1
|
Neuwirth T, Malzl D, Knapp K, Tsokkou P, Kleissl L, Gabriel A, Reininger B, Freystätter C, Marella N, Kutschat AP, Ponweiser E, Haschemi A, Seruggia D, Menche J, Wagner EF, Stary G. The polyamine-regulating enzyme SSAT1 impairs tissue regulatory T cell function in chronic cutaneous inflammation. Immunity 2025; 58:632-647.e12. [PMID: 40023161 DOI: 10.1016/j.immuni.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/08/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025]
Abstract
Regulatory T (Treg) cells are a critical immune component guarding against excessive inflammation. Treg cell dysfunction can lead to chronic inflammatory diseases with current therapies aimed at inhibiting effector T cells rather than rescuing Treg cell function. We utilized single-cell RNAsequencing data from patients with chronic inflammation to identify SAT1, the gene encoding spermidine/spermine N1-acetyltransferase (SSAT), as a driver of skin-resident Treg cell dysfunction. CRISPRa-driven SAT1 expression in human skin-derived Treg cells impaired their suppressive function and induced a pro-inflammatory phenotype. During cutaneous type-17 inflammation, keratinocyte 4-1BBL induces SAT1 on Treg cells. In a mouse model of psoriasis, pharmacological inhibition of SSAT rescued Treg cell number and function. Together, these data show that SAT1 expression has severe functional consequences on Treg cells and suggest a therapeutic target to treat chronic inflammatory disease.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Daniel Malzl
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria; Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria; Center for Molecular Biology, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Panagiota Tsokkou
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Anna Gabriel
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Baerbel Reininger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christian Freystätter
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Nara Marella
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Ana P Kutschat
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Elisabeth Ponweiser
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Davide Seruggia
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria; Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria; Center for Molecular Biology, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria; Faculty of Mathematics, University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Network Medicine at the University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria; Christian Doppler Laboratory for Chronic Inflammatory Skin Diseases, Vienna, Austria.
| |
Collapse
|
2
|
Zhong X, Fu B, Wang H, Zhang M, Jia S, Ren Z, Zhang Y, Wang W, Li T, Zhao J, Shi H, Chang Q, Ge F, Gong Y, Liu W, Chen S, Liao L, Zhuang Y, Tang J, Chu Y, Qiu F, Xu S, Li T. Preliminary exploration of the association of CXCR6 +T lymphocytes in T2D. Int Immunopharmacol 2025; 147:113962. [PMID: 39798468 DOI: 10.1016/j.intimp.2024.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025]
Abstract
Type 2 diabetes (T2D) is a metabolic disease, in which inflammation is a key factor. It has been well established that T cells play important role in antigen-driven immune disorders or immune defense, but were less discussed in inflammatory metabolic diseases. However, accumulating evidences suggest that CD186 (also known as CXCR6)-positive tissue infiltrating T cells might play a key role in inflammatory metabolic diseases. Here, as a preliminary and exploratory study, we detected the expression levels of CXCR6 on peripheral blood T-lymphocytes of human subjects of T2D. Additionally, the expression levels of CXCR6 in BSK-db/db mice, a murine T2D model, were also detected. Results showed that, compared with the healthy control group, T2D group had significantly reduced levels of CD4+CD45RO-CD186+CD183- T lymphocytes (Z = -3.988, P < 0.001) and CD8+CD45RO+CD186+CD183- T lymphocytes (Z = -2.428, P = 0.035). CD4+CD45RO-CD186+CD183- T lymphocytes had an AUC area of 0.978 (0.93, 1.00), 88.9 % sensitivity, and 100.0 % specificity. Additionally, the sensitivity of CD8+CD45RO+CD186+CD183- was 55.6 %, and the specificity was 100.0 %, with an AUC area of 0.747 (0.522, 0.972). The levels of CD8+CD186+ (t = -3.198, P = 0.015), CD8+CD44+CD186+ (t = -2.706, P = 0.030), and CD8+CD44-CD186+ (t = -2.915, P = 0.022) in BSK-db/db mice were significantly lower than in BSK-db/db homologous control mice. Taken together, CXCR6+T cells might play a role in T2D, and has the potential to become a biomarker for T2D patients.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo Fu
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haoran Wang
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Shuangshuang Jia
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhuangzhuang Ren
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, China
| | - Yufeng Zhang
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weihua Wang
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tingyu Li
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jun Zhao
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Hui Shi
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fulin Ge
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuan Gong
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenhui Liu
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Siwen Chen
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liang Liao
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingjie Zhuang
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiayue Tang
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Chu
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China.
| | - Shiping Xu
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Tingting Li
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Wu X, Pan B, Chu C, Zhang Y, Ma J, Xing Y, Ma Y, Zhu W, Zhong H, Alimu A, Zhou G, Liu S, Chen W, Li X, Puyi S. CXCL16/CXCR6/TGF-β Feedback Loop Between M-MDSCs and Treg Inhibits Anti-Bacterial Immunity During Biofilm Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409537. [PMID: 39716908 PMCID: PMC11831521 DOI: 10.1002/advs.202409537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Indexed: 12/25/2024]
Abstract
Staphylococcus aureus (S. aureus) is a leading cause of Periprosthetic joint infection (PJI), a severe complication after joint arthroplasty. Immunosuppression is a major factor contributing to the infection chronicity of S. aureus PJI, posing significant treatment challenges. This study investigates the relationship between the immunosuppressive biofilm milieu and S. aureus PJI outcomes in both discovery and validation cohorts. This scRNA-seq analysis of synovium from PJI patients reveals an expansion and heightened activity of monocyte-related myeloid-derived suppressor cells (M-MDSCs) and regulatory T cells (Treg). Importantly, CXCL16 is significantly upregulated in M-MDSCs, with its corresponding CXCR6 receptor also elevated on Treg. M-MDSCs recruit Treg and enhance its activity via CXCL16-CXCR6 interactions, while Treg secretes TGF-β, inducing M-MDSCs proliferation and immunosuppressive activity. Interfering with this cross-talk in vivo using Treg-specific CXCR6 knockout PJI mouse model reduces M-MDSCs/Treg-mediated immunosuppression and alleviates bacterial burden. Immunohistochemistry and recurrence analysis show that PJI patients with CXCR6high synovium have poor prognosis. This findings highlight the critical role of CXCR6 in Treg in orchestrating an immunosuppressive microenvironment and biofilm persistence during PJI, offering potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Baiqi Pan
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Chenghan Chu
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Yangchun Zhang
- Department of OrthopedicsThe People's Hospital of Baoan ShenzhenShenzhenGuangdong518101China
- Department of OrthopedicsThe Second Affiliated Hospital of Shenzhen UniversityShenzhenGuangdong518101China
| | - Jinjin Ma
- Technology School of MedicineSouth China University of TechnologyGuangzhouGuangdong510640China
- Shien‐ming Wu School of Intelligent EngineeringSouth China University of TechnologyGuangzhouGuangdong510640China
| | - Yang Xing
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Yuanchen Ma
- Department of OrthopedicsGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong519041China
| | - Wengang Zhu
- Department of Joint OrthopedicsYuebei People's HospitalShaoguanGuangdong512099China
| | - Huan Zhong
- Department of Joint SurgeryAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong524002China
| | - Aerman Alimu
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Guanming Zhou
- Department of OrthopedicsFoshan Hospital of Traditional Chinese MedicineGuangzhouGuangdong528051China
| | - Shuying Liu
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Weishen Chen
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| | - Xiang Li
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Sheng Puyi
- Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Clinical Research Center for Orthopedic DiseasesThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologyGuangzhouGuangdong510080China
| |
Collapse
|
4
|
Liu Z, Tao J, Zhu Y, Li D, Teng L. Silencing CXCR6 promotes epithelial-mesenchymal transition and invasion in colorectal cancer by activating the VEGFA/PI3K/AKT/mTOR pathway. Int Immunopharmacol 2024; 143:113529. [PMID: 39500082 DOI: 10.1016/j.intimp.2024.113529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/24/2024] [Accepted: 10/26/2024] [Indexed: 12/08/2024]
Abstract
This study investigated the role of C-X-C motif chemokine receptor 6 (CXCR6) in colorectal cancer (CRC). It was found that lower CXCR6 expression is correlates with poorer prognostic outcomes, suggesting that CXCR6 may inhibit tumor progression and thus improve patient outcomes. Silencing CXCR6 in CRC cell lines SW620 and CT-26 resulted in significantly enhanced migration and invasion, as demonstrated by wound healing and transwell assays. Further analysis revealed that CXCR6 activity is associated with activation of the VEGFA/PI3K/AKT/mTOR signaling pathway. Inhibition of this pathway through VEGFA siRNA and pathway-specific inhibitors reversed the effects of CXCR6 silencing on cell migration and invasion. Moreover, xenograft experiments showed that silencing CXCR6 led to increased tumor growth and upregulated proteins associated with the extracellular matrix and epithelial-mesenchymal transition. These findings were validated through immunohistochemical, immunofluorescence, and Western blot analyses. This study highlights CXCR6's critical role in CRC and its potential as a therapeutic target to manage cancer progression.
Collapse
Affiliation(s)
- Zhuo Liu
- Zhejiang University, Hangzhou 310058, China; Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jinhua Tao
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuping Zhu
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Dechuan Li
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Lisong Teng
- Department of Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
5
|
Chen HC, Wang HH, Kohn LA, Sailer D, Zhang S, McCarthy E, Seyedsadr M, Zhou Z, Yin X, Wilkinson N, Ortega J, Lechner MG, Hugo W, Su MA. UTX Epigenetically Imposes a Cytolytic Effector Program in Autoreactive Stem-like CD8+ T cell Progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628206. [PMID: 39763836 PMCID: PMC11702527 DOI: 10.1101/2024.12.12.628206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Type 1 Diabetes Mellitus (T1D) is an autoimmune disease caused by unremitting immune attack on pancreas insulin-producing beta cells. Persistence of the autoimmune response is mediated by TCF1+ Ly108+ progenitor CD8+ T (Tprog) cells, a stem-like population that gives rise to exhausted effectors with limited cytolytic function in chronic virus infection and cancer. What paradoxically drives Tprog conversion to highly cytolytic effectors in T1D, however, remains unclear. Here, we show that the epigenetic regulator UTX controls diabetogenic CD8+ Tprog differentiation by poising chromatin for transition to a cytolytic effector state. Indeed, deletion of UTX function in T cells impairs conversion of Tprog to autoimmune effectors and protects mice from spontaneous diabetes, as well as an aggressive form of autoimmune diabetes induced by anti-PD1 cancer immunotherapy. Furthermore, short-term treatment with UTX inhibitor GSKJ4 similarly protects from T1D, highlighting the therapeutic potential of targeting UTX-mediated mechanisms to break unremitting autoimmune responses.
