1
|
Domagalski M, Olszańska J, Pietraszek‐Gremplewicz K, Nowak D. The role of adipogenic niche resident cells in colorectal cancer progression in relation to obesity. Obes Rev 2025; 26:e13873. [PMID: 39763022 PMCID: PMC11884973 DOI: 10.1111/obr.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 03/08/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has one of the highest mortality rates. Considering its nonlinear etiology, many risk factors are associated with CRC formation and development, with obesity at the forefront. Obesity is regarded as one of the key environmental risk determinants for the pathogenesis of CRC. Excessive food intake and a sedentary lifestyle, together with genetic predispositions, lead to the overgrowth of adipose tissue along with a disruption in the number and function of its building cells. Adipose tissue-resident cells may constitute part of the CRC microenvironment. Alterations in their physiology and secretory profiles observed in obesity may further contribute to CRC progression, and despite similar localization, their contributions are not equivalent. They can interact with CRC cells, either directly or indirectly, influencing various processes that contribute to tumorigenesis. The main aim of this review is to provide insights into the diversity of adipose tissue resident cells, namely, adipocytes, adipose stromal cells, and immunological cells, regarding the role of particular cell types in co-forming the CRC microenvironment. The scope of this study was also devoted to the abnormalities in adipose tissue physiology observed in obesity states and their impact on CRC development.
Collapse
Affiliation(s)
- Mikołaj Domagalski
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Joanna Olszańska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
2
|
Lee J, Son S, Lee M, Park SB. Development of potential immunomodulatory ligands targeting natural killer T cells inspired by gut symbiont-derived glycolipids. Commun Chem 2025; 8:98. [PMID: 40169880 PMCID: PMC11961698 DOI: 10.1038/s42004-025-01497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
α-Galactosylceramide (α-GalCer) is a prototypical antigen recognized by natural killer T (NKT) cells, a subset of T cells crucial for immune regulation. Despite its significance, the complex structure-activity relationship of α-GalCer and its analogs remains poorly understood, particularly in defining the structural determinants of NKT cell responses. In this study, we designed and synthesized potential immunomodulatory ligands targeting NKT cells, inspired by glycolipids derived from the gut symbiont Bacteroides fragilis. A series of α-GalCer analogs with terminal iso-branched sphinganine backbones was developed through rational modification of the acyl chain. Our results identified the C3' hydroxyl group as a structural element that impairs glycolipid presentation by CD1d, as evidenced by reduced IL-2 secretion and weak competition with a potent CD1d ligand. Notably, among C3'-deoxy α-GalCer analogs, those containing an α-chloroacetamide group exhibited robust NKT cell activation with Th2 selectivity. Computational docking and mass spectrometry analyses further confirmed the substantial interaction of α-chloroacetamide analogs to CD1d. These findings underscore the potential of leveraging microbiota-derived glycolipid structures to selectively modulate NKT cell functions for therapeutic purposes.
Collapse
Affiliation(s)
- Jesang Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Sumin Son
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Minha Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Li YR, Zhu Y, Chen Y, Yang L. The clinical landscape of CAR-engineered unconventional T cells. Trends Cancer 2025:S2405-8033(25)00069-X. [PMID: 40155286 DOI: 10.1016/j.trecan.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Unconventional T cells, such as invariant natural killer T (iNKT), γδ T, and mucosal-associated invariant T (MAIT) cells, play a pivotal role in bridging innate and adaptive immunity. Their capacity for rapid tumor targeting and effective modulation of the tumor microenvironment (TME) makes them promising candidates for cancer immunotherapy. Advances in chimeric antigen receptor (CAR) engineering have further highlighted their therapeutic potential, particularly for treating challenging cancers. Notably, these cells exhibit favorable safety profiles, enhancing their viability as off-the-shelf therapeutic options. We provide a comprehensive analysis of the clinical applications of CAR-engineered unconventional T cells, focusing on genetic modifications, manufacturing processes, preconditioning regimens, and dosing strategies. We discuss successful examples from recent clinical trials and explore future directions for utilizing these cells in cancer therapy and beyond.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Yichen Zhu
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Xu L, Shen T, Li Y, Wu X. The Role of M 6A Modification in Autoimmunity: Emerging Mechanisms and Therapeutic Implications. Clin Rev Allergy Immunol 2025; 68:29. [PMID: 40085180 DOI: 10.1007/s12016-025-09041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
N6-methyladenosine (m6A), a prevalent and essential RNA modification, serves a key function in driving autoimmune disease pathogenesis. By modulating immune cell development, activation, migration, and polarization, as well as inflammatory pathways, m6A is crucial in forming innate defenses and adaptive immunity. This article provides a comprehensive overview of m6A modification features and reveals how its dysregulation affects the intensity and persistence of immune responses, disrupts immune tolerance, exacerbates tissue damage, and promotes the development of autoimmunity. Specific examples include its contributions to systemic autoimmune disorders like lupus and rheumatoid arthritis, as well as conditions that targeting specific organs like multiple sclerosis and type 1 diabetes. Furthermore, this review explores the therapeutic promise of target m6A-related enzymes ("writers," "erasers," and "readers") and summarizes recent advances in intervention strategies. By focusing on the mechanistic and therapeutic implications of m6A modification, this review sheds light on its role as a promising tool for both diagnosis and treatment in autoimmune disorders, laying the foundation for advancements in customized medicine.
Collapse
Affiliation(s)
- Liyun Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tian Shen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Wang Y, Anesi JC, Panicker IS, Cook D, Bista P, Fang Y, Oqueli E. Neuroimmune Interactions and Their Role in Immune Cell Trafficking in Cardiovascular Diseases and Cancer. Int J Mol Sci 2025; 26:2553. [PMID: 40141195 PMCID: PMC11941982 DOI: 10.3390/ijms26062553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Sympathetic nerves innervate bone marrow and various immune organs, where norepinephrine-the primary sympathetic neurotransmitter-directly interacts with immune cells that express adrenergic receptors. This article reviewed the key molecular pathways triggered by sympathetic activation and explored how sympathetic activity influences immune cell migration. Norepinephrine serves as a chemoattractant for monocytes, macrophages, and stem cells, promoting the migration of myeloid cells while inhibiting the migration of lymphocytes at physiological concentrations. We also examined the role of immune cell infiltration in cardiovascular diseases and cancer. Evidence suggests that sympathetic activation increases myeloid cell infiltration into target tissues across various cardiovascular diseases, including atherosclerosis, hypertension, cardiac fibrosis, cardiac hypertrophy, arrhythmia, myocardial infarction, heart failure, and stroke. Conversely, inhibiting sympathetic activity may serve as a potential therapeutic strategy to treat these conditions by reducing macrophage infiltration. Furthermore, sympathetic activation promotes macrophage accumulation in cancer tissues, mirroring its effects in cardiovascular diseases, while suppressing T lymphocyte infiltration into cancerous sites. These changes contribute to increased cancer growth and metastasis. Thus, inhibiting sympathetic activation could help to protect against cancer by enhancing T cell infiltration and reducing macrophage presence in tumors.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Jack C. Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Indu S. Panicker
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Darcy Cook
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Prapti Bista
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Yan Fang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Ernesto Oqueli
- Cardiology Department, Grampians Health Ballarat, Ballarat, VIC 3353, Australia
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3217, Australia
| |
Collapse
|
6
|
Liu Y, Zhao C, Liu J, Du Y. Design, synthesis, and biological evaluation of novel KRN7000 analogues using 5α-gem-difluorocarba-β-l-arabinopyranose. Carbohydr Res 2025; 552:109457. [PMID: 40081114 DOI: 10.1016/j.carres.2025.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Two novel KRN7000 analogues, where d-galactopyranosyl residue was replaced by 5α-gem-difluorocarba-β-l-arabinopyranose, were designed based on docking computation and energy decomposition analyses. The target compounds were synthesized employing the key steps of Ferrier's carbocyclic ring closure and gem-difluoride formation with d-galactose as starting material. The in vivo bioassay revealed that the designed glycolipids could stimulate iNKT cells to produce cytokines IFN-γ and IL-4. The introduced hydroxyl groups on glycolipid acyl chain provided extra CD1d substrate affinities, and thus favored to boost Th1-type cytokine secretion. When the ring oxygen was replaced by CF2 group on sugar unit, its TCR affinities were enhanced in contrast with KRN7000. The in vivo cytokine profiles induced by synthetic glycolipids were initially dominated by the binding ability of CD1/glycolipid, and then adjusted by affinity toward TCR in CD1/α-GalCer/TCR triplex structure. The current results could be helpful in designing of more efficient α-GalCer analogs.
Collapse
Affiliation(s)
- Yuanfang Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, China.
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, China
| |
Collapse
|
7
|
Qiu L, Gao X, Shao X, Xi J, Chen S, Pham T, Wang Y, Dong J, Rao SD, Hao J, Lo JH, Yang R, Engel EA, Crump CM, Yuan W. HSV-1 UL56 protein recruits cellular NEDD4-family ubiquitin ligases to suppress CD1d expression and NKT cell function. J Virol 2025:e0214024. [PMID: 40047437 DOI: 10.1128/jvi.02140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Herpesviruses, including α-herpesvirus and herpes simplex virus (HSV-1), are masters of immune evasion. Previously we demonstrated that CD1d-restricted NKT cells are required for optimal anti-HSV-1 immune responses and HSV-1 efficiently downregulates CD1d to suppress NKT cell function. To delineate how the virus evades NKT cell function and establishes infection in vivo, we screened an HSV-1 expression library to identify the viral gene(s) downregulating CD1d and discovered that a leaky late gene, UL56, most efficiently suppresses CD1d expression by degrading the protein, apparently via both proteasome- and lysosome-dependent pathways. To investigate the molecular mechanism of UL56 suppression of CD1d expression, we purified and identified UL56-associated proteins by mass spectrometry. The most abundant associated proteins were members of NEDD4 E3 ubiquitin ligase family. Interestingly overexpression of one member, NEDD4L is sufficient to downregulate CD1d expression. However, different from the K5 protein from Kaposi sarcoma's herpesvirus (KSHV), UL56 and NEDD4L did not directly ubiquitinate CD1d. CD1d protein lacking the key lysine residue in its cytoplasmic tail is similarly downregulated by UL56 and NEDD4L protein. Co-expression of UL56 and NEDD4L synergistically reduced the CD1d expression, suggesting that UL56 collaborates with NEDD4L to downregulate CD1d. During in vivo infection, UL56-deficient mutant virus showed significantly weaker virulence in NKT-sufficient mice but demonstrated higher virulence in mutant mice lacking NKT cells. All our results supported that at least one of the pathogenesis functions of UL56 is its suppression of NKT cell function during infection. IMPORTANCE In the large DNA genomes of herpeviruses, there are many genes encoding associate proteins. Most of these proteins are not essential for viral replication but play key roles in viral pathogenesis, in particular, modulating the host immune system to allow efficient viral replication in vivo and latency. The HSV-1 UL56 gene is one of such genes, and its exact pathogenic roles have remain elusive. After we demonstrated the essential roles of CD1d-restricted NKT cells in anti-HSV-1 immunity during HSV-1 ocular infection (P. Rao, X. Wen, J. H. Lo, S. Kim, X. Li, et al., J Virol 92:e01490-18, 2018, https://doi.org/10.1128/jvi.01490-18), we now screened the HSV-1 expression library and identified UL56 is a key factor downregulating CD1d and suppressing NKT cell function. In this manuscript, we are reporting our molecular mechanism study of how UL56 evades CD1d antigen presentation and NKT cell function.
