1
|
Zhao H, Ling Y, He J, Dong J, Mo Q, Wang Y, Zhang Y, Yu H, Tang C. Potential targets and therapeutics for cancer stem cell-based therapy against drug resistance in hepatocellular carcinoma. Drug Resist Updat 2024; 74:101084. [PMID: 38640592 DOI: 10.1016/j.drup.2024.101084] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common digestive malignancyin the world, which is frequently diagnosed at late stage with a poor prognosis. For most patients with advanced HCC, the therapeutic options arelimiteddue to cancer occurrence of drug resistance. Hepatic cancer stem cells (CSCs) account for a small subset of tumor cells with the ability of self-renewal and differentiationin HCC. It is widely recognized that the presence of CSCs contributes to primary and acquired drug resistance. Therefore, hepatic CSCs-targeted therapy is considered as a promising strategy to overcome drug resistance and improve therapeutic outcome in HCC. In this article, we review drug resistance in HCC and provide a summary of potential targets for CSCs-based therapy. In addition, the development of CSCs-targeted therapeuticsagainst drug resistance in HCC is summarized in both preclinical and clinical trials. The in-depth understanding of CSCs-related drug resistance in HCC will favor optimization of the current therapeutic strategies and gain encouraging therapeutic outcomes.
Collapse
Affiliation(s)
- Hongxing Zhao
- Department of Radiology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Yuhang Ling
- Central Laboratory, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Huzhou Key Laboratory of Translational Medicine, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Jie He
- Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Jinling Dong
- Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Qinliang Mo
- Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Yao Wang
- Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Ying Zhang
- Central Laboratory, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Hongbin Yu
- Department of General Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Chengwu Tang
- Huzhou Key Laboratory of Translational Medicine, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China.
| |
Collapse
|
2
|
Gao H, Zeng Y, Huang X, A L, Liang Q, Xie J, Lin X, Gong J, Fan X, Zou T, Xu H. Extracellular vesicles from organoid-derived human retinal progenitor cells prevent lipid overload-induced retinal pigment epithelium injury by regulating fatty acid metabolism. J Extracell Vesicles 2024; 13:e12401. [PMID: 38151470 PMCID: PMC10752800 DOI: 10.1002/jev2.12401] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/29/2023] Open
Abstract
Retinal degeneration (RD), a group of diseases leading to irreversible vision loss, is characterised by retinal pigment epithelium (RPE) or retinal neuron damage and loss. With fewer risks of immune rejection and tumorigenesis, stem cell-secreted extracellular vesicles (EVs) offer a new cell-free therapeutic paradigm for RD, which remains to be investigated. Human retinal organoid-derived retinal progenitor cells (hERO-RPCs) are an easily accessible and advanced cell source for RD treatment. However, hERO-RPCs-derived EVs require further characterisation. Here, we compared the characteristics of EVs from hERO-RPCs (hRPC-EVs) with those of human embryonic stem cell (hESC)-derived EVs (hESC-EVs) as controls. Based on in-depth proteomic analysis, we revealed remarkable differences between hRPC-EVs and hESC-EVs. A comparison between EVs and their respective cells of origin demonstrated that the protein loading of hRPC-EVs was more selective than that of hESC-EVs. In particular, hESC-EVs were enriched with proteins related to angiogenesis and cell cycle, whereas hRPC-EVs were enriched with proteins associated with immune modulation and retinal development. More importantly, compared with that of hESC-EVs, hRPC-EVs exhibited a lower correlation with cell proliferation and a unique capacity to regulate lipid metabolism. It was further confirmed that hRPC-EVs potentially eliminated lipid deposits, inhibited lipotoxicity and oxidative stress, and enhanced phagocytosis and survival of oleic acid-treated ARPE-19 cells. Mechanistically, hRPC-EVs are integrated into the mitochondrial network of oleic acid-treated ARPE-19 cells, and increased the level of mitochondrial fatty acid β-oxidation-related proteins. Thus, organoid-derived hRPC-EVs represent a promising source of cell-free therapy for RD, especially for blinding diseases related to abnormal lipid metabolism in RPE cells.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Yuxiao Zeng
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Luodan A
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Qingle Liang
- Department of Clinical Laboratory Medicine, First Affiliated HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Jing Xie
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Xi Lin
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Jing Gong
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of PsychologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Ting Zou
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
- Department of OphthalmologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| |
Collapse
|
3
|
Guo YM, Jiang X, Min J, Huang J, Huang XF, Ye L. Advances in the study of Müller glia reprogramming in mammals. Front Cell Neurosci 2023; 17:1305896. [PMID: 38155865 PMCID: PMC10752929 DOI: 10.3389/fncel.2023.1305896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Müller cells play an integral role in the development, maintenance, and photopic signal transmission of the retina. While lower vertebrate Müller cells can differentiate into various types of retinal neurons to support retinal repair following damage, there is limited neurogenic potential of mammalian Müller cells. Therefore, it is of great interest to harness the neurogenic potential of mammalian Müller cells to achieve self-repair of the retina. While multiple studies have endeavored to induce neuronal differentiation and proliferation of mammalian Müller cells under defined conditions, the efficiency and feasibility of these methods often fall short, rendering them inadequate for the requisites of retinal repair. As the mechanisms and methodologies of Müller cell reprogramming have been extensively explored, a summary of the reprogramming process of unlocking the neurogenic potential of Müller cells can provide insight into Müller cell fate development and facilitate their therapeutic use in retinal repair. In this review, we comprehensively summarize the progress in reprogramming mammalian Müller cells and discuss strategies for optimizing methods and enhancing efficiency based on the mechanisms of fate regulation.
Collapse
Affiliation(s)
- Yi-Ming Guo
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xinyi Jiang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Min
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Juan Huang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Ye
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| |
Collapse
|
4
|
Wang J, Liu X, Li P, Wang J, Shu Y, Zhong X, Gao Z, Yang J, Jiang Y, Zhou X, Yang G. Long noncoding RNA HOTAIR regulates the stemness of breast cancer cells via activation of the NF-κB signaling pathway. J Biol Chem 2022; 298:102630. [PMID: 36273585 PMCID: PMC9691943 DOI: 10.1016/j.jbc.2022.102630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Breast cancer is the most prevalent cancer among women, and it is characterized by a high rate of tumor development and heterogeneity. Breast cancer stem cells (CSCs) may well contribute to these pathological properties, but the mechanisms underlying their self-renewal and maintenance are still elusive. Here, we found that the long noncoding RNA HOTAIR is highly expressed in breast CSCs. HOTAIR is required for breast CSC self-renewal and tumor propagation. Mechanistically, we demonstrate that HOTAIR recruits the PRC2 protein complex to the promoter of IκBα to inhibit its expression, leading to activation of the NF-κB signaling pathway. The activated NF-κB signaling promotes downstream c-Myc and Cyclin D1 expression. Furthermore, our analysis of clinical samples from the GEPIA database indicated that the IκBα level, as well as the survival rate of patients, with high HOTAIR expression was significantly lower than that of patients with relatively low HOTAIR expression. Our data suggest that HOTAIR-mediated NF-κB signaling primes breast CSC self-renewal and tumor propagation. In sum, we have identified HOTAIR-based NF-κB signaling regulatory circuit that promotes tumorigenic activity in breast CSCs, further indicating that HOTAIR could be a promising target for clinical treatment of breast cancers.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China; Core Facilities, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingzhu Liu
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China; School of Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Ping Li
- School of Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Junrong Wang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yu Shu
- School of Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Xinyu Zhong
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Gao
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jingyi Yang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yashuang Jiang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Xile Zhou
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China; Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Geng Yang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China.
| |
Collapse
|
5
|
Xu Y, Yu X, Sun Z, He Y, Guo W. Roles of lncRNAs Mediating Wnt/β-Catenin Signaling in HCC. Front Oncol 2022; 12:831366. [PMID: 35356220 PMCID: PMC8959654 DOI: 10.3389/fonc.2022.831366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the second most deadly cancer worldwide. Due to the absence of early diagnostic markers and effective therapeutic approaches, distant metastasis and increasing recurrence rates are major difficulties in the clinical treatment of HCC. Further understanding of its pathogenesis has become an urgent goal in HCC research. Recently, abnormal expression of long noncoding RNAs (lncRNAs) was identified as a vital regulator involved in the initiation and development of HCC. Activation of the Wnt/β-catenin pathway has been reported to obviously impact cell proliferation, invasion, and migration of HCC. This article reviews specific interactions, significant mechanisms and molecules related to HCC initiation and progression to provide promising strategies for treatment.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Li Z, Sun C, Wang F, Wang X, Zhu J, Luo L, Ding X, Zhang Y, Ding P, Wang H, Pu M, Li Y, Wang S, Qin Q, Wei Y, Sun J, Wang X, Luo Y, Chen D, Qiu W. Molecular mechanisms governing circulating immune cell heterogeneity across different species revealed by single-cell sequencing. Clin Transl Med 2022; 12:e689. [PMID: 35092700 PMCID: PMC8800483 DOI: 10.1002/ctm2.689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immune cells play important roles in mediating immune response and host defense against invading pathogens. However, insights into the molecular mechanisms governing circulating immune cell diversity among multiple species are limited. METHODS In this study, we compared the single-cell transcriptomes of immune cells from 12 species. Distinct molecular profiles were characterized for different immune cell types, including T cells, B cells, natural killer cells, monocytes, and dendritic cells. RESULTS Our data revealed the heterogeneity and compositions of circulating immune cells among 12 different species. Additionally, we explored the conserved and divergent cellular crosstalks and genetic regulatory networks among vertebrate immune cells. Notably, the ligand and receptor pair VIM-CD44 was highly conserved among the immune cells. CONCLUSIONS This study is the first to provide a comprehensive analysis of the cross-species single-cell transcriptome atlas for peripheral blood mononuclear cells (PBMCs). This research should advance our understanding of the cellular taxonomy and fundamental functions of PBMCs, with important implications in evolutionary biology, developmental biology, and immune system disorders.