Collapse
Affiliation(s)
- Ho-Chung Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Hsing Hui Wang
- Department of Pediatrics, UNC Chapel Hill, Chapel Hill, NC, 27599
| | - Lisa A. Kohn
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - David Sailer
- Department of Pediatrics, UNC Chapel Hill, Chapel Hill, NC, 27599
| | - Shirley Zhang
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Ethan McCarthy
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Maryam Seyedsadr
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Zikang Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Xihui Yin
- Department of Biology, Massachusetts Institute of Technology, Boston, MA 02139
| | - Nicole Wilkinson
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Jessica Ortega
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Melissa G. Lechner
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Willy Hugo
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Department of Pediatrics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Lead contact
| |
Collapse
|
6
|
Leroux LP, Chaparro V, Plouffe A, Johnston B, Jaramillo M. Toxoplasma gondii infection induces the expression of the chemokine CXCL16 in macrophages to promote chemoattraction of CXCR6 + cells. Infect Immun 2024; 92:e0030924. [PMID: 39436058 PMCID: PMC11556035 DOI: 10.1128/iai.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
CXCL16 is a multifaceted chemokine expressed by macrophages and other immune cells in response to viral and bacterial pathogens. However, few studies have investigated its role in parasitic infections. The obligate intracellular parasite Toxoplasma gondii (T. gondii) is the causative agent of toxoplasmosis, an infection with potentially deleterious consequences in immunocompromised individuals and the developing fetus of acutely infected pregnant women. Chemokines are critical mediators of host defense and, as such, dysregulation of their expression is a subversion strategy often employed by the parasite to ensure its survival. Herein, we report that types I and II T. gondii strains upregulated the expression of both transmembrane and soluble forms of CXCL16 in infected bone marrow-derived macrophages (BMDM). Exposure to soluble T. gondii antigens (STAg) and to excreted-secreted proteins (TgESP) led to the induction of CXCL16. Cxcl16 mRNA abundance and CXCL16 protein levels increased in a time-dependent manner upon T. gondii infection. Importantly, conditioned medium (CM) collected from T. gondii-infected wild-type (WT) macrophage cultures promoted the migration of RAW264.7 cells expressing CXCR6, the cognate receptor of CXCL16, an effect that was significantly reduced by a neutralizing anti-CXCL16 antibody or use of CM from CXCL16 knockout (KO) macrophages. Lastly, T. gondii-driven CXCL16 expression appeared to modulate cytokine-induced (IL-4 + IL-13) alternative macrophage activation and M2 phenotypic marker expression. Further investigation is required to determine whether this chemokine contributes to the pathogenesis of toxoplasmosis and to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Visnu Chaparro
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Alexandra Plouffe
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| |
Collapse
|
7
|
Boudigou M, Frutoso M, Hémon P, Le Dantec C, Chatzis L, Devauchelle V, Jamin C, Cornec D, Pers JO, Le Pottier L, Hillion S. Phenotypic, transcriptomic, and spatial characterization of CD45RB + naïve mature B cells: Implications in Sjögren's disease. Clin Immunol 2024; 268:110378. [PMID: 39393568 DOI: 10.1016/j.clim.2024.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
The conventional classification of mature B cells overlooks the diversity within IgD+ CD27- naïve B cells. Here, to identify distinct mature naïve B cells, we categorized CD45RBMEM55- B cells (NA RB-) and CD45RBMEM55+ B cells (NA RB+) and explore their function and localization in circulation and tissues under physiological and pathological conditions. NA RB+ B cells, found in secondary lymphoid organs, differentiate into plasmablasts and secrete IgM. In Sjögren's disease, their numbers decrease, and they show over-activation and abnormal migration, suggesting an adaptive disease response. NA RB+ B cells also appear in inflamed salivary glands, indicating involvement in local immune responses. These findings highlight the distinct roles of NA RB+ B cells in health and Sjögren's disease.
Collapse
Affiliation(s)
| | | | | | | | - Loukas Chatzis
- UMR1227, LBAI, Univ Brest, Inserm, Brest, France; Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Divi Cornec
- UMR1227, LBAI, Univ Brest, Inserm, and CHU Brest, Brest, France
| | | | | | - Sophie Hillion
- UMR1227, LBAI, Univ Brest, Inserm, and CHU Brest, Brest, France.
| |
Collapse
|
8
|
Chuensirikulchai K, Pata S, Laopajon W, Takheaw N, Kotemul K, Jindaphun K, Khummuang S, Kasinrerk W. Identification of different functions of CD8 + T cell subpopulations by a novel monoclonal antibody. Immunology 2024; 173:321-338. [PMID: 38922845 DOI: 10.1111/imm.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The explicit identification of CD8+ T cell subpopulation is important for deciphering the role of CD8+ T cells for protecting our body against invading pathogens and cancer. Our generated monoclonal antibody (mAb), named FE-1H10, recognized two novel subpopulations of peripheral blood CD8+ T cells, FE-1H10+ and FE-1H10- CD8+ T cells. The molecule recognized by mAb FE-1H10 (FE-1H10 molecules) had a higher distribution on effector memory CD8+ T cell subsets. The functions of FE-1H10- and FE-1H10+ CD8+ T cells were investigated. T cell proliferation assays revealed that FE-1H10- CD8+ T cells exhibited a higher proliferation rate than FE-1H10+ CD8+ T cells, whereas FE-1H10+ CD8+ T cells produced higher levels of IFN-γ and TNF-α than FE-1H10- CD8+ T cells. In T cell cytotoxicity assays, FE-1H10+ CD8+ T cells were able to kill target cells better than FE-1H10- CD8+ T cells. RNA-sequencing analysis confirmed that these subpopulations were distinct: FE-1H10+ CD8+ T cells have higher expression of genes involved in effector functions (IFNG, TNF, GZMB, PRF1, GNLY, FASL, CX3CR1) while FE-1H10- CD8+ T cells have greater expression of genes related to memory CD8+ T cell populations (CCR7, SELL, TCF7, CD40LG). The results suggested that mAb FE-1H10 identifies two novel distinctive CD8+ T cell subpopulations. The FE-1H10+ CD8+ T cells carried a superior functionality in response to tumour cells. The uncover of these novel CD8+ T cell subpopulations may be the basis knowledge of an optional immunotherapy for the selection of potential CD8+ T cells in cancer treatment.
Collapse
Affiliation(s)
| | - Supansa Pata
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Witida Laopajon
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kamonporn Kotemul
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kanyaruck Jindaphun
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Saichit Khummuang
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Ibraheem Y, Bayarsaikhan G, Macalinao ML, Kimura K, Yui K, Aoshi T, Inoue SI. γδ T cell-mediated activation of cDC1 orchestrates CD4 + Th1 cell priming in malaria. Front Immunol 2024; 15:1426316. [PMID: 39211036 PMCID: PMC11357926 DOI: 10.3389/fimmu.2024.1426316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
γδ T cells facilitate the CD4+ T helper 1 (Th1) cell response against Plasmodium infection by activating conventional dendritic cells (cDCs), although the underlying mechanism remains elusive. Our study revealed that γδ T cells promote the complete maturation and production of interleukin-12 and CXCR3-ligands specifically in type 1 cDCs (cDC1), with minimal impact on cDC2 and monocyte derived DCs (Mo-DCs). During the initial infection phase, γδ T cell activation and temporal accumulation in the splenic white pulp, alongside cDC1, occur via CCR7-signaling. Furthermore, cDC1/γδ T cell interactions in the white pulp are amplified through CXCR3 signaling in γδ T cells, optimizing Th1 cell priming by cDC1. We also demonstrated how transitional Th1 cells arise in the white pulp before establishing their presence in the red pulp as fully differentiated Th1 cells. Additionally, we elucidate the reciprocal activation between γδ T cells and cDC1s. These findings suggest that Th1 cell priming is orchestrated by this reciprocal activation in the splenic white pulp during the early phase of blood-stage Plasmodium infection.
Collapse
MESH Headings
- Th1 Cells/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Animals
- Mice
- Lymphocyte Activation/immunology
- Malaria/immunology
- Malaria/parasitology
- Mice, Inbred C57BL
- Receptors, CXCR3/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, CCR7/metabolism
- Receptors, CCR7/immunology
- Signal Transduction
- Spleen/immunology
- Cell Differentiation/immunology
- Female
Collapse
Affiliation(s)
- Yarob Ibraheem
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ganchimeg Bayarsaikhan
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Kazumi Kimura
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuyuki Yui
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Taiki Aoshi
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shin-Ichi Inoue
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
10
|
Choi Y, Saron WA, O'Neill A, Senanayake M, Wilder-Smith A, Rathore AP, St John AL. NKT cells promote Th1 immune bias to dengue virus that governs long-term protective antibody dynamics. J Clin Invest 2024; 134:e169251. [PMID: 39088280 PMCID: PMC11405039 DOI: 10.1172/jci169251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
NKT cells are innate-like T cells, recruited to the skin during viral infection, yet their contributions to long-term immune memory to viruses are unclear. We identified granzyme K, a product made by cytotoxic cells including NKT cells, as linked to induction of Th1-associated antibodies during primary dengue virus (DENV) infection in humans. We examined the role of NKT cells in vivo using DENV-infected mice lacking CD1d-dependent (CD1ddep) NKT cells. In CD1d-KO mice, Th1-polarized immunity and infection resolution were impaired, which was dependent on intrinsic NKT cell production of IFN-γ, since it was restored by adoptive transfer of WT but not IFN-γ-KO NKT cells. Furthermore, NKT cell deficiency triggered immune bias, resulting in higher levels of Th2-associated IgG1 than Th1-associated IgG2a, which failed to protect against a homologous DENV rechallenge and promoted antibody-dependent enhanced disease during secondary heterologous infections. Similarly, Th2 immunity, typified by a higher IgG4/IgG3 ratio, was associated with worsened human disease severity during secondary infections. Thus, CD1ddep NKT cells establish Th1 polarity during the early innate response to DENV, which promotes infection resolution, memory formation, and long-term protection from secondary homologous and heterologous infections in mice, with consistent associations observed in humans. These observations illustrate how early innate immune responses during primary infections can influence secondary infection outcomes.
Collapse
Affiliation(s)
- Youngjoo Choi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Wilfried Aa Saron
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Aled O'Neill
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Manouri Senanayake
- Department of Paediatrics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Lady Ridgeway Children's Hospital, Colombo, Sri Lanka
| | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Abhay Ps Rathore
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley L St John
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore
| |
Collapse
|
11
|
Seyedsadr M, Bang MF, McCarthy EC, Zhang S, Chen HC, Mohebbi M, Hugo W, Whitmire JK, Lechner MG, Su MA. A pathologically expanded, clonal lineage of IL-21-producing CD4+ T cells drives inflammatory neuropathy. J Clin Invest 2024; 134:e178602. [PMID: 39087473 PMCID: PMC11290969 DOI: 10.1172/jci178602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
Inflammatory neuropathies, which include chronic inflammatory demyelinating polyneuropathy (CIDP) and Guillain Barré syndrome (GBS), result from autoimmune destruction of the PNS and are characterized by progressive weakness and sensory loss. CD4+ T cells play a key role in the autoimmune destruction of the PNS. Yet, key properties of pathogenic CD4+ T cells remain incompletely understood. Here, we used paired single-cell RNA-Seq (scRNA-Seq) and single-cell T cell receptor-sequencing (scTCR-Seq) of peripheral nerves from an inflammatory neuropathy mouse model to identify IL-21-expressing CD4+ T cells that were clonally expanded and multifunctional. These IL-21-expressing CD4+ T cells consisted of 2 transcriptionally distinct expanded cell populations, which expressed genes associated with T follicular helper (Tfh) and T peripheral helper (Tph) cell subsets. Remarkably, TCR clonotypes were shared between these 2 IL-21-expressing cell populations, suggesting a common lineage differentiation pathway. Finally, we demonstrated that IL-21 receptor-KO (IL-21R-KO) mice were protected from neuropathy development and had decreased immune infiltration into peripheral nerves. IL-21 signaling upregulated CXCR6, a chemokine receptor that promotes CD4+ T cell localization in peripheral nerves. Together, these findings point to IL-21 signaling, Tfh/Tph differentiation, and CXCR6-mediated cellular localization as potential therapeutic targets in inflammatory neuropathies.