Collapse
Affiliation(s)
- Lingxi Qiu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xuedi Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xinyue Shao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jingwen Xi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Thanh Pham
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yi Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan Dong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Samhita Divakar Rao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jingting Hao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae Ho Lo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rirong Yang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Metelitsa LS. A milestone method to make natural killer T cells. Nat Biotechnol 2025; 43:302-303. [PMID: 38744945 DOI: 10.1038/s41587-024-02243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Affiliation(s)
- Leonid S Metelitsa
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer and Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Palacios PA, Santibañez Á, Aguirre-Muñoz F, Gutiérrez-Vera C, Niño de Zepeda-Carrizo V, Góngora-Pimentel M, Müller M, Cáceres M, Kalergis AM, Carreño LJ. Can invariant Natural Killer T cells drive B cell fate? a look at the humoral response. Front Immunol 2025; 16:1505883. [PMID: 40040714 PMCID: PMC11876049 DOI: 10.3389/fimmu.2025.1505883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Invariant Natural Killer T (NKT) cells represent a unique subset of innate-like T cells that express both NK cell and T cell receptors. These cells are rapidly activated by glycolipid antigens presented via CD1d molecules on antigen-presenting cells (APCs), including B cells, dendritic cells (DCs), and macrophages, or through cytokine-dependent mechanisms. Their ability to produce a wide range of cytokines and express costimulatory molecules underscores their critical role in bridging innate and adaptive immunity. B cells, traditionally recognized for their role in antibody production, also act as potent APCs due to their high expression of CD1d, enabling direct interactions with iNKT cells. This interaction has significant implications for humoral immunity, influencing B cell activation, class-switch recombination (CSR), germinal center formation, and memory B cell differentiation, thus expanding the conventional paradigm of T cell-B cell interactions. While the influence of iNKT cells on B cell biology and humoral responses is well-supported, many aspects of their interaction remain unresolved. Key questions include the roles of different iNKT cell subsets, the diversity of APCs, the spatiotemporal dynamics of these interactions, especially during early activation, and the potential for distinct glycolipid ligands to modulate immune outcomes. Understanding these factors could provide valuable insights into how iNKT cells regulate B cell-mediated immunity and offer opportunities to harness these interactions in immunotherapeutic applications, such as vaccine development. In this review, we examine these unresolved aspects and propose a novel perspective on the regulatory potential of iNKT cells in humoral immunity, emphasizing their promise as a target for innovative vaccine strategies.
Collapse
Affiliation(s)
- Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Álvaro Santibañez
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Niño de Zepeda-Carrizo
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Martín Góngora-Pimentel
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Liu J, Yang B, Hu D, Yuan N, Li W, Feng Z, Su Y, Zhang D, Yang X, Zhang B. Lineage Tracking Dissects the Fate of Neonatal iNKT Cells Later in Life. Immunology 2025. [PMID: 39957432 DOI: 10.1111/imm.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/31/2024] [Accepted: 01/29/2025] [Indexed: 02/18/2025] Open
Abstract
Invariant natural killer T (iNKT) cells in peripheral tissues are from different waves ranged from foetal, neonatal to adult ages. However, it is unclear how iNKT cells from different ages maintain in the periphery and what are their functionality. We found that in adult mice, neonate tracked-iNKT (NT-iNKT) cells are present in spleen, bone marrow, liver and lung, with a predominantly accumulation in the kidney. The NT-iNKT cells in the kidney are almost iNKT1 cells and express tissue-resident marker CD69. These cells also exhibit higher level of CD122 and possess a stronger proliferative capacity compared to adult tracked-iNKT (AT-iNKT) cells. Furthermore, we found that NT-iNKT cells potentially secrete more IFN-γ than AT-iNKT cells in vitro and in vivo (a-GalCer immunisation). Overall, our study sheds light on the peripheral behaviour and functionality of NT- and AT-iNKT cells, highlighting the potential role of NT-iNKT cells in the kidney during immune response.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Biao Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Danchen Hu
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ning Yuan
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenhua Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes-Related to Diseases, Xi'an Jiaotong University, Xi'an, China
- Basic and Translational Research Laboratory of Immune-related Diseases, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes-Related to Diseases, Xi'an Jiaotong University, Xi'an, China
- Basic and Translational Research Laboratory of Immune-related Diseases, Xi'an, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes-Related to Diseases, Xi'an Jiaotong University, Xi'an, China
- Basic and Translational Research Laboratory of Immune-related Diseases, Xi'an, China
| |
Collapse
|
11
|
Kronenberg M, Ascui G. The α glycolipid rules the NKT cell TCR. J Exp Med 2025; 222:e20242099. [PMID: 39714312 DOI: 10.1084/jem.20242099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
In this issue of JEM, Hosono et al. (https://doi.org/10.1084/jem.20240728) characterize a putative self- glycolipid that engages the iNKT cell TCR when bound to CD1d. The expression and distribution of this compound helps to explain some of the unusual properties of invariant NKT cells.
Collapse
Affiliation(s)
- Mitchell Kronenberg
- La Jolla Institute for Immunology , La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Gabriel Ascui
- La Jolla Institute for Immunology , La Jolla, CA, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Li YR, Fang Y, Niu S, Zhu Y, Chen Y, Lyu Z, Zhu E, Tian Y, Huang J, Rezek V, Kitchen S, Hsiai T, Zhou JJ, Wang P, Chai-Ho W, Park S, Seet CS, Oliai C, Yang L. Allogeneic CD33-directed CAR-NKT cells for the treatment of bone marrow-resident myeloid malignancies. Nat Commun 2025; 16:1248. [PMID: 39893165 PMCID: PMC11787387 DOI: 10.1038/s41467-025-56270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T cell therapy holds promise for treating myeloid malignancies, but challenges remain in bone marrow (BM) infiltration and targeting BM-resident malignant cells. Current autologous CAR-T therapies also face manufacturing and patient selection issues, underscoring the need for off-the-shelf products. In this study, we characterize primary patient samples and identify a unique therapeutic opportunity for CAR-engineered invariant natural killer T (CAR-NKT) cells. Using stem cell gene engineering and a clinically guided culture method, we generate allogeneic CD33-directed CAR-NKT cells with high yield, purity, and robustness. In preclinical mouse models, CAR-NKT cells exhibit strong BM homing and effectively target BM-resident malignant blast cells, including CD33-low/negative leukemia stem and progenitor cells. Furthermore, CAR-NKT cells synergize with hypomethylating agents, enhancing tumor-killing efficacy. These cells also show minimal off-tumor toxicity, reduced graft-versus-host disease and cytokine release syndrome risks, and resistance to allorejection, highlighting their substantial therapeutic potential for treating myeloid malignancies.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Siyue Niu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Enbo Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Jie Huang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Valerie Rezek
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Scott Kitchen
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tzung Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Pin Wang
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Wanxing Chai-Ho
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sunmin Park
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christopher S Seet
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Caspian Oliai
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA.
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Palacios PA, Flores I, Cereceda L, Otero FF, Müller M, Brebi P, Contreras HR, Carreño LJ. Patient-Derived Organoid Models for NKT Cell-Based Cancer Immunotherapy. Cancers (Basel) 2025; 17:406. [PMID: 39941775 PMCID: PMC11815936 DOI: 10.3390/cancers17030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Invariant Natural Killer T (iNKT) cells are a unique subset of T cells that bridge innate and adaptive immunity, displaying potent anti-tumor properties through cytokine secretion, direct cytotoxicity, and recruitment of immune effector cells such as CD8+ T cells and NK cells. Despite their therapeutic potential, the immunosuppressive tumor microenvironment (TME), characterized by regulatory T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs), limits iNKT cell efficacy. Patient-derived organoid (PDO) platforms provide an innovative model for dissecting these complex interactions and evaluating strategies to reinvigorate iNKT cell functionality within the TME. PDOs closely mimic the genetic, phenotypic, and structural characteristics of primary tumors, enabling the study of tumor-immune dynamics. Integrating iNKT cells into PDOs offers a robust platform for investigating CD1d-mediated interactions, Th1-biased immune responses driven by glycolipid analogs like α-GalCer, and combination therapies such as immune checkpoint inhibitors. Additionally, PDO systems can assess the effects of metabolic modulation, including reducing lactic acid accumulation or targeting glutamine pathways, on enhancing iNKT cell activity. Emerging innovations, such as organoid-on-a-chip systems, CRISPR-Cas9 gene editing, and multi-omics approaches, further expand the potential of PDO-iNKT platforms for personalized immunotherapy research. Although the application of iNKT cells in PDOs is still undeveloped, these systems hold immense promise for bridging preclinical studies and clinical translation. By addressing the challenges of the TME and optimizing therapeutic strategies, PDO-iNKT platforms offer a transformative avenue for advancing cancer immunotherapy and personalized medicine.
