1
|
Llach CD, Le GH, Shah H, Marcato LM, Brietzke E, Gill H, Tabassum A, Badulescu S, Rosenblat JD, McIntyre RS, Mansur RB. Peripheral and central inflammation in depression: How large is the gap and can we bridge it with PET neuroimaging and neural-derived extracellular vesicles? J Neuroimmunol 2025; 403:578587. [PMID: 40174479 DOI: 10.1016/j.jneuroim.2025.578587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/28/2025] [Accepted: 03/16/2025] [Indexed: 04/04/2025]
Abstract
Major depressive disorder (MDD) presents as a multifaceted syndrome with complex pathophysiology and variable treatment responses, posing significant challenges in clinical management. Neuroinflammation is known to play pivotal mechanism in depression, linking immune responses with central nervous system (CNS) dysfunction. This review explores the interplay between peripheral and central inflammatory processes in MDD, emphasizing discrepancies in biomarker validity and specificity. While peripheral markers like cytokines have historically been investigated as proxies for neuroinflammation, their reliability remains contentious due to inconsistent findings, lack of correlation with neuroinflammatory markers, the influence of confounding variables, and the role of regulatory mechanism within the CNS. Additionally, the human brain shows a pattern of regionalized inflammation. Current methodologies for investigating neuroinflammation in humans in vivo, including neural-derived extracellular vesicles (EVs) and positron emission tomography (PET) neuroimaging using translocator protein, offer promising avenues while facing substantial limitations. We propose that future research in MDD may benefit from combined microglia-derived EV-TSPO PET neuroimaging analyses to leverage the strengths and mitigate the limitations of both individual methods.
Collapse
Affiliation(s)
- Cristian-Daniel Llach
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Gia Han Le
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Hiya Shah
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Liz M Marcato
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Hartej Gill
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aniqa Tabassum
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sebastian Badulescu
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Wang XS, Wang Y, Xu Y, Zhang SR, Zhang Y, Peng LL, Wu N, Ye JS. Effectiveness of mesenchymal stem cell-derived extracellular vesicles therapy for Parkinson's disease: A systematic review of preclinical studies. World J Stem Cells 2025; 17:102421. [PMID: 40308882 PMCID: PMC12038458 DOI: 10.4252/wjsc.v17.i4.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/23/2025] [Accepted: 03/03/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) can traverse the blood-brain barrier due to their small size. This characteristic makes them a research hotspot for the treatment of Parkinson's disease (PD) and is expected to be a potentially revolutionary strategy for treating PD. Despite this, no summary of clinical trial results has been reported. AIM To assess the efficacy and durability of MSC-EVs in treating PD. METHODS Systematic searches were conducted in four electronic databases until June 2024 to collect studies on the use of MSC-EVs for this purpose. Thirteen relevant randomized controlled trials, encompassing 16 experiments, were selected for inclusion. RESULTS Behavioral assessments, including the rotarod and apomorphine turning behavior tests, indicated improvements in motor coordination (P < 0.00001); the Pole test and the Wire-hang test showed enhanced limb motor agility and synchronization (P = 0.003 and P < 0.00001, respectively). Histopathologically, there was a reduction in inflammatory markers such as tumor necrosis factor-α and interleukin-6 (P = 0.03 and P = 0.01, respectively) and an increase in tyrosine hydroxylase-positive cells in the lesion areas (P < 0.00001). CONCLUSION MSC-EV therapy for PD is a gradual process, with significant improvements observable more than 2 weeks after administration and lasting at least 8 weeks. This study is the first to demonstrate the efficacy and durability of MSC-EV treatment in PD.
