1
|
Peng Q. Challenges in the processing and preservation of adipose-derived stem cell subpopulations for clinical use. Regen Med 2024; 19:595-597. [PMID: 39703172 DOI: 10.1080/17460751.2024.2442843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Affiliation(s)
- Qiuyue Peng
- Department of Health Science and Technology, Aalborg University, Gistrup, Denmark
| |
Collapse
|
2
|
Rohringer S, Grasl C, Ehrmann K, Hager P, Hahn C, Specht SJ, Walter I, Schneider KH, Zopf LM, Baudis S, Liska R, Schima H, Podesser BK, Bergmeister H. Biodegradable, Self-Reinforcing Vascular Grafts for In Situ Tissue Engineering Approaches. Adv Healthc Mater 2023; 12:e2300520. [PMID: 37173073 PMCID: PMC11468867 DOI: 10.1002/adhm.202300520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Clinically available small-diameter synthetic vascular grafts (SDVGs) have unsatisfactory patency rates due to impaired graft healing. Therefore, autologous implants are still the gold standard for small vessel replacement. Bioresorbable SDVGs may be an alternative, but many polymers have inadequate biomechanical properties that lead to graft failure. To overcome these limitations, a new biodegradable SDVG is developed to ensure safe use until adequate new tissue is formed. SDVGs are electrospun using a polymer blend composed of thermoplastic polyurethane (TPU) and a new self-reinforcing TP(U-urea) (TPUU). Biocompatibility is tested in vitro by cell seeding and hemocompatibility tests. In vivo performance is evaluated in rats over a period for up to six months. Autologous rat aortic implants serve as a control group. Scanning electron microscopy, micro-computed tomography (µCT), histology, and gene expression analyses are applied. TPU/TPUU grafts show significant improvement of biomechanical properties after water incubation and exhibit excellent cyto- and hemocompatibility. All grafts remain patent, and biomechanical properties are sufficient despite wall thinning. No inflammation, aneurysms, intimal hyperplasia, or thrombus formation are observed. Evaluation of graft healing shows similar gene expression profiles of TPU/TPUU and autologous conduits. These new biodegradable, self-reinforcing SDVGs may be promising candidates for clinical use in the future.
Collapse
Affiliation(s)
- Sabrina Rohringer
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Christian Grasl
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
| | - Katharina Ehrmann
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Pia Hager
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Clemens Hahn
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Sophie J. Specht
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Ingrid Walter
- Department of PathobiologyUniversity of Veterinary MedicineVeterinaerplatz 1Vienna1210Austria
| | - Karl H. Schneider
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Lydia M. Zopf
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for TraumatologyDonaueschingenstraße 13Vienna1200Austria
| | - Stefan Baudis
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Robert Liska
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Heinrich Schima
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
| | - Bruno K. Podesser
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Helga Bergmeister
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| |
Collapse
|
3
|
Silicon-Gold Nanoparticles Affect Wharton's Jelly Phenotype and Secretome during Tri-Lineage Differentiation. Int J Mol Sci 2022; 23:ijms23042134. [PMID: 35216249 PMCID: PMC8874983 DOI: 10.3390/ijms23042134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple studies have demonstrated that various nanoparticles (NPs) stimulate osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibit adipogenic ones. The mechanisms of these effects are not determined. The aim of this paper was to estimate Wharton’s Jelly MSCs phenotype and humoral factor production during tri-lineage differentiation per se and in the presence of silicon–gold NPs. Silicon (SiNPs), gold (AuNPs), and 10% Au-doped Si nanoparticles (SiAuNPs) were synthesized by laser ablation, characterized, and studied in MSC cultures before and during differentiation. Humoral factor production (n = 41) was analyzed by Luminex technology. NPs were nontoxic, did not induce ROS production, and stimulated G-CSF, GM-CSF, VEGF, CXCL1 (GRO) production in four day MSC cultures. During MSC differentiation, all NPs stimulated CD13 and CD90 expression in osteogenic cultures. MSC differentiation resulted in a decrease in multiple humoral factor production to day 14 of incubation. NPs did not significantly affect the production in chondrogenic cultures and stimulated it in both osteogenic and adipogenic ones. The major difference in the protein production between osteogenic and adipogenic MSC cultures in the presence of NPs was VEGF level, which was unaffected in osteogenic cells and 4–9 times increased in adipogenic ones. The effects of NPs decreased in a row AuNPs > SiAuNPs > SiNPs. Taken collectively, high expression of CD13 and CD90 by MSCs and critical level of VEGF production can, at least, partially explain the stimulatory effect of NPs on MSC osteogenic differentiation.