Collapse
Affiliation(s)
- Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Iván Flores
- Department of Basic and Clinical Oncology, Faculty of Medicine, Universidad de Chile, Santiago 8350499, Chile
| | - Lucas Cereceda
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Francisco F. Otero
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Biomedical Research Consortium (BMRC), Santiago 8331150, Chile
| | - Héctor R. Contreras
- Department of Basic and Clinical Oncology, Faculty of Medicine, Universidad de Chile, Santiago 8350499, Chile
- Center for Cancer Prevention and Control (CECAN), Santiago 8350499, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Research Consortium (BMRC), Santiago 8331150, Chile
| |
Collapse
|
14
|
Li YR, Zhou K, Lee D, Zhu Y, Halladay T, Yu J, Zhou Y, Lyu Z, Fang Y, Chen Y, Semaan S, Yang L. Generating allogeneic CAR-NKT cells for off-the-shelf cancer immunotherapy with genetically engineered HSP cells and feeder-free differentiation culture. Nat Protoc 2025:10.1038/s41596-024-01077-w. [PMID: 39825143 DOI: 10.1038/s41596-024-01077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 01/20/2025]
Abstract
The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (AlloNKT) cells and their CAR-armed derivatives (AlloCAR-NKT cells). We include detailed information on lentivirus generation and titration, as well as the five stages of ex vivo culture required to generate AlloCAR-NKT cells, including HSP cell engineering, HSP cell expansion, NKT cell differentiation, NKT cell deep differentiation and NKT cell expansion. In addition, we describe procedures for evaluating the pharmacology, antitumor efficacy and mechanism of action of AlloCAR-NKT cells. It takes ~2 weeks to generate and titrate lentiviruses and ~6 weeks to generate mature AlloCAR-NKT cells. Competence with human stem cell and T cell culture, gene engineering and flow cytometry is required for optimal results.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sasha Semaan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Lai ACY, González-Cuesta M, Ho CH, Chi PY, Wu KC, Rocha G, Muñoz-García JC, Angulo J, García Fernández JM, Chang YJ, Ortiz Mellet C. α-GalCer sp 2-iminoglycolipid analogs as CD1d-dependent iNKT modulators: Evaluation of their immunotherapeutic potential in murine models of asthma and autoimmune hepatitis. Eur J Med Chem 2025; 282:117060. [PMID: 39561498 DOI: 10.1016/j.ejmech.2024.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Invariant natural killer T (iNKT) cells are a subset of innate T cells displaying powerful immunomodulatory functions. Despite extensive preclinical research on the use of iNKT agonist and antagonist for various diseases, translating these findings into successful clinical applications has proven challenging, leaving no approved treatments to date. Efforts to optimize therapeutic outcomes by developing alternative glycolipids to α-galactosylceramide (α-GalCer or KRN7000), the prototypical iNKT antigen, have shown improved preclinical results. However, significant obstacles remain, including the relatively laborious synthesis of α-glycosides and their vulnerability to degradation by α-glycosidases. To overcome these limitations, we explored the use of sp2-iminosugars, a class of glycomimetics, to replace the carbohydrate moiety in α-GalCer-like glycolipids. This substitution offers enhanced biostability and precise control over α-selectivity in glycosylation reactions. The resulting sp2-iminoglycolipids (sp2-IGLs) were tested for their immunomodulatory effects, demonstrating the ability to bind the α-GalCer binding site on the CD1d protein in antigen-presenting cells (APCs), and functioning as iNKT antagonists in α-GalCer-stimulated splenocytes. Notably, analogs featuring a 4-alkyl-1,2,3-aminotriazol-1-yl segment in place of the C25N-acyl tail in α-GalCer additionally exhibited mild agonistic activity in the absence of α-GalCer stimulation. Computational studies support the formation of stable CD1d- sp2-IGL and CD1d - sp2-IGL - T-cell receptor complexes, with significant differences in the dynamics depending on the glycone nature and lipid tail length. These findings provide a molecular rationale for the observed experimental data. Furthermore, in vivo studies using murine models of asthma and autoimmune hepatitis have identified promising sp2-IGL candidates for further development in immunotherapy.
Collapse
Affiliation(s)
- Alan Chuan-Ying Lai
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, E-41012, Seville, Spain
| | - Chieh-Hsin Ho
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Ko-Chien Wu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Gabriel Rocha
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092, Sevilla, Spain
| | - Juan C Muñoz-García
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092, Sevilla, Spain
| | - Jesús Angulo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092, Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092, Sevilla, Spain
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan; Institute of Microbiology and Immunology, National Defense University, Taipei, 114, Taiwan; Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 404, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, E-41012, Seville, Spain.
| |
Collapse
|
16
|
Germain L, Veloso P, Lantz O, Legoux F. MAIT cells: Conserved watchers on the wall. J Exp Med 2025; 222:e20232298. [PMID: 39446132 PMCID: PMC11514058 DOI: 10.1084/jem.20232298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
MAIT cells are innate-like T cells residing in barrier tissues such as the lung, skin, and intestine. Both the semi-invariant T cell receptor of MAIT cells and the restricting element MR1 are deeply conserved across mammals, indicating non-redundant functions linked to antigenic specificity. MAIT cells across species concomitantly express cytotoxicity and tissue-repair genes, suggesting versatile functions. Accordingly, MAIT cells contribute to antibacterial responses as well as to the repair of damaged barrier tissues. MAIT cells recognize riboflavin biosynthetic pathway-derived metabolites, which rapidly cross epithelial barriers to be presented by antigen-presenting cells. Changes in gut ecology during intestinal inflammation drive the expansion of strong riboflavin and MAIT ligand producers. Thus, MAIT cells may enable real-time surveillance of microbiota dysbiosis across intact epithelia and provide rapid and context-dependent responses. Here, we discuss recent findings regarding the origin and regulation of MAIT ligands and the role of MAIT cells in barrier tissues. We speculate on the potential reasons for MAIT cell conservation during evolution.
Collapse
Affiliation(s)
- Lilou Germain
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Pablo Veloso
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie Clinique, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| |
Collapse
|
17
|
Wang Z, Zhang G. CAR-iNKT cell therapy: mechanisms, advantages, and challenges. Curr Res Transl Med 2025; 73:103488. [PMID: 39662251 DOI: 10.1016/j.retram.2024.103488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
In recent years, chimeric antigen receptor (CAR) T-cell therapy has emerged as a groundbreaking approach in cancer immunotherapy. Particularly in hematologic malignancies, such as B-cell acute lymphoblastic leukemia (B-ALL), B cell lymphomas and multiple myeloma. CAR-T therapy has demonstrated remarkable clinical efficacy, leading to the approval of several CAR-T cell products and offering significant benefits to numerous leukemia patients. Despite these successes, the application of CAR-T cells in solid tumors remains limited due to significant challenges, including immunosuppressive tumor microenvironments, heterogeneous antigen expression, and treatment-associated toxicities. In parallel with CAR-T development, researchers are investigating other immune cell platforms to overcome these obstacles. Among these, invariant natural killer T (iNKT) cells have garnered increasing attention for their unique immunological properties. Unlike conventional T cells, iNKT cells are a subset of T lymphocytes characterized by the expression of a semi-invariant T-cell receptor (TCR) that recognizes lipid antigens presented by CD1d molecules. This distinctive antigen recognition mechanism enables iNKT cells to bridge innate and adaptive immunity, granting them potent antitumor activity and the ability to modulate the tumor microenvironment. Additionally, iNKT cells exhibit intrinsic resistance to exhaustion and an enhanced ability to infiltrate solid tumors compared to traditional T cells. Building on these properties, researchers are leveraging CAR technology to enhance iNKT cell tumor-targeting capabilities, aiming to overcome barriers encountered in solid tumor therapy. This review provides an in-depth discussion of the application and therapeutic potential of CAR-iNKT cells in cancer immunotherapy, with a focus on their advantages over conventional CAR-T cells and their role in addressing the challenges of solid tumor treatment.
Collapse
Affiliation(s)
- Zixuan Wang
- Beijing Institute of Biological Products Co., Ltd, Beijing 101149, China
| | - Guangji Zhang
- Beijing Rongai Biotechnology Co., Ltd, 1st Floor, Building 29, No. 5 Kechuang East 2nd Street, Tongzhou District, Beijing 101100, China.
| |
Collapse
|
18
|
Li K, Hu X, Tu XY, Xian MY, Huang LL, Huang T, Luo R, Jin H, Liu Z. Enhancing COVID-19 Vaccine Efficacy: Dual Adjuvant Strategies with TLR7/8 Agonists and Glycolipids. J Med Chem 2024; 67:21916-21933. [PMID: 39648985 DOI: 10.1021/acs.jmedchem.4c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The controlled release of immunostimulatory agents represents a promising strategy to enhance vaccine efficacy while minimizing side effects. This study aimed to improve the efficacy of the RBD-Fc-based COVID-19 vaccine through combining of an iNKT cell agonist and a TLR7/8 agonist using covalent conjugation and temporal delivery. We hypothesized that these combinations would yield a more balanced Th1/Th2 immune response. For covalent conjugation, we employed an uncleavable linker and a self-immolative disulfide linker to conjugate α-galactosylceramide (αGC) to imidazoquinoline (IMDQ). The αGC-SS-IMDQ-Ac conjugate, designed with a prodrug strategy for controlled TLR7/8 agonist release, elicited a higher IFN-γ/IL-4 T cell response ratio than individual adjuvants or their admixture. In the temporal delivery approach, administering IMDQ followed by αGC after 2 h resulted in the highest IgG2a/IgG1 ratio, significantly surpassing other groups. A 6 h delay between glycolipid and IMDQ injections yielded balanced IgG responses, enhancing IgG, IgG1, and IgG2a levels synergistically.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| | - Xing Hu
- National Key Laboratory of Green Pesticide, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, P. R. China
| | - Xin-Yi Tu
- National Key Laboratory of Green Pesticide, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, P. R. China
| | - Mao-Ying Xian
- National Key Laboratory of Green Pesticide, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, P. R. China
| | - Lei-Lei Huang
- National Key Laboratory of Green Pesticide, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, P. R. China
| | - Ting Huang
- National Key Laboratory of Green Pesticide, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, P. R. China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, P. R. China
| | - Zheng Liu
- National Key Laboratory of Green Pesticide, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, P. R. China
| |
Collapse
|
19
|
Sakai Y, Asa M, Hirose M, Kusuhara W, Fujiwara N, Tamashima H, Ikazaki T, Oka S, Kuraba K, Tanaka K, Yoshiyama T, Nagae M, Hoshino Y, Motooka D, Van Rhijn I, Lu X, Ishikawa E, Moody DB, Kato T, Inuki S, Hirai G, Yamasaki S. A conserved human CD4+ T cell subset recognizing the mycobacterial adjuvant trehalose monomycolate. J Clin Invest 2024; 135:e185443. [PMID: 39718834 PMCID: PMC11910211 DOI: 10.1172/jci185443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Mycobacterium tuberculosis causes human tuberculosis (TB). As mycobacteria are protected by a thick lipid cell wall, humans have developed immune responses against diverse mycobacterial lipids. Most of these immunostimulatory lipids are known as adjuvants acting through innate immune receptors, such as C-type lectin receptors. Although a few mycobacterial lipid antigens activate unconventional T cells, the antigenicity of most adjuvantic lipids is unknown. Here, we identified that trehalose monomycolate (TMM), an abundant mycobacterial adjuvant, activated human T cells bearing a unique αβ T cell receptor (αβTCR). This recognition was restricted by CD1b, a monomorphic antigen-presenting molecule conserved in primates but not mice. Single-cell TCR-RNA-Seq using newly established CD1b-TMM tetramers revealed that TMM-specific T cells were present as CD4+ effector memory T cells in the periphery of uninfected donors but expressed IFN-γ, TNF, and anti-mycobacterial effectors upon TMM stimulation. TMM-specific T cells were detected in cord blood and PBMCs of donors without bacillus Calmette-Guérin vaccination but were expanded in patients with active TB. A cryo-electron microscopy study of CD1b-TMM-TCR complexes revealed unique antigen recognition by conserved features of TCRs, positively charged CDR3α, and long CDR3β regions. These results indicate that humans have a commonly shared and preformed CD4+ T cell subset recognizing a typical mycobacterial adjuvant as an antigen. Furthermore, the dual role of TMM justifies reconsideration of the mechanism of action of adjuvants.