Collapse
Affiliation(s)
| | - Madison F. Bang
- Department of Microbiology, Immunology, and Molecular Genetics and
| | | | - Shirley Zhang
- Department of Microbiology, Immunology, and Molecular Genetics and
| | - Ho-Chung Chen
- Department of Microbiology, Immunology, and Molecular Genetics and
| | - Mahnia Mohebbi
- Department of Microbiology, Immunology, and Molecular Genetics and
| | - Willy Hugo
- Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Jason K. Whitmire
- Department of Genetics, UNC Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melissa G. Lechner
- Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics and
- Department of Pediatrics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
12
|
Wang FT, Wu TQ, Lin Y, Jiao YR, Li JY, Ruan Y, Yin L, Chen CQ. The role of the CXCR6/CXCL16 axis in the pathogenesis of fibrotic disease. Int Immunopharmacol 2024; 132:112015. [PMID: 38608478 DOI: 10.1016/j.intimp.2024.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
CXC chemokine receptor 6 (CXCR6), a seven-transmembrane domain G-protein-coupled receptor, plays a pivotal regulatory role in inflammation and tissue damage through its interaction with CXC chemokine ligand 16 (CXCL16). This axis is implicated in the pathogenesis of various fibrotic diseases and correlates with clinical parameters that indicate disease severity, activity, and prognosis in organ fibrosis, including afflictions of the liver, kidney, lung, cardiovascular system, skin, and intestines. Soluble CXCL16 (sCXCL16) serves as a chemokine, facilitating the migration and recruitment of CXCR6-expressing cells, while membrane-bound CXCL16 (mCXCL16) functions as a transmembrane protein with adhesion properties, facilitating intercellular interactions by binding to CXCR6. The CXCR6/CXCL16 axis is established to regulate the cycle of damage and repair during chronic inflammation, either through modulating immune cell-mediated intercellular communication or by independently influencing fibroblast homing, proliferation, and activation, with each pathway potentially culminating in the onset and progression of fibrotic diseases. However, clinically exploiting the targeting of the CXCR6/CXCL16 axis requires further elucidation of the intricate chemokine interactions within fibrosis pathogenesis. This review explores the biology of CXCR6/CXCL16, its multifaceted effects contributing to fibrosis in various organs, and the prospective clinical implications of these insights.
Collapse
Affiliation(s)
- Fang-Tao Wang
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tian-Qi Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yin Lin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi-Ran Jiao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Yuan Li
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Ruan
- Surgery and Anesthesia Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chun-Qiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
13
|
Costa MR. Switch of innate to adaptative immune responses in the brain of patients with Alzheimer's disease correlates with tauopathy progression. NPJ AGING 2024; 10:19. [PMID: 38499592 PMCID: PMC10948755 DOI: 10.1038/s41514-024-00145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Neuroinflammation is a key feature of Alzheimer's disease (AD). In this work, analysis of single- cell RNA-sequencing (scRNA-seq) data obtained from the brain of patients with AD provides evidence supporting a switch from an innate to an adaptative immune response during tauopathy progression, with both disease-associated microglia (DAM) and CD8+ T cells becoming more frequent at advanced Braak stages.
Collapse
Affiliation(s)
- Marcos R Costa
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risqué et déterminants moléculaires des maladies liées au vieillissement, DISTALZ, 1 rue du Professeur Calmette, 59019, Lille, France.
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
14
|
Bender C, Müller P, Tondello C, Horn J, Holdener M, Lasch S, Bayer M, Pfeilschifter JM, Tacke F, Ludwig A, Hansmann ML, Döring C, Hintermann E, Christen U. Gene-expression profiling of laser-dissected islets and studies in deficient mice reveal chemokines as differential driving force of type 1 diabetes. J Autoimmun 2024; 143:103161. [PMID: 38141419 DOI: 10.1016/j.jaut.2023.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Although type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing β-cells, its treatment is largely restricted to exogenous insulin administration. Only few therapies targeting the autoaggressive immune system have been introduced into clinical practice or are considered in clinical trials. Here, we provide a gene expression profile of the islet microenvironment obtained by laser-dissection microscopy in an inducible mouse model. Thereby, we have identified novel targets for immune intervention. Increased gene expression of most inflammatory proteins was apparent at day 10 after T1D induction and largely paralleled the observed degree of insulitis. We further focused on genes involved in leukocyte migration, including chemokines and their receptors. Besides the critical chemokine CXCL10, we found several other chemokines upregulated locally in temporary or chronic manner. Localization of the chemokine ligand/receptor pairs to the islet microenvironment has been confirmed by RNAscope. Interference with the CXCL16-CXCR6 and CX3CL1-CX3CR1 axes, but not the CCL5-CCR1/3/5 axis, resulted in reduced insulitis and lower T1D incidence. Further, we found that the receptors for the differentially expressed chemokines CXCL10, CXCL16 and CX3CL1 are distributed unevenly among islet autoantigen-specific T cells, which explains why the interference with just one chemokine axis cannot completely abrogate insulitis and T1D.
Collapse
Affiliation(s)
- Christine Bender
- Institute for Pharmacology and Toxicology Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Peter Müller
- Institute for Pharmacology and Toxicology Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Camilla Tondello
- Institute for Pharmacology and Toxicology Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jessica Horn
- Institute for Pharmacology and Toxicology Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Holdener
- Institute for Pharmacology and Toxicology Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stanley Lasch
- Institute for Pharmacology and Toxicology Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Monika Bayer
- Institute for Pharmacology and Toxicology Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Josef M Pfeilschifter
- Institute for Pharmacology and Toxicology Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, University Hospital, RWTH Aachen, Aachen, Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Edith Hintermann
- Institute for Pharmacology and Toxicology Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Urs Christen
- Institute for Pharmacology and Toxicology Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Seyedsadr M, Bang M, McCarthy E, Zhang S, Chen HC, Mohebbi M, Hugo W, Whitmire JK, Lechner MG, Su MA. A pathologically expanded, clonal lineage of IL-21 producing CD4+ T cells drives Inflammatory neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574553. [PMID: 38260637 PMCID: PMC10802410 DOI: 10.1101/2024.01.07.574553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Inflammatory neuropathies, which include CIDP (chronic inflammatory demyelinating polyneuropathy) and GBS (Guillain Barre Syndrome), result from autoimmune destruction of the peripheral nervous system (PNS) and are characterized by progressive weakness and sensory loss. CD4+ T cells play a key role in the autoimmune destruction of the PNS. Yet, key properties of pathogenic CD4+ T cells remain incompletely understood. Here, we use paired scRNAseq and scTCRseq of peripheral nerves from an inflammatory neuropathy mouse model to identify IL-21 expressing CD4+ T cells that are clonally expanded and multifunctional. These IL-21-expressing CD4+ T cells are comprised of two transcriptionally distinct expanded populations, which express genes associated with Tfh and Tph subsets. Remarkably, TCR clonotypes are shared between these two IL-21-expressing populations, suggesting a common lineage differentiation pathway. Finally, we demonstrate that IL-21 signaling is required for neuropathy development and pathogenic T cell infiltration into peripheral nerves. IL-21 signaling upregulates CXCR6, a chemokine receptor that promotes CD4+ T cell localization in peripheral nerves. Together, these findings point to IL-21 signaling, Tfh/Tph differentiation, and CXCR6-mediated cellular localization as potential therapeutic targets in inflammatory neuropathies.
Collapse
Affiliation(s)
- Maryamsadat Seyedsadr
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Madison Bang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Ethan McCarthy
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Shirley Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Ho-Chung Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Mahnia Mohebbi
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Willy Hugo
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | | | - Melissa G. Lechner
- Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Department of Pediatrics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| |
Collapse
|
16
|
Zou D, Yin Z, Yi SG, Wang G, Guo Y, Xiao X, Li S, Zhang X, Gonzalez NM, Minze LJ, Wang L, Wong STC, Osama Gaber A, Ghobrial RM, Li XC, Chen W. CD4 + T cell immunity is dependent on an intrinsic stem-like program. Nat Immunol 2024; 25:66-76. [PMID: 38168955 PMCID: PMC11064861 DOI: 10.1038/s41590-023-01682-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024]
Abstract
CD4+ T cells are central to various immune responses, but the molecular programs that drive and maintain CD4+ T cell immunity are not entirely clear. Here we identify a stem-like program that governs the CD4+ T cell response in transplantation models. Single-cell-transcriptomic analysis revealed that naive alloantigen-specific CD4+ T cells develop into TCF1hi effector precursor (TEP) cells and TCF1-CXCR6+ effectors in transplant recipients. The TCF1-CXCR6+CD4+ effectors lose proliferation capacity and do not reject allografts upon adoptive transfer into secondary hosts. By contrast, the TCF1hiCD4+ TEP cells have dual features of self-renewal and effector differentiation potential, and allograft rejection depends on continuous replenishment of TCF1-CXCR6+ effectors from TCF1hiCD4+ TEP cells. Mechanistically, TCF1 sustains the CD4+ TEP cell population, whereas the transcription factor IRF4 and the glycolytic enzyme LDHA govern the effector differentiation potential of CD4+ TEP cells. Deletion of IRF4 or LDHA in T cells induces transplant acceptance. These findings unravel a stem-like program that controls the self-renewal capacity and effector differentiation potential of CD4+ TEP cells and have implications for T cell-related immunotherapies.
Collapse
Affiliation(s)
- Dawei Zou
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng Yin
- Systems Medicine and Bioengineering Department, Houston Methodist Neal Cancer Center, Houston, TX, USA
- Department of Radiology, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX, USA
| | - Stephanie G Yi
- Department of Surgery, J. C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Guohua Wang
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Yang Guo
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Xiang Xiao
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Shuang Li
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Xiaolong Zhang
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Nancy M Gonzalez
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Laurie J Minze
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Lin Wang
- Systems Medicine and Bioengineering Department, Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Stephen T C Wong
- Systems Medicine and Bioengineering Department, Houston Methodist Neal Cancer Center, Houston, TX, USA
- Department of Radiology, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX, USA
| | - A Osama Gaber
- Department of Surgery, J. C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Rafik M Ghobrial
- Department of Surgery, J. C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Xian C Li
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
17
|
Macalinao ML, Inoue SI, Tsogtsaikhan S, Matsumoto H, Bayarsaikhan G, Jian JY, Kimura K, Yasumizu Y, Inoue T, Yoshida H, Hafalla J, Kimura D, Yui K. IL-27 produced during acute malaria infection regulates Plasmodium-specific memory CD4 + T cells. EMBO Mol Med 2023; 15:e17713. [PMID: 37855243 DOI: 10.15252/emmm.202317713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Malaria infection elicits both protective and pathogenic immune responses, and IL-27 is a critical cytokine that regulate effector responses during infection. Here, we identified a critical window of CD4+ T cell responses that is targeted by IL-27. Neutralization of IL-27 during acute infection with Plasmodium chabaudi expanded specific CD4+ T cells, which were maintained at high levels thereafter. In the chronic phase, Plasmodium-specific CD4+ T cells in IL-27-neutralized mice consisted mainly of CD127+ KLRG1- and CD127- KLRG1+ subpopulations that displayed distinct cytokine production, proliferative capacity, and are maintained in a manner independent of active infection. Single-cell RNA-seq analysis revealed that these CD4+ T cell subsets formed independent clusters that express unique Th1-type genes. These IL-27-neutralized mice exhibited enhanced cellular and humoral immune responses and protection. These findings demonstrate that IL-27, which is produced during the acute phase of malaria infection, inhibits the development of unique Th1 memory precursor CD4+ T cells, suggesting potential implications for the development of vaccines and other strategic interventions.
Collapse
Affiliation(s)
- Maria Lourdes Macalinao
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Sanjaadorj Tsogtsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hirotaka Matsumoto
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Ganchimeg Bayarsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Jiun-Yu Jian
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kazumi Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Julius Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Daisuke Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuyuki Yui
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
McElwee MK, Dileepan T, Mahmud SA, Jenkins MK. The CD4+ T cell repertoire specific for citrullinated peptides shows evidence of immune tolerance. J Exp Med 2023; 220:e20230209. [PMID: 37831103 PMCID: PMC10570851 DOI: 10.1084/jem.20230209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/27/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Rheumatoid arthritis occurs most often in people who express HLA-DR molecules containing a five aa "shared epitope" in the β chain. These MHCII molecules preferentially bind citrullinated peptides formed by posttranslational modification of arginine. Citrullinated peptide:HLA-DR complexes may act as arthritis-initiating neo-antigens for CD4+ T cells. Here, we used fluorophore-conjugated HLA-DR tetramers containing citrullinated peptides from human cartilage intermediate layer protein, fibrinogen, vimentin, or enolase 1 to track cognate CD4+ T cells. Immunization of HLA-DR transgenic mice with citrullinated peptides from vimentin or enolase 1 failed to cause any expansion of tetramer-binding cells, whereas immunization with citrullinated peptides from cartilage intermediate layer protein or fibrinogen elicited some expansion. The expanded tetramer-binding populations, however, had lower T helper 1 and higher regulatory T cell frequencies than populations elicited by viral peptides. These results indicate that HLA-DR-bound citrullinated peptides are not neo-antigens and induce varying degrees of immune tolerance that could pose a barrier to rheumatoid arthritis.