Collapse
|
4
|
Yang G, Wang F, Li Y, Hou J, Liu D. Construction of tissue engineering bone with the co‑culture system of ADSCs and VECs on partially deproteinized biologic bone in vitro: A preliminary study. Mol Med Rep 2021; 23:58. [PMID: 33215221 PMCID: PMC7706005 DOI: 10.3892/mmr.2020.11696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
Scaffold‑based bone tissue engineering has therapeutic potential in the regeneration of osseous defects. The present study aimed to explore the adhesion and cell viability of a co‑culture system composed of vascular endothelial cells PI‑/Annexin V+ represents early apoptotic cells, and PI+/Annexin V+ represents late apoptotic cells (VECs) and adipose‑derived stem cells (ADSCs) on partially deproteinized biologic bone (PDPBB) in vitro, and determine the optimum time period for maximum cell viability that could possibly be used for standardizing the scaffold transplant into the in vivo system. VECs and ADSCs were isolated from pregnant Sprague‑Dawley rats and confirmed by immunostaining with von Willebrand factor and CD90, respectively. PDPBB was prepared using standardized protocols involving coating partially deproteinized bone with fibronectin. PDPBB was incubated in a mono‑culture with VECs or ADSCs, or in a co‑culture with both of these cells at a ratio of 1:1. An MTT assay was used to assess the adhesion and cell viability of VECs and ADSCs on PDPBB in the three different cultures. Scanning electron microscopy was used to observe the adhesion, cell viability and morphology of the different types of cells on PDPBB. It was observed that the absorbance of each group increased gradually and peaked on the 10th day; the highest absorbance was found for the co‑cultured cells group. The difference of cell viability between each cell group was statistically significant. On the 10th day, in the co‑cultured cells group, several cells adhered on the PDPBB material and a nest‑like distribution morphology was observed. Therefore, the adhesion and cell viability of the co‑cultured cells was higher compared with the mono‑cultures of VECs or ADSCs. As cell viability was highest on the 10th day, this could be the optimal length of time for incubation and therefore could be used for in vivo experiments.
Collapse
Affiliation(s)
- Guiran Yang
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Fuke Wang
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jianfei Hou
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Dejian Liu
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
5
|
Cellular Mechanisms of Rejection of Optic and Sciatic Nerve Transplants: An Observational Study. Transplant Direct 2020; 6:e589. [PMID: 32766437 PMCID: PMC7382554 DOI: 10.1097/txd.0000000000001012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background. Organ transplantation is a standard therapeutic strategy for irreversible organ damage, but the utility of nerve transplantation remains generally unexplored, despite its potential benefit to a large patient population. Here, we aimed to establish a feasible preclinical mouse model for understanding the cellular mechanisms behind the rejection of peripheral and optic nerves. Methods. We performed syngenic and allogenic transplantation of optic and sciatic nerves in mice by inserting the nerve grafts inside the kidney capsule, and we assessed the allografts for signs of rejection through 14 d following transplantation. Then, we assessed the efficacy of CTLA4 Ig, Rapamycin, and anti-CD3 antibody in suppressing immune cell infiltration of the nerve allografts. Results. By 3 d posttransplantation, both sciatic and optic nerves transplanted from BALB/c mice into C57BL/6J recipients contained immune cell infiltrates, which included more CD11b+ macrophages than CD3+ T cells or B220+ B cells. Ex vivo immunogenicity assays demonstrated that sciatic nerves demonstrated higher alloreactivity in comparison with optic nerves. Interestingly, optic nerves contained higher populations of anti-inflammatory PD-L1+ cells than sciatic nerves. Treatment with anti-CD3 antibody reduced immune cell infiltrates in the optic nerve allograft, but exerted no significant effect in the sciatic nerve allograft. Conclusions. These findings establish the feasibility of a preclinical allogenic nerve transplantation model and provide the basis for future testing of directed, high-intensity immunosuppression in these mice.