Collapse
Affiliation(s)
- Zhibin Li
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Chengcheng Sun
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Fei Wang
- BGI‐ShenzhenShenzhenChina
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao, BGI‐ShenzhenQingdaoChina
| | - Xiran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Jiacheng Zhu
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Lihua Luo
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiangning Ding
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yanan Zhang
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
| | - Peiwen Ding
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Haoyu Wang
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | | | - Shiyou Wang
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | | | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Yonglun Luo
- BGI‐ShenzhenShenzhenChina
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao, BGI‐ShenzhenQingdaoChina
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | | | - Wei Qiu
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
7
|
LGR6 activates the Wnt/β-catenin signaling pathway and forms a β-catenin/TCF7L2/LGR6 feedback loop in LGR6 high cervical cancer stem cells. Oncogene 2021; 40:6103-6114. [PMID: 34489551 PMCID: PMC8530990 DOI: 10.1038/s41388-021-02002-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
The leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) is considered to be a stem cell marker in many normal tissues and promotes tissue development, regeneration, and repair. LGR6 is also related to the initiation and progression of some malignant tumors. However, the role of LGR6 in cervical cancer has not been reported. Here, immunohistochemistry and western blotting showed that LGR6 was significantly upregulated in cervical cancer, compared with the normal cervix. By analyzing The Cancer Genome Atlas database, LGR6 was found to be correlated with a poor prognosis of cervical cancer. Then, a small population of LGR6high cells isolated by using the fluorescence-activated cell sorting exhibited enhanced properties of cancer stem cells including self-renewal, differentiation, and tumorigenicity. Moreover, RNA sequencing revealed that LGR6 was correlated with the Wnt signaling pathway and TOP/FOP, reverse transcription-PCR, and western blotting further proved that LGR6 could activate the Wnt/β-catenin signaling pathway. Interestingly, LGR6 upregulated the expression of TCF7L2 by activating the Wnt/β-catenin pathway. Then, TCF7L2 combining with β-catenin in the nucleus enhanced LGR6 transcription by binding the promoter of LGR6, which further activated the Wnt signaling to form a positive feedback loop. Thus, our study demonstrated that LGR6 activated a novel β-catenin/TCF7L2/LGR6-positive feedback loop in LGR6high cervical cancer stem cells (CSCs), which provided a new therapeutic strategy for targeting cervical CSCs to improve the prognosis of cervical cancer patients.
Collapse
|
8
|
Liu J, Wang F, Weng Z, Sui X, Fang Y, Tang X, Shen X. Soybean-derived miRNAs specifically inhibit proliferation and stimulate apoptosis of human colonic Caco-2 cancer cells but not normal mucosal cells in culture. Genomics 2020; 112:2949-2958. [PMID: 32407773 DOI: 10.1016/j.ygeno.2020.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 03/12/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression in eukaryotes. Studies have shown that plant-derived miRNAs can be absorbed through diets and regulate gene expression in mammals. Although soybean-derived miRNAs have been reported, their biological functions are still unclear. In this study, we found that soybean-derived small RNAs (sRNAs) significantly inhibited the proliferation and stimulated the apoptosis of Caco-2 cells. Bioinformatics analysis indicated that the target gene set of soybean miRNAs was extensively enriched in cancer pathways. Besides, we obtained 8 target genes, including Transcription factor 7 (TCF7), associated with colon cancer through prediction. Further studies showed that gma-miR159a inhibited the proliferation of Caco-2 cells and played an important role in the inhibitory effect of sRNAs by inhibiting TCF7 protein, which are upregulated in colon cancer cells but not normal mucosal cells in culture. These findings provide a novel molecular mechanism of soybean-derived miRNAs for potential application in tumor prevention.
Collapse
Affiliation(s)
- Juncheng Liu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Fang Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Zebin Weng
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yong Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xinchun Shen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210046, China.
| |
Collapse
|
9
|
Liu X, Liu C, Chen C, Sun W, Ci Y, Li Q, Song Y. Combination of Inositol Hexaphosphate and Inositol Inhibits Liver Metastasis of Colorectal Cancer in Mice Through the Wnt/β-Catenin Pathway. Onco Targets Ther 2020; 13:3223-3235. [PMID: 32368081 PMCID: PMC7170648 DOI: 10.2147/ott.s247646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Colorectal cancer, one of the most common tumors, is mainly fatal because of the occurrence of liver metastasis. Inositol hexaphosphate (IP6) and inositol (INS) were found, both, in vitro and in vivo to play an anti-tumor effect, whereas the combination of IP6 and INS was more effective than IP6 or INS alone. Materials and Methods The inhibitory effects of IP6, INS and the combination of IP6+INS on tumor progression and liver metastasis of colorectal cancer were investigated in an orthotopic transplantation model of colorectal cancer. The tumor-bearing mice were selected by in vivo bioluminescence imaging and were treated with IP6, INS, and IP6 combined with INS, respectively. All mice were sacrificed after 6 weeks of treatment. The cancer development and metastasis were compared among the groups. The expression of genes related to the Wnt/β-catenin in the model was analyzed. Results The results demonstrated that liver metastasis was inhibited after treatment with IP6, INS, and IP6+INS. Compared to that of the M_G, survival period was extended, and tumor weight was lowered in IP6_G, INS_G, and IP6+INS_G. Besides, the liver metastatic area of mice in IP6+INS_G was relatively smaller than that in M_G, IP6_G, or INS_G. The results of RNA-seq analysis showed that the expressions of Wnt10b, Tcf7, and c-Myc were significantly downregulated in IP6+INS_G compared to that in M_G (P<0.05). Results of real-time PCR and Western blot showed that mRNA and protein expressions of β-catenin, Wnt10b, Tcf7, and c-Myc were significantly lower in IP6+INS_G compared to that in M_G (P<0.05). Discussion IP6+INS was more effective in inhibiting liver metastasis of colorectal cancer than IP6 or INS alone. The better inhibition effect may be accomplished through regulating the mutation of Wnt/β-catenin signaling pathway by inhibiting Wnt10b, Tcf7, β-catenin, and c-Myc from abnormally high expression.
Collapse
Affiliation(s)
- Xiaohan Liu
- School of Public Health, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Cuiping Liu
- School of Nursing, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Chen Chen
- School of Public Health, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenna Sun
- Outpatient Department, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, People's Republic of China
| | - Yifan Ci
- School of Public Health, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Qianqian Li
- School of Public Health, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Yang Song
- Medical College, Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
10
|
Zhang FQ, Jiang JL, Zhang JT, Niu H, Fu XQ, Zeng LL. Current status and future prospects of stem cell therapy in Alzheimer's disease. Neural Regen Res 2020; 15:242-250. [PMID: 31552889 PMCID: PMC6905342 DOI: 10.4103/1673-5374.265544] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease is a common progressive neurodegenerative disorder, pathologically characterized by the presence of β-amyloid plaques and neurofibrillary tangles. Current treatment approaches using drugs only alleviate the symptoms without curing the disease, which is a serious issue and influences the quality of life of the patients and their caregivers. In recent years, stem cell technology has provided new insights into the treatment of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Currently, the main sources of stem cells include neural stem cells, embryonic stem cells, mesenchymal stem cells, and induced pluripotent stem cells. In this review, we discuss the pathophysiology and general treatment of Alzheimer's disease, and the current state of stem cell transplantation in the treatment of Alzheimer's disease. We also assess future challenges in the clinical application and drug development of stem cell transplantation as a treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Fu-Qiang Zhang
- Scientific Research Centre of China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jin-Lan Jiang
- Scientific Research Centre of China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jing-Tian Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Han Niu
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Xue-Qi Fu
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Lin-Lin Zeng
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
11
|
Yang X, Wang R, Wang X, Cai G, Qian Y, Feng S, Tan F, Chen K, Tang K, Huang X, Jing N, Qiao Y. TGFβ signaling hyperactivation-induced tumorigenicity during the derivation of neural progenitors from mouse ESCs. J Mol Cell Biol 2019; 10:216-228. [PMID: 29481611 DOI: 10.1093/jmcb/mjy013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
Clinical therapies of pluripotent stem cells (PSCs)-based transplantation have been hindered by frequent development of teratomas or tumors in animal models and clinical patients. Therefore, clarifying the mechanism of carcinogenesis in stem cell therapy is of great importance for reducing the risk of tumorigenicity. Here we differentiate Oct4-GFP mouse embryonic stem cells (mESCs) into neural progenitor cells (NPCs) and find that a minority of Oct4+ cells are continuously sustained at Oct4+ state. These cells can be enriched and proliferated in a standard ESC medium. Interestingly, the differentiation potential of these enriched cells is tightly restricted with much higher tumorigenic activity, which are thus defined as differentiation-resistant ESCs (DR-ESCs). Transcriptomic and epigenomic analyses show that DR-ESCs are characterized by primordial germ cell-like gene signatures (Dazl, Rec8, Stra8, Blimp1, etc.) and specific epigenetic patterns distinct from mESCs. Moreover, the DR-ESCs possess germ cell potential to generate Sycp3+ haploid cells and are able to reside in sperm-free spermaduct induced by busulfan. Finally, we find that TGFβ signaling is overactivated in DR-ESCs, and inhibition of TGFβ signaling eliminates the tumorigenicity of mESC-derived NPCs by inducing the full differentiation of DR-ESCs. These data demonstrate that these TGFβ-hyperactivated germ cell-like DR-ESCs are the main contributor for the tumorigenicity of ESCs-derived target cell therapy and that inhibition of TGFβ signaling in ESC-derived NPC transplantation could drastically reduce the risk of tumor development.