Collapse
Affiliation(s)
- Yuki Sakai
- Department of Molecular Immunology, Research Institute for Microbial Diseases
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), and
| | - Minori Asa
- Department of Molecular Immunology, Research Institute for Microbial Diseases
| | - Mika Hirose
- Laboratory for CryoEM Structural Biology, Institute for Protein Research, Osaka University, Suita, Japan
| | - Wakana Kusuhara
- Department of Molecular Immunology, Research Institute for Microbial Diseases
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), and
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara, Japan
| | - Hiroto Tamashima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Ikazaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shiori Oka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kota Kuraba
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kentaro Tanaka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takashi Yoshiyama
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), and
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, University Utrecht, Utrecht, Netherlands
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Xiuyuan Lu
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), and
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), and
| | - D. Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takayuki Kato
- Laboratory for CryoEM Structural Biology, Institute for Protein Research, Osaka University, Suita, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), and
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
- Center for Advanced Modalities and Drug Delivery Systems (CAMaD), Osaka University, Suita, Japan
| |
Collapse
|
20
|
Afify R, Lipsius K, Wyatt-Johnson SJ, Brutkiewicz RR. Myeloid antigen-presenting cells in neurodegenerative diseases: a focus on classical and non-classical MHC molecules. Front Neurosci 2024; 18:1488382. [PMID: 39720231 PMCID: PMC11667120 DOI: 10.3389/fnins.2024.1488382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
In recent years, increasing evidence has highlighted the critical role of myeloid cells, specifically those that present antigen (APCs) in health and disease. These shape the progression and development of neurodegenerative disorders, where considerable interplay between the immune system and neurons influences the course of disease pathogenesis. Antigen-presenting myeloid cells display different classes of major histocompatibility complex (MHC) and MHC-like proteins on their surface for presenting various types of antigens to a wide variety of T cells. While most studies focus on the role of myeloid MHC class I and II molecules in health and disease, there is still much that remains unknown about non-polymorphic MHC-like molecules such as CD1d and MR1. Thus, in this review, we will summarize the recent findings regarding the contributions of both classical and non-classical MHC molecules, particularly on myeloid microglial APCs, in neurodegenerative diseases. This will offer a better understanding of altered mechanisms that may pave the way for the development of novel therapeutic strategies targeting immune cell-MHC interactions, to mitigate neurodegeneration and its associated pathology.
Collapse
Affiliation(s)
| | | | | | - Randy R. Brutkiewicz
- Department of Microbiology and Immunology and Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
21
|
Gioulbasani M, Äijö T, Liu S, Montgomery SA, Montgomery ND, Corcoran D, Tsagaratou A. Concomitant loss of TET2 and TET3 results in T cell expansion and genomic instability in mice. Commun Biol 2024; 7:1606. [PMID: 39627458 PMCID: PMC11615039 DOI: 10.1038/s42003-024-07312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Ten eleven translocation (TET) proteins are tumor suppressors that through their catalytic activity oxidize 5-methylcytosine to 5-hydroxymethylcytosine, to promote DNA demethylation and to regulate gene expression. Notably, TET2 is one of the most frequently mutated genes in hematological malignancies, including T cell lymphomas. However, murine models with deletion of TET2 do not exhibit T cell expansion, presumably due to redundancy with other members of the TET family of proteins. In order to gain insight on the TET mediated molecular events that safeguard T cells from aberrant proliferation we performed serial adoptive transfers of murine CD4 T cells that lack concomitantly TET2 and TET3 to fully immunocompetent congenic mice. Here we show a progressive acquisition of malignant traits upon loss of TET2 and TET3 that is characterized by loss of genomic integrity, acquisition of aneuploidy and upregulation of the protooncogene Myc.
Collapse
Affiliation(s)
- Marianthi Gioulbasani
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Tarmo Äijö
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Siyao Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Nathan D Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - David Corcoran
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Shyanti RK, Haque M, Singh R, Mishra M. Optimizing iNKT-driven immune responses against cancer by modulating CD1d in tumor and antigen presenting cells. Clin Immunol 2024; 269:110402. [PMID: 39561929 DOI: 10.1016/j.clim.2024.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Two major antigen processing pathways represent protein Ags through major histocompatibility complexes (MHC class I and II) or lipid Ags through CD1 molecules influence the tumor immune response. Invariant Natural Killer T cells (iNKT) manage a significant role in cancer immunotherapy. CD1d, found on antigen-presenting cells (APCs), presents lipid Ags to iNKT cells. In many cancers, the number and function of iNKT cell are compromised, leading to immune evasion. Additionally impaired motility of iNKT cells may contribute to poor tumor prognosis. Emerging evidences suggest that CD1d, itself also influences cancer progression. Patient databases further highlight the importance of CD1d expression in different cancers and its correlation with patient survival outcomes. The ability of iNKT cells to activate and enhance the immune response renders them an attractive target for cancer immunotherapy. This review discusses all the possible ways of cancer immune evasion and restoration of immune responses mediated by CD1d-iNKT interactions.
Collapse
Affiliation(s)
- Ritis Kumar Shyanti
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Mazharul Haque
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Rajesh Singh
- Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA.
| |
Collapse
|
23
|
Zhou X, Wang Y, Dou Z, Delfanti G, Tsahouridis O, Pellegry CM, Zingarelli M, Atassi G, Woodcock MG, Casorati G, Dellabona P, Kim WY, Guo L, Savoldo B, Tsagaratou A, Milner JJ, Metelitsa LS, Dotti G. CAR-redirected natural killer T cells demonstrate superior antitumor activity to CAR-T cells through multimodal CD1d-dependent mechanisms. NATURE CANCER 2024; 5:1607-1621. [PMID: 39354225 DOI: 10.1038/s43018-024-00830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2024] [Indexed: 10/03/2024]
Abstract
Human natural killer T (NKT) cells have been proposed as a promising cell platform for chimeric antigen receptor (CAR) therapy in solid tumors. Here we generated murine CAR-NKT cells and compared them with CAR-T cells in immune-competent mice. Both CAR-NKT cells and CAR-T cells showed similar antitumor effects in vitro, but CAR-NKT cells showed superior antitumor activity in vivo via CD1d-dependent immune responses in the tumor microenvironment. Specifically, we show that CAR-NKT cells eliminate CD1d-expressing M2-like macrophages. In addition, CAR-NKT cells promote epitope spreading and activation of endogenous T cell responses against tumor-associated neoantigens. Finally, we observed that CAR-NKT cells can co-express PD1 and TIM3 and show an exhaustion phenotype in a model of high tumor burden. PD1 blockade as well as vaccination augmented the antitumor activity of CAR-NKT cells. In summary, our results demonstrate the multimodal function of CAR-NKT cells in solid tumors, further supporting the rationale for developing CAR-NKT therapies in the clinic.
Collapse
Affiliation(s)
- Xin Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ying Wang
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zhangqi Dou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ourania Tsahouridis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Manuela Zingarelli
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gatphan Atassi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Linjie Guo
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - J Justin Milner
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Leonid S Metelitsa
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Adamska-Fita E, Śliwka PW, Karbownik-Lewińska M, Lewiński A, Stasiak M. The Absence of Thyroid-Stimulating Hormone Receptor Expression on Natural Killer T Cells: Implications for the Immune-Endocrine Interaction. Int J Mol Sci 2024; 25:11434. [PMID: 39518994 PMCID: PMC11546653 DOI: 10.3390/ijms252111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The expression of thyroid-stimulating hormone receptor (TSHR) has been documented on various immune cells, including B lymphocytes, T lymphocytes, Natural Killer (NK) cells, monocytes, and dendritic cells (DCs). Natural Killer T (NKT) cells serve as a crucial link between innate and adaptive immunity, playing significant roles in immunological interactions and autoimmune diseases. The aim of the present study was to evaluate the presence of TSHR on NKT cells. Our research involved patients with thyroid disease, as well as healthy controls. Peripheral blood mononuclear cells (PBMCs) and, thereafter, NKT cells were isolated from 86 patients with benign nodular thyroid disease with and without autoimmune thyroid disease (AITD) (28 and 56 cases, respectively), and TSHR expression was analyzed using fluorescence-activated cell sorting (FACS). In order to confirm the results, the reverse-transcription polymerase chain reaction (RT-PCR) method was used in cells obtained from healthy individuals. Our findings obtained with application of the FACS method revealed that TSHR is not expressed on NKT cells in either AITD or non-AITD patients, though TSHR was detected in the total PBMC population (TSHR+ cells 2.77%). The absence of TSHR on NKT cells was further confirmed with RT-PCR in healthy individuals (p < 0.0001). These results questioned the previously suggested direct influence of NKT cells on AITD development.
Collapse
Affiliation(s)
- Emilia Adamska-Fita
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland; (E.A.-F.); (P.W.Ś.); (M.K.-L.); (A.L.)
| | - Przemysław Wiktor Śliwka
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland; (E.A.-F.); (P.W.Ś.); (M.K.-L.); (A.L.)
