1
|
Wang JJ, Zheng Y, Li YL, Xiao Y, Ren YY, Tian YQ. Emerging role of mesenchymal stem cell-derived exosomes in the repair of acute kidney injury. World J Stem Cells 2025; 17:103360. [DOI: 10.4252/wjsc.v17.i3.103360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/26/2024] [Accepted: 02/13/2025] [Indexed: 03/21/2025] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid deterioration in kidney function and has a significant impact on patient health and survival. Mesenchymal stem cells (MSCs) have the potential to enhance renal function by suppressing the expression of cell cycle inhibitors and reducing the expression of senescence markers and microRNAs via paracrine and endocrine mechanisms. MSC-derived exosomes can alleviate AKI symptoms by regulating DNA damage, apoptosis, and other related signaling pathways through the delivery of proteins, microRNAs, long-chain noncoding RNAs, and circular RNAs. This technique is both safe and effective. MSC-derived exosomes may have great application prospects in the treatment of AKI. Understanding the underlying mechanisms will foster the development of new and promising therapeutic strategies against AKI. This review focused on recent advancements in the role of MSCs in AKI repair as well as the mechanisms underlying the role of MSCs and their secreted exosomes. It is anticipated that novel and profound insights into the functionality of MSCs and their derived exosomes will emerge.
Collapse
Affiliation(s)
- Juan-Juan Wang
- Clinical Laboratory, The First People’s Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224000, Jiangsu Province, China
| | - Yu Zheng
- Clinical Laboratory, The First People’s Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224000, Jiangsu Province, China
| | - Yan-Lin Li
- Clinical Laboratory, The First People’s Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224000, Jiangsu Province, China
| | - Yin Xiao
- Department of Medical Imaging, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Yang-Yang Ren
- Clinical Laboratory, Xinyi People’s Hospital, Xuzhou 221000, Jiangsu Province, China
| | - Yi-Qing Tian
- Clinical Laboratory, Xuzhou Central Hospital, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
2
|
Chai M, Zhang CY, Chen S, Xu DH. Application of autophagy in mesenchymal stem cells. World J Stem Cells 2024; 16:990-1001. [PMID: 39734481 PMCID: PMC11669988 DOI: 10.4252/wjsc.v16.i12.990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
In this editorial, we have taken an in-depth look at the article published by Wan et al. The study showed that preconditioning mesenchymal stem cells (MSCs) protected them against programmed cell death, and increased their survival rate and therapeutic potential. Autophagy, a type of programmed cell death, is a major intracellular degradation and recycling pathway that is crucial for maintaining cellular homeostasis, self-renewal, and pluripotency. We have explored the relationship between autophagy and MSCs to determine the role of autophagy in the therapeutic applications of MSCs.
Collapse
Affiliation(s)
- Min Chai
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Chun-Yan Zhang
- Department of Rehabilitation Medicine, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Shuai Chen
- Department of Emergency Surgery, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Da-Hai Xu
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China.
| |
Collapse
|
3
|
Silvana S, Japardi I, Rusda M, Daulay RS, Putra A, Mangunatmadja I, Darlan DM, Sofyani S, Andreas Y. Secretome from hypoxic mesenchymal stem cells as a potential therapy for ischemic stroke: Investigations on VEGF and GFAP expression. NARRA J 2024; 4:e1181. [PMID: 39816066 PMCID: PMC11732002 DOI: 10.52225/narra.v4i2.1181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Ischemic stroke is a sudden onset of neurological deficit resulting from a blockage in cerebral blood vessels, which can lead to brain tissue damage, chronic disability, and increased risk of mortality. Secretome from hypoxic mesenchymal stem cells (SH-MSC) is a potential therapy to improve neurological deficit by increasing the expression of vascular endothelial growth factor (VEGF) and reducing glial fibrillary acidic protein (GFAP). These effects can reduce the infarction area of ischemic stroke. Therefore, the aim of this study was to analyze the effect of 150 μL and 300 μL SH-MSC injection on VEGF and GFAP expression as well as the improvement of infarction area in ischemic stroke animal model. A post-test-only experimental design with consecutive sampling was used, with Rattus norvegicus as subjects. Stromal mesenchymal stem cells (S-MSCs) were isolated from the umbilical cords of rats at 21 days of gestation. Secretome production by the S- MSCs was induced under a hypoxic condition, and subsequently isolated. The resultant secretome was administered to rats subjected to middle cerebral artery occlusion (MCAO) at doses of 150 μL (P1 group) and 300 μL (P2 group). The results showed that the infarction area was reduced in P1 (p<0.001) and P2 groups (p<0.001). SH-MSC at a dose of 300 μL increased the expression of VEGF (p=0.028) and reduced the expression of GFAP (p=0.001). In conclusion, secretome from hypoxic S-MSC could potentially improve ischemic stroke by upregulating VEGF expression and downregulating GFAP expression.