Collapse
Affiliation(s)
- Xianfa Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ran Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Guoqing Cai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yun Qian
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Su Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Fangzhi Tan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kun Chen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
12
|
Shin WJ, Seo JH, Choi HW, Hong YJ, Lee WJ, Chae JI, Kim SJ, Lee JW, Hong K, Song H, Park C, Do JT. Derivation of primitive neural stem cells from human-induced pluripotent stem cells. J Comp Neurol 2019; 527:3023-3033. [PMID: 31173371 DOI: 10.1002/cne.24727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have facilitated studies on organ development and differentiation into specific lineages in in vitro systems. Although numerous studies have focused on cellular differentiation into neural lineage using hPSCs, most studies have initially evaluated embryoid body (EB) formation, eventually yielding terminally differentiated neurons with limited proliferation potential. This study aimed to establish human primitive neural stem cells (pNSCs) from exogene-free hiPSCs without EB formation. To derive pNSCs, we optimized N2B27 neural differentiation medium through supplementation of two inhibitors, CHIR99021 (GSK-3 inhibitor) and PD0325901 (MEK inhibitor), and growth factors including basic fibroblast growth factor (bFGF) and human leukemia inhibitory factor (hLIF). Consequently, pNSCs were efficiently derived and cultured over a long term. pNSCs displayed differentiation potential into neurons, astrocytes, and oligodendrocytes. These early NSC types potentially promote the clinical application of hiPSCs to cure human neurological disorders.
Collapse
Affiliation(s)
- Woo Jung Shin
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, College of Agricultural Life Science, Chonbuk National University, Jeonbuk, Republic of Korea
| | - Yean Ju Hong
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Won Ji Lee
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jung Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Republic of Korea
| | - Sung Joo Kim
- Department of Molecular Medicine and Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeong Woong Lee
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Zou T, Gao L, Zeng Y, Li Q, Li Y, Chen S, Hu X, Chen X, Fu C, Xu H, Yin ZQ. Organoid-derived C-Kit +/SSEA4 - human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents. Nat Commun 2019; 10:1205. [PMID: 30872578 PMCID: PMC6418223 DOI: 10.1038/s41467-019-08961-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Stem cell therapy may replace lost photoreceptors and preserve residual photoreceptors during retinal degeneration (RD). Unfortunately, the degenerative microenvironment compromises the fate of grafted cells, demanding supplementary strategies for microenvironment regulation. Donor cells with both proper regeneration capability and intrinsic ability to improve microenvironment are highly desired. Here, we use cell surface markers (C-Kit+/SSEA4−) to effectively eliminate tumorigenic embryonic cells and enrich retinal progenitor cells (RPCs) from human embryonic stem cell (hESC)-derived retinal organoids, which, following subretinal transplantation into RD models of rats and mice, significantly improve vision and preserve the retinal structure. We characterize the pattern of integration and materials transfer following transplantation, which likely contribute to the rescued photoreceptors. Moreover, C-Kit+/SSEA4− cells suppress microglial activation, gliosis and the production of inflammatory mediators, thereby providing a healthier host microenvironment for the grafted cells and delaying RD. Therefore, C-Kit+/SSEA4− cells from hESC-derived retinal organoids are a promising therapeutic cell source. Stem cell transplantation to treat retinal degeneration could be limited by the degenerative microenvironment. Here, the authors show that C-Kit+/SSEA4– progenitor cells enriched from human embryonic stem cell derived retinal organoids protect retinal structure, suppress microglial activation, gliosis and inflammation.
Collapse
Affiliation(s)
- Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lixiong Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xisu Hu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Caiyun Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
14
|
Attwood SW, Edel MJ. iPS-Cell Technology and the Problem of Genetic Instability-Can It Ever Be Safe for Clinical Use? J Clin Med 2019; 8:E288. [PMID: 30823421 PMCID: PMC6462964 DOI: 10.3390/jcm8030288] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
The use of induced Pluripotent Stem Cells (iPSC) as a source of autologous tissues shows great promise in regenerative medicine. Nevertheless, several major challenges remain to be addressed before iPSC-derived cells can be used in therapy, and experience of their clinical use is extremely limited. In this review, the factors affecting the safe translation of iPSC to the clinic are considered, together with an account of efforts being made to overcome these issues. The review draws upon experiences with pluripotent stem-cell therapeutics, including clinical trials involving human embryonic stem cells and the widely transplanted mesenchymal stem cells. The discussion covers concerns relating to: (i) the reprogramming process; (ii) the detection and removal of incompletely differentiated and pluripotent cells from the resulting medicinal products; and (iii) genomic and epigenetic changes, and the evolutionary and selective processes occurring during culture expansion, associated with production of iPSC-therapeutics. In addition, (iv) methods for the practical culture-at-scale and standardization required for routine clinical use are considered. Finally, (v) the potential of iPSC in the treatment of human disease is evaluated in the light of what is known about the reprogramming process, the behavior of cells in culture, and the performance of iPSC in pre-clinical studies.
Collapse
Affiliation(s)
- Stephen W Attwood
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK.
| | - Michael J Edel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain.
- Victor Chang Cardiac Research Institute, Sydney, NSW 2145, Australia.
- Harry Perkins Research Institute, Fiona Stanley Hospital, University of Western Australia, PO Box 404, Bull Creek, Western Australia 6149, Australia.
| |
Collapse
|
15
|
Rabesandratana O, Goureau O, Orieux G. Pluripotent Stem Cell-Based Approaches to Explore and Treat Optic Neuropathies. Front Neurosci 2018; 12:651. [PMID: 30294255 PMCID: PMC6158340 DOI: 10.3389/fnins.2018.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Sight is a major sense for human and visual impairment profoundly affects quality of life, especially retinal degenerative diseases which are the leading cause of irreversible blindness worldwide. As for other neurodegenerative disorders, almost all retinal dystrophies are characterized by the specific loss of one or two cell types, such as retinal ganglion cells, photoreceptor cells, or retinal pigmented epithelial cells. This feature is a critical point when dealing with cell replacement strategies considering that the preservation of other cell types and retinal circuitry is a prerequisite. Retinal ganglion cells are particularly vulnerable to degenerative process and glaucoma, the most common optic neuropathy, is a frequent retinal dystrophy. Cell replacement has been proposed as a potential approach to take on the challenge of visual restoration, but its application to optic neuropathies is particularly challenging. Many obstacles need to be overcome before any clinical application. Beyond their survival and differentiation, engrafted cells have to reconnect with both upstream synaptic retinal cell partners and specific targets in the brain. To date, reconnection of retinal ganglion cells with distal central targets appears unrealistic since central nervous system is refractory to regenerative processes. Significant progress on the understanding of molecular mechanisms that prevent central nervous system regeneration offer hope to overcome this obstacle in the future. At the same time, emergence of reprogramming of human somatic cells into pluripotent stem cells has facilitated both the generation of new source of cells with therapeutic potential and the development of innovative methods for the generation of transplantable cells. In this review, we discuss the feasibility of stem cell-based strategies applied to retinal ganglion cells and optic nerve impairment. We present the different strategies for the generation, characterization and the delivery of transplantable retinal ganglion cells derived from pluripotent stem cells. The relevance of pluripotent stem cell-derived retinal organoid and retinal ganglion cells for disease modeling or drug screening will be also introduced in the context of optic neuropathies.
Collapse
Affiliation(s)
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gaël Orieux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
16
|
The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog Retin Eye Res 2018; 68:110-123. [PMID: 30201383 DOI: 10.1016/j.preteyeres.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
Numerous degenerative diseases affecting visual function, including glaucoma and retinitis pigmentosa, are produced by the loss of different types of retinal cells. Cell replacement therapy has emerged as a promising strategy for treating these and other retinal diseases. The retinal margin or ciliary body (CB) of mammals has been proposed as a potential source of cells to be used in degenerative conditions affecting the retina because it has been reported it might hold neurogenic potential beyond embryonic development. However, many aspects of the origin and biology of the CB are unknown and more recent experiments have challenged the capacity of CB cells to generate different types of retinal neurons. Here we review the most recent findings about the development of the marginal zone of the retina in different vertebrates and some of the mechanisms underlying the proliferative and neurogenic capacity of this fascinating region of the vertebrates eye. In addition, we performed experiments to isolate CB cells from the mouse retina, generated neurospheres and observed that they can be expanded with a proliferative ratio similar to neural stem cells. When induced to differentiate, cells derived from the CB neurospheres start to express early neural markers but, unlike embryonic stem cells, they are not able to fully differentiate in vitro or generate retinal organoids. Together with previous reports on the neurogenic capacity of CB cells, also reviewed here, our results contribute to the current knowledge about the potentiality of this peripheral region of the eye as a therapeutic source of functional retinal neurons in degenerative diseases.