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Małgorzata Karbownik-Lewińska
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland; (E.A.-F.); (P.W.Ś.); (M.K.-L.); (A.L.)
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland; (E.A.-F.); (P.W.Ś.); (M.K.-L.); (A.L.)
| | - Magdalena Stasiak
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland; (E.A.-F.); (P.W.Ś.); (M.K.-L.); (A.L.)
| |
Collapse
|
25
|
Haga Y, Coates S, Ray R. Hepatitis C virus chronicity and oncogenic potential: Vaccine development progress. Mol Aspects Med 2024; 99:101305. [PMID: 39167987 DOI: 10.1016/j.mam.2024.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Hepatitis C virus (HCV) infection is a major health problem worldwide. It can cause liver cirrhosis and hepatocellular carcinoma (HCC), making it a cause of morbidity from liver disease. Thus, there is an urgent need for a prophylactic HCV vaccine. Fortunately, modern medicine has transformed the therapy for HCV infection through development of direct-acting antiviral agents (DAAs), achieving high rates of sustained virologic response and giving significant relief from HCC and associated mortality, but unfortunately it fails to eradicate the risk of HCC, especially in HCV-cleared patients with already advanced liver disease. Additionally, DAA-cured patients do not develop sufficient antiviral immunity and are susceptible to reinfection. A comprehensive strategy to control HCV infection must include a vaccine development approach in which the host can develop humoral and cellular immunity to eradicate HCV successfully; however, this remains a challenge as HCV has developed systems to evade immune attacks from its host. This review highlights the current understanding of HCV's effect on liver disease and cancer progression, the nature of immune responses from cell populations interacting with HCV, and the current strategies for vaccine development. The information in this review will advance prophylactic intervention strategies for HCV infection, with the end goal being to prevent chronicity and subsequent liver disease leading to HCC.
Collapse
Affiliation(s)
- Yuki Haga
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Sydney Coates
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA; Department Molecular Microbiology & Immunology, Saint Louis University, Missouri, MO, 63104, USA.
| |
Collapse
|
26
|
Wilkin C, Piette J, Legrand-Poels S. Unravelling metabolic factors impacting iNKT cell biology in obesity. Biochem Pharmacol 2024; 228:116436. [PMID: 39029630 DOI: 10.1016/j.bcp.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Obesity and related diseases have reached epidemic proportions and continue to rise. Beyond creating an economical burden, obesity and its co-morbidities are associated with shortened human life expectancy. Despite major advances, the underlying mechanisms of obesity remain not fully elucidated. Recently, several studies have highlighted that various immune cells are metabolically reprogrammed in obesity, thereby profoundly affecting the immune system. This sheds light on a new field of interest: the impact of obesity-related systemic metabolic changes affecting immune system that could lead to immunosurveillance loss. Among immune cells altered by obesity, invariant Natural Killer T (iNKT) cells have recently garnered intense focus due to their ability to recognize lipid antigen. While iNKT cells are well-described to be affected by obesity, how and to what extent immunometabolic factors (e.g., lipids, glucose, cytokines, adipokines, insulin and free fatty acids) can drive iNKT cells alterations remains unclear, but represent an emerging field of research. Here, we review the current knowledge on iNKT cells in obesity and discuss the immunometabolic factors that could modulate their phenotype and activity.
Collapse
Affiliation(s)
- Chloé Wilkin
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium.
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | | |
Collapse
|
27
|
Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Heegaard S, Lee P, Yang L, Forsman H, Li X, Zhai Z, Liu C. The interaction of innate immune and adaptive immune system. MedComm (Beijing) 2024; 5:e714. [PMID: 39286776 PMCID: PMC11401974 DOI: 10.1002/mco2.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
The innate immune system serves as the body's first line of defense, utilizing pattern recognition receptors like Toll-like receptors to detect pathogens and initiate rapid response mechanisms. Following this initial response, adaptive immunity provides highly specific and sustained killing of pathogens via B cells, T cells, and antibodies. Traditionally, it has been assumed that innate immunity activates adaptive immunity; however, recent studies have revealed more complex interactions. This review provides a detailed dissection of the composition and function of the innate and adaptive immune systems, emphasizing their synergistic roles in physiological and pathological contexts, providing new insights into the link between these two forms of immunity. Precise regulation of both immune systems at the same time is more beneficial in the fight against immune-related diseases, for example, the cGAS-STING pathway has been found to play an important role in infections and cancers. In addition, this paper summarizes the challenges and future directions in the field of immunity, including the latest single-cell sequencing technologies, CAR-T cell therapy, and immune checkpoint inhibitors. By summarizing these developments, this review aims to enhance our understanding of the complexity interactions between innate and adaptive immunity and provides new perspectives in understanding the immune system.
Collapse
Affiliation(s)
- Ruyuan Wang
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Caini Lan
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Kamel Benlagha
- Alloimmunity, Autoimmunity and Transplantation Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160 Paris France
| | - Niels Olsen Saraiva Camara
- Department of Immunology Institute of Biomedical Sciences University of São Paulo (USP) São Paulo São Paulo Brazil
| | - Heather Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton Montana USA
| | - Masato Kubo
- Division of Molecular Pathology Research Institute for Biomedical Sciences (RIBS) Tokyo University of Science Noda Chiba Japan
| | - Steffen Heegaard
- Department of Ophthalmology Rigshospitalet Hospital Copenhagen University Copenhagen Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Lu Yang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| | - Huamei Forsman
- Department of Laboratory Medicine Institute of Biomedicine, University of Gothenburg Gothenburg Sweden
| | - Xingrui Li
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zhimin Zhai
- Department of Hematology The Second Hospital of Anhui Medical University Hefei China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
28
|
Mahdifar M, Boostani R, Taylor GP, Rezaee SA, Rafatpanah H. Comprehensive Insight into the Functional Roles of NK and NKT Cells in HTLV-1-Associated Diseases and Asymptomatic Carriers. Mol Neurobiol 2024; 61:7877-7889. [PMID: 38436833 DOI: 10.1007/s12035-024-03999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the first human oncogenic retrovirus to be discovered and causes two major diseases: a progressive neuro-inflammatory disease, termed HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), and an aggressive malignancy of T lymphocytes known as adult T cell leukemia (ATL). Innate and acquired immune responses play pivotal roles in controlling the status of HTLV-1-infected cells and such, the outcome of HTLV-1 infection. Natural killer cells (NKCs) are the effector cells of the innate immune system and are involved in controlling viral infections and several types of cancers. The ability of NKCs to trigger cytotoxicity to provide surveillance against viruses and cancer depends on the balance between the inhibitory and activating signals. In this review, we will discuss NKC function and the alterations in the frequency of these cells in HTLV-1 infection.
Collapse
Affiliation(s)
- Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Graham P Taylor
- Section of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Makatsa MS, Kus A, Wiedeman A, Long SA, Seshadri C. 42-parameter mass cytometry panel to assess cellular and functional phenotypes of leukocytes in bronchoalveolar lavage of Rhesus macaque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613973. [PMID: 39386621 PMCID: PMC11463637 DOI: 10.1101/2024.09.19.613973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
This Optimized Multiparameter Immunofluorescence Panel (OMIP) reports on the development of a mass cytometry panel for broad immunophenotyping of leukocytes from bronchoalveolar lavage from rhesus macaques. Using this panel, we were able to identify myeloid populations such as macrophages, neutrophils, monocytes, myeloid and plasmacytoid DCs, basophils and lymphoid cell lineages including B cells, natural killer (NK) cells, mucosal associated invariant T (MAIT) cells, γδ T cells, CD4 T cells, CD8 β T cells, CD8 T cells, and innate lymphoid cells (ILCs). We also included markers for defining memory, differentiation (CCR7, CD28, CD45RA), homing potential (CXCR3), cytotoxic potential (perforin, granzyme B, granzyme K), cell activation/differentiation (HLA-DR, CD69, IgD) and effector function (CD154, IFN-γ, TNF, IL-2, IL-17A, IL-6, IL-1β, CCL4 and CD107a). This panel was optimized on cryopreserved, bronchoalveolar lavage and splenocytes collected from rhesus macaques. The antibodies selected in this panel are human-specific antibodies that have been shown to cross-react with non-human primates except for CD45 clone D058-1283 which is specific for non-human primates.
Collapse
Affiliation(s)
- Mohau S. Makatsa
- Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | - Anna Kus
- Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alice Wiedeman
- Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - S. Alice Long
- Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, USA
| |
Collapse
|
30
|
Guo Y, Ohki S, Kawano Y, Kong WS, Ohno Y, Honda H, Kanno M, Yasuda T. Eed-dependent histone modification orchestrates the iNKT cell developmental program alleviating liver injury. Front Immunol 2024; 15:1467774. [PMID: 39372408 PMCID: PMC11449725 DOI: 10.3389/fimmu.2024.1467774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
Polycomb repressive complex 2 (PRC2) is an evolutionarily conserved epigenetic modifier responsible for tri-methylation of lysine 27 on histone H3 (H3K27me3). Previous studies have linked PRC2 to invariant natural killer T (iNKT) cell development, but its physiological and precise role remained unclear. To address this, we conditionally deleted Eed, a core subunit of PRC2, in mouse T cells. The results showed that Eed-deficient mice exhibited a severe reduction in iNKT cell numbers, particularly NKT1 and NKT17 cells, while conventional T cells and NKT2 cells remained intact. Deletion of Eed disrupted iNKT cell differentiation, leading to increased cell death, which was accompanied by a severe reduction in H3K27me3 levels and abnormal expression of Zbtb16, Cdkn2a, and Cdkn1a. Interestingly, Eed-deficient mice were highly susceptible to acetaminophen-induced liver injury and inflammation in an iNKT cell-dependent manner, highlighting the critical role of Eed-mediated H3K27me3 marks in liver-resident iNKT cells. These findings provide further insight into the epigenetic orchestration of iNKT cell-specific transcriptional programs.