Collapse
Affiliation(s)
- Matthew K. McElwee
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Rheumatic and Autoimmune Diseases, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Thamotharampillai Dileepan
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Shawn A. Mahmud
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Division of Pediatric Rheumatology, Allergy and Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Marc K. Jenkins
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
19
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
20
|
Bao N, Fu B, Zhong X, Jia S, Ren Z, Wang H, Wang W, Shi H, Li J, Ge F, Chang Q, Gong Y, Liu W, Qiu F, Xu S, Li T. Role of the CXCR6/CXCL16 axis in autoimmune diseases. Int Immunopharmacol 2023; 121:110530. [PMID: 37348231 DOI: 10.1016/j.intimp.2023.110530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The C-X-C motif ligand 16, or CXCL16, is a chemokine that belongs to the ELR - CXC subfamily. Its function is to bind to the chemokine receptor CXCR6, which is a G protein-coupled receptor with 7 transmembrane domains. The CXCR6/CXCL16 axis has been linked to the development of numerous autoimmune diseases and is connected to clinical parameters that reflect disease severity, activity, and prognosis in conditions such as multiple sclerosis, autoimmune hepatitis, rheumatoid arthritis, Crohn's disease, and psoriasis. CXCL16 is expressed in various immune cells, such as dendritic cells, monocytes, macrophages, and B cells. During autoimmune diseases, CXCL16 can facilitate the adhesion of immune cells like monocytes, T cells, NKT cells, and others to endothelial cells and dendritic cells. Additionally, sCXCL16 can regulate the migration of CXCR6-expressing leukocytes, which includes CD8+ T cells, CD4+ T cells, NK cells, constant natural killer T cells, plasma cells, and monocytes. Further investigation is required to comprehend the intricate interactions between chemokines and the pathogenesis of autoimmune diseases. It remains to be seen whether the CXCR6/CXCL16 axis represents a new target for the treatment of these conditions.
Collapse
Affiliation(s)
- Nandi Bao
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Zhong
- Department of neurology, School of Medicine, South China University of Technology, Guangzhou, China; Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Shuangshuang Jia
- Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China; Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Zhuangzhuang Ren
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weihua Wang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hui Shi
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fulin Ge
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuan Gong
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wenhui Liu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China.
| | - Shiping Xu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Tingting Li
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
21
|
Lechner MG, Zhou Z, Hoang AT, Huang N, Ortega J, Scott LN, Chen HC, Patel AY, Yakhshi-Tafti R, Kim K, Hugo W, Famini P, Drakaki A, Ribas A, Angell TE, Su MA. Clonally expanded, thyrotoxic effector CD8 + T cells driven by IL-21 contribute to checkpoint inhibitor thyroiditis. Sci Transl Med 2023; 15:eadg0675. [PMID: 37196065 PMCID: PMC10227862 DOI: 10.1126/scitranslmed.adg0675] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Autoimmune toxicity occurs in up to 60% of patients treated with immune checkpoint inhibitor (ICI) therapy for cancer and represents an increasing clinical challenge for expanding the use of these treatments. To date, human immunopathogenic studies of immune-related adverse events (IRAEs) have relied on sampling of circulating peripheral blood cells rather than affected tissues. Here, we directly obtained thyroid specimens from individuals with ICI-thyroiditis, one of the most common IRAEs, and compared immune infiltrates with those from individuals with spontaneous autoimmune Hashimoto's thyroiditis (HT) or no thyroid disease. Single-cell RNA sequencing revealed a dominant, clonally expanded population of thyroid-infiltrating cytotoxic CXCR6+ CD8+ T cells (effector CD8+ T cells) present in ICI-thyroiditis but not HT or healthy controls. Furthermore, we identified a crucial role for interleukin-21 (IL-21), a cytokine secreted by intrathyroidal T follicular (TFH) and T peripheral helper (TPH) cells, as a driver of these thyrotoxic effector CD8+ T cells. In the presence of IL-21, human CD8+ T cells acquired the activated effector phenotype with up-regulation of the cytotoxic molecules interferon-γ (IFN-γ) and granzyme B, increased expression of the chemokine receptor CXCR6, and thyrotoxic capacity. We validated these findings in vivo using a mouse model of IRAEs and further demonstrated that genetic deletion of IL-21 signaling protected ICI-treated mice from thyroid immune infiltration. Together, these studies reveal mechanisms and candidate therapeutic targets for individuals who develop IRAEs.
Collapse
Affiliation(s)
- Melissa G. Lechner
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Zikang Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Aline T. Hoang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Drexel Medical School; Philadelphia, PA 19129
| | - Nicole Huang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Jessica Ortega
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Lauren N. Scott
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Ho-Chung Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Anushi Y. Patel
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Rana Yakhshi-Tafti
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Rosalind Franklin Medical School; Chicago, IL 60064
| | - Kristy Kim
- UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Willy Hugo
- Division of Dermatology, Department of Medicine, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Pouyan Famini
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Alexandra Drakaki
- Division of Hematology and Oncology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Antoni Ribas
- Division of Hematology and Oncology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Trevor E. Angell
- Division of Endocrinology and Diabetes, USC Keck School of Medicine; Los Angeles, CA 90033
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
- Division of Pediatric Endocrinology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| |
Collapse
|
22
|
Stadinski BD, Cleveland SB, Brehm MA, Greiner DL, Huseby PG, Huseby ES. I-A g7 β56/57 polymorphisms regulate non-cognate negative selection to CD4 + T cell orchestrators of type 1 diabetes. Nat Immunol 2023; 24:652-663. [PMID: 36807641 PMCID: PMC10623581 DOI: 10.1038/s41590-023-01441-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Genetic susceptibility to type 1 diabetes is associated with homozygous expression of major histocompatibility complex class II alleles that carry specific beta chain polymorphisms. Why heterozygous expression of these major histocompatibility complex class II alleles does not confer a similar predisposition is unresolved. Using a nonobese diabetic mouse model, here we show that heterozygous expression of the type 1 diabetes-protective allele I-Ag7 β56P/57D induces negative selection to the I-Ag7-restricted T cell repertoire, including beta-islet-specific CD4+ T cells. Surprisingly, negative selection occurs despite I-Ag7 β56P/57D having a reduced ability to present beta-islet antigens to CD4+ T cells. Peripheral manifestations of non-cognate negative selection include a near complete loss of beta-islet-specific CXCR6+ CD4+ T cells, an inability to cross-prime islet-specific glucose-6-phosphatase catalytic subunit-related protein and insulin-specific CD8+ T cells and disease arrest at the insulitis stage. These data reveal that negative selection on non-cognate self-antigens in the thymus can promote T cell tolerance and protection from autoimmunity.
Collapse
Affiliation(s)
- Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sarah B Cleveland
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael A Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Priya G Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
23
|
Savage TM, Vincent RL, Rae SS, Huang LH, Ahn A, Pu K, Li F, de los Santos-Alexis K, Coker C, Danino T, Arpaia N. Chemokines expressed by engineered bacteria recruit and orchestrate antitumor immunity. SCIENCE ADVANCES 2023; 9:eadc9436. [PMID: 36888717 PMCID: PMC9995032 DOI: 10.1126/sciadv.adc9436] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/07/2023] [Indexed: 05/28/2023]
Abstract
Tumors use multiple mechanisms to actively exclude immune cells involved in antitumor immunity. Strategies to overcome these exclusion signals remain limited due to an inability to target therapeutics specifically to the tumor. Synthetic biology enables engineering of cells and microbes for tumor-localized delivery of therapeutic candidates previously unavailable using conventional systemic administration techniques. Here, we engineer bacteria to intratumorally release chemokines to attract adaptive immune cells into the tumor environment. Bacteria expressing an activating mutant of the human chemokine CXCL16 (hCXCL16K42A) offer therapeutic benefit in multiple mouse tumor models, an effect mediated via recruitment of CD8+ T cells. Furthermore, we target the presentation of tumor-derived antigens by dendritic cells, using a second engineered bacterial strain expressing CCL20. This led to type 1 conventional dendritic cell recruitment and synergized with hCXCL16K42A-induced T cell recruitment to provide additional therapeutic benefit. In summary, we engineer bacteria to recruit and activate innate and adaptive antitumor immune responses, offering a new cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Thomas M. Savage
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Rosa L. Vincent
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Sarah S. Rae
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Lei Haley Huang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Alexander Ahn
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Kelly Pu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fangda Li
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | | | - Courtney Coker
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
24
|
Shantha Kumara H, Poppy A, Gamage DN, Mitra N, Yan X, Hedjar Y, Cekic V, Whelan RL. Compared to preoperative plasma levels post-operative urokinase-type plasminogen activator-1 levels are persistently elevated for 6 weeks after minimally invasive colorectal resection. J Gastrointest Oncol 2023; 14:187-197. [PMID: 36915462 PMCID: PMC10007942 DOI: 10.21037/jgo-22-113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/27/2022] [Indexed: 02/16/2023] Open
Abstract
Background Urokinase-type plasminogen activator-1 (uPA) is a serine protease that converts plasminogen to plasmin after binding to uPA receptor (uPAR). Plasmin catalyzes the regeneration of basement membrane, extracellular matrix, and other tissues. uPA alone and with plasmin leads to activation of angiogenic growth factors that impact tumor cell proliferation, adhesion, and migration. uPA over expression has been noted in colorectal cancer (CRC) and high tissue levels have been correlated with prognosis. uPA/uPAR promotes immune cell activation in healing surgical wounds and may alter perioperative uPA plasma levels. Postoperative (postop) plasma levels, if elevated, may impact the early growth of residual metastases. The impact of minimally invasive colorectal resection (MICR) surgery for CRC on plasma uPA levels is unknown. This study's aim was to measure plasma uPA levels during the first postop month. Methods CRC patients undergoing MICR who enrolled in an Institutional Review Board (IRB) approved data/plasma bank for whom adequate plasma was available were included in the study. Patients who had chemotherapy or radiotherapy within 4 weeks, those who received blood transfusions perioperatively and immunosuppressed patients were excluded. Clinical and pathological data were prospectively collected as were blood samples preoperatively, postop day (POD) 1, 3 and at least 1 late time point between POD 7-41. Plasma was isolated and stored at -80 ℃. Late samples were bundled into 7-day blocks and considered as single time points. Total uPA levels (ng/mL) were analyzed in duplicate via enzyme-linked immunosorbent assay (ELISA) and results reported as mean ± standard deviation (SD). The Wilcoxon paired t-test was used for analysis. Results Ninety-three patients undergoing MICR for CRC [colonic 68%; rectal 32%; average age 65.6 years, laparoscopic 63%, hand-assisted minimally invasive surgery (MIS) 37%] who met criteria were studied. Cancer stage breakdown was; stage I, 30%, stage II, 29%, stage III, 34%, stage IV, 7%. The median preoperative (preop) uPA plasma level (ng/mL) was 529.8 [95% confidence interval (CI): 462.8, 601.1] (n=93). Significant elevations in median levels vs. preop were present during POD 3 (542.8, 95% CI: 518.8, 597.3, n=86, P=0.003), POD 7-13 (688.1, 95% CI: 591.7, 753.0, n=72, P<0.001), POD 14-20 (764.9, 95% CI: 704.1, 911.6, n=27, P<0.001), POD 21-27 (685.6, 95% CI: 443.8, 835.8, n=15, P<0.001), and on POD 28-41 (800.3, 95% CI: 626.9, 940.6, n=21, P<0.001). The colon cancer subgroup's preop and POD 14-20 median results were significantly higher than the corresponding rectal cancer results; otherwise, at the other 5 postop time points there were no significant differences between the rectal and colon cancer subgroups. In addition, no association was found between cancer stage and preop uPA levels and no significant differences were found in postop uPA levels between the hand-assisted laparoscopic group and the lap assisted subgroup at any of the postop time points. Conclusions Persistently elevated plasma uPA levels at 5/6 postop time point (P<0.05), in combination with other previously demonstrated long duration proangiogenic plasma protein changes, may render the plasma proangiogenic within the period of the first month post-surgery and may promote angiogenesis within the residual tumor foci. The clinical significance pertaining to these changes, if any, is uncertain and remains to be proven.