Collapse
|
17
|
Cui BH, Hong X. miR-6852 serves as a prognostic biomarker in colorectal cancer and inhibits tumor growth and metastasis by targeting TCF7. Exp Ther Med 2018; 16:879-885. [PMID: 30116340 PMCID: PMC6090274 DOI: 10.3892/etm.2018.6259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/25/2018] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRs) are have been demonstrated to serve important functions in the genesis of human cancer, including colorectal cancer (CRC). The role of miR-6852 in CRC remains unknown. In this study, it was demonstrated that miR-6852 was underexpressed in CRC tissues compared with adjacent normal tissues. Moreover, the expression of miR-6852 was negatively correlated with CRC metastasis, whereas positively correlated with patient prognosis. It was revealed that the overexpression of miR-6852 significantly inhibited the proliferation and invasion of CRC cells. miR-6852 overexpression reduced CRC cells in the S phase. TCF7 was identified to be a direct target of miR-6852 in CRC cells. Overexpression of miR-6852 significantly inhibited the mRNA and protein levels of TCF7 in CRC cells. Furthermore, TCF7 was highly expressed in CRC tissues and cell lines. TCF7 expression was negatively correlated with miR-6852 levels in CRC tissues. Finally, knockdown of TCF7 significantly suppressed the proliferation and invasion of CRC cells. Taken together, the results of the present study indicated that miR-6852 serves as a tumor suppressor in CRC through targeting TCF7.
Collapse
Affiliation(s)
- Bao-Hong Cui
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, P.R. China
| | - Xuan Hong
- Department of Thoracic Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
18
|
Noncoding RNAs in liver cancer stem cells: The big impact of little things. Cancer Lett 2018; 418:51-63. [DOI: 10.1016/j.canlet.2018.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
|
19
|
Jin FS, Wang HM, Song XY. Long non-coding RNA TCF7 predicts the progression and facilitates the growth and metastasis of colorectal cancer. Mol Med Rep 2018. [PMID: 29532890 DOI: 10.3892/mmr.2018.8708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long non-coding RNA (lnc)TCF7 has been reported to promote the self‑renewal of human cancer stem cells, and enhance the aggressiveness of human non‑small cell lung cancer and hepatocellular carcinoma cells. However, the effect of lncTCF7 on colorectal cancer (CRC) tumorigenesis and progression is currently unclear. In the present study, reverse transcription‑quantitative polymerase chain reaction results demonstrated that lncTCF7 expression was higher in CRC tissues compared with adjacent normal tissues and was significantly associated with tumor size, differentiation degree, tumor‑node‑metastasis grade, lymph node metastasis and invasion depth. In addition, lncTCF7 demonstrated a high sensitivity and specificity for diagnosing CRC, as determined by receiver operating characteristic curve analysis. Furthermore, lncTCF7 silencing in SW‑620 and HT29 CRC cell lines inhibited the proliferation, cell cycle, migration and invasion of cells, as determined by Cell Counting Kit‑8 assays, propidium iodide (PI) staining and flow cytometry, wound healing assays and Transwell invasion assays, respectively; however, Annexin V/PI double staining and flow cytometry indicated that lncTCF7 silencing did not significantly affect the apoptosis of CRC cells. These results indicate that lncTCF7 may predict the progression, and promote the growth and metastasis, of CRC, and may therefore be a novel diagnostic marker and therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Fu-Shu Jin
- Anorectal Section, Yantai City Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Hong-Mei Wang
- Department of Obstetrics and Gynecology, Yantai City Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Xiao-Yan Song
- Department of Emergency, Yantai City Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
20
|
Li T, Zhu J, Wang X, Chen G, Sun L, Zuo S, Zhang J, Chen S, Ma J, Yao Z, Zheng Y, Chen Z, Liu Y, Wang P. Long non-coding RNA lncTCF7 activates the Wnt/β-catenin pathway to promote metastasis and invasion in colorectal cancer. Oncol Lett 2017; 14:7384-7390. [PMID: 29344178 PMCID: PMC5755009 DOI: 10.3892/ol.2017.7154] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNA (Lnc)TCF7 is a novel lncRNA that is involved in tumorigenesis. Previous studies have revealed that lncTCF7 serves an essential role in maintaining cancer stem cell self-renewal; however, the functions of lncTCF7 in colorectal cancer (CRC) remain unknown. Therefore, the present study aimed to investigate the role of lncTCF7 in CRC. LncTCF7 was upregulated in 52/58 CRC tissues, and its expression correlated with tumor size, lymph metastasis and tumor-node-metastasis stage in CRC. Knocking down lncTCF7 in colon cancer cell lines decreased cell proliferation, migration and invasion, while lncTCF7 overexpression showed opposite changes. In addition, lncTCF7 promoted cell proliferation in vivo. LncTCF7 activated the Wnt/β-catenin signaling pathway, which is essential for cancer development. Survival analysis revealed that patients with higher expression of lncTCF7 had significantly worse prognosis compared with patients with low expression. These findings indicate that lncTCF7 regulates CRC progression and support the notion of lncTCF7 as a CRC prognostic marker.
Collapse
Affiliation(s)
- Tengyu Li
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Jing Zhu
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Xin Wang
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Guowei Chen
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Lie Sun
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Shuai Zuo
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Junling Zhang
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Shanwen Chen
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Ju Ma
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Zihao Yao
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Youwen Zheng
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Zeyang Chen
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Yucun Liu
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Pengyuan Wang
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| |
Collapse
|
21
|
Liu Y, Chen SJ, Li SY, Qu LH, Meng XH, Wang Y, Xu HW, Liang ZQ, Yin ZQ. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res Ther 2017; 8:209. [PMID: 28962643 PMCID: PMC5622579 DOI: 10.1186/s13287-017-0661-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/26/2017] [Accepted: 09/06/2017] [Indexed: 01/05/2023] Open
Abstract
Background Retinitis pigmentosa is a common genetic disease that causes retinal degeneration and blindness for which there is currently no curable treatment available. Vision preservation was observed in retinitis pigmentosa animal models after retinal stem cell transplantation. However, long-term safety studies and visual assessment have not been thoroughly tested in retinitis pigmentosa patients. Methods In our pre-clinical study, purified human fetal-derived retinal progenitor cells (RPCs) were transplanted into the diseased retina of Royal College of Surgeons (RCS) rats, a model of retinal degeneration. Based on these results, we conducted a phase I clinical trial to establish the safety and tolerability of transplantation of RPCs in eight patients with advanced retinitis pigmentosa. Patients were studied for 24 months. Results After RPC transplantation in RCS rats, we observed moderate recovery of vision and maintenance of the outer nuclear layer thickness. Most importantly, we did not find tumor formation or immune rejection. In the retinis pigmentosa patients given RPC injections, we also did not observe immunological rejection or tumorigenesis when immunosuppressive agents were not administered. We observed a significant improvement in visual acuity (P < 0.05) in five patients and an increase in retinal sensitivity of pupillary responses in three of the eight patients between 2 and 6 months after the transplant, but this improvement did not appear by 12 months. Conclusion Our study for the first time confirmed the long-term safety and feasibility of vision repair by stem cell therapy in patients blinded by retinitis pigmentosa. Trial registration WHO Trial Registration, ChiCTR-TNRC-08000193. Retrospectively registered on 5 December 2008. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0661-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shao Jun Chen
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shi Ying Li
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ling Hui Qu
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiao Hong Meng
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yi Wang
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hai Wei Xu
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhi Qing Liang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zheng Qin Yin
- Key Laboratory of Visual Damage, Regeneration and Repair, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
22
|
Chen X, Wang S, Xu H, Pereira JD, Hatzistergos KE, Saur D, Seidler B, Hare JM, Perrella MA, Yin ZQ, Liu X. Evidence for a retinal progenitor cell in the postnatal and adult mouse. Stem Cell Res 2017; 23:20-32. [PMID: 28672156 DOI: 10.1016/j.scr.2017.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Progress in cell therapy for retinal disorders has been challenging. Recognized retinal progenitors are a heterogeneous population of cells that lack surface markers for the isolation of live cells for clinical implementation. In the present application, our objective was to use the stem cell factor receptor c-Kit (CD117), a surface marker, to isolate and evaluate a distinct progenitor cell population from retinas of postnatal and adult mice. Here we report that, by combining traditional methods with fate mapping, we have identified a c-Kit-positive (c-Kit+) retinal progenitor cell (RPC) that is self-renewing and clonogenic in vitro, and capable of generating many cell types in vitro and in vivo. Based on cell lineage tracing, significant subpopulations of photoreceptors in the outer nuclear layer and bipolar, horizontal, amacrine and Müller cells in the inner nuclear layer are the progeny of c-Kit+ cells in vivo. The RPC progeny contributes to retinal neurons and glial cells, which are responsible for the conversion of light into visual signals. The ability to isolate and expand in vitro live c-Kit+ RPCs makes them a future therapeutic option for retinal diseases.
