 DOI: 10.3389/fcell.2023.1244313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Acute Kidney Injury (AKI), a critical clinical syndrome, has been strongly linked to mitochondrial malfunction. Mitochondria, vital cellular organelles, play a key role in regulating cellular energy metabolism and ensuring cell survival. Impaired mitochondrial function in AKI leads to decreased energy generation, elevated oxidative stress, and the initiation of inflammatory cascades, resulting in renal tissue damage and functional impairment. Therefore, mitochondria have gained significant research attention as a potential therapeutic target for AKI. Mitochondrial dynamics, which encompass the adaptive shifts of mitochondria within cellular environments, exert significant influence on mitochondrial function. Modulating these dynamics, such as promoting mitochondrial fusion and inhibiting mitochondrial division, offers opportunities to mitigate renal injury in AKI. Consequently, elucidating the mechanisms underlying mitochondrial dynamics has gained considerable importance, providing valuable insights into mitochondrial regulation and facilitating the development of innovative therapeutic approaches for AKI. This comprehensive review aims to highlight the latest advancements in mitochondrial dynamics research, provide an exhaustive analysis of existing studies investigating the relationship between mitochondrial dynamics and acute injury, and shed light on their implications for AKI. The ultimate goal is to advance the development of more effective therapeutic interventions for managing AKI.
Collapse
Affiliation(s)
- Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Yu Zhao
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, China
| |
Collapse
|
34
|
Wang S, Liu T, Nan N, Lu C, Liang M, Wang S, Wang H, He B, Chen X, Xu X, Zheng Y. Exosomes from Human Umbilical Cord Mesenchymal Stem Cells Facilitates Injured Endometrial Restoring in Early Repair Period through miR-202-3p Mediating Formation of ECM. Stem Cell Rev Rep 2023; 19:1954-1964. [PMID: 37226011 DOI: 10.1007/s12015-023-10549-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
Endometrial damage repair disorder is the main reason of intrauterine adhesions (IUA) and thin endometrium (TA), which is caused by curettage or infection. Exosomal miRNAs derived from human umbilical cord mesenchymal stem cells (hucMSCs) were reported to play an important role in damage repair disorder, including endometrial fibrosis. In this study, we aimed to investigate the role of hucMSCs-derived exosomal microRNA-202-3p (miR-202-3p) in endometrial damage repair. We established rat endometrial injury model according to curettage to mimic women curettage abortion operation. The miRNA array analysis indicated that miR-202-3p was increased and matrix metallopeptidase 11 (MMP11) was decreased in the exosomes-treated rat uterine tissues. Bioinformatics analysis suggested that MMP11 is the target gene of miR-202-3p. We observed that the mRNA and protein of MMP11 were significantly decreased in exosome treatment group on day 3, and the components of extracellular matrix (ECM) COL1A1, COL3A1, COLVI and fibronectin (FN) protein were increased. And we found that when the injured human stromal cells were treated with miR-202-3p overexpression exosomes, the COLVI and FN were also upregulated in protein and mRNA expression level. For the first time MMP11 was proved to be the target gene of miR-202-3p by dual luciferase reporter system. At last, we found the state of stromal cells was better in miR-202-3p overexpression exosomes group compared to exosomes group, and miR-202-3p overexpression exosomes markedly upregulated the FN and collagen on day 3 after endometrial injury. We thought that miR-202-3p overexpression exosomes promoted endometrial repair by regulating ECM remodeling in early repair of damaged endometrium. Taken together, these experimental findings may provide a theoretical basis for understanding endometrial repair and an insight into the clinical treatment for IUA. Human umbilical cord mesenchymal stem cells exosomal miR-202-3p could regulate the expression of MMP11 and promote the accumulation of extracellular matrix, such as COL1A1, COL3A1, COLVI, FN, in the early repair period of endometrial injury.
Collapse
Affiliation(s)
- Shufang Wang
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tingting Liu
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Nan Nan
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Cong Lu
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Min Liang
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Siyu Wang
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Hu Wang
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Bin He
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China
| | - Xihua Chen
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China.
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China.
| | - Xiangbo Xu
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China.
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100081 & 100730, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
35
|
Bosholm CC, Zhu H, Yu P, Cheng K, Murphy SV, McNutt PM, Zhang Y. Therapeutic Benefits of Stem Cells and Exosomes for Sulfur-Mustard-Induced Tissue Damage. Int J Mol Sci 2023; 24:9947. [PMID: 37373093 PMCID: PMC10298660 DOI: 10.3390/ijms24129947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Sulfur mustard (SM) is a highly toxic chemical agent that causes severe tissue damage, particularly to the eyes, lungs, and skin. Despite advances in treatment, there is a need for more effective therapies for SM-induced tissue injury. Stem cell and exosome therapies are emerging as promising approaches for tissue repair and regeneration. Stem cells can differentiate into multiple cell types and promote tissue regeneration, while exosomes are small vesicles that can deliver therapeutic cargo to target cells. Several preclinical studies demonstrated the potential of stem cell, exosome, or combination therapy for various tissue injury, showing improvements in tissue repairing, inflammation, and fibrosis. However, there are also challenges associated with these therapies, such as the requirement for standardized methods for exosome isolation and characterization, the long-term safety and efficacy and reduced SM-induced tissue injury of these therapies. Stem cell or exosome therapy was used for SM-induced eye and lung injury. Despite the limited data on the use for SM-induced skin injury, this therapy is a promising area of research and may offer new treatment options in the future. In this review, we focused on optimizing these therapies, evaluating their safety and efficacy, and comparing their efficacy to other emerging therapeutic approaches potentially for SM-induced tissue injury in the eye, lung, and skin.
Collapse
Affiliation(s)
- Carol Christine Bosholm
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Hainan Zhu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Pengfei Yu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA;
| | - Sean Vincent Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Patrick Michael McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| |
Collapse
|
36
|
Yin S, Zhou Z, Fu P, Jin C, Wu P, Ji C, Shan Y, Shi L, Xu M, Qian H. Roles of extracellular vesicles in ageing-related chronic kidney disease: demon or angel. Pharmacol Res 2023:106795. [PMID: 37211241 DOI: 10.1016/j.phrs.2023.106795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Ageing is a universal and unavoidable phenomenon that significantly increases the risk of developing chronic kidney disease (CKD). It has been reported that ageing is associated with functional disruption and structural damage to the kidneys. Extracellular vesicles (EVs), which are nanoscale membranous vesicles containing lipids, proteins, and nucleic acids, are secreted by cells into the extracellular spaces. They have diverse functions such as repairing and regenerating different forms of ageing-related CKD and playing a crucial role in intercellular communication. This paper reviews the etiology of ageing in CKD, with particular attention paid to the roles of EVs as carriers of ageing signals and anti-ageing therapeutic strategies in CKD. In this regard, the double-edged role of EVs in ageing-related CKD is examined, along with the potential for their application in clinical settings.
Collapse
Affiliation(s)
- Siqi Yin
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zixuan Zhou
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Peiwen Fu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chaoying Jin
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Cheng Ji
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yunjie Shan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Linru Shi
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Min Xu
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China.
| | - Hui Qian
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|