Collapse
Affiliation(s)
- Hmc Shantha Kumara
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Addison Poppy
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Dasuni N Gamage
- Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Neil Mitra
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Xiaohong Yan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Yanni Hedjar
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Vesna Cekic
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Richard L Whelan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell 500 Hofstra Blvd., Hempstead, NY, USA
| |
Collapse
|
25
|
Xu Y, Li Y, Wang C, Han T, Liu H, Sun L, Hong J, Hashimoto M, Wei J. The reciprocal interactions between microglia and T cells in Parkinson's disease: a double-edged sword. J Neuroinflammation 2023; 20:33. [PMID: 36774485 PMCID: PMC9922470 DOI: 10.1186/s12974-023-02723-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
In Parkinson's disease (PD), neurotoxic microglia, Th1 cells, and Th17 cells are overactivated. Overactivation of these immune cells exacerbates the disease process and leads to the pathological development of pro-inflammatory cytokines, chemokines, and contact-killing compounds, causing the loss of dopaminergic neurons. So far, we have mainly focused on the role of the specific class of immune cells in PD while neglecting the impact of interactions among immune cells on the disease. Therefore, this review demonstrates the reciprocal interplays between microglia and T cells and the associated subpopulations through cytokine and chemokine production that impair and/or protect the pathological process of PD. Furthermore, potential targets and models of PD neuroinflammation are highlighted to provide the new ideas/directions for future research.
Collapse
Affiliation(s)
- Yuxiang Xu
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan International Joint Laboratory for Nuclear Protein Regulation, Henan Medical School, Henan University, Kaifeng, 475004 China
| | - Yongjie Li
- grid.414360.40000 0004 0605 7104Department of Rehabilitation Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guizhou Provincial Orthopedics Hospital, Guiyang, China
| | - Changqing Wang
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Tingting Han
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Haixuan Liu
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Lin Sun
- grid.256922.80000 0000 9139 560XHenan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004 Henan China
| | - Jun Hong
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Makoto Hashimoto
- grid.272456.00000 0000 9343 3630Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506 Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China. .,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan Medical School, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
26
|
Johnson CS, Cook LM. Osteoid cell-derived chemokines drive bone-metastatic prostate cancer. Front Oncol 2023; 13:1100585. [PMID: 37025604 PMCID: PMC10070788 DOI: 10.3389/fonc.2023.1100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
One of the greatest challenges in improving prostate cancer (PCa) survival is in designing new therapies to effectively target bone metastases. PCa regulation of the bone environment has been well characterized; however, bone-targeted therapies have little impact on patient survival, demonstrating a need for understanding the complexities of the tumor-bone environment. Many factors contribute to creating a favorable microenvironment for prostate tumors in bone, including cell signaling proteins produced by osteoid cells. Specifically, there has been extensive evidence from both past and recent studies that emphasize the importance of chemokine signaling in promoting PCa progression in the bone environment. Chemokine-focused strategies present promising therapeutic options for treating bone metastasis. These signaling pathways are complex, with many being produced by (and exerting effects on) a plethora of different cell types, including stromal and tumor cells of the prostate tumor-bone microenvironment. This review highlights an underappreciated molecular family that should be interrogated for treatment of bone metastatic prostate cancer (BM-PCa).
Collapse
Affiliation(s)
- Catherine S. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, United States
| | - Leah M. Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Leah M. Cook,
| |
Collapse
|
27
|
Drouillard D, Craig BT, Dwinell MB. Physiology of chemokines in the cancer microenvironment. Am J Physiol Cell Physiol 2023; 324:C167-C182. [PMID: 36317799 PMCID: PMC9829481 DOI: 10.1152/ajpcell.00151.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/07/2023]
Abstract
Chemokines are chemotactic cytokines whose canonical functions govern movement of receptor-expressing cells along chemical gradients. Chemokines are a physiological system that is finely tuned by ligand and receptor expression, ligand or receptor oligomerization, redundancy, expression of atypical receptors, and non-GPCR binding partners that cumulatively influence discrete pharmacological signaling responses and cellular functions. In cancer, chemokines play paradoxical roles in both the directed emigration of metastatic, receptor-expressing cancer cells out of the tumor as well as immigration of tumor-infiltrating immune cells that culminate in a tumor-unique immune microenvironment. In the age of precision oncology, strategies to effectively harness the power of immunotherapy requires consideration of chemokine gradients within the unique spatial topography and temporal influences with heterogeneous tumors. In this article, we review current literature on the diversity of chemokine ligands and their cellular receptors that detect and process chemotactic gradients and illustrate how differences between ligand recognition and receptor activation influence the signaling machinery that drives cellular movement into and out of the tumor microenvironment. Facets of chemokine physiology across discrete cancer immune phenotypes are contrasted to existing chemokine-centered therapies in cancer.
Collapse
Affiliation(s)
- Donovan Drouillard
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian T Craig
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
28
|
Piehl N, van Olst L, Ramakrishnan A, Teregulova V, Simonton B, Zhang Z, Tapp E, Channappa D, Oh H, Losada PM, Rutledge J, Trelle AN, Mormino EC, Elahi F, Galasko DR, Henderson VW, Wagner AD, Wyss-Coray T, Gate D. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell 2022; 185:5028-5039.e13. [PMID: 36516855 PMCID: PMC9815831 DOI: 10.1016/j.cell.2022.11.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
Cerebrospinal fluid (CSF) contains a tightly regulated immune system. However, knowledge is lacking about how CSF immunity is altered with aging or neurodegenerative disease. Here, we performed single-cell RNA sequencing on CSF from 45 cognitively normal subjects ranging from 54 to 82 years old. We uncovered an upregulation of lipid transport genes in monocytes with age. We then compared this cohort with 14 cognitively impaired subjects. In cognitively impaired subjects, downregulation of lipid transport genes in monocytes occurred concomitantly with altered cytokine signaling to CD8 T cells. Clonal CD8 T effector memory cells upregulated C-X-C motif chemokine receptor 6 (CXCR6) in cognitively impaired subjects. The CXCR6 ligand, C-X-C motif chemokine ligand 16 (CXCL16), was elevated in the CSF of cognitively impaired subjects, suggesting CXCL16-CXCR6 signaling as a mechanism for antigen-specific T cell entry into the brain. Cumulatively, these results reveal cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment.
Collapse
Affiliation(s)
- Natalie Piehl
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lynn van Olst
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Abhirami Ramakrishnan
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Victoria Teregulova
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brooke Simonton
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyang Zhang
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emma Tapp
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Divya Channappa
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Graduate Program in Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Patricia M Losada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jarod Rutledge
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Elizabeth C Mormino
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Psychology, Stanford University, Stanford, CA, USA
| | - Fanny Elahi
- Departments of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, La Jolla, CA, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Victor W Henderson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony D Wagner
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Psychology, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; The Phil and Penny Initiative for Brain Resilience, Stanford University, Stanford, CA, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - David Gate
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
29
|
Israr M, DeVoti JA, Papayannakos CJ, Bonagura VR. Role of chemokines in HPV-induced cancers. Semin Cancer Biol 2022; 87:170-183. [PMID: 36402301 DOI: 10.1016/j.semcancer.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - James A DeVoti
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Christopher J Papayannakos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R Bonagura
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
30
|
Li L, Konigsberg IR, Bhargava M, Liu S, MacPhail K, Mayer A, Davidson EJ, Liao SY, Lei Z, Mroz PM, Fingerlin TE, Yang IV, Maier LA. Multiomic Signatures of Chronic Beryllium Disease Bronchoalveolar Lavage Cells Relate to T-Cell Function and Innate Immunity. Am J Respir Cell Mol Biol 2022; 67:632-640. [PMID: 35972918 PMCID: PMC9743181 DOI: 10.1165/rcmb.2022-0077oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic beryllium disease (CBD) is a Th1 granulomatous lung disease preceded by sensitization to beryllium (BeS). We profiled the methylome, transcriptome, and selected proteins in the lung to identify molecular signatures and networks associated with BeS and CBD. BAL cell DNA and RNA were profiled using microarrays from CBD (n = 30), BeS (n = 30), and control subjects (n = 12). BAL fluid proteins were measured using Olink Immune Response Panel proteins from CBD (n = 22) and BeS (n = 22) subjects. Linear models identified features associated with CBD, adjusting for covariation and batch effects. Multiomic integration methods identified correlated features between datasets. We identified 1,546 differentially expressed genes in CBD versus control subjects and 204 in CBD versus BeS. Of the 101 shared transcripts, 24 have significant cis relationships between gene expression and DNA methylation, assessed using expression quantitative trait methylation analysis, including genes not previously identified in CBD. A multiomic model of top DNA methylation and gene expression features demonstrated that the first component separated CBD from other samples and the second component separated control subjects from remaining samples. The top features on component one were enriched for T-lymphocyte function, and the top features on component two were enriched for innate immune signaling. We identified six differentially abundant proteins in CBD versus BeS, with two (SIT1 and SH2D1A) selected as important RNA features in the multiomic model. Our integrated analysis of DNA methylation, gene expression, and proteins in the lung identified multiomic signatures of CBD that differentiated it from BeS and control subjects.
Collapse
Affiliation(s)
- Li Li
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
- Division of Pulmonary and Critical Care Sciences
| | - Iain R. Konigsberg
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, School of Medicine
| | - Maneesh Bhargava
- Pulmonary, Allergy, Critical Care and Sleep, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Sucai Liu
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
| | - Kristyn MacPhail
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
| | - Annyce Mayer
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
- Department of Environmental and Occupational Health
| | - Elizabeth J. Davidson
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, School of Medicine
| | - Shu-Yi Liao
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
- Division of Pulmonary and Critical Care Sciences
- Department of Environmental and Occupational Health
| | - Zhe Lei
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
| | - Peggy M. Mroz
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
| | - Tasha E. Fingerlin
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
- Department of Biostatistics and Bioinformatics, and
| | - Ivana V. Yang
- Division of Pulmonary and Critical Care Sciences
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, School of Medicine
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Lisa A. Maier
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
- Division of Pulmonary and Critical Care Sciences
- Department of Environmental and Occupational Health
| |
Collapse
|
31
|
Krefl D, Bergmann S. Cross-GWAS coherence test at the gene and pathway level. PLoS Comput Biol 2022; 18:e1010517. [PMID: 36156592 PMCID: PMC9536597 DOI: 10.1371/journal.pcbi.1010517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 10/06/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Proximal genetic variants are frequently correlated, implying that the corresponding effect sizes detected by genome-wide association studies (GWAS) are also not independent. Methods already exist to account for this when aggregating effects from a single GWAS across genes or pathways. Here we present a rigorous yet fast method for detecting genes with coherent association signals for two traits, facilitating cross-GWAS analyses. To this end, we devised a new significance test for the covariance of datapoints not drawn independently but with a known inter-sample covariance structure. We show that the distribution of its test statistic is a linear combination of χ2 distributions with positive and negative coefficients. The corresponding cumulative distribution function can be efficiently calculated with Davies’ algorithm at high precision. We apply this general framework to test for dependence between SNP-wise effect sizes of two GWAS at the gene level. We extend this test to detect also gene-wise causal links. We demonstrate the utility of our method by uncovering potential shared genetic links between the severity of COVID-19 and (1) being prescribed class M05B medication (drugs affecting bone structure and mineralization), (2) rheumatoid arthritis, (3) vitamin D (25OHD), and (4) serum calcium concentrations. Our method detects a potential role played by chemokine receptor genes linked to TH1 versus TH2 immune response, a gene related to integrin beta-1 cell surface expression, and other genes potentially impacting the severity of COVID-19. Our approach will be useful for similar analyses involving datapoints with known auto-correlation structures.