Collapse
Affiliation(s)
- Sisca Silvana
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Pediatrics, Faculty of Medicine, Universitas HKBP Nommensen, Medan, Indonesia
| | - Iskandar Japardi
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Rusda
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rini S. Daulay
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research (SCCR), Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| | - Irawan Mangunatmadja
- Department of Pediatrics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dewi M. Darlan
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Sri Sofyani
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yana Andreas
- Faculty of Medicine, Universitas HKBP Nommensen, Medan, Indonesia
| |
Collapse
|
4
|
Azevedo EM, Fracaro L, Hochuli AHD, Ilkiw J, Bail EL, Lisboa MDO, Rodrigues LS, Barchiki F, Correa A, Capriglione LGA, Brofman PRS, Lima MMS. Comparative analysis of uninduced and neuronally-induced human dental pulp stromal cells in a 6-OHDA model of Parkinson's disease. Cytotherapy 2024; 26:1052-1061. [PMID: 38739074 DOI: 10.1016/j.jcyt.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND In recent years, dental pulp stromal cells (DPSCs) have emerged as a promising therapeutic approach for Parkinson's disease (PD), owing to their inherent neurogenic potential and the lack of neuroprotective treatments for this condition. However, uncertainties persist regarding the efficacy of these cells in an undifferentiated state versus a neuronally-induced state. This study aims to delineate the distinct therapeutic potential of uninduced and neuronally-induced DPSCs in a rodent model of PD induced by 6-Hydroxydopamine (6-OHDA). METHODS DPSCs were isolated from human teeth, characterized as mesenchymal stromal cells, and induced to neuronal differentiation. Neuronal markers were assessed before and after induction. DPSCs were transplanted into the substantia nigra pars compacta (SNpc) of rats 7 days following the 6-OHDA lesion. In vivo tracking of the cells, evaluation of locomotor behavior, dopaminergic neuron survival, and the expression of essential proteins within the dopaminergic system were conducted 7 days postgrafting. RESULTS Isolated DPSCs exhibited typical characteristics of mesenchymal stromal cells and maintained a normal karyotype. DPSCs consistently expressed neuronal markers, exhibiting elevated expression of βIII-tubulin following neuronal induction. Results from the animal model showed that both DPSC types promoted substantial recovery in dopaminergic neurons, correlating with enhanced locomotion. Additionally, neuronally-induced DPSCs prevented GFAP elevation, while altering DARPP-32 phosphorylation states. Conversely, uninduced DPSCs reduced JUN levels. Both DPSC types mitigated the elevation of glycosylated DAT. CONCLUSIONS Our results suggested that uninduced DPSCs and neuronally-induced DPSCs exhibit potential in reducing dopaminergic neuron loss and improving locomotor behavior, but their underlying mechanisms differ.