Collapse
Affiliation(s)
- Xue-Song Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Yue Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- College of Nursing, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Shan-Rong Zhang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- First Clinical Medical College of Gannan Medical University, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Yang Zhang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Lu-Lu Peng
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- First Clinical Medical College of Gannan Medical University, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Nan Wu
- First Clinical Medical College of Gannan Medical University, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Jun-Song Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China.
| |
Collapse
|
3
|
De Sousa RAL, Mendes BF. T-regulatory cells and extracellular vesicles in Alzheimer's disease: New therapeutic concepts and hypotheses. Brain Res 2025; 1850:149393. [PMID: 39672489 DOI: 10.1016/j.brainres.2024.149393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/27/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Cell-based treatment has experienced exponential expansion in recent years in terms of clinical application and market share among pharmaceutical companies. When malignant cells in a healthy individual produce antigenic peptides derived from mutant or improperly synthesized proteins, the immune system attacks and kills the transforming cells. This process is carried out continuously by immune cells scanning the body for altered cells that could cause some harm. T-regulatory cells (Tregs), which preserve immunological tolerance and can exert neuroprotective benefits in numerous disorders, including animal models of Alzheimer's disease (AD), have demonstrated considerable therapeutic potential. Evidence also suggests that not only Tregs, but extracellular vesicles (EVs) are involved in a wide range of diseases, such as cellular homoeostasis, infection propagation, cancer development and heart disease, and have become a promisor cell-based therapeutic field too. Nevertheless, despite significant recent clinical and commercial breakthroughs, cell-based medicines still confront numerous challenges that hinder their general translation and commercialization. These challenges include, but are not limited to, choosing the best cell source, and creating a product that is safe, adequately viable, and fits the needs of individual patients and diseases. Here, we summarize what we know about Tregs and EVs and their potential therapeutic usage in AD.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, MG, Brazil.
| | - Bruno Ferreira Mendes
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, MG, Brazil; Physical Education Department, UNIPTAN, São João Del Rey, MG, Brazil
| |
Collapse
|
4
|
Kong Y, Zhang X, Li L, Zhao T, Huang Z, Zhang A, Sun Y, Jiao J, Zhang G, Liu M, Han Y, Yang L, Zhang Z. Microglia-Derived Vitamin D Binding Protein Mediates Synaptic Damage and Induces Depression by Binding to the Neuronal Receptor Megalin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410273. [PMID: 39716879 PMCID: PMC11809382 DOI: 10.1002/advs.202410273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Vitamin D binding protein (VDBP) is a potential biomarker of major depressive disorder (MDD). This study demonstrates for the first time that VDBP is highly expressed in core emotion-related brain regions of mice susceptible to chronic unpredictable mild stress (CUMS). Specifically, the overexpression of microglia (MG)-derived VDBP in the prelimbic leads to depression-like behavior and aggravates CUMS-induced depressive phenotypes in mice, whereas conditional knockout of MG-derived VDBP can reverse both neuronal damage and depression-like behaviors. Mechanistically, the binding of MG-derived VDBP with the neuronal receptor megalin mediates the downstream SRC signaling pathway, leading to neuronal and synaptic damage and depression-like behaviors. These events may be caused by biased activation of inhibitory neurons and excitatory-inhibitory imbalance. Importantly, this study has effectively identified MG-derived VDBP as a pivotal mediator in the interplay between microglia and neurons via its interaction with the neuronal receptor megalin and intricate downstream impacts on neuronal functions, thus offering a promising therapeutic target for MDD.