Collapse
Affiliation(s)
- Yun Guo
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shun Ohki
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Kawano
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Weng Sheng Kong
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshinori Ohno
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Masamoto Kanno
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Research and Development Programs Focused on Technology Transfers: Development of Advanced Measurement and Analysis Systems (AMED-SENTAN), Japan Agency for Medical Research and Development, Tokyo, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
31
|
Gioulbasani M, Äijö T, Valenzuela JE, Bettes JB, Tsagaratou A. TET proteins regulate Drosha expression and impact microRNAs in iNKT cells. Front Immunol 2024; 15:1440044. [PMID: 39364402 PMCID: PMC11446755 DOI: 10.3389/fimmu.2024.1440044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
DNA demethylases TET2 and TET3 play a fundamental role in thymic invariant natural killer T (iNKT) cell differentiation by mediating DNA demethylation of genes encoding for lineage specifying factors. Paradoxically, differential gene expression analysis revealed that significant number of genes were upregulated upon TET2 and TET3 loss in iNKT cells. This unexpected finding could be potentially explained if loss of TET proteins was reducing the expression of proteins that suppress gene expression. In this study, we discover that TET2 and TET3 synergistically regulate Drosha expression, by generating 5hmC across the gene body and by impacting chromatin accessibility. As DROSHA is involved in microRNA biogenesis, we proceed to investigate the impact of TET2/3 loss on microRNAs in iNKT cells. We report that among the downregulated microRNAs are members of the Let-7 family that downregulate in vivo the expression of the iNKT cell lineage specifying factor PLZF. Our data link TET proteins with microRNA expression and reveal an additional layer of TET mediated regulation of gene expression.
Collapse
Affiliation(s)
- Marianthi Gioulbasani
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tarmo Äijö
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jair E. Valenzuela
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Julia Buquera Bettes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
32
|
Artiaga BL, Madden D, Kwon T, McDowell C, Keating C, Balaraman V, de Carvahlo Madrid DM, Touchard L, Henningson J, Meade P, Krammer F, Morozov I, Richt JA, Driver JP. Adjuvant Use of the Invariant-Natural-Killer-T-Cell Agonist α-Galactosylceramide Leads to Vaccine-Associated Enhanced Respiratory Disease in Influenza-Vaccinated Pigs. Vaccines (Basel) 2024; 12:1068. [PMID: 39340098 PMCID: PMC11435877 DOI: 10.3390/vaccines12091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are glycolipid-reactive T cells with potent immunoregulatory properties. iNKT cells activated with the marine-sponge-derived glycolipid, α-galactosylceramide (αGC), provide a universal source of T-cell help that has shown considerable promise for a wide array of therapeutic applications. This includes harnessing iNKT-cell-mediated immune responses to adjuvant whole inactivated influenza virus (WIV) vaccines. An important concern with WIV vaccines is that under certain circumstances, they are capable of triggering vaccine-associated enhanced respiratory disease (VAERD). This immunopathological phenomenon can arise after immunization with an oil-in-water (OIW) adjuvanted WIV vaccine, followed by infection with a hemagglutinin and neuraminidase mismatched challenge virus. This elicits antibodies (Abs) that bind immunodominant epitopes in the HA2 region of the heterologous virus, which purportedly causes enhanced virus fusion activity to the host cell and increased infection. Here, we show that αGC can induce severe VAERD in pigs. However, instead of stimulating high concentrations of HA2 Abs, αGC elicits high concentrations of interferon (IFN)-γ-secreting cells both in the lungs and systemically. Additionally, we found that VAERD mediated by iNKT cells results in distinct cytokine profiles and altered adaptation of the challenge virus following infection compared to an OIW adjuvant. Overall, these results provide a cautionary note about considering the formulation of WIV vaccines with iNKT-cell agonists as a potential strategy to modulate antigen-specific immunity.
Collapse
Affiliation(s)
- Bianca L. Artiaga
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel Madden
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Chester McDowell
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Cassidy Keating
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Darling Melany de Carvahlo Madrid
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Laurie Touchard
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Philip Meade
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Igor Morozov
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
33
|
Wang Y, Wang Y, Ge Y, Wu Z, Yue X, Li C, Liang X, Ma C, Wang P, Gao L. Tim-4 alleviates acute hepatic injury by modulating homeostasis and function of NKT cells. Clin Exp Immunol 2024; 218:101-110. [PMID: 39036980 PMCID: PMC11404119 DOI: 10.1093/cei/uxae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/29/2024] [Accepted: 07/20/2024] [Indexed: 07/23/2024] Open
Abstract
T-cell immunoglobulin and mucin domain-containing molecule 4 (Tim-4) is an immune checkpoint molecule, which involves in numerous inflammatory diseases. Tim-4 is mainly expressed on antigen-presenting cells. However, increasing evidence has shown that Tim-4 is also expressed on natural killer T (NKT) cells. The role of Tim-4 in maintaining NKT cell homeostasis and function remains unknown. In this study, we explored the effect of Tim-4 on NKT cells in acute liver injury. This study found that Tim-4 expression on hepatic NKT cells was elevated during acute liver injury. Tim-4 deficiency enhanced IFN-γ, TNF-α expression while impaired IL-4 production in NKT cells. Loss of Tim-4 drove NKT-cell effector lineages to be skewed to NKT1 subset. Furthermore, Tim-4 KO mice were more susceptible to α-Galactosylceramide (α-GalCer) challenge. In conclusion, our findings indicate that Tim-4 plays an important role in regulating homeostasis and function of NKT cells in acute liver injury. Therefore, Tim-4 might become a new regulator of NKT cells and a potential target for the therapy of acute hepatitis.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yutong Ge
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Pin Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University. Jinan, Shandong 250033, PR China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
34
|
Laviano HD, Gómez G, Núñez Y, García-Casco JM, Benítez RM, de Las Heras-Molina A, Gómez F, Sánchez-Esquiliche F, Martínez-Fernández B, González-Bulnes A, Rey AI, López-Bote CJ, Muñoz M, Óvilo C. Maternal dietary antioxidant supplementation regulates weaned piglets' adipose tissue transcriptome and morphology. PLoS One 2024; 19:e0310399. [PMID: 39264906 PMCID: PMC11392410 DOI: 10.1371/journal.pone.0310399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Antioxidant supplementation in critical periods may be useful for improvement of piglet early viability and development. We have evaluated the effects of maternal perinatal diet inclusion of a high vitamin E level (VE, 100 mg all-rac-α-tocopheryl acetate /kg), hydroxytyrosol (HT, 1.5 mg/kg), or their combination (VEHT), in comparison to a control diet (C, 30 mg all-rac-α-tocopheryl acetate /kg), on the offspring homeostasis and metabolism, analysing the weaned piglets' adipose tissue transcriptome and adipocyte morphology. Diets were provided to pregnant Iberian sows (n = 48, 12 per treatment) from gestation day 85 to weaning (28 days postpartum) and 48 piglets (n = 12 per treatment) were sampled 5 days postweaning for dorsal subcutaneous adipose tissue analyses. RNA obtained from 6 animals for each diet was used for paired-end RNA sequencing. Results show that supplementation of sows' diet with either vitamin E or hydroxytyrosol had substantial effects on weaned piglet adipose transcriptome, with 664 and 587 genes being differentially expressed, in comparison to C, respectively (q-value<0.10, Fold Change>1.5). Genes upregulated in C were mainly involved in inflammatory and immune response, as well as oxidative stress, and relevant canonical pathways and upstream regulators involved in these processes were predicted as activated, such as TNF, IFNB or NFKB. Vitamin E, when supplemented alone at high dose, activated lipid biosynthesis functions, pathways and regulators, this finding being accompanied by increased adipocyte size. Results suggest an improved metabolic and antioxidant status of adipose tissue in animals born from sows supplemented with individual antioxidants, while the combined supplementation barely affected gene expression, with VEHT showing a prooxidant/proinflamatory functional profile similar to C animals. Different hypothesis are proposed to explain this unexpected result. Findings allow a deeper understanding of the processes taking place in adipose tissue of genetically fat animals and the role of antioxidants in the regulation of fat cells function.
Collapse
Affiliation(s)
- Hernán D Laviano
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Gerardo Gómez
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Toledo, Spain
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Madrid, Spain
| | | | - Rita M Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Madrid, Spain
| | - Ana de Las Heras-Molina
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, Valencia, Spain
| | - Ana I Rey
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Clemente J López-Bote
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Madrid, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Madrid, Spain
| |
Collapse
|
35
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
36
|
Szoke-Kovacs R, Khakoo S, Gogolak P, Salio M. Insights into the CD1 lipidome. Front Immunol 2024; 15:1462209. [PMID: 39238636 PMCID: PMC11375338 DOI: 10.3389/fimmu.2024.1462209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
CD1 isoforms are MHC class I-like molecules that present lipid-antigens to T cells and have been associated with a variety of immune responses. The lipid repertoire bound and presented by the four CD1 isoforms may be influenced by factors such as the cellular lipidome, subcellular microenvironment, and the properties of the binding pocket. In this study, by shotgun mass spectrometry, we performed a comprehensive lipidomic analysis of soluble CD1 molecules. We identified 1040 lipids, of which 293 were present in all isoforms. Comparative analysis revealed that the isoforms bind almost any cellular lipid.CD1a and CD1c closely mirrored the cellular lipidome, while CD1b and CD1d showed a preference for sphingolipids. Each CD1 isoform was found to have unique lipid species, suggesting some distinct roles in lipid presentation and immune responses. These findings contribute to our understanding of the role of CD1 system in immunity and could have implications for the development of lipid-based therapeutics.
Collapse
Affiliation(s)
- Rita Szoke-Kovacs
- Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Sophie Khakoo
- Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom
| | - Peter Gogolak
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Mariolina Salio
- Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom
| |
Collapse
|
37
|
Guo C, Boulant S, Stanifer ML. The Role of Interleukin-22 in Controlling Virus Infections at Mucosal Surfaces. J Interferon Cytokine Res 2024; 44:349-354. [PMID: 38868897 DOI: 10.1089/jir.2024.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Affiliation(s)
- Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Megan Lynn Stanifer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
Heffernan DS, Chun TT, Monaghan SF, Chung CS, Ayala A. invariant Natural Killer T Cells Modulate the Peritoneal Macrophage Response to Polymicrobial Sepsis. J Surg Res 2024; 300:211-220. [PMID: 38824851 PMCID: PMC11246799 DOI: 10.1016/j.jss.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION A dysregulated immune system is a major driver of the mortality and long-term morbidity from sepsis. With respect to macrophages, it has been shown that phenotypic changes are critical to effector function in response to acute infections, including intra-abdominal sepsis. Invariant natural killer T cells (iNKT cells) have emerged as potential central regulators of the immune response to a variety of infectious insults. Specifically, various iNKT cell:macrophage interactions have been noted across a spectrum of diseases, including acute events such as sepsis. However, the potential for iNKT cells to affect peritoneal macrophages during an abdominal septic event is as yet unknown. METHODS Cecal ligation and puncture (CLP) was performed in both wild type (WT) and invariant natural killer T cell knockout (iNKT-/-) mice. 24 h following CLP or sham operation, peritoneal macrophages were collected for analysis. Analysis of macrophage phenotype and function was undertaken to include analysis of bactericidal activity and cytokine or superoxide production. RESULTS Within iNKT-/- mice, a greater degree of intraperitoneal macrophages in response to the sepsis was noted. Compared to WT mice, within iNKT-/- mice, CLP did induce an increase in CD86+ and CD206+, but no difference in CD11b+. Unlike WT mice, intra-abdominal sepsis within iNKT-/- mice induced an increase in Ly6C-int (5.2% versus 14.9%; P < 0.05) and a decrease in Ly6C-high on peritoneal macrophages. Unlike phagocytosis, iNKT cells did not affect macrophage bactericidal activity. Although iNKT cells did not affect interleukin-6 production, iNKT cells did affect IL-10 production and both nitrite and superoxide production from peritoneal macrophages. CONCLUSIONS The observations indicate that iNKT cells affect specific phenotypic and functional aspects of peritoneal macrophages during polymicrobial sepsis. Given that pharmacologic agents that affect iNKT cell functioning are currently in clinical trial, these findings may have the potential for translation to critically ill surgical patients with abdominal sepsis.