Collapse
Affiliation(s)
- Evellyn M Azevedo
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Agner H D Hochuli
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Jéssica Ilkiw
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ellen L Bail
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Mateus de O Lisboa
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Lais S Rodrigues
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Fabiane Barchiki
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, Brazil
| | - Luiz G A Capriglione
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Paulo R S Brofman
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Marcelo M S Lima
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
5
|
Liu YF, Liu HT, Chang C, Yang CX, Liu XN, Wang X, Ge W, Wang RZ, Bao XJ. Stereotactically intracerebral transplantation of neural stem cells for ischemic stroke attenuated inflammatory responses and promoted neurogenesis: an experimental study with monkeys. Int J Surg 2024; 110:5417-5433. [PMID: 38874473 PMCID: PMC11392141 DOI: 10.1097/js9.0000000000001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Ischemic stroke is a common neurovascular disorder with high morbidity and mortality. However, the underlying mechanism of stereotactically intracerebral transplantation of human neural stem cells (hNSCs) is not well elucidated. MATERIALS AND METHODS Four days after ischemic stroke induced by Rose Bengal photothrombosis, seven cynomolgus monkeys were transplanted with hNSCs or vehicles stereotactically and followed up for 84 days. Behavioral assessments, magnetic resonance imaging, blood tests, and pathological analysis were performed before and after treatment. The proteome profiles of the left and right precentral gyrus and hippocampus were evaluated. Extracellular vesicle micro-RNA (miRNA) from the peripheral blood was extracted and analyzed. RESULTS hNSC transplantation reduced the remaining infarcted lesion volume of cynomolgus monkeys with ischemic stroke without remarkable side effects. Proteomic analyses indicated that hNSC transplantation promoted GABAergic and glutamatergic neurogenesis and restored the mitochondrial electron transport chain function in the ischemic infarcted left precentral gyrus or hippocampus. Immunohistochemical staining and quantitative real-time reverse transcription PCR confirmed the promoting effects on neurogenesis and revealed that hNSCs attenuated post-infarct inflammatory responses by suppressing resident glia activation and mediating peripheral immune cell infiltration. Consistently, miRNA-sequencing revealed the miRNAs that were related to these pathways were downregulated after hNSC transplantation. CONCLUSIONS This study indicates that hNSCs can be effectively and safely used to treat ischemic stroke by promoting neurogenesis, regulating post-infarct inflammatory responses, and restoring mitochondrial function in both the infarct region and hippocampus.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan
| | - Hao-Tian Liu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing
| | - Chuheng Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Cheng-Xian Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- Department of Orthopaedics, Peking University First Hospital, Beijing
| | - Xin-Nan Liu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing
| | - Xia Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing
| | - Wei Ge
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing
| | - Ren-Zhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong
| | - Xin-Jie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| |
Collapse
|
6
|
Liu Y, Sun L, Li Y, Holmes C. Mesenchymal stromal/stem cell tissue source and in vitro expansion impact extracellular vesicle protein and miRNA compositions as well as angiogenic and immunomodulatory capacities. J Extracell Vesicles 2024; 13:e12472. [PMID: 39092563 PMCID: PMC11294870 DOI: 10.1002/jev2.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Recently, therapies utilizing extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have begun to show promise in clinical trials. However, EV therapeutic potential varies with MSC tissue source and in vitro expansion through passaging. To find the optimal MSC source for clinically translatable EV-derived therapies, this study aims to compare the angiogenic and immunomodulatory potentials and the protein and miRNA cargo compositions of EVs isolated from the two most common clinical sources of adult MSCs, bone marrow and adipose tissue, across different passage numbers. Primary bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (ASCs) were isolated from adult female Lewis rats and expanded in vitro to the indicated passage numbers (P2, P4, and P8). EVs were isolated from the culture medium of P2, P4, and P8 BMSCs and ASCs and characterized for EV size, number, surface markers, protein content, and morphology. EVs isolated from different tissue sources showed different EV yields per cell, EV sizes, and protein yield per EV. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of proteomics data and miRNA seq data identified key proteins and pathways associated with differences between BMSC-EVs and ASC-EVs, as well as differences due to passage number. In vitro tube formation assays employing human umbilical vein endothelial cells suggested that both tissue source and passage number had significant effects on the angiogenic capacity of EVs. With or without lipopolysaccharide (LPS) stimulation, EVs more significantly impacted expression of M2-macrophage genes (IL-10, Arg1, TGFβ) than M1-macrophage genes (IL-6, NOS2, TNFα). By correlating the proteomics analyses with the miRNA seq analysis and differences observed in our in vitro immunomodulatory, angiogenic, and proliferation assays, this study highlights the trade-offs that may be necessary in selecting the optimal MSC source for development of clinical EV therapies.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Yan Li