Collapse
|
6
|
Itoh H, Nishikawa S, Tani K, Sunahara H, Nakaichi M, Iseri T, Taura Y, Itamoto K. Cystine transporter expression is a marker to identify a subpopulation of canine adipose-derived stem cells. J Vet Med Sci 2020; 82:713-720. [PMID: 32269196 PMCID: PMC7324832 DOI: 10.1292/jvms.19-0373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are promising cell sources for regenerative medicine
due to the simplicity of their harvest and culture; however, their biological properties
are not completely understood. Moreover, recent murine and human studies identified
several functional subpopulations of ADSCs varying in differentiation potential; however,
there is a lack of research on canine ADSCs. Cystine transporter (xCT) is a stem cell
marker in gastric and colon cancers that interacts with CD44 to enhance cystine uptake
from the cell surface and subsequently accelerates intercellular glutathione levels. In
this study, we identified a ~5% functional subpopulation of canine ADSCs with
xCT+ expression (xCTHi). Compared with those of the
xCT− subpopulation (xCTLo), the xCTHi subpopulation
showed a significantly higher proliferation rate, higher expression of conventional stem
cell markers (SOX2, KLF4, and c-Myc),
and higher expression of adipogenic markers (FABP4 and
PPARγ). By contrast, the xCTLo subpopulation showed
significantly higher expression of osteogenic markers (BMP1 and
SPP) than xCTHi cells. These results suggest xCT as a
candidate marker for detecting a functional subpopulation of canine ADSCs.
Mechanistically, xCT could increase the adipogenic potential while decreasing the
osteogenic differentiation potential, which could serve as a valuable target marker in
regenerative veterinary medicine.
Collapse
Affiliation(s)
- Harumichi Itoh
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Shimpei Nishikawa
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Kenji Tani
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Hiroshi Sunahara
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Munekazu Nakaichi
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Toshie Iseri
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Yasuho Taura
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Kazuhito Itamoto
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| |
Collapse
|
7
|
Kawamoto K, Ohashi T, Konno M, Nishida N, Koseki J, Matsui H, Sakai D, Kudo T, Eguchi H, Satoh T, Doki Y, Mori M, Ishii H. Cell-free culture conditioned medium elicits pancreatic β cell lineage-specific epigenetic reprogramming in mice. Oncol Lett 2018; 16:3255-3259. [PMID: 30127922 DOI: 10.3892/ol.2018.9008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
There are several obstacles to overcome prior to achieving cellular reprogramming of pancreatic β cells in vitro and in vivo. The present study demonstrated that the transfer of epigenetic phenotypes was achieved in the cell-free conditioned medium (CM) of pancreatic insulinoma MIN6 cell cultures. The comparison of a subpopulation of MIN6, m14 and m9 cells indicated that MIN6-m14 cells were more prone to cellular reprogramming. Epigenetic profiling revealed that the transcription factor pancreas/duodenum homeobox protein 1 (Pdx1) was differentially associated among the clones. The culture of differentiated adipocytes in the CM of MIN6-m14 cells resulted in the induction of insulin mRNA expression, and was accompanied by epigenetic events of Pdx1 binding. The epigenetic profiling indicated that Pdx1 is preferentially associated with a previously uncharacterized region of the endoplasmic reticulum (ER) disulfide oxidase, ER oxidoreductin 1 gene. Therefore, the results of the present study indicated that the CM of MIN6 cells was able to induce a pancreatic β cell-like phenotype in differentiated adipocytes. These data provide additional support for the utility of cell-free CM for cellular reprogramming.