Collapse
Affiliation(s)
- Daithi S Heffernan
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island.
| | - Tristen T Chun
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Sean F Monaghan
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
39
|
Li J, Moresco P, Fearon DT. Intratumoral NKT cell accumulation promotes antitumor immunity in pancreatic cancer. Proc Natl Acad Sci U S A 2024; 121:e2403917121. [PMID: 38980903 PMCID: PMC11260137 DOI: 10.1073/pnas.2403917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a potentially lethal disease lacking effective treatments. Its immunosuppressive tumor microenvironment (TME) allows it to evade host immunosurveillance and limits response to immunotherapy. Here, using the mouse KRT19-deficient (sgKRT19-edited) PDA model, we find that intratumoral accumulation of natural killer T (NKT) cells is required to establish an immunologically active TME. Mechanistically, intratumoral NKT cells facilitate type I interferon (IFN) production to initiate an antitumor adaptive immune response, and orchestrate the intratumoral infiltration of T cells, dendritic cells, natural killer cells, and myeloid-derived suppressor cells. At the molecular level, NKT cells promote the production of type I IFN through the interaction of their CD40L with CD40 on myeloid cells. To evaluate the therapeutic potential of these observations, we find that administration of folinic acid to mice bearing PDA increases NKT cells in the TME and improves their response to anti-PD-1 antibody treatment. In conclusion, NKT cells have an essential role in the immune response to mouse PDA and are potential targets for immunotherapy.
Collapse
Affiliation(s)
- Jiayun Li
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Philip Moresco
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY11794
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY11794
| | - Douglas T. Fearon
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY10065
| |
Collapse
|
40
|
Inderhees J, Schwaninger M. Liver Metabolism in Ischemic Stroke. Neuroscience 2024; 550:62-68. [PMID: 38176607 DOI: 10.1016/j.neuroscience.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Focal brain damage and neurological deficits are the direct consequences of acute ischemic stroke (AIS). In addition, cerebral ischemia causes systemic alterations across peripheral organs. Dysregulation of the autonomic and endocrine systems as well as the release of brain-derived pro-inflammatory mediators trigger a peripheral immune response and systemic inflammation. As a key metabolic organ, the liver contributes not only to post-stroke immunosuppression but also to stress-induced hyperglycemia. At the same time, increased ketogenesis and glutathione production in the liver are likely to combat inflammation and oxidative stress after AIS. The closely linked lipid metabolism could regulate both glucose and glutathione homeostasis. In addition, increased hepatic very low-density lipoprotein (VLDL) secretion may improve the availability of phospholipids, polyunsaturated fatty acids (PUFAs) and glutathione after AIS. This review provides an overview of recent findings concerning ischemic stroke and the liver and discusses the therapeutic potential of targeting the hepatic metabolism to improve patient outcome after stroke.
Collapse
Affiliation(s)
- Julica Inderhees
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany; Bioanalytic Core Facility, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany.
| |
Collapse
|
41
|
Pyaram K, Chang CH. NKT Cells and Other Innate T Cells: The Immune Cells That Do Not Follow the Rules. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:3-5. [PMID: 38885470 DOI: 10.4049/jimmunol.2400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
This Pillars of Immunology article is a commentary on “A subset of CD4+ thymocytes selected by MHC class I molecules,” a pivotal article by A. Bendelac, N. Killeen, D.R. Littman, and R.H. Schwartz published in Science in 1994, marking the discovery of NKT cells and paving the way for the identification and characterization of other innate T cells. https://doi.org/10.1126/science.7907820.
Collapse
Affiliation(s)
- Kalyani Pyaram
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | | |
Collapse
|
42
|
Tai TS, Yang HY, Chuang WC, Huang YW, Ho IC, Tsai CC, Chuang YT. ScRNA-Seq Analyses Define the Role of GATA3 in iNKT Cell Effector Lineage Differentiation. Cells 2024; 13:1073. [PMID: 38920701 PMCID: PMC11201670 DOI: 10.3390/cells13121073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
While the transcription factor GATA-3 is well-established for its crucial role in T cell development, its specific influence on invariant natural killer T (iNKT) cells remains relatively unexplored. Using flow cytometry and single-cell transcriptomic analysis, we demonstrated that GATA-3 deficiency in mice leads to the absence of iNKT2 and iNKT17 cell subsets, as well as an altered distribution of iNKT1 cells. Thymic iNKT cells lacking GATA-3 exhibited diminished expression of PLZF and T-bet, key transcription factors involved in iNKT cell differentiation, and reduced production of Th2, Th17, and cytotoxic effector molecules. Single-cell transcriptomics revealed a comprehensive absence of iNKT17 cells, a substantial reduction in iNKT2 cells, and an increase in iNKT1 cells in GATA-3-deficient thymi. Differential expression analysis highlighted the regulatory role of GATA-3 in T cell activation signaling and altered expression of genes critical for iNKT cell differentiation, such as Icos, Cd127, Eomes, and Zbtb16. Notably, restoration of Icos, but not Cd127, expression could rescue iNKT cell development in GATA-3-deficient mice. In conclusion, our study demonstrates the pivotal role of GATA-3 in orchestrating iNKT cell effector lineage differentiation through the regulation of T cell activation pathways and Icos expression, providing insights into the molecular mechanisms governing iNKT cell development and function.
Collapse
Affiliation(s)
- Tzong-Shyuan Tai
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Huang-Yu Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Advanced Immunology Laboratory, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Wan-Chu Chuang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Yu-Wen Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - I-Cheng Ho
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, 60 Fenwood Road, Boston, MA 02115, USA;
- Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Ching-Chung Tsai
- Department of Pediatrics, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ya-Ting Chuang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
43
|
Li YR, Zhou Y, Yu J, Zhu Y, Lee D, Zhu E, Li Z, Kim YJ, Zhou K, Fang Y, Lyu Z, Chen Y, Tian Y, Huang J, Cen X, Husman T, Cho JM, Hsiai T, Zhou JJ, Wang P, Puliafito BR, Larson SM, Yang L. Engineering allorejection-resistant CAR-NKT cells from hematopoietic stem cells for off-the-shelf cancer immunotherapy. Mol Ther 2024; 32:1849-1874. [PMID: 38584391 PMCID: PMC11184334 DOI: 10.1016/j.ymthe.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/21/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
The clinical potential of current FDA-approved chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy is encumbered by its autologous nature, which presents notable challenges related to manufacturing complexities, heightened costs, and limitations in patient selection. Therefore, there is a growing demand for off-the-shelf universal cell therapies. In this study, we have generated universal CAR-engineered NKT (UCAR-NKT) cells by integrating iNKT TCR engineering and HLA gene editing on hematopoietic stem cells (HSCs), along with an ex vivo, feeder-free HSC differentiation culture. The UCAR-NKT cells are produced with high yield, purity, and robustness, and they display a stable HLA-ablated phenotype that enables resistance to host cell-mediated allorejection. These UCAR-NKT cells exhibit potent antitumor efficacy to blood cancers and solid tumors, both in vitro and in vivo, employing a multifaceted array of tumor-targeting mechanisms. These cells are further capable of altering the tumor microenvironment by selectively depleting immunosuppressive tumor-associated macrophages and myeloid-derived suppressor cells. In addition, UCAR-NKT cells demonstrate a favorable safety profile with low risks of graft-versus-host disease and cytokine release syndrome. Collectively, these preclinical studies underscore the feasibility and significant therapeutic potential of UCAR-NKT cell products and lay a foundation for their translational and clinical development.
Collapse
MESH Headings
- Humans
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Mice
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Gene Editing
- Xenograft Model Antitumor Assays
- Neoplasms/therapy
- Neoplasms/immunology
- Cell Line, Tumor
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Enbo Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhe Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Huang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinjian Cen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tiffany Husman
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tzung Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Wang
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Benjamin R Puliafito
- Department of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah M Larson
- Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
44
|
Taheri MM, Javan F, Poudineh M, Athari SS. CAR-NKT Cells in Asthma: Use of NKT as a Promising Cell for CAR Therapy. Clin Rev Allergy Immunol 2024; 66:328-362. [PMID: 38995478 DOI: 10.1007/s12016-024-08998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-β, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
45
|
Wang Y, Zou Y, Jiang Q, Li W, Chai X, Zhao T, Liu S, Yuan Z, Yu C, Wang T. Ox-LDL-induced CD80 + macrophages expand pro-atherosclerotic NKT cells via CD1d in atherosclerotic mice and hyperlipidemic patients. Am J Physiol Cell Physiol 2024; 326:C1563-C1572. [PMID: 38586879 DOI: 10.1152/ajpcell.00043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Yao Zou
- Department of Pharmacy, People's Hospital of Chongqing Liangjiang New District, Chongqing, People's Republic of China
| | - Qingsong Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, People's Republic of China
| | - Wenming Li
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinyu Chai
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingrui Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Sichuan, People's Republic of China
| | - Siyi Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| |
Collapse
|
46
|
Pagliuca S, Schmid C, Santoro N, Simonetta F, Battipaglia G, Guillaume T, Greco R, Onida F, Sánchez-Ortega I, Yakoub-Agha I, Kuball J, Hazenberg MD, Ruggeri A. Donor lymphocyte infusion after allogeneic haematopoietic cell transplantation for haematological malignancies: basic considerations and best practice recommendations from the EBMT. Lancet Haematol 2024; 11:e448-e458. [PMID: 38796194 DOI: 10.1016/s2352-3026(24)00098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 05/28/2024]
Abstract
Since the early description of three patients with relapsed leukaemia after allogeneic haematopoietic cell transplantation (HCT) who obtained complete remission after donor lymphocyte infusions (DLIs), the added value of this procedure to induce or maintain graft-versus-leukaemia immunity has been undisputed. For more than 30 years, DLIs have become common practice as prophylactic, pre-emptive, or therapeutic immunotherapy. However, as with many aspects of allogeneic HCT, centres have developed their own routines and practices, and many questions related to the optimal applications and toxicity, or to the immunobiology of DLI induced tumour-immunity, remain. As a part of the Practice Harmonization and Guidelines Committee and the Cellular Therapy and Immunobiology Working Party of the European Society for Blood and Marrow Transplantation effort, a panel of experts with clinical and translational knowledge in transplantation immunology and cellular therapy met during a 2-day workshop in September, 2023, in Lille, France, and developed a set of consensus-based recommendations for the application of unmanipulated DLI after allogeneic HCT for haematological malignancies. Given the absence of prospective data in the majority of publications, these recommendations are mostly based on retrospective studies and expert consensus.