Collapse
Affiliation(s)
- Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shaojun Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
| | - Joao D Pereira
- Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Dieter Saur
- Medicine II, Technische Universitaet Muenchen, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Seidler
- Medicine II, Technische Universitaet Muenchen, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
TCF7 is suppressed by the androgen receptor via microRNA-1-mediated downregulation and is involved in the development of resistance to androgen deprivation in prostate cancer. Prostate Cancer Prostatic Dis 2017; 20:172-178. [PMID: 28220803 DOI: 10.1038/pcan.2017.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/30/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Resistance to androgen deprivation therapy (ADT) represents a key step in the malignant progression of prostate cancer, and mutation to androgen receptor (AR) is one major driver to an androgen-independent phenotype. However, alternative oncogenic pathways that bypass AR signaling have emerged as an important mechanism promoting resistance to ADT. It is known that AR activation can prevent the interaction between β-catenin and T cell factor/lymphoid enhancer-binding factor (TCF/LEF) family, inhibiting the Wnt signaling pathway. The aim of this study was to determine the role of transcription factor 7 (TCF7), a transcription factor best known as a Wnt effector that forms a complex with β-catenin, in the development of advanced prostate cancer. We further investigated the molecular mechanisms by which TCF7 is induced when AR signaling is inactivated. METHODS A novel AR signaling pathway that induces microRNA-1 (miR-1) to suppress metastatic prostate cancer was recently demonstrated (AR-miR-1 signaling axis), and its regulation of Wnt signaling was explored in the current study. Clinical data sets were analyzed for potential targets of AR-miR-1 signaling in the TCF/LEF family, and tissue samples were utilized to validate the relationship. The molecular mechanism and biological functions were demonstrated in prostate cancer cell lines and a mouse xenograft model. RESULTS We demonstrated a molecular mechanism of AR signaling suppressing TCF7 partly through miR-1-mediated downregulation. TCF7 exhibited oncogenic properties and compromised the tumor-suppressive effects of miR-1. Our results also showed that overexpression of TCF7 or disruption of miR-1 function promoted androgen-independent proliferation. CONCLUSIONS We demonstrated that the AR-miR-1 axis negatively regulates the novel oncogenic factor, TCF7. Dysregulation of TCF7 promoted a survival advantage and resistance to androgen deprivation, suggesting its therapeutic potential for castration-resistant prostate cancer.
Collapse
|
24
|
Cui Z, Cui Y, Yang S, Luo G, Wang Y, Lou Y, Sun X. KLK4 silencing inhibits the growth of oral squamous cell carcinoma through Wnt/β-catenin signaling pathway. Cell Biol Int 2017; 41:392-404. [PMID: 28150891 DOI: 10.1002/cbin.10736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/28/2017] [Indexed: 12/17/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a malignancy that largely impacts the quality of people's daily life. Kallikrein-related peptidase 4 (KLK4) is highly expressed in OSCC; however, its roles in OSCC cells are unclear. In the present study, the effect of KLK4 silencing on the growth of OSCC cells was investigated. Our study showed that the proliferation and colony formation of OSCC cells was inhibited by KLK4 silencing and their cell cycle was arrested. Additionally, apoptosis of OSCC cells was enhanced by KLK4 silencing, with increased protein levels of cleaved PARP, cleaved caspase-3, Bax and decreased levels of Bcl-2. KLK4 silencing inhibited the Wnt/β-catenin signaling pathway, as evidence by decreased protein levels of Wnt1, β-catenin, reduced GSK-3β phosphorylation as well as decreased levels of cyclinD1 and c-myc proteins. We further showed that Wnt/β-catenin activator reversed the effects of KLK4 silencing on the proliferation and apoptosis of OSCC cells. We concluded that KLK4 silencing inhibited the growth of OSCC cells through Wnt/β-catenin signaling pathway, suggesting that KLK4 may become a promising therapeutic target for the treatment of OSCC.
Collapse
Affiliation(s)
- Zhi Cui
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Ye Cui
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Shuting Yang
- Department of Prosthodontics, School of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Gan Luo
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Yang Wang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Yixin Lou
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Xinhua Sun
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
25
|
WNT/β-Catenin signaling pathway regulates non-tumorigenesis of human embryonic stem cells co-cultured with human umbilical cord mesenchymal stem cells. Sci Rep 2017; 7:41913. [PMID: 28157212 PMCID: PMC5291217 DOI: 10.1038/srep41913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
Abstract
Human pluripotent stem cells harbor hope in regenerative medicine, but have limited application in treating clinical diseases due to teratoma formation. Our previous study has indicated that human umbilical cord mesenchymal stem cells (HUCMSC) can be adopted as non-teratogenenic feeders for human embryonic stem cells (hESC). This work describes the mechanism of non-tumorigenesis of that feeder system. In contrast with the mouse embryonic fibroblast (MEF) feeder, HUCMSC down-regulates the WNT/β-catenin/c-myc signaling in hESC. Thus, adding β-catenin antagonist (FH535 or DKK1) down-regulates β-catenin and c-myc expressions, and suppresses tumorigenesis (3/14 vs. 4/4, p = 0.01) in hESC fed with MEF, while adding the β-catenin enhancer (LiCl or 6-bromoindirubin-3′-oxime) up-regulates the expressions, and has a trend (p = 0.056) to promote tumorigenesis (2/7 vs. 0/21) in hESC fed with HUCMSC. Furthermore, FH535 supplement does not alter the pluripotency of hESC when fed with MEF, as indicated by the differentiation capabilities of the three germ layers. Taken together, this investigation concludes that WNT/β-catenin/c-myc pathway causes the tumorigenesis of hESC on MEF feeder, and β-catenin antagonist may be adopted as a tumor suppressor.
Collapse
|
26
|
Selvaraj K, Gowthamarajan K, Karri VVSR, Barauah UK, Ravisankar V, Jojo GM. Current treatment strategies and nanocarrier based approaches for the treatment and management of diabetic retinopathy. J Drug Target 2017; 25:386-405. [DOI: 10.1080/1061186x.2017.1280809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kousalya Selvaraj
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| | | | - Uday K. Barauah
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| | - Vanka Ravisankar
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| | - Gifty M. Jojo
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| |
Collapse
|
27
|
Han J, Qian X, Wu Q, Jha R, Duan J, Yang Z, Maher KO, Nie S, Xu C. Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells. Biomaterials 2016; 105:66-76. [PMID: 27509304 DOI: 10.1016/j.biomaterials.2016.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, but their derivatives need to be rigorously evaluated for residual stem cells to prevent teratoma formation. Here, we report the development of novel surface-enhanced Raman scattering (SERS)-based assays that can detect trace numbers of undifferentiated hPSCs in mixed cell populations in a highly specific, ultra-sensitive, and time-efficient manner. By targeting stem cell surface markers SSEA-5 and TRA-1-60 individually or simultaneously, these SERS assays were able to identify as few as 1 stem cell in 10(6) cells, a sensitivity (0.0001%) which was ∼2000 to 15,000-fold higher than that of flow cytometry assays. Using the SERS assay, we demonstrate that the aggregation of hPSC-based cardiomyocyte differentiation cultures into 3D spheres significantly reduced SSEA-5(+) and TRA-1-60(+) cells compared with parallel 2D cultures. Thus, SERS may provide a powerful new technology for quality control of hPSC-derived products for preclinical and clinical applications.
Collapse
Affiliation(s)
- Jingjia Han
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Ximei Qian
- Wallace H. Coulter Departments of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA; Wallace H. Coulter Departments of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Rajneesh Jha
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Jinshuai Duan
- School of Materials Science and Engineering, University of Science & Technology Beijing, Beijing, China
| | - Zhou Yang
- School of Materials Science and Engineering, University of Science & Technology Beijing, Beijing, China
| | - Kevin O Maher
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Shuming Nie
- Wallace H. Coulter Departments of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA; College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu Province, 210093, China.
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA; Wallace H. Coulter Departments of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA.
| |
Collapse
|
28
|
Induced pluripotent stem cells in Alzheimer's disease: applications for disease modeling and cell-replacement therapy. Mol Neurodegener 2016; 11:39. [PMID: 27184028 PMCID: PMC4869261 DOI: 10.1186/s13024-016-0106-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in those over the age of 65. While a numerous of disease-causing genes and risk factors have been identified, the exact etiological mechanisms of AD are not yet completely understood, due to the inability to test theoretical hypotheses on non-postmortem and patient-specific research systems. The use of recently developed and optimized induced pluripotent stem cells (iPSCs) technology may provide a promising platform to create reliable models, not only for better understanding the etiopathological process of AD, but also for efficient anti-AD drugs screening. More importantly, human-sourced iPSCs may also provide a beneficial tool for cell-replacement therapy against AD. Although considerable progress has been achieved, a number of key challenges still require to be addressed in iPSCs research, including the identification of robust disease phenotypes in AD modeling and the clinical availabilities of iPSCs-based cell-replacement therapy in human. In this review, we highlight recent progresses of iPSCs research and discuss the translational challenges of AD patients-derived iPSCs in disease modeling and cell-replacement therapy.
Collapse
|
29
|
Kotini AG, de Stanchina E, Themeli M, Sadelain M, Papapetrou EP. Escape Mutations, Ganciclovir Resistance, and Teratoma Formation in Human iPSCs Expressing an HSVtk Suicide Gene. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e284. [PMID: 26836371 PMCID: PMC4884789 DOI: 10.1038/mtna.2015.57] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/09/2015] [Indexed: 02/08/2023]
Abstract
Human pluripotent stem cells (hPSCs) hold great promise for cell therapy. However, a major concern is the risk of tumor formation by residual undifferentiated cells contaminating the hPSC-derived cell product. Suicide genes could safeguard against such adverse events by enabling elimination of cells gone astray, but the efficacy of this approach has not yet been thoroughly tested. Here, we engineered a lentivirally encoded herpes simplex virus thymidine kinase (HSVtk) with expression restricted to undifferentiated hPSCs through regulation by the let7 family of miRNAs. We show that induced pluripotent stem cells (iPSCs) expressing a let7-regulated HSVtk transgene are selectively killed by ganciclovir (GCV), whereas differentiated cells are fully protected. However, in contrast to previous studies, we find that in vivo GCV administration results in longer latency but does not prevent teratoma formation by iPSCs expressing either a constitutive or a let7-regulated HSVtk, without evidence of silencing of the HSVtk. Clonal analyses of iPSCs expressing HSVtk revealed frequent emergence of GCV resistance which, at least in some cases, could be attributed to preexisting inactivating mutations in the HSVtk coding sequence, selected for upon GCV treatment. Our findings have important consequences for the future use of suicide genes in hPSC-based cell therapies.