Collapse
Affiliation(s)
- Daniel Krefl
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (DK); (SB)
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Dept. of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail: (DK); (SB)
| |
Collapse
|
32
|
Chang J, Lin S, Mao Y, Xu Y, Zhang Z, Wu Q, Chen Y, Wei Y, Feng Q, Xu J. CXCR6+ Tumor-Associated Macrophages Identify Immunosuppressive Colon Cancer Patients with Poor Prognosis but Favorable Response to Adjuvant Chemotherapy. Cancers (Basel) 2022; 14:cancers14194646. [PMID: 36230570 PMCID: PMC9562861 DOI: 10.3390/cancers14194646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
We explored the infiltration and prognostic value of CXCR6+TAMs in all stages of colon cancer (CC) patients and assessed predictive ability as a biomarker for different ACT regimens among high-risk stage II and stage III patients in both primary and validation cohorts. Two independent cohorts of 360 and 126 consecutive colon cancer patients were enrolled from two medical centers of Zhongshan Hospital. Immunofluorescence and immunohistochemistry were performed to detect the density of CXCR6+TAMs and activated CD8+ T cells. The infiltration of CXCR6+TAMs was higher in tumor tissues and increased with advanced tumor stage. A high density of CXCR6+TAMs predicted worse overall survival (OS) in all CC patients (HR = 2.49, 95% CI = (1.68, 3.70), p < 0.001), and was an independent risk factor verified by Cox regression analysis (HR = 1.68, 95% CI = (1.09, 2.59), p = 0.019). For high-risk stage II and stage III patients with a high density of CXCR6+TAMs, better disease-free survival (DFS) (HR = 0.32, 95% CI = (0.11, 0.89), p = 0.003), and OS (HR = 0.28, 95% CI = (0.07, 1.11), p = 0.014) were observed in the 6-month treatment group. There was a negative relationship between the density of CXCR6+TAMs and CD8+ T cells (R = −0.51, p < 0.001) as well as activated CD8+ T cells (R = −0.54, p < 0.001). Higher levels of IL-6 and lower levels of IL-2R and TNF-α were expressed in high-CXCR6+ TAM-density patients, which indicates that CXCR6+TAMs contribute to an immunosuppressive microenvironment. CXCR6+TAMs predicted prognosis and response to different durations of ACT in CC patients. CXCR6+TAMs were associated with an immunosuppressive microenvironment and suppressed the activation of CD8+ T cells.
Collapse
Affiliation(s)
- Jiang Chang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Songbin Lin
- General Surgery Department, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen 361000, China
| | - Yihao Mao
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Yuqiu Xu
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Zhiyuan Zhang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Qi Wu
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Yijiao Chen
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Ye Wei
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200000, China
- Correspondence: (Y.W.); (Q.F.); Tel.: +86-021-6564-2660 (Y.W. & Q.F.)
| | - Qingyang Feng
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200000, China
- Correspondence: (Y.W.); (Q.F.); Tel.: +86-021-6564-2660 (Y.W. & Q.F.)
| | - Jianmin Xu
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200000, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai 200000, China
| |
Collapse
|
33
|
Wang R, Mo J, Luo X, Zhang G, Liu F, Luo S. ORFV infection enhances CXCL16 secretion and causes oncolysis of lung cancer cells through immunogenic apoptosis. Front Cell Infect Microbiol 2022; 12:910466. [PMID: 35959371 PMCID: PMC9358046 DOI: 10.3389/fcimb.2022.910466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have been emerging as a promising therapeutic option for cancer patients, including lung cancer. Orf virus (ORFV), a DNA parapoxvirus, can infect its natural ungulate hosts and transmit into humans. Moreover, the ORFV has advantages of low toxicity, high targeted, self-amplification and can induce potent Th1-like immunity. This study explored the therapeutic potential of ORFV infection for human lung cancer therapy and investigated the molecular mechanisms. We used a previously described ORFV NA1/11 strain and tested the oncolysis of ORFV NA1/11 in two lines of lung cancer cells in vitro and in vivo. Treatment of both cell lines with ORFV NA1/11 resulted in a decrease in cell viability by inducing cell cycle arrest in G2/M phase, suppressing cyclin B1 expression and increasing their apoptosis in a caspase-dependent manner. The ORFV NA1/11-infected lung cancer cells were highly immunogenic. Evidently, ORFV NA1/11 infection of lung cancer cells induced oncolysis of tumor cells to release danger-associated molecular patterns, and promoted dendritic cell maturation, and CD8 T cell infiltration in the tumors by enhancing CXCL16 secretion. These findings may help to understand the molecular mechanisms of ORFV oncolysis and aid in the development of novel therapies for lung cancer.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Basic Medical Sciences, School of Medicine, Foshan University, Foshan, China
| | - Jingying Mo
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
| | - Xiaoshan Luo
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
| | - Guixian Zhang
- Department of Basic Medical Sciences, School of Medicine, Foshan University, Foshan, China
| | - Fang Liu
- Department of Basic Medical Sciences, School of Medicine, Foshan University, Foshan, China
| | - Shuhong Luo
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Shuhong Luo,
| |
Collapse
|
34
|
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I. Chemokine-Driven Migration of Pro-Inflammatory CD4 + T Cells in CNS Autoimmune Disease. Front Immunol 2022; 13:817473. [PMID: 35250997 PMCID: PMC8889115 DOI: 10.3389/fimmu.2022.817473] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Pro-inflammatory CD4+ T helper (Th) cells drive the pathogenesis of many autoimmune conditions. Recent advances have modified views of the phenotype of pro-inflammatory Th cells in autoimmunity, extending the breadth of known Th cell subsets that operate as drivers of these responses. Heterogeneity and plasticity within Th1 and Th17 cells, and the discovery of subsets of Th cells dedicated to production of other pro-inflammatory cytokines such as GM-CSF have led to these advances. Here, we review recent progress in this area and focus specifically upon evidence for chemokine receptors that drive recruitment of these various pro-inflammatory Th cell subsets to sites of autoimmune inflammation in the CNS. We discuss expression of specific chemokine receptors by subsets of pro-inflammatory Th cells and highlight which receptors may be tractable targets of therapeutic interventions to limit pathogenic Th cell recruitment in autoimmunity.
Collapse
Affiliation(s)
- Aaron H S Heng
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caleb W Han
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caitlin Abbott
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
35
|
Ahmed Z, Renart EG, Zeeshan S. Investigating underlying human immunity genes, implicated diseases and their relationship to COVID-19. Per Med 2022; 19:229-250. [PMID: 35261286 PMCID: PMC8919975 DOI: 10.2217/pme-2021-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aim: A human immunogenetics variation study was conducted in samples collected from diverse COVID-19 populations. Materials & methods: Whole-genome and whole-exome sequencing (WGS/WES), data processing, analysis and visualization pipeline were applied to identify variants associated with genes of interest. Results: A total of 2886 mutations were found across the entire set of 13 genomes. Functional annotation of the gene variants revealed mutation type and protein change. Many variants were found to be biologically implicated in COVID-19. The involvement of these genes was also found in multiple other diseases. Conclusion: The analysis determined that ACE2, TMPRSS4, TMPRSS2, SLC6A20 and FYCOI had functional implications and TMPRSS4 was the gene most altered in virally infected patients. The quest to establish an understanding of the genetics underlying COVID-19 is a central focus of life sciences today. COVID-19 is triggered by SARS-CoV-2, a single-stranded RNA respiratory virus. Several clinical-genomics studies have emerged positing different human gene mutations occurring due to COVID-19. A global analysis of these genes was conducted targeting major components of the immune system to identify possible variations likely to be involved in COVID-19 predisposition. Gene-variant analysis was performed on whole-genome sequencing samples collected from diverse populations. ACE2, TMPRSS4, TMPRSS2, SLC6A20 and FYCOI were found to have functional implications and TMPRSS4 may have a role in the severity of clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy & Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ 08901, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical & Health Sciences, 125 Paterson Street, New Brunswick, NJ 08901, USA
| | - Eduard Gibert Renart
- Rutgers Institute for Health, Health Care Policy & Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ 08901, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ 08901, USA
| |
Collapse
|
36
|
Zander R, Kasmani MY, Chen Y, Topchyan P, Shen J, Zheng S, Burns R, Ingram J, Cui C, Joshi N, Craft J, Zajac A, Cui W. Tfh-cell-derived interleukin 21 sustains effector CD8 + T cell responses during chronic viral infection. Immunity 2022; 55:475-493.e5. [PMID: 35216666 PMCID: PMC8916994 DOI: 10.1016/j.immuni.2022.01.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/14/2021] [Accepted: 01/27/2022] [Indexed: 02/03/2023]
Abstract
CD4+ T cell-derived interleukin 21 (IL-21) sustains CD8+ T cell responses during chronic viral infection, but the helper subset that confers this protection remains unclear. Here, we applied scRNA and ATAC-seq approaches to determine the heterogeneity of IL-21+CD4+ T cells during LCMV clone 13 infection. CD4+ T cells were comprised of three transcriptionally and epigenetically distinct populations: Cxcr6+ Th1 cells, Cxcr5+ Tfh cells, and a previously unrecognized Slamf6+ memory-like (Tml) subset. T cell differentiation was specifically redirected toward the Tml subset during chronic, but not acute, LCMV infection. Although this subset displayed an enhanced capacity to accumulate and some developmental plasticity, it remained largely quiescent, which may hinder its helper potential. Conversely, mixed bone marrow chimera experiments revealed that Tfh cell-derived IL-21 was critical to sustain CD8+ T cell responses and viral control. Thus, strategies that bolster IL-21+Tfh cell responses may prove effective in enhancing CD8+ T cell-mediated immunity.
Collapse
Affiliation(s)
- Ryan Zander
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53226, USA
| | - Moujtaba Y Kasmani
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yao Chen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paytsar Topchyan
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jian Shen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shikan Zheng
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53226, USA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer Ingram
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Can Cui
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nikhil Joshi
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joseph Craft
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Allan Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
37
|
Li W, Zhang Q, Xie L, Fan N, Liu Z, Zhang L, Zhang J, Tang S, Wang W, Liu X, Li X, Wang H, Zhao J, Huang Y, Zhang J. Clinical significance and role of CXCL16 in anti-neutrophil cytoplasmic autoantibody-associated vasculitis. Immunol Lett 2022; 243:28-37. [PMID: 35120907 DOI: 10.1016/j.imlet.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022]
Abstract
Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a group of potentially life-threatening autoimmune diseases. The kidney and lung are the most common and most severely affected organs. Previous studies have shown that the chemokine ligand CXCL16 and its receptor CXCR6 play an important role in kidney disease. However, whether CXCL16/CXCR6 is involved in the pathogenesis of AAV remains elusive. In this study, the levels of CXCL16 and its specific receptor CXCR6 were investigated. According to kidney outcome, patients were divided into two groups, specifically one with high CXCL16 levels and one with low CXCL16 levels, by cut-off values using receiver operating characteristic (ROC) curves. The clinical parameters and histological features were further compared between the two groups. The ability of CXCL16 to induce neutrophil chemotaxis was analysed using a Transwell migration assay in a coculture system of conditional immortalized human glomerular endothelial cells (ciGEnCs) and neutrophils. We observed that the levels of CXCL16 were significantly increased in the circulation, along with the expression in renal tissue of AAV patients compared to healthy controls (HCs). CXCR6 expression on neutrophils was significantly higher in patients with AAV than in HCs. There were positive correlations between the levels of CXCL16 and serum creatinine, IL-6, CRP, and TNF-α and negative correlations with eGFR. The serum levels of CXCL16 could act as a predictive biomarker of renal outcome in AAV. CXCL16 secretion was upregulated in ciGEnCs treated with AAV serum. CXCL16 released from ciGEnCs contributed to neutrophil migration. Furthermore, neutrophil migration was attenuated by silencing CXCL16 expression via transfection with short hairpin RNA (shRNA) sequences and lentivirus. Taken together, these data suggest that the inhibition of the CXCL16/CXCR6 axis may provide new therapeutic strategies targeting AAV.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Qiwu Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Lijiao Xie
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Ningning Fan
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Zhenyu Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Le Zhang
- Department of Pharmacy, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Jun Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Sha Tang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Weili Wang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Xing Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Xueqin Li
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Hong Wang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Yunjian Huang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China
| | - Jingbo Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, P.R. China.