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Christina Holmes
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
7
|
Chrościńska-Kawczyk M, Zdolińska-Malinowska I, Boruczkowski D. The Impact of Umbilical Cord Mesenchymal Stem Cells on Motor Function in Children with Cerebral Palsy: Results of a Real-world, Compassionate use Study. Stem Cell Rev Rep 2024; 20:1636-1649. [PMID: 38877284 DOI: 10.1007/s12015-024-10742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
The aim of this study was to analyze the impact of human umbilical cord-derived MSCs (hUC-MSCs) on motor function in children with cerebral palsy (CP). The study enrolled 152 children with CP who received up to two courses of five hUC-MSCs injections. Children's motor functions were assessed with the Gross Motor Function Measure (GMFM), 6-Minute Walk Test (6-MWT), Timed Up and Go test (Up&Go test), and Lovett's test, and mental abilities were assessed with the Clinical Global Impression (CGI) scale. Data collected at visit 1 (baseline) and visit 5 (after four injections) were analyzed retrospectively. After four hUC-MSCs administrations, all evaluated parameters improved. The change in GMFM score, by a median of 1.9 points (IQR: 0.0-8.0), correlated with age. This change was observed in all GFMCS groups and was noticed in all assessed GMFM areas. A median increase of 75 m (IQR: 20.0-115.0) was noted on the 6-MWT, and this correlated with GMFM score change. Time on the Up&Go test was reduced by a median of 2 s (IQR: -3 to - 1) and the change correlated with age, GMFM score at baseline, and the difference observed on the 6-MWT. Results of Lovett's test indicated slight changes in muscle strength. According to the CGI, 75.5% (96/151) of children were seriously (level VI) or significantly ill (level V) at the 1st visit, with any improvement observed in 63.6% (96/151) of patients at the 5th visit, 23.8% (36/151) with improvement (level II) or great improvement (level I). In conclusion, the application of hUC-MSCs generally enhanced functional performance, but individual responses varied. The therapy also benefited children with high level of disability but not to the same extent as the initially less disabled children. Although younger patients responded better to the treatment, older children can also benefit. Trial Registration 152/2018/KB/VII and 119/2021/KB/VIII. Retrospective registration in ClinicalTrials: ongoing.
Collapse
|
8
|
Zhou G, Cao Y, Yan Y, Xu H, Zhang X, Yan T, Wan H. Injectable Hydrogels Based on Hyaluronic Acid and Gelatin Combined with Salvianolic Acid B and Vascular Endothelial Growth Factor for Treatment of Traumatic Brain Injury in Mice. Molecules 2024; 29:1705. [PMID: 38675525 PMCID: PMC11052029 DOI: 10.3390/molecules29081705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Traumatic brain injury (TBI) leads to structural damage in the brain, and is one of the major causes of disability and death in the world. Herein, we developed a composite injectable hydrogel (HA/Gel) composed of hyaluronic acid (HA) and gelatin (Gel), loaded with vascular endothelial growth factor (VEGF) and salvianolic acid B (SAB) for treatment of TBI. The HA/Gel hydrogels were formed by the coupling of phenol-rich tyramine-modified HA (HA-TA) and tyramine-modified Gel (Gel-TA) catalyzed by horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). SEM results showed that HA/Gel hydrogel had a porous structure. Rheological test results showed that the hydrogel possessed appropriate rheological properties, and UV spectrophotometry results showed that the hydrogel exhibited excellent SAB release performance. The results of LIVE/DEAD staining, CCK-8 and Phalloidin/DAPI fluorescence staining showed that the HA/Gel hydrogel possessed good cell biocompatibility. Moreover, the hydrogels loaded with SAB and VEGF (HA/Gel/SAB/VEGF) could effectively promote the proliferation of bone marrow mesenchymal stem cells (BMSCs). In addition, the results of H&E staining, CD31 and α-SMA immunofluorescence staining showed that the HA/Gel/SAB/VEGF hydrogel possessed good in vivo biocompatibility and pro-angiogenic ability. Furthermore, immunohistochemical results showed that the injection of HA/Gel/SAB/VEGF hydrogel to the injury site could effectively reduce the volume of defective tissues in traumatic brain injured mice. Our results suggest that the injection of HA/Gel hydrogel loaded with SAB and VEGF might provide a new approach for therapeutic brain tissue repair after traumatic brain injury.