Collapse
Affiliation(s)
- Andriana G Kotini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria Themeli
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
30
|
Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, Yan X, Ye B, Li C, Xia P, Zhang G, Tian Y, Chen R, Fan Z. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell 2016; 16:413-25. [PMID: 25842979 DOI: 10.1016/j.stem.2015.03.003] [Citation(s) in RCA: 510] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/15/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent subtype of liver cancer, and it is characterized by a high rate of recurrence and heterogeneity. Liver cancer stem cells (CSCs) may well contribute to both of these pathological properties, but the mechanisms underlying their self-renewal and maintenance are poorly understood. Here, using transcriptome microarray analysis, we identified a long noncoding RNA (lncRNA) termed lncTCF7 that is highly expressed in HCC tumors and liver CSCs. LncTCF7 is required for liver CSC self-renewal and tumor propagation. Mechanistically, lncTCF7 recruits the SWI/SNF complex to the promoter of TCF7 to regulate its expression, leading to activation of Wnt signaling. Our data suggest that lncTCF7-mediated Wnt signaling primes liver CSC self-renewal and tumor propagation. In sum, therefore, we have identified an lncRNA-based Wnt signaling regulatory circuit that promotes tumorigenic activity in liver cancer stem cells, highlighting the role that lncRNAs can play in tumor growth and propagation.
Collapse
Affiliation(s)
- Yanying Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing 100853, China
| | - Ying Du
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanling Huang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinlong Yan
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Buqing Ye
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chong Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengyan Xia
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Geng Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Tian
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Tolosa L, Caron J, Hannoun Z, Antoni M, López S, Burks D, Castell JV, Weber A, Gomez-Lechon MJ, Dubart-Kupperschmitt A. Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Res Ther 2015; 6:246. [PMID: 26652177 PMCID: PMC4676869 DOI: 10.1186/s13287-015-0227-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/25/2015] [Accepted: 11/06/2015] [Indexed: 12/25/2022] Open
Abstract
Background Hepatic cell therapy has become a viable alternative to liver transplantation for life-threatening liver diseases. However, the supply of human hepatocytes is limited due to the shortage of suitable donor organs required to isolate high-quality cells. Human pluripotent stem cells reflect a potential renewable source for generating functional hepatocytes. However, most differentiation protocols use undefined matrices or factors of animal origin; as such, the resulting hepatocytes are not Good Manufacturing Practice compliant. Moreover, the preclinical studies employed to assess safety and function of human embryonic stem cell (hESC)-derived hepatocytes are generally limited to immunodeficient mice. In the present study, we evaluate the generation of hepatocytes under defined conditions using a European hESC line (VAL9) which was derived under animal-free conditions. The function capacity of VAL9-derived hepatocytes was assessed by transplantation into mice with acetaminophen-induced acute liver failure, a clinically relevant model. Methods We developed a protocol that successfully differentiates hESCs into bipotent hepatic progenitors under defined conditions, without the use of chromatin modifiers such as dimethyl sulphoxide. These progenitors can be cryopreserved and are able to generate both committed precursors of cholangiocytes and neonate-like hepatocytes. Results Thirty days post-differentiation, hESCs expressed hepatocyte-specific markers such as asialoglycoprotein receptor and hepatic nuclear factors including HNF4α. The cells exhibited properties of mature hepatocytes such as urea secretion and UGT1A1 and cytochrome P450 activities. When transplanted into mice with acetaminophen-induced acute liver failure, a model of liver damage, the VAL9-derived hepatocytes efficiently engrafted and proliferated, repopulating up to 10 % of the liver. In these transplanted livers, we observed a significant decrease of liver transaminases and found no evidence of tumourigenicity. Thus, VAL9-derived hepatocytes were able to rescue hepatic function in acetaminophen-treated animals. Conclusions Our study reveals an efficient protocol for differentiating VAL9 hESCs to neonatal hepatocytes which are then able to repopulate livers in vivo without tumour induction. The human hepatocytes are able to rescue liver function in mice with acetaminophen-induced acute toxicity. These results provide proof-of-concept that replacement therapies using hESC-derived hepatocytes are effective for treating liver diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0227-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laia Tolosa
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Unidad de Hepatología Experimental, IIS LA Fe, Valencia, S-46026, Spain. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Jérôme Caron
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Zara Hannoun
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Marc Antoni
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Silvia López
- Unidad de Hepatología Experimental, IIS LA Fe, Valencia, S-46026, Spain.
| | - Deborah Burks
- CIBERDEM, Centro de Investigacion Prıncipe Felipe, Valencia, S-46012, Spain.
| | - Jose Vicente Castell
- Unidad de Hepatología Experimental, IIS LA Fe, Valencia, S-46026, Spain. .,CIBERehd, FIS, Barcelona, S-08036, Spain.
| | - Anne Weber
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| | - Maria-Jose Gomez-Lechon
- Unidad de Hepatología Experimental, IIS LA Fe, Valencia, S-46026, Spain. .,CIBERehd, FIS, Barcelona, S-08036, Spain.
| | - Anne Dubart-Kupperschmitt
- INSERM, U 1193, Hôpital Paul Brousse, Villejuif, F-94807, France. .,Univ Paris-Sud, UMR-S 1193, Villejuif, F-94800, France. .,DHU Hepatinov, Villejuif, F-94800, France.
| |
Collapse
|
32
|
Qu Z, Guan Y, Cui L, Song J, Gu J, Zhao H, Xu L, Lu L, Jin Y, Xu GT. Transplantation of rat embryonic stem cell-derived retinal progenitor cells preserves the retinal structure and function in rat retinal degeneration. Stem Cell Res Ther 2015; 6:219. [PMID: 26553210 PMCID: PMC4640237 DOI: 10.1186/s13287-015-0207-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Degenerative retinal diseases like age-related macular degeneration (AMD) are the leading cause of blindness. Cell transplantation showed promising therapeutic effect for such diseases, and embryonic stem cell (ESC) is one of the sources of such donor cells. Here, we aimed to generate retinal progenitor cells (RPCs) from rat ESCs (rESCs) and to test their therapeutic effects in rat model. METHODS The rESCs (DA8-16) were cultured in N2B27 medium with 2i, and differentiated to two types of RPCs following the SFEBq method with modifications. For rESC-RPC1, the cells were switched to adherent culture at D10, while for rESC-RPC2, the suspension culture was maintained to D14. Both RPCs were harvested at D16. Primary RPCs were obtained from P1 SD rats, and some of them were labeled with EGFP by infection with lentivirus. To generate Rax::EGFP knock-in rESC lines, TALENs were engineered to facilitate homologous recombination in rESCs, which were cotransfected with the targeting vector and TALEN vectors. The differentiated cells were analyzed with live image, immunofluorescence staining, flow cytometric analysis, gene expression microarray, etc. RCS rats were used to mimic the degeneration of retina and test the therapeutic effects of subretinally transplanted donor cells. The structure and function of retina were examined. RESULTS We established two protocols through which two types of rESC-derived RPCs were obtained and both contained committed retina lineage cells and some neural progenitor cells (NPCs). These rESC-derived RPCs survived in the host retinas of RCS rats and protected the retinal structure and function in early stage following the transplantation. However, the glia enriched rESC-RPC1 obtained through early and longer adherent culture only increased the b-wave amplitude at 4 weeks, while the longer suspension culture gave rise to evidently neuronal differentiation in rESC-RPC2 which significantly improved the visual function of RCS rats. CONCLUSIONS We have successfully differentiated rESCs to glia enriched RPCs and retinal neuron enriched RPCs in vitro. The retinal neuron enriched rESC-RPC2 protected the structure and function of retina in rats with genetic retinal degeneration and could be a candidate cell source for treating some degenerative retinal diseases in human trials.
Collapse
Affiliation(s)
- Zepeng Qu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Room 208, Building 5, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yuan Guan
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Room 208, Building 5, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Lu Cui
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Room 208, Building 5, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Jian Song
- ShanghaiTech University School of Life Science and Technology, Shanghai, 201210, China.
| | - Junjie Gu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.
| | - Hanzhi Zhao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.
| | - Lei Xu
- Department of Regenerative Medicine, Stem Cell Research Center, and Institute for Nutritional Sciences, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, 1239 Siping Road, Medical Building, Room 521, Shanghai, 200092, China.
- Department of Regenerative Medicine, Stem Cell Research Center, and Institute for Nutritional Sciences, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Room 208, Building 5, 280 South Chongqing Road, Shanghai, 200025, China.
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.
- ShanghaiTech University School of Life Science and Technology, Shanghai, 201210, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, Tongji University School of Medicine, 1239 Siping Road, Medical Building, Room 521, Shanghai, 200092, China.
- Department of Regenerative Medicine, Stem Cell Research Center, and Institute for Nutritional Sciences, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
33
|
Abstract
Aberrant Wnt signaling pathway is a common feature of tumors and also plays important roles in tumor progression and metastasis of many cancer types. Various lines of evidence suggest that genetic defects affect Wnt pathway components, as well as epigenetic mechanisms that modulate the suppressors of Wnt pathway in oral squamous cell carcinoma. Recently, the newly discovered microRNAs are important molecular regulators in gene expression through transcription and translation repression. They play fundamental roles in a wide spectrum of biological functions, including cancer. In this review, we aim to accumulate recent research findings on the roles of Wnt/β-catenin signaling and discuss how microRNAs affect Wnt/β-catenin signaling in oral squamous cell carcinoma tumorigenesis. Apparently, investigations into the role of microRNAs with regard to the Wnt pathway in oral squamous cell carcinoma may help in the development of better strategies for tumor treatment.