Collapse
Affiliation(s)
- Simona Pagliuca
- Department of Hematology, Nancy University Hospital, Nancy, France; UMR 7365, IMoPA, Lorraine University, CNRS, Vandœuvre-lès-Nancy, France
| | - Christoph Schmid
- Department of Haematology and Oncology, Augsburg University Hospital and Medical Faculty Comprehensive Cancer Center, Bavarian Cancer Research Center, Augsburg, Germany
| | - Nicole Santoro
- Haematology Unit, Department of Oncology and Hematology, Santo Spirito Hospital, Pescara, Italy
| | - Federico Simonetta
- Division of Haematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Giorgia Battipaglia
- Haematology Department and Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Thierry Guillaume
- Division of Haematology, Nantes University Hospital, Nantes, France; INSERM U1232 CNRS, CRCINA, Nantes, France
| | - Raffaella Greco
- Haematology and BMT Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Onida
- Haematology and BMT Unit, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | | | | | - Jurgen Kuball
- Department of Haematology and Center for Translational Immunology, UMC Utrecht, Utrecht, Netherlands
| | - Mette D Hazenberg
- Department of Haematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annalisa Ruggeri
- Haematology and BMT Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
47
|
Chen R, Lukianova E, van der Loeff IS, Spegarova JS, Willet JDP, James KD, Ryder EJ, Griffin H, IJspeert H, Gajbhiye A, Lamoliatte F, Marin-Rubio JL, Woodbine L, Lemos H, Swan DJ, Pintar V, Sayes K, Ruiz-Morales ER, Eastham S, Dixon D, Prete M, Prigmore E, Jeggo P, Boyes J, Mellor A, Huang L, van der Burg M, Engelhardt KR, Stray-Pedersen A, Erichsen HC, Gennery AR, Trost M, Adams DJ, Anderson G, Lorenc A, Trynka G, Hambleton S. NUDCD3 deficiency disrupts V(D)J recombination to cause SCID and Omenn syndrome. Sci Immunol 2024; 9:eade5705. [PMID: 38787962 DOI: 10.1126/sciimmunol.ade5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Inborn errors of T cell development present a pediatric emergency in which timely curative therapy is informed by molecular diagnosis. In 11 affected patients across four consanguineous kindreds, we detected homozygosity for a single deleterious missense variant in the gene NudC domain-containing 3 (NUDCD3). Two infants had severe combined immunodeficiency with the complete absence of T and B cells (T -B- SCID), whereas nine showed classical features of Omenn syndrome (OS). Restricted antigen receptor gene usage by residual T lymphocytes suggested impaired V(D)J recombination. Patient cells showed reduced expression of NUDCD3 protein and diminished ability to support RAG-mediated recombination in vitro, which was associated with pathologic sequestration of RAG1 in the nucleoli. Although impaired V(D)J recombination in a mouse model bearing the homologous variant led to milder immunologic abnormalities, NUDCD3 is absolutely required for healthy T and B cell development in humans.
Collapse
Affiliation(s)
- Rui Chen
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Elena Lukianova
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Ina Schim van der Loeff
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| | | | - Joseph D P Willet
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham. B15 2TT Birmingham, UK
| | - Edward J Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Helen Griffin
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Hanna IJspeert
- Department of Immunology, Erasmus University Medical Center, Rotterdam 3000 CA, Netherlands
| | - Akshada Gajbhiye
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Frederic Lamoliatte
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Jose L Marin-Rubio
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Lisa Woodbine
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Brighton, UK
| | - Henrique Lemos
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - David J Swan
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Valeria Pintar
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Kamal Sayes
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | | | - Simon Eastham
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - David Dixon
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Penny Jeggo
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Brighton, UK
| | - Joan Boyes
- Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Andrew Mellor
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Lei Huang
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Mirjam van der Burg
- Department of Immunology, Erasmus University Medical Center, Rotterdam 3000 CA, Netherlands
| | - Karin R Engelhardt
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo 0424, Norway
| | - Hans Christian Erichsen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham. B15 2TT Birmingham, UK
| | - Anna Lorenc
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
- Open Targets, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| |
Collapse
|
48
|
Theofilatos D, Ho T, Waitt G, Äijö T, Schiapparelli LM, Soderblom EJ, Tsagaratou A. Deciphering the TET3 interactome in primary thymic developing T cells. iScience 2024; 27:109782. [PMID: 38711449 PMCID: PMC11070343 DOI: 10.1016/j.isci.2024.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Ten-eleven translocation (TET) proteins are DNA dioxygenases that mediate active DNA demethylation. TET3 is the most highly expressed TET protein in thymic developing T cells. TET3, either independently or in cooperation with TET1 or TET2, has been implicated in T cell lineage specification by regulating DNA demethylation. However, TET-deficient mice exhibit complex phenotypes, suggesting that TET3 exerts multifaceted roles, potentially by interacting with other proteins. We performed liquid chromatography with tandem mass spectrometry in primary developing T cells to identify TET3 interacting partners in endogenous, in vivo conditions. We discover TET3 interacting partners. Our data establish that TET3 participates in a plethora of fundamental biological processes, such as transcriptional regulation, RNA polymerase elongation, splicing, DNA repair, and DNA replication. This resource brings in the spotlight emerging functions of TET3 and sets the stage for systematic studies to dissect the precise mechanistic contributions of TET3 in shaping T cell biology.
Collapse
Affiliation(s)
- Dimitris Theofilatos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tricia Ho
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Greg Waitt
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Tarmo Äijö
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
49
|
Alhamawi RM, Almutawif YA, Aloufi BH, Alotaibi JF, Alharbi MF, Alsrani NM, Alinizy RM, Almutairi WS, Alaswad WA, Eid HMA, Mumena WA. Free sugar intake is associated with reduced proportion of circulating invariant natural killer T cells among women experiencing overweight and obesity. Front Immunol 2024; 15:1358341. [PMID: 38807605 PMCID: PMC11131101 DOI: 10.3389/fimmu.2024.1358341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Background Higher prevalence of obesity has been observed among women compared to men, which can be explained partly by the higher consumption of sweets and physical inactivity. Obesity can alter immune cell infiltration, and therefore increase the susceptibility to develop chronic inflammation and metabolic disorders. In this study, we aimed to explore the association between free sugar intake and other unhealthy lifestyle habits in relation to the proportion of circulating iNKT cells among women with healthy weight and women experiencing overweight and obesity. Methods A cross-sectional study was conducted on 51 Saudi women > 18 years, wherein their daily free sugar intake was assessed using the validated Food Frequency Questionnaire. Data on smoking status, physical activity, and supplement use were also collected. Anthropometric data including height, weight, waist circumference were objectively measured from each participants. The proportion of circulating iNKT cells was determined using flow cytometry. Results Smoking, physical activity, supplement use, and weight status were not associated with proportion of circulating iNKT cells. Significant association was found between proportion of circulating iNKT cells and total free sugar intake and free sugar intake coming from solid food sources only among women experiencing overweight and obesity (Beta: -0.10: Standard Error: 0.04 [95% Confidence Interval: -0.18 to -0.01], p= 0.034) and (Beta: -0.15: Standard Error: 0.05 [95% Confidence Interval: -0.25 to -0.05], p= 0.005), respectively. Conclusion Excessive free sugar consumption may alter iNKT cells and consequently increase the risk for chronic inflammation and metabolic disorders.
Collapse
Affiliation(s)
- Renad M. Alhamawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Yahya A. Almutawif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Bushra H. Aloufi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Jory F. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Manar F. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Nura M. Alsrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Razan M. Alinizy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Waad S. Almutairi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Wed A. Alaswad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Hamza M. A. Eid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Walaa A. Mumena
- Clinical Nutrition Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
50
|
Boonchalermvichian C, Yan H, Gupta B, Rubin A, Baker J, Negrin RS. invariant Natural Killer T cell therapy as a novel therapeutic approach in hematological malignancies. FRONTIERS IN TRANSPLANTATION 2024; 3:1353803. [PMID: 38993780 PMCID: PMC11235242 DOI: 10.3389/frtra.2024.1353803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 07/13/2024]
Abstract
Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy for cancer treatment. This unique cell population is a promising candidate for cell therapy for cancer treatment because of its inherent cytotoxicity against CD1d positive cancers as well as its ability to induce host CD8 T cell cross priming. Substantial evidence supports that iNKT cells can modulate myelomonocytic populations in the tumor microenvironment to ameliorate immune dysregulation to antagonize tumor progression. iNKT cells can also protect from graft-versus-host disease (GVHD) through several mechanisms, including the expansion of regulatory T cells (Treg). Ultimately, iNKT cell-based therapy can retain antitumor activity while providing protection against GVHD simultaneously. Therefore, these biological properties render iNKT cells as a promising "off-the-shelf" therapy for diverse hematological malignancies and possible solid tumors. Further the introduction of a chimeric antigen recetor (CAR) can further target iNKT cells and enhance function. We foresee that improved vector design and other strategies such as combinatorial treatments with small molecules or immune checkpoint inhibitors could improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor activity along with the abatement of iNKT cell dysfunction or exhaustion.
Collapse
|