Collapse
Affiliation(s)
- Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (G.Z.); (Y.C.); (Y.Y.); (H.X.); (X.Z.)
| | - Yajie Cao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (G.Z.); (Y.C.); (Y.Y.); (H.X.); (X.Z.)
| | - Yujia Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (G.Z.); (Y.C.); (Y.Y.); (H.X.); (X.Z.)
| | - Haibo Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (G.Z.); (Y.C.); (Y.Y.); (H.X.); (X.Z.)
| | - Xiao Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (G.Z.); (Y.C.); (Y.Y.); (H.X.); (X.Z.)
| | - Tingzi Yan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Haitong Wan
- Institute of Cardio-Cerebrovascular Disease, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
9
|
Myers MI, Hines KJ, Gray A, Spagnuolo G, Rosenwasser R, Iacovitti L. Intracerebral Transplantation of Autologous Mesenchymal Stem Cells Improves Functional Recovery in a Rat Model of Chronic Ischemic Stroke. Transl Stroke Res 2023:10.1007/s12975-023-01208-7. [PMID: 37917400 DOI: 10.1007/s12975-023-01208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
While treatments exist for the acute phase of stroke, there are limited options for patients with chronic infarcts and long-term disability. Allogenic mesenchymal stem cells (alloMSCs) show promise for the treatment of stroke soon after ischemic injury. There is, however, no information on the use of autologous MSCs (autoMSCs), delivered intracerebrally in rats with a chronic infarct. In this study, rats underwent middle cerebral artery occlusion (MCAO) to induce stroke followed by bone marrow aspiration and MSC expansion in a closed bioreactor. Four weeks later, brain MRI was obtained and autoMSCs (1 × 106, 2.5 × 106 or 5 × 106; n = 6 each) were stereotactically injected into the peri-infarct and compared to controls (MCAO only; MCAO + PBS; n = 6-9). Behavior was assessed using the modified neurological severity score (mNSS). For comparison, an additional cohort of MCAO rats were implanted with 2.5 × 106 alloMSCs generated from a healthy rat. All doses of autoMSCs produced significant improvement (54-70%) in sensorimotor function 60 days later. In contrast, alloMSCs improved only 31.7%, similar to that in PBS controls 30%. Quantum dot-labeled auto/alloMSCs were found exclusively at the implantation site throughout the post-transplantation period with no tumor formation on MRI or Ki67 staining of engrafted MSCs. Small differences in stroke volume and no differences in corpus callosum width were observed after MSC treatment. Stroke-induced glial reactivity in the peri-infarct was long-lasting and unabated by auto/alloMSC transplantation. These studies suggest that intracerebral transplantation of autoMSCs as compared to alloMSCs may be a promising treatment in chronic stroke.
Collapse
Affiliation(s)
- Max I Myers
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Kevin J Hines
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Andrew Gray
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Gabrielle Spagnuolo
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Robert Rosenwasser
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA.
- The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA.
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA.