Collapse
Affiliation(s)
- S-G Shiah
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan Department of Oral Diagnosis and Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Y-S Shieh
- Department of Oral Diagnosis and Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - J-Y Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
34
|
Tuo J, Wang Y, Cheng R, Li Y, Chen M, Qiu F, Qian H, Shen D, Penalva R, Xu H, Ma JX, Chan CC. Wnt signaling in age-related macular degeneration: human macular tissue and mouse model. J Transl Med 2015; 13:330. [PMID: 26476672 PMCID: PMC4609061 DOI: 10.1186/s12967-015-0683-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 09/29/2015] [Indexed: 01/02/2023] Open
Abstract
Background The wingless-type MMTV integration site (Wnt) signaling is a group of signal transduction pathways. In canonical Wnt pathway, Wnt ligands bind to low-density lipoprotein receptor-related protein 5 or 6 (LRP5 or LRP6), resulting in phosphorylation and activation of the receptor. We hypothesize that canonical Wnt pathway plays a role in the retinal lesion of age-related macular degeneration (AMD), a leading cause of irreversible central visual loss in elderly. Methods We examined LRP6 phosphorylation and Wnt signaling cascade in human retinal sections and plasma kallistatin, an endogenous inhibitor of the Wnt pathway in AMD patients and non-AMD subjects. We also used the Ccl2−/−/Cx3cr1−/−/rd8 and Ccl2−/−/Cx3cr1gfp/gfp mouse models with AMD-like retinal degeneration to further explore the involvement of Wnt signaling activation in the retinal lesions in those models and to preclinically evaluate the role of Wnt signaling suppression as a potential therapeutic option for AMD. Results We found higher levels of LRP6 (a key Wnt signaling receptor) protein phosphorylation and transcripts of the Wnt pathway-targeted genes, as well as higher beta-catenin protein in AMD macula compared to controls. Kallistatin was decreased in the plasma of AMD patients. Retinal non-phosphorylated-β-catenin and phosphorylated-LRP6 were higher in Ccl2−/−/Cx3cr1−/−/rd8 mice than that in wild type. Intravitreal administration of an anti-LRP6 antibody slowed the progression of retinal lesions in Ccl2−/−/Cx3cr1−/−/rd8 and Ccl2−/−/Cx3cr1gfp/gfp mice. Electroretinography of treated eyes exhibited larger amplitudes compared to controls in both mouse models. A2E, a retinoid byproduct associated with AMD was lower in the treated eyes of Ccl2−/−/Cx3cr1−/−/rd8 mice. Anti-LRP6 also suppressed the expression of Tnf-α and Icam-1 in Ccl2−/−/Cx3cr1−/−/rd8 retinas. Conclusions Wnt signaling may be disturbed in AMD patients, which could contribute to the retinal inflammation and increased A2E levels found in AMD. Aberrant activation of canonical Wnt signaling might also contribute to the focal retinal degenerative lesions of mouse models with Ccl2 and Cx3cr1 deficiency, and intravitreal administration of anti-LRP6 antibody could be beneficial by deactivating the canonical Wnt pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0683-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingsheng Tuo
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA.
| | - Yujuan Wang
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA.
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Mei Chen
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Fangfang Qiu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Defen Shen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA.
| | - Rosana Penalva
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Heping Xu
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 10N103, NIH/NEI, Bethesda, MD, 20892-1857, USA.
| |
Collapse
|
35
|
Sehic A, Utheim ØA, Ommundsen K, Utheim TP. Pre-Clinical Cell-Based Therapy for Limbal Stem Cell Deficiency. J Funct Biomater 2015; 6:863-88. [PMID: 26343740 PMCID: PMC4598682 DOI: 10.3390/jfb6030863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 12/13/2022] Open
Abstract
The cornea is essential for normal vision by maintaining transparency for light transmission. Limbal stem cells, which reside in the corneal periphery, contribute to the homeostasis of the corneal epithelium. Any damage or disease affecting the function of these cells may result in limbal stem cell deficiency (LSCD). The condition may result in both severe pain and blindness. Transplantation of ex vivo cultured cells onto the cornea is most often an effective therapeutic strategy for LSCD. The use of ex vivo cultured limbal epithelial cells (LEC), oral mucosal epithelial cells, and conjunctival epithelial cells to treat LSCD has been explored in humans. The present review focuses on the current state of knowledge of the many other cell-based therapies of LSCD that have so far exclusively been explored in animal models as there is currently no consensus on the best cell type for treating LSCD. Major findings of all these studies with special emphasis on substrates for culture and transplantation are systematically presented and discussed. Among the many potential cell types that still have not been used clinically, we conclude that two easily accessible autologous sources, epidermal stem cells and hair follicle-derived stem cells, are particularly strong candidates for future clinical trials.
Collapse
Affiliation(s)
- Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, Oslo 0372, Norway.
| | - Øygunn Aass Utheim
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| | - Kristoffer Ommundsen
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, Oslo 0372, Norway.
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, Oslo 0407, Norway.
| |
Collapse
|
36
|
Alonso-Alonso ML, Srivastava GK. Current focus of stem cell application in retinal repair. World J Stem Cells 2015; 7:641-648. [PMID: 25914770 PMCID: PMC4404398 DOI: 10.4252/wjsc.v7.i3.641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/06/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
The relevance of retinal diseases, both in society’s economy and in the quality of people’s life who suffer with them, has made stem cell therapy an interesting topic for research. Embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adipose derived mesenchymal stem cells (ADMSCs) are the focus in current endeavors as a source of different retinal cells, such as photoreceptors and retinal pigment epithelial cells. The aim is to apply them for cell replacement as an option for treating retinal diseases which so far are untreatable in their advanced stage. ESCs, despite the great potential for differentiation, have the dangerous risk of teratoma formation as well as ethical issues, which must be resolved before starting a clinical trial. iPSCs, like ESCs, are able to differentiate in to several types of retinal cells. However, the process to get them for personalized cell therapy has a high cost in terms of time and money. Researchers are working to resolve this since iPSCs seem to be a realistic option for treating retinal diseases. ADMSCs have the advantage that the procedures to obtain them are easier. Despite advancements in stem cell application, there are still several challenges that need to be overcome before transferring the research results to clinical application. This paper reviews recent research achievements of the applications of these three types of stem cells as well as clinical trials currently based on them.
Collapse
|
37
|
Kropp EM, Oleson BJ, Broniowska KA, Bhattacharya S, Chadwick AC, Diers AR, Hu Q, Sahoo D, Hogg N, Boheler KR, Corbett JA, Gundry RL. Inhibition of an NAD⁺ salvage pathway provides efficient and selective toxicity to human pluripotent stem cells. Stem Cells Transl Med 2015; 4:483-93. [PMID: 25834119 DOI: 10.5966/sctm.2014-0163] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/16/2015] [Indexed: 11/16/2022] Open
Abstract
The tumorigenic potential of human pluripotent stem cells (hPSCs) is a major limitation to the widespread use of hPSC derivatives in the clinic. Here, we demonstrate that the small molecule STF-31 is effective at eliminating undifferentiated hPSCs across a broad range of cell culture conditions with important advantages over previously described methods that target metabolic processes. Although STF-31 was originally described as an inhibitor of glucose transporter 1, these data support the reclassification of STF-31 as a specific NAD⁺ salvage pathway inhibitor through the inhibition of nicotinamide phosphoribosyltransferase (NAMPT). These findings demonstrate the importance of an NAD⁺ salvage pathway in hPSC biology and describe how inhibition of NAMPT can effectively eliminate hPSCs from culture. These results will advance and accelerate the development of safe, clinically relevant hPSC-derived cell-based therapies.
Collapse
Affiliation(s)
- Erin M Kropp
- Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bryndon J Oleson
- Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katarzyna A Broniowska
- Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Subarna Bhattacharya
- Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexandra C Chadwick
- Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anne R Diers
- Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qinghui Hu
- Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daisy Sahoo
- Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Neil Hogg
- Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth R Boheler
- Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John A Corbett
- Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebekah L Gundry
- Department of Biochemistry, Department of Biophysics, Redox Biology Program, and Department of Medicine, Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Physiology, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, Special Administrative Region of the People's Republic of China; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Aldahmash A, Atteya M, Elsafadi M, Al-Nbaheen M, Al-Mubarak HA, Vishnubalaji R, Al-Roalle A, Al-Harbi S, Manikandan M, Matthaei KI, Mahmood A. Teratoma formation in immunocompetent mice after syngeneic and allogeneic implantation of germline capable mouse embryonic stem cells. Asian Pac J Cancer Prev 2015; 14:5705-11. [PMID: 24289566 DOI: 10.7314/apjcp.2013.14.10.5705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Embryonic stem cells (ESCs) have the potential to form teratomas when implanted into immunodeficient mice, but data in immunocompetent mice are limited. We therefore investigated teratoma formation after implantation of three different mouse ESC (mESC) lines into immunocompetent mice. MATERIALS AND METHODS BALB/c mice were injected with three highly germline competent mESCs (129Sv, BALB/c and C57BL/6) subcutaneously or under the kidney capsule. After 4 weeks, mice were euthanized and examined histologically for teratoma development. The incidence, size and composition of teratomas were compared using Pearson Chi-square, t-test for dependent variables, one-way analysis of variance and the nonparametric Kruskal- Wallis analysis of variance and median test. RESULTS Teratomas developed from all three cell lines. The incidence of formation was significantly higher under the kidney capsule compared to subcutaneous site and occurred in both allogeneic and syngeneic mice. Overall, the size of teratoma was largest with the 129Sv cell line and under the kidney capsule. Diverse embryonic stem cell-derived tissues, belonging to the three embryonic germ layers, were encountered, reflecting the pluripotency of embryonic stem cells. Most commonly represented tissues were nervous tissue, keratinizing stratified squamous epithelium (ectoderm), smooth muscle, striated muscle, cartilage, bone (mesoderm), and glandular tissue in the form of gut- and respiratory-like epithelia (endoderm). CONCLUSIONS ESCs can form teratomas in immunocompetent mice and, therefore, removal of undifferentiated ESC is a pre-requisite for a safe use of ESC in cell-based therapies. In addition the genetic relationship of the origin of the cell lines to the ability to transplant plays a major role.