| |
Collapse
|
38
|
Li T, Pan J, Chen H, Fang Y, Sun Y. CXCR6-based immunotherapy in autoimmune, cancer and inflammatory infliction. Acta Pharm Sin B 2022; 12:3255-3262. [PMID: 35967287 PMCID: PMC9366225 DOI: 10.1016/j.apsb.2022.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 01/22/2023] Open
Affiliation(s)
- Tingting Li
- Department of Gastroenterology, the Second Medical Center, National Clinical Research Center for Geriatric Diseases, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
- Corresponding authors.
| | - Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yongliang Fang
- Department of Urology, Boston Children's Hospital, Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Corresponding authors.
| |
Collapse
|
39
|
Li D, Li J, Liu H, Zhai L, Hu W, Xia N, Tang T, Jiao J, Lv B, Nie S, Hu D, Liao Y, Yang X, Shi G, Cheng X. Pathogenic Tconvs promote inflammatory macrophage polarization through GM‐CSF and exacerbate abdominal aortic aneurysm formation. FASEB J 2022; 36:e22172. [PMID: 35133017 PMCID: PMC9303938 DOI: 10.1096/fj.202101576r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
Abdominal aortic aneurysms (AAAs) elicit massive inflammatory leukocyte recruitment to the aorta. CD4+ T cells, which include regulatory T cells (Tregs) and conventional T cells (Tconvs), are involved in the progression of AAA. Tregs have been reported to limit AAA formation. However, the function and phenotype of the Tconvs found in AAAs remain poorly understood. We characterized aortic Tconvs by bulk RNA sequencing and discovered that Tconvs in aortic aneurysm highly expressed Cxcr6 and Csf2. Herein, we determined that the CXCR6/CXCL16 signaling axis controlled the recruitment of Tconvs to aortic aneurysms. Deficiency of granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), encoded by Csf2, markedly inhibited AAA formation and led to a decrease of inflammatory monocytes, due to a reduction of CCL2 expression. Conversely, the exogenous administration of GM‐CSF exacerbated inflammatory monocyte infiltration by upregulating CCL2 expression, resulting in worsened AAA formation. Mechanistically, GM‐CSF upregulated the expression of interferon regulatory factor 5 to promote M1‐like macrophage differentiation in aortic aneurysms. Importantly, we also demonstrated that the GM‐CSF produced by Tconvs enhanced the polarization of M1‐like macrophages and exacerbated AAA formation. Our findings revealed that GM‐CSF, which was predominantly derived from Tconvs in aortic aneurysms, played a pathogenic role in the progression of AAAs and may represent a potential target for AAA treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Jingyong Li
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Henan Liu
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Luna Zhai
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Wangling Hu
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Ni Xia
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Tingting Tang
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Jiao Jiao
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Bingjie Lv
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Shaofang Nie
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Institute of Hematology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Yuhua Liao
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Xiangping Yang
- School of Basic Medicine Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Guo‐Ping Shi
- Department of Medicine Brigham and Women’s Hospital and Harvard Medical School Boston Massachusetts USA
| | - Xiang Cheng
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
40
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
41
|
Shantha Kumara HMC, Shah A, Miyagaki H, Yan X, Cekic V, Hedjar Y, Whelan RL. Plasma Levels of Keratinocyte Growth Factor Are Significantly Elevated for 5 Weeks After Minimally Invasive Colorectal Resection Which May Promote Cancer Recurrence and Metastasis. Front Surg 2021; 8:745875. [PMID: 34820416 PMCID: PMC8606552 DOI: 10.3389/fsurg.2021.745875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Human Keratinocyte Growth Factor (KGF) is an FGF family protein produced by mesenchymal cells. KGF promotes epithelial cell proliferation, plays a role in wound healing and may also support tumor growth. It is expressed by some colorectal cancers (CRC). Surgery's impact on KGF levels is unknown. This study's purpose was to assess plasma KGF levels before and after minimally invasive colorectal resection (MICR) for CRC. Aim: To determine plasma KGF levels before and after minimally invasive colorectal resection surgery for cancer pathology. Method: CRC MICR patients (pts) in an IRB approved data/plasma bank were studied. Pre-operative (pre-op) and post-operative (post-op) plasma samples were taken/stored. Late samples were bundled into 7 day blocks and considered as single time points. KGF levels (pg/ml) were measured via ELISA (mean ± SD). The Wilcoxon paired t-test was used for statistical analysis. Results: Eighty MICR CRC patients (colon 61%; rectal 39%; mean age 65.8 ± 13.3) were studied. The mean incision length was 8.37 ± 3.9 and mean LOS 6.5 ± 2.6 days. The cancer stage breakdown was; I (23), II (26), III (27), and IV (4). The median pre-op KGF level was 17.1 (95 %CI: 14.6-19.4; n = 80); significantly elevated (p < 0.05) median levels (pg/ml) were noted on post-op day (POD) 1 (23.4 pg/ml; 95% CI: 21.4-25.9; n = 80), POD 3 (22.5 pg/ml; 95% CI: 20.7-25.9; n = 76), POD 7-13 (21.8 pg/ml; 95% CI: 17.7-25.4; n = 50), POD 14-20 (20.1 pg/ml; 95% CI: 17.1-23.9; n = 33), POD 21-27 (19.6 pg/ml; 95% CI: 15.2-24.9; n = 15) and on POD 28-34 (16.7 pg/ml; 95% CI: 14.0-25.8; n = 12). Conclusion: Plasma KGF levels were significantly elevated for 5 weeks after MICR for CRC. The etiology of these changes is unclear, surgical trauma related acute inflammatory response and wound healing process may play a role. These changes, may stimulate angiogenesis in residual tumor deposits after surgery.
Collapse
Affiliation(s)
- H M C Shantha Kumara
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Abhinit Shah
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | | | - Xiaohong Yan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Vesna Cekic
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Yanni Hedjar
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Richard L Whelan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
42
|
Babes L, Shim R, Kubes P. Imaging α-GalCer-activated iNKT cells in a hepatic metastatic environment. Cancer Immunol Res 2021; 10:12-25. [PMID: 34785505 DOI: 10.1158/2326-6066.cir-21-0445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023]
Abstract
Colorectal cancer patients frequently develop liver metastases after, and perhaps as a consequence of, lifesaving surgical resection of the primary tumor. This creates a potential opportunity for prophylactic metastatic treatment with novel immunostimulatory molecules. Here, we used state-of-the-art intravital imaging of an experimental liver metastasis model to visualize the early behavior and function of invariant (i)NKT cells stimulated with α-galactosylceramide (α-GalCer). Intravenous α-GalCer prior to tumor cell seeding in the liver significantly inhibited tumor growth. However, some seeding tumor cells survived. A multiple dosing regimen reduced tumor burden and prolonged the life of mice, whereas tumors returned within 5 days after a single dose of α-GalCer. With multiple doses of α-GalCer, iNKT cells increased in number and granularity (as did NK cells). As a result, the total number of contacts and time in contact with tumors increased substantially. In the absence of iNKT cells, the beneficial effect of α-GalCer was lost. Robust cytokine production dissipated over time. Repeated therapy, even after cytokine dissipation, led to reduced tumor burden and prolonged survival. Serial transplantation of tumors exposed to α-GalCer-activated iNKT cells did not induce greater resistance, suggesting no obvious epigenetic or genetic immunoediting in tumors exposed to activated iNKT cells. Very few tumor cells expressed CD1d in this model, and as such, adding monomers of CD1d-α-GalCer further reduced tumor growth. The data suggest early and repeated stimulation of iNKT cells with α-GalCer could have direct therapeutic benefit for colorectal cancer patients that develop metastatic liver disease.
Collapse
Affiliation(s)
- Liane Babes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Raymond Shim
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
43
|
Fang F, Cao W, Zhu W, Lam N, Li L, Gaddam S, Wang Y, Kim C, Lambert S, Zhang H, Hu B, Farber DL, Weyand CM, Goronzy JJ. The cell-surface 5'-nucleotidase CD73 defines a functional T memory cell subset that declines with age. Cell Rep 2021; 37:109981. [PMID: 34758299 PMCID: PMC8612175 DOI: 10.1016/j.celrep.2021.109981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/09/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Memory T cells exhibit considerable diversity that determines their ability to be protective. Here, we examine whether changes in T cell heterogeneity contribute to the age-associated failure of immune memory. By screening for age-dependent T cell-surface markers, we identify CD4 and CD8 memory T cell subsets that are unrelated to previously defined subsets of central and effector memory cells. Memory T cells expressing the ecto-5'-nucleotidase CD73 constitute a functionally distinct subset of memory T cells that declines with age. They resemble long-lived, polyfunctional memory cells but are also poised to display effector functions and to develop into cells resembling tissue-resident memory T cells (TRMs). Upstream regulators of differential chromatin accessibility and transcriptomes include transcription factors that facilitate CD73 expression and regulate TRM differentiation. CD73 is not just a surrogate marker of these regulatory networks but is directly involved in T cell survival.
Collapse
Affiliation(s)
- Fengqin Fang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US
| | - Weikang Zhu
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lingjie Li
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Sadhana Gaddam
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yong Wang
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Simon Lambert
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Huimin Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US
| | - Bin Hu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US.
| |
Collapse
|
44
|
CXCR6+CD4+ T cells promote mortality during Trypanosoma brucei infection. PLoS Pathog 2021; 17:e1009968. [PMID: 34614031 PMCID: PMC8523071 DOI: 10.1371/journal.ppat.1009968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 09/24/2021] [Indexed: 01/09/2023] Open
Abstract
Liver macrophages internalize circulating bloodborne parasites. It remains poorly understood how this process affects the fate of the macrophages and T cell responses in the liver. Here, we report that infection by Trypanosoma brucei induced depletion of macrophages in the liver, leading to the repopulation of CXCL16-secreting intrahepatic macrophages, associated with substantial accumulation of CXCR6+CD4+ T cells in the liver. Interestingly, disruption of CXCR6 signaling did not affect control of the parasitemia, but significantly enhanced the survival of infected mice, associated with reduced inflammation and liver injury. Infected CXCR6 deficient mice displayed a reduced accumulation of CD4+ T cells in the liver; adoptive transfer experiments suggested that the reduction of CD4+ T cells in the liver was attributed to a cell intrinsic property of CXCR6 deficient CD4+ T cells. Importantly, infected CXCR6 deficient mice receiving wild-type CD4+ T cells survived significantly shorter than those receiving CXCR6 deficient CD4+ T cells, demonstrating that CXCR6+CD4+ T cells promote the mortality. We conclude that infection of T. brucei leads to depletion and repopulation of liver macrophages, associated with a substantial influx of CXCR6+CD4+ T cells that mediates mortality.
Collapse
|
45
|
Liu W, Wang L, Li X, Gao C, Zhou J, Zhou J, Wang L, Sun Z, Chu H, Fan W, Bai Y, Yang J. C-X-C Motif Chemokine Ligand 16 Is a Potent Predictor of Outcomes in Dialysis Patients. Am J Nephrol 2021; 52:725-734. [PMID: 34518453 DOI: 10.1159/000518400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION C-X-C motif chemokine ligand 16 (CXCL16) is an inflammatory marker that has been found to be predictive of outcomes in patients with cardiovascular disease. Our previous work has also demonstrated its relation to cardiac injury in dialysis patients. However, it is yet unclear whether there is an association between CXCL16 and adverse outcomes in dialysis patients. We aimed to evaluate its prognostic value along with several traditional inflammatory markers in the current study. METHODS This is a multicenter longitudinal study of prevalent dialysis patients. Circulating inflammatory markers including CXCL16, C-reactive protein (CRP), tumor necrosis factor-α, and interleukin-6 (IL-6) were measured using a multiplex assay. The primary outcomes were all-cause mortality and a composite of major adverse cardiovascular events (MACEs). The associations between biomarkers and outcomes were analyzed using Cox proportional hazards regression models. RESULTS Of the 366 participants with available plasma samples, the average age was 52.5 (±12.1) years, and there were 160 (43.7%) female participants. For all-cause mortality, logarithmically transformed CXCL16, IL-6, and CRP were independent predictors after adjustment for covariates. When the 3 markers were included in the same model, CXCL16 was the only one remaining its significance. For MACEs, logarithmically transformed CXCL16 and IL-6 were significant predictors when analyzed separately and CXCL16 was an independent predictor even after adjustment for IL-6. When the biomarkers were analyzed as categorical variables, only CXCL16 was associated with both outcomes. Adding CXCL16 to established risk factors improved risk prediction as revealed by Net Reclassification Index (NRI). CONCLUSION Using a multimarker approach, we determined that CXCL16 is a potent predictor of all-cause mortality and cardiovascular events in dialysis patients. Our data suggest CXCL16 may improve risk stratification and could be a potential interventional target.