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA, 19107, USA.
| |
Collapse
|
10
|
Gao J, Li L, Zhou D, Sun X, Cui L, Yang D, Wang X, Du P, Yuan W. Effects of norepinephrine‑induced activation of rat vascular adventitial fibroblasts on proliferation and migration of BMSCs involved in vascular remodeling. Exp Ther Med 2023; 25:290. [PMID: 37206559 PMCID: PMC10189611 DOI: 10.3892/etm.2023.11989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Vascular remodeling caused by vascular injury such as hypertension and atherosclerosis is a complex process involving a variety of cells and factors, and the mechanism is unclear. A vascular injury model was simulated by adding norepinephrine (NE) to culture medium of vascular adventitial fibroblasts (AFs). NE induced activation and proliferation of AFs. To investigate the association between the AFs activation and bone marrow mesenchymal stem cells (BMSCs) differentiation in vascular remodeling. BMSCs were cultured with supernatant of the AFs culture medium. BMSC differentiation and migration were observed by immunostaining and Transwell assay, respectively, while cell proliferation was measured using the Cell Counting Kit-8. Expression levels of smooth muscle actin (α-SMA), TGF-β1 and SMAD3 were measured using western blot assay. The results indicated that compared with those in the control group, in which BMSCs were cultured in normal medium, expression levels of α-SMA, TGF-β1 and SMAD3 in BMSCs cultured in medium supplemented with supernatant of AFs, increased significantly (all P<0.05). Activated AFs induced the differentiation of BMSCs into vascular smooth muscle-like cells and promoted proliferation and migration. AFs activated by NE may induce BMSCs to participate in vascular remodeling. These findings may help design and develop new approaches and therapeutic strategies for vascular injury to prevent pathological remodeling.
Collapse
Affiliation(s)
- Jun Gao
- Medical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Li Li
- Pediatric Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Dongli Zhou
- Nurse's Office, Health School of Laiyang, Laiyang, Yantai, Shandong 265200, P.R. China
| | - Xuhong Sun
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Lilu Cui
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Donglin Yang
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaohui Wang
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Pengchao Du
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Correspondence to: Professor Wendan Yuan or Professor Pengchao Du, Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, P.R. China E-mail: 981713509 @qq.com
| | - Wendan Yuan
- Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Correspondence to: Professor Wendan Yuan or Professor Pengchao Du, Institute of Pathology and Pathophysiology, Basic Medical School, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, P.R. China E-mail: 981713509 @qq.com
| |
Collapse
|
11
|
Gong P, Tian Q, He Y, He P, Wang J, Guo Y, Ye Q, Li M. Dental pulp stem cell transplantation facilitates neuronal neuroprotection following cerebral ischemic stroke. Biomed Pharmacother 2022; 152:113234. [PMID: 35689857 DOI: 10.1016/j.biopha.2022.113234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVES This study aimed to identify and evaluate the intracranial transplantation of dental pulp stem cells (DPSCs) as a possible ischemic stroke therapy that mitigates neuronal death/apoptosis. MATERIALS AND METHODS DPSCs were isolated from the impacted third molars of healthy volunteers and then intracranially injected at 24 h post-ischemic stroke to Sprague Dawley rats that had been subjected to 2 h of middle cerebral artery occlusion. Neurological functional deficits were assessed using the modified neurological severity score (mNSS), and cerebral edema was quantified using brain water content. Neuronal death/apoptosis was indicated by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, NeuN immunofluorescence and immunohistochemistry, and Western blot analysis of the protein expression of anti-apoptotic indicator of Bcl-2 and apoptotic indicators of Bax and caspase 3. RESULTS DPSC transplantation could ameliorate neurological dysfunction and brain edema, reduce infarct volume, decrease the percentage of TUNEL-positive nuclei, increase the number and percentage of NeuN-positive cells in ischemic penumbra, increase the ratio of Bcl-2 and Bax and down-regulate the production of caspase 3 in the cortical infarct zone. CONCLUSIONS DPSC therapy via intracranial injection exerted remarkably neuroprotection mainly by inhibiting neuronal death/apoptosis.
Collapse
Affiliation(s)
- Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan He
- Regenerative Medicine Lab, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, China
| | - Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|