Collapse
Affiliation(s)
- Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University and King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia E-mail : ,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Heavner WE, Andoniadou CL, Pevny LH. Establishment of the neurogenic boundary of the mouse retina requires cooperation of SOX2 and WNT signaling. Neural Dev 2014; 9:27. [PMID: 25488119 PMCID: PMC4295269 DOI: 10.1186/1749-8104-9-27] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/14/2014] [Indexed: 12/03/2022] Open
Abstract
Background Eye development in vertebrates relies on the critical regulation of SOX2 expression. Humans with mutations in SOX2 often suffer from eye defects including anophthalmia (no eye) and microphthalmia (small eye). In mice, deletion of Sox2 in optic cup progenitor cells results in loss of neural competence and cell fate conversion of the neural retina to a non-neurogenic fate, specifically the acquisition of fate associated with progenitors of the ciliary epithelium. This fate is also promoted with constitutive expression of stabilized β-Catenin in the optic cup, where the WNT pathway is up-regulated. We addressed whether SOX2 co-ordinates the neurogenic boundary of the retina through modulating the WNT/β-Catenin pathway by using a genetic approach in the mouse. Results Upon deletion of Sox2 in the optic cup, response to WNT signaling was expanded, correlating with loss of neural competence, cell fate conversion of the neural retina to ciliary epithelium primordium and, in addition, increased cell cycle time of optic cup progenitors. Removal of Ctnnb1 rescued the cell fate conversion; however, the loss of neural competence and the proliferation defect resulting from lack of SOX2 were not overcome. Lastly, central Sox2-deficient optic cup progenitor cells exhibited WNT-independent up-regulation of D-type Cyclins. Conclusion We propose two distinct roles for SOX2 in the developing retina. Our findings suggest that SOX2 antagonizes the WNT pathway to maintain a neurogenic fate and, in contrast, regulates cycling of optic cup progenitors in a WNT-independent manner. Given that WNT signaling acting upstream of SOX2 has been implicated in the tumorigenicity of embryonic stem cell-derived retinal progenitor cells, our results distinguish the endogenous role of WNT signaling in early optic cup patterning and support a WNT-independent role for SOX2 in maintaining retinal progenitor cell proliferation. Electronic supplementary material The online version of this article (doi:10.1186/1749-8104-9-27) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Whitney E Heavner
- UNC Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
40
|
Patel AK, Surapaneni K, Yi H, Nakamura REI, Karli SZ, Syeda S, Lee T, Hackam AS. Activation of Wnt/β-catenin signaling in Muller glia protects photoreceptors in a mouse model of inherited retinal degeneration. Neuropharmacology 2014; 91:1-12. [PMID: 25486619 DOI: 10.1016/j.neuropharm.2014.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 11/18/2022]
Abstract
The canonical Wnt/β-catenin ("Wnt") pathway is an essential signaling cascade in the embryonic central nervous system (CNS) that regulates neuronal differentiation and survival. Loss of Wnt signaling in developing and adult tissue has been implicated in numerous CNS diseases, but the precise role of Wnt in regulating neuronal survival, and how its absence could lead to disease, is not understood. In this study, we investigated the effect of Wnt activation on neuronal survival in the adult retina, and identified cellular and molecular mediators. Pan-retinal Wnt signaling activation using Wnt3a induced functional and morphological rescue of photoreceptor neurons in the rd10 mouse model of retinal degeneration. Furthermore, Wnt activation using constitutively active β-catenin specifically targeted to Muller glia increased photoreceptor survival and reduced markers of glial and neuronal remodeling. Wnt-induced photoreceptor protection was associated with elevated levels of the prosurvival protein Stat3, and was reduced by shRNA-mediated knock-down of Stat3, indicating cross-talk between survival pathways. Therefore, these data increase our understanding of the role of Wnt signaling in the retina, and identify radial Muller glia as important cellular mediators of Wnt activity.
Collapse
Affiliation(s)
- Amit K Patel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Krishna Surapaneni
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Hyun Yi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Rei E I Nakamura
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Sapir Z Karli
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Sarah Syeda
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Tinthu Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, USA.
| |
Collapse
|
41
|
Reichman S, Sahel JA, Goureau O. Production de rétinesin vitroà partir de cellules pluripotentes humaines. Med Sci (Paris) 2014; 30:845-8. [DOI: 10.1051/medsci/20143010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Sharp T, Wang J, Li X, Cao H, Gao S, Moreno M, Amendt BA. A pituitary homeobox 2 (Pitx2):microRNA-200a-3p:β-catenin pathway converts mesenchymal cells to amelogenin-expressing dental epithelial cells. J Biol Chem 2014; 289:27327-27341. [PMID: 25122764 PMCID: PMC4175363 DOI: 10.1074/jbc.m114.575654] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/12/2014] [Indexed: 12/21/2022] Open
Abstract
Pitx2, Wnt/β-catenin signaling, and microRNAs (miRs) play a critical role in the regulation of dental stem cells during embryonic development. In this report, we have identified a Pitx2:β-catenin regulatory pathway involved in epithelial cell differentiation and conversion of mesenchymal cells to amelogenin expressing epithelial cells via miR-200a. Pitx2 and β-catenin are expressed in the labial incisor cervical loop or epithelial stem cell niche, with decreased expression in the differentiating ameloblast cells of the mouse lower incisor. Bioinformatics analyses reveal that miR-200a-3p expression is activated in the pre-ameloblast cells to enhance epithelial cell differentiation. We demonstrate that Pitx2 activates miR-200a-3p expression and miR-200a-3p reciprocally represses Pitx2 and β-catenin expression. Pitx2 and β-catenin interact to synergistically activate gene expression during odontogenesis and miR-200a-3p attenuates their expression and directs differentiation. To understand how this mechanism controls cell differentiation and cell fate, oral epithelial and odontoblast mesenchymal cells were reprogrammed by a two-step induction method using Pitx2 and miR-200a-3p. Conversion to amelogenin expressing dental epithelial cells involved an up-regulation of the stem cell marker Sox2 and proliferation genes and decreased expression of mesenchymal markers. E-cadherin expression was increased as well as ameloblast specific factors. The combination of Pitx2, a regulator of dental stem cells and miR-200a converts mesenchymal cells to a fully differentiated dental epithelial cell type. This pathway and reprogramming can be used to reprogram mesenchymal or oral epithelial cells to dental epithelial (ameloblast) cells, which can be used in tissue repair and regeneration studies.
Collapse
Affiliation(s)
- Thad Sharp
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Jianbo Wang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, and
| | - Xiao Li
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Huojun Cao
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, and
| | - Shan Gao
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, and
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242,; Craniofacial Anomalies Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
43
|
|
44
|
Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013; 19:998-1004. [PMID: 23921754 DOI: 10.1038/nm.3267] [Citation(s) in RCA: 508] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells (PSCs) are a leading candidate for cell-based therapies because of their capacity for unlimited self renewal and pluripotent differentiation. These advances have recently culminated in the first-in-human PSC clinical trials by Geron, Advanced Cell Technology and the Kobe Center for Developmental Biology for the treatment of spinal cord injury and macular degeneration. Despite their therapeutic promise, a crucial hurdle for the clinical implementation of human PSCs is their potential to form tumors in vivo. In this Perspective, we present an overview of the mechanisms underlying the tumorigenic risk of human PSC-based therapies and discuss current advances in addressing these challenges.
Collapse
Affiliation(s)
- Andrew S Lee
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology Stanford University School of Medicine, Stanford, California 94305, USA
| | - Chad Tang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mahendra S Rao
- National Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C Wu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
45
|
Ouyang H, Zhuo Y, Zhang K. WNT signaling in stem cell differentiation and tumor formation. J Clin Invest 2013; 123:1422-4. [PMID: 23524963 DOI: 10.1172/jci69324] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Embryonic stem cells (ESCs) hold great therapeutic promise for the regeneration of functional cell types and clinical applications. However, tumorigenic potential of stem cells in a transplanted host remains a major obstacle. In this issue of the JCI, Cui and colleagues identified TCF7-mediated canonical WNT signaling as a critical determinant of both the tumorigenicity and therapeutic function of ESC-derived retinal progenitor cells (ESC-RPCs). Their findings suggested that addressing key extracellular signaling and related intrinsic factors will be essential for the successful use of ESC-derived progenitor transplantation.
Collapse
Affiliation(s)
- Hong Ouyang
- Molecular Medicine Research Center and Department of Ophthalmology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | |
Collapse
|