Collapse
Affiliation(s)
- Koichi Kawamoto
- Department of Gastroenterological Surgery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomofumi Ohashi
- Department of Gastroenterological Surgery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masamitsu Konno
- Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Naohiro Nishida
- Department of Gastroenterological Surgery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jun Koseki
- Department of Cancer Profiling Discovery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Matsui
- Department of Mathematical Sciences, Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan
| | - Daisuke Sakai
- Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Toshihiro Kudo
- Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Taroh Satoh
- Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Profiling Discovery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Profiling Discovery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Profiling Discovery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Itoh H, Nishikawa S, Haraguchi T, Arikawa Y, Eto S, Hiyama M, Iseri T, Itoh Y, Nakaichi M, Sakai Y, Tani K, Taura Y, Itamoto K. Aldehyde dehydrogenase activity helps identify a subpopulation of murine adipose-derived stem cells with enhanced adipogenic and osteogenic differentiation potential. World J Stem Cells 2017; 9:179-186. [PMID: 29104736 PMCID: PMC5661130 DOI: 10.4252/wjsc.v9.i10.179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To identify and characterize functionally distinct subpopulation of adipose-derived stem cells (ADSCs).
METHODS ADSCs cultured from mouse subcutaneous adipose tissue were sorted fluorescence-activated cell sorter based on aldehyde dehydrogenase (ALDH) activity, a widely used stem cell marker. Differentiation potentials were analyzed by utilizing immunocytofluorescece and its quantitative analysis.
RESULTS Approximately 15% of bulk ADSCs showed high ALDH activity in flow cytometric analysis. Although significant difference was not seen in proliferation capacity, the adipogenic and osteogenic differentiation capacity was higher in ALDHHi subpopulations than in ALDHLo. Gene set enrichment analysis revealed that ribosome-related gene sets were enriched in the ALDHHi subpopulation.
CONCLUSION High ALDH activity is a useful marker for identifying functionally different subpopulations in murine ADSCs. Additionally, we suggested the importance of ribosome for differentiation of ADSCs by gene set enrichment analysis.
Collapse
Affiliation(s)
- Harumichi Itoh
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Shimpei Nishikawa
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Tomoya Haraguchi
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yu Arikawa
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Shotaro Eto
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Masato Hiyama
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Toshie Iseri
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yoshiki Itoh
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Munekazu Nakaichi
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yusuke Sakai
- Department of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Kenji Tani
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yasuho Taura
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Kazuhito Itamoto
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
9
|
Zhou Y, Zimber M, Yuan H, Naughton GK, Fernan R, Li WJ. Effects of Human Fibroblast-Derived Extracellular Matrix on Mesenchymal Stem Cells. Stem Cell Rev Rep 2017; 12:560-572. [PMID: 27342267 DOI: 10.1007/s12015-016-9671-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stem cell fate is largely determined by the microenvironment called niche. The extracellular matrix (ECM), as a key component in the niche, is responsible for maintaining structural stability and regulating cell proliferation, differentiation, migration and other cellular activities. Each tissue has a unique ECM composition for its needs. Here we investigated the effect of a bioengineered human dermal fibroblast-derived ECM (hECM) on the regulation of human mesenchymal stem cell (hMSC) proliferation and multilineage differentiation. Human MSCs were maintained on hECM for two passages followed by the analysis of mRNA expression levels of potency- and lineage-specific markers to determine the capacity of MSC stemness and differentiation, respectively. Mesenchymal stem cells pre-cultured with or without hECM were then induced and analyzed for osteogenesis, adipogenesis and chondrogenesis. Our results showed that compared to MSCs maintained on control culture plates without hECM coating, cells on hECM-coated plates proliferated more rapidly with a higher percentage of cells in S phase of the cell cycle, resulting in an increase in the CD90+/CD105+/CD73+/CD45- subpopulation. In addition, hECM downregulated osteogenesis and adipogenesis of hMSCs but significantly upregulated chondrogenesis with increased production of collagen type 2. In sum, our findings suggest that hECM may be used to culture hMSCs for the application of cartilage tissue engineering.