Collapse
Affiliation(s)
- Wenjin Liu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah Health Science, Salt Lake City, Utah, USA,
| | - Lulu Wang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiurong Li
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chaoqing Gao
- Department of Hemodialysis, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jianmei Zhou
- Department of Hemodialysis, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jiajun Zhou
- Department of Hemodialysis, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Liang Wang
- Department of Nephrology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Zhuxing Sun
- Department of Nephrology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Hong Chu
- Department of Nephrology, Affiliated Yixing People's Hospital, Jiangsu University, Yixing, China
| | - Wei Fan
- Department of Nephrology, Affiliated Yixing People's Hospital, Jiangsu University, Yixing, China
| | - Youwei Bai
- Department of Nephrology, Luan People's Hospital, Luan, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Wang B, Wang Y, Sun X, Deng G, Huang W, Wu X, Gu Y, Tian Z, Fan Z, Xu Q, Chen H, Sun Y. CXCR6 is required for antitumor efficacy of intratumoral CD8 + T cell. J Immunother Cancer 2021; 9:jitc-2021-003100. [PMID: 34462326 PMCID: PMC8407215 DOI: 10.1136/jitc-2021-003100] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Increasing infiltration of CD8+ T cells within tumor tissue predicts a better prognosis and is essential for response to checkpoint blocking therapy. Furthermore, current clinical protocols use unfractioned T cell populations as the starting point for transduction of chimeric antigen receptors (CARs)-modified T cells, but the optimal T cell subtype of CAR-modified T cells remains unclear. Thus, accurately identifying a group of cytotoxic T lymphocytes with high antitumor efficacy is imperative. Inspired by the theory of yin and yang, we explored a subset of CD8+ T cell in cancer with the same phenotypic characteristics as highly activated inflammatory T cells in autoimmune diseases. METHODS Combination of single-cell RNA sequencing, general transcriptome sequencing data and multiparametric cytometric techniques allowed us to map CXCR6 expression on specific cell type and tissue. We applied Cxcr6-/- mice, immune checkpoint therapies and bone marrow chimeras to identify the function of CXCR6+CD8+ T cells. Transgenic Cxcr6-/- OT-I mice were employed to explore the functional role of CXCR6 in antigen-specific antitumor response. RESULTS We identified that CXCR6 was exclusively expressed on intratumoral CD8+ T cell. CXCR6+CD8+ T cells were more immunocompetent, and chimeras with specific deficiency on CD8+ T cells showed weaker antitumor activity. In addition, Cxcr6-/- mice could not respond to anti-PD-1 treatment effectively. High tumor expression of CXCR6 was not mainly caused by ligand-receptor chemotaxis of CXCL16/CXCR6 but induced by tumor tissue self. Induced CXCR6+CD8+ T cells possessed tumor antigen specificity and could enhance the effect of anti-PD-1 blockade to retard tumor progression. CONCLUSIONS This study may contribute to the rational design of combined immunotherapy. Alternatively, CXCR6 may be used as a biomarker for effective CD8+ T cell state before adoptive cell therapy, providing a basis for tumor immunotherapy.
Collapse
Affiliation(s)
- Binglin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yi Wang
- Department of Proctology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaofan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yanghong Gu
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Zhigang Tian
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhimin Fan
- Department of Proctology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China .,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China .,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
47
|
Mariottoni P, Jiang SW, Prestwood CA, Jain V, Suwanpradid J, Whitley MJ, Coates M, Brown DA, Erdmann D, Corcoran DL, Gregory SG, Jaleel T, Zhang JY, Harris-Tryon TA, MacLeod AS. Single-Cell RNA Sequencing Reveals Cellular and Transcriptional Changes Associated With M1 Macrophage Polarization in Hidradenitis Suppurativa. Front Med (Lausanne) 2021; 8:665873. [PMID: 34504848 PMCID: PMC8421606 DOI: 10.3389/fmed.2021.665873] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/16/2021] [Indexed: 01/13/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by recurrent abscesses, nodules, and sinus tracts in areas of high hair follicle and sweat gland density. These sinus tracts can present with purulent drainage and scar formation. Dysregulation of multiple immune pathways drives the complexity of HS pathogenesis and may account for the heterogeneity of treatment response in HS patients. Using transcriptomic approaches, including single-cell sequencing and protein analysis, we here characterize the innate inflammatory landscape of HS lesions. We identified a shared upregulation of genes involved in interferon (IFN) and antimicrobial defense signaling through transcriptomic overlap analysis of differentially expressed genes (DEGs) in datasets from HS skin, diabetic foot ulcers (DFUs), and the inflammatory stage of normal healing wounds. Overlap analysis between HS- and DFU-specific DEGs revealed an enrichment of gene signatures associated with monocyte/macrophage functions. Single-cell RNA sequencing further revealed monocytes/macrophages with polarization toward a pro-inflammatory M1-like phenotype and increased effector function, including antiviral immunity, phagocytosis, respiratory burst, and antibody-dependent cellular cytotoxicity. Specifically, we identified the STAT1/IFN-signaling axis and the associated IFN-stimulated genes as central players in monocyte/macrophage dysregulation. Our data indicate that monocytes/macrophages are a potential pivotal player in HS pathogenesis and their pathways may serve as therapeutic targets and biomarkers in HS treatment.
Collapse
Affiliation(s)
- Paula Mariottoni
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - Simon W. Jiang
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - Courtney A. Prestwood
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Jutamas Suwanpradid
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - Melodi Javid Whitley
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - Margaret Coates
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - David A. Brown
- Division of Plastic, Maxillofacial, and Oral Surgery, Duke University Medical Center, Durham, NC, United States
| | - Detlev Erdmann
- Division of Plastic, Maxillofacial, and Oral Surgery, Duke University Medical Center, Durham, NC, United States
| | - David L. Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Tarannum Jaleel
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - Jennifer Y. Zhang
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - Tamia A. Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Amanda S. MacLeod
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
48
|
Farsakoglu Y, McDonald B, Kaech SM. Motility Matters: How CD8 + T-Cell Trafficking Influences Effector and Memory Cell Differentiation. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a038075. [PMID: 34001529 PMCID: PMC8327832 DOI: 10.1101/cshperspect.a038075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunological memory is a hallmark of adaptive immunity that confers long-lasting protection from reinfections. Memory CD8+ T cells provide protection by actively scanning for their cognate antigen and migrating into inflamed tissues. Trafficking patterns of CD8+ T cells are also a major determinant of cell fate outcomes during differentiation into effector and memory cell states. CD8+ T-cell trafficking must therefore be dynamically and tightly regulated to ensure that CD8+ T cells arrive at the correct locations and differentiate to acquire appropriate effector functions. This review aims to discuss the importance of CD8+ T-cell trafficking patterns in regulating effector and memory differentiation, maintenance, and reactivation.
Collapse
Affiliation(s)
- Yagmur Farsakoglu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Bryan McDonald
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California 92037, USA.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
49
|
Han J, Fu R, Chen C, Cheng X, Guo T, Huangfu L, Li X, Du H, Xing X, Ji J. CXCL16 Promotes Gastric Cancer Tumorigenesis via ADAM10-Dependent CXCL16/CXCR6 Axis and Activates Akt and MAPK Signaling Pathways. Int J Biol Sci 2021; 17:2841-2852. [PMID: 34345211 PMCID: PMC8326113 DOI: 10.7150/ijbs.57826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
Abnormal expression of CXC motif chemokine ligand 16 (CXCL16) has been demonstrated to be associated with tumor progression and metastasis, served as a prognostic factor in many cancers, with higher relative expression behaving as a marker of tumor progression. However, its role and mechanisms underlying progression and metastasis of gastric cancer (GC) are yet to be elucidated. In our investigation, public datasets and human GC tissue samples were used to determine the CXCL16 expression levels. Our results revealed that CXCL16 was upregulated in GC. The high expression CXCL16 in GC was significantly associated with histologic poor differentiation and pTNM staging. And high CXCL16 was positively correlated with the poor survival of GC patients. Gain-and loss-of-function experiments were employed to investigate the biological role of CXCL16 in proliferation and migration both in vitro and in vivo. Mechanically, Gene set enrichment analysis (GSEA) revealed that the epithelial‑mesenchymal transition (EMT), Akt and MAPK signal pathway related genes were significantly enriched in the high CXCL16 group, which was confirmed by western blot. Moreover, overexpression CXCL16 promoted the disintegrin and metalloproteases (ADAM10) and the CXC motif chemokine receptor 6 (CXCR6) expression, which mediated the CXCL16/CXCR6 positive feedback loop in GC, with activating Akt and MAPK signaling pathways. Knocking down ADAM10 would interrupted the CXCL16/CXCR6 axis in the carcinogenesis and progression of GC. In conclusion, our findings offered insights into that CXCL16 promoted GC tumorigenesis by enhancing ADAM10-dependent CXCL16/CXCR6 axis activation.
Collapse
Affiliation(s)
- Jing Han
- Department of Gastrointestinal Cancer Translational Research Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Beijing Institute For Cancer Research, Fu-Cheng Road, Beijing, China
| | - Runjia Fu
- Department of Gastrointestinal Cancer Translational Research Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Beijing Institute For Cancer Research, Fu-Cheng Road, Beijing, China.,Department of Oncology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Cong Chen
- Department of Gastrointestinal Cancer Translational Research Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Beijing Institute For Cancer Research, Fu-Cheng Road, Beijing, China
| | - Xiaojing Cheng
- Department of Gastrointestinal Cancer Translational Research Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Beijing Institute For Cancer Research, Fu-Cheng Road, Beijing, China
| | - Ting Guo
- Department of Gastrointestinal Cancer Translational Research Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Beijing Institute For Cancer Research, Fu-Cheng Road, Beijing, China
| | - Longtao Huangfu
- Department of Gastrointestinal Cancer Translational Research Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Beijing Institute For Cancer Research, Fu-Cheng Road, Beijing, China
| | - Xiaomei Li
- Department of Gastrointestinal Cancer Translational Research Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Beijing Institute For Cancer Research, Fu-Cheng Road, Beijing, China
| | - Hong Du
- Department of Gastrointestinal Cancer Translational Research Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Beijing Institute For Cancer Research, Fu-Cheng Road, Beijing, China
| | - Xiaofang Xing
- Department of Gastrointestinal Cancer Translational Research Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Beijing Institute For Cancer Research, Fu-Cheng Road, Beijing, China
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Translational Research Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Beijing Institute For Cancer Research, Fu-Cheng Road, Beijing, China.,Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
50
|
The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22073490. [PMID: 33800554 PMCID: PMC8036711 DOI: 10.3390/ijms22073490] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing the importance of this chemokine in various diseases, we have collected all available knowledge about CXCL16 in this review. In the first part of the paper, we discuss background information about CXCL16 and its receptor, CXCR6. Next, we focus on the importance of CXCL16 in a variety of diseases, with an emphasis on cancer. We discuss the role of CXCL16 in tumor cell proliferation, migration, invasion, and metastasis. Next, we describe the role of CXCL16 in the tumor microenvironment, including involvement in angiogenesis, and its significance in tumor-associated cells (cancer associated fibroblasts (CAF), microglia, tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), mesenchymal stem cells (MSC), myeloid suppressor cells (MDSC), and regulatory T cells (Treg)). Finally, we focus on the antitumor properties of CXCL16, which are mainly caused by natural killer T (NKT) cells. At the end of the article, we summarize the importance of CXCL16 in cancer therapy.
Collapse
|