Collapse
Affiliation(s)
- Yaxian Zhou
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5051, Madison, WI, 53705-2275, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Huihua Yuan
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5051, Madison, WI, 53705-2275, USA.,College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China
| | | | | | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5051, Madison, WI, 53705-2275, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Itoh H, Nishikawa S, Haraguchi T, Arikawa Y, Hiyama M, Eto S, Iseri T, Itoh Y, Tani K, Nakaichi M, Taura Y, Itamoto K. Aldehyde dehydrogenase activity identifies a subpopulation of canine adipose-derived stem cells with higher differentiation potential. J Vet Med Sci 2017; 79:1540-1544. [PMID: 28579596 PMCID: PMC5627324 DOI: 10.1292/jvms.16-0503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are abundant and readily obtained, and have been studied for their clinical applicability in regenerative medicine. Some surface antigens have been identified as markers of different ADSC
subpopulations in mice and humans. However, it is unclear whether functionally distinct subpopulations exist in dogs. To address this issue, we evaluated aldehyde dehydrogenase (ALDH) activity—a widely used stem cell marker in
mice and humans—by flow cytometry. Approximately 20% of bulk ADSCs showed high ALDH activity. Compared to cells with low activity (ALDHLo), the high-activity (ALDHHi) subpopulation exhibited a higher capacity
for adipogenic and osteogenic differentiation. This is the first report of distinct ADSC subpopulations in dogs that differ in terms of adipogenic and osteogenic differentiation potential.
Collapse
Affiliation(s)
- Harumichi Itoh
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Shimpei Nishikawa
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Tomoya Haraguchi
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Yu Arikawa
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Masato Hiyama
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Shotaro Eto
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Toshie Iseri
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Yoshiki Itoh
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Kenji Tani
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Munekazu Nakaichi
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Yasuho Taura
- Department of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Kazuhito Itamoto
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| |
Collapse
|
11
|
Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine. Stem Cells Int 2016; 2016:3187491. [PMID: 27725838 PMCID: PMC5048051 DOI: 10.1155/2016/3187491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/10/2016] [Accepted: 08/07/2016] [Indexed: 12/21/2022] Open
Abstract
Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process.
Collapse
|
12
|
Kim YK, Nakata H, Yamamoto M, Miyasaka M, Kasugai S, Kuroda S. Osteogenic Potential of Mouse Periosteum-Derived Cells Sorted for CD90 In Vitro and In Vivo. Stem Cells Transl Med 2015; 5:227-34. [PMID: 26718647 DOI: 10.5966/sctm.2015-0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022] Open
Abstract
The treatment of bone defects still presents complex problems, although various techniques have been developed. The periosteum is considered a good source of osteogenic precursor cells for new bone formation. It can be collected easily in the clinical setting and is less invasive to the donor site. However, the murine skull periosteum has a poor cellular component, and growth is very slow, making it important to identify a culture method for efficient growth. In the present study, we used three-dimensional cell migration with atelocollagen and gelatin media and found that both were effective for promoting the proliferation of periosteum-derived cells. Moreover, atelocollagen medium is expected to provide an added benefit as a scaffold structure in the ambient temperature of the human body. The selection of a proper surface marker for osteogenesis is imperative for bone regeneration. CD90 is a mesenchymal stem cell marker. Periosteum-derived cells sorted with CD90 showed higher proliferative capacity and osteogenic potential than that of unsorted periosteum-derived cells in vivo and in vitro. Thus, periosteum-derived cells sorted with CD90 are expected to be a good source for bone regeneration. Significance: Periosteum-derived cells showed higher proliferative capacity and osteogenic potential. Periosteum can be collected easily in the clinical setting and is less invasive to the donor site. Thus, periosteum-derived cells can be expected to be a good source for bone regeneration.
Collapse
Affiliation(s)
- You-Kyoung Kim
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Maiko Yamamoto
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Munemitsu Miyasaka
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Baer PC. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro. World J Stem Cells 2014; 6:256-265. [PMID: 25126376 PMCID: PMC4131268 DOI: 10.4252/wjsc.v6.i3.256] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/10/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is a rich, ubiquitous and easily accessible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sources of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells (ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers (and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were expressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopulation in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs (or their subpopulations) seems to vary between different laboratories and preparations. This heterogeneity of ASC preparations may result from different reasons. One of the main problems in comparing results from different laboratories is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, such as the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs’ subpopulations, heterogeneity and culture standardization.
Collapse
|
14
|
Zhao Y, Xu A, Xu Q, Zhao W, Li D, Fang X, Ren Y. Bone marrow mesenchymal stem cell transplantation for treatment of emphysemic rats. Int J Clin Exp Med 2014; 7:968-972. [PMID: 24955169 PMCID: PMC4057848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To study the efficacy of bone marrow mesenchymal stem cell (MSC) transplantation to treat pulmonary emphysema in rats. METHODS Sixty rats were randomly divided into control, model and transplantation groups. Each group contained 20 rats. Rat models of emphysema were established via intratracheal instillation of lipopolysaccharide and exposure of model and transplantation groups to smoke. Then, cultured bone marrow MSCs were injected into rats in the transplantation group via the tail vein. Pathological changes of the lung in rats were observed. RESULTS Emphysemic pathological changes were found in model and transplantation groups, but changes were significantly attenuated after transplantation, compared with that of the model group. The mean alveoli number (MAN) and pulmonary alveolar area (PAA) showed statistically significant differences among the three groups (P < 0.001). The MAN in the transplantation group was higher than that in the model group, but still lower than that in the control group. The PAA in the transplantation group was lower than that in the model group, but higher than that in the control group (P < 0.05). After transplantation, Brdu-positive cells were observed and CK was expressed in a small number of Brdu-positive cells. Brdu- and CK-positive cells were not found in control and model groups. CONCLUSION Transplantation of bone marrow MSCs can significantly attenuate lung inflammation and pathological changes in emphysemic rats, which may be associated with MSC differentiation into alveolar epithelial cells in recipient lung tissues.
Collapse
Affiliation(s)
- Yumiao Zhao
- Critical Section, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan Province, China
| | - Aiguo Xu
- Critical Section, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan Province, China
| | - Qinfu Xu
- Critical Section, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan Province, China
| | - Wei Zhao
- Critical Section, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan Province, China
| | - Dandan Li
- Critical Section, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan Province, China
| | - Xiang Fang
- Department of Respiratory, Thoracic Hospital of Henan ProvinceZhengzhou 450052, Henan Province, China
| | - Yinlong Ren
- Critical Section, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan Province, China
| |
Collapse
|
15
|
Song Q, Xu R, Zhang Q, Ma M, Zhao X. Therapeutic effect of transplanting bone mesenchymal stem cells on the hind limbs' motor function of rats with acute spinal cord injury. Int J Clin Exp Med 2014; 7:262-267. [PMID: 24482714 PMCID: PMC3902266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/28/2013] [Indexed: 06/03/2023]
Abstract
PURPOSE To research the therapeutic effect of the allograft of bone mesenchymal stem cells (BMSCs) on hind limbs' motor function of rats that underwent acute injury to their spinal nerve. DESIGN 40 Wistar rat samples with the acute injury to the spinal cord were established and divided into the transplantation group and the control group, 20 for each group; One week after injury, BMSCs were slowly injected into the center of the injured spinal cord of the rats, and the physiological saline was injected into the control group. MAIN OUTCOME MEASURES The rehabilitation of the motor function of the rats' hind limbs was observed; furthermore, eight weeks after the injury, the protein disparity of the nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) between the two groups of rats was noted. RESULTS The rehabilitation of the hind limbs' motor function of the transplantation group was significantly better than that of the control group from the third week on after injury, and the difference was of significance (P<0.05). CONCLUSIONS Transplanting BMSCs can boost the protein expression of NGF and BDNF in the rats which undergo acute injury to their spinal nerves. It can, therefore, significantly improve the rehabilitation of the motor function of their hind limbs. The improvement is associated with the transplantation of BMSCs which are beneficial for regeneration and repair of the rat's spinal nerves.
Collapse
Affiliation(s)
- Qinghua Song
- The Center of Physical Health, Henan Polytechnic UniversityJiaozuo 454000, Henan Province, P. R. China
| | - Rongmei Xu
- The Center of Physical Health, Henan Polytechnic UniversityJiaozuo 454000, Henan Province, P. R. China
| | - Quanhai Zhang
- The Lab of Human Body Science, Henan Polytechnic UniversityJiaozuo 454000, Henan Province, P. R. China
| | - Ming Ma
- The Center of Physical Health, Henan Polytechnic UniversityJiaozuo 454000, Henan Province, P. R. China
| | - Xinping Zhao
- The Lab of Human Body Science, Henan Polytechnic UniversityJiaozuo 454000, Henan Province, P. R. China
| |
Collapse
|