Collapse
Affiliation(s)
- Yan Kong
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
- Department of Biochemistry and Molecular BiologySchool of MedicineSoutheast UniversityNanjingJiangsu210009China
| | - Xian Zhang
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Ling Li
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Te Zhao
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Zihan Huang
- Department of Biochemistry and Molecular BiologySchool of MedicineSoutheast UniversityNanjingJiangsu210009China
| | - Aini Zhang
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Yun Sun
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Jiao Jiao
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Gaojia Zhang
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
| | - Mengyu Liu
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Yijun Han
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Linfeng Yang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Zhijun Zhang
- Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key DisciplineSchool of MedicineInstitute of NeuropsychiatryKey Laboratory of Developmental Genes and Human Disease in Ministry of EducationSoutheast UniversityNanjing210096China
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of DepressionDepartment of Mental Health and Public HealthFaculty of Life and Health SciencesShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| |
Collapse
|
5
|
Smith RG, Pishva E, Kouhsar M, Imm J, Dobricic V, Johannsen P, Wittig M, Franke A, Vandenberghe R, Schaeverbeke J, Freund‐Levi Y, Frölich L, Scheltens P, Teunissen CE, Frisoni G, Blin O, Richardson JC, Bordet R, Engelborghs S, de Roeck E, Martinez‐Lage P, Altuna M, Tainta M, Lleó A, Sala I, Popp J, Peyratout G, Winchester L, Nevado‐Holgado A, Verhey F, Tsolaki M, Andreasson U, Blennow K, Zetterberg H, Streffer J, Vos SJB, Lovestone S, Visser PJ, Bertram L, Lunnon K. Blood DNA methylomic signatures associated with CSF biomarkers of Alzheimer's disease in the EMIF-AD study. Alzheimers Dement 2024; 20:6722-6739. [PMID: 39193893 PMCID: PMC11485320 DOI: 10.1002/alz.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION We investigated blood DNA methylation patterns associated with 15 well-established cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathophysiology, neuroinflammation, and neurodegeneration. METHODS We assessed DNA methylation in 885 blood samples from the European Medical Information Framework for Alzheimer's Disease (EMIF-AD) study using the EPIC array. RESULTS We identified Bonferroni-significant differential methylation associated with CSF YKL-40 (five loci) and neurofilament light chain (NfL; seven loci) levels, with two of the loci associated with CSF YKL-40 levels correlating with plasma YKL-40 levels. A co-localization analysis showed shared genetic variants underlying YKL-40 DNA methylation and CSF protein levels, with evidence that DNA methylation mediates the association between genotype and protein levels. Weighted gene correlation network analysis identified two modules of co-methylated loci correlated with several amyloid measures and enriched in pathways associated with lipoproteins and development. DISCUSSION We conducted the most comprehensive epigenome-wide association study (EWAS) of AD-relevant CSF biomarkers to date. Future work should explore the relationship between YKL-40 genotype, DNA methylation, and protein levels in the brain. HIGHLIGHTS Blood DNA methylation was assessed in the EMIF-AD MBD study. Epigenome-wide association studies (EWASs) were performed for 15 Alzheimer's disease (AD)-relevant cerebrospinal fluid (CSF) biomarker measures. Five Bonferroni-significant loci were associated with YKL-40 levels and seven with neurofilament light chain (NfL). DNA methylation in YKL-40 co-localized with previously reported genetic variation. DNA methylation potentially mediates the effect of single-nucleotide polymorphisms (SNPs) in YKL-40 on CSF protein levels.
Collapse
Affiliation(s)
- Rebecca G. Smith
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
| | - Ehsan Pishva
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtThe Netherlands
| | - Morteza Kouhsar
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
| | - Jennifer Imm
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA)University of LübeckLübeckGermany
| | - Peter Johannsen
- Danish Dementia Research Centre, RigshospitaletCopenhagenDenmark
| | - Michael Wittig
- Institute of Clinical Molecular BiologyChristian‐Albrechts‐University of KielKielGermany
| | - Andre Franke
- Institute of Clinical Molecular BiologyChristian‐Albrechts‐University of KielKielGermany
| | - Rik Vandenberghe
- Laboratory for Cognitive NeurologyKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Jolien Schaeverbeke
- Laboratory for Cognitive NeurologyKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Yvonne Freund‐Levi
- Department of Clinical Science and EducationSödersjukhuset, Karolinska InstitutetStockholmSweden
- School of Medical SciencesÖrebro UniversityÖrebroSweden
- Department of GeriatricsSödertälje HospitalSödertäljeSweden
| | - Lutz Frölich
- Department of Geriatric PsychiatryCentral Institut of Mental HealthMedical Faculty Mannheim/Heidelberg UniversityMannheimGermany
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Laboratory Medicine, Amsterdam NeuroscienceVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Giovanni Frisoni
- Memory centerGeneva University and University Hospitals; on behalf of the AMYPAD consortiumGenevaSwitzerland
| | | | - Jill C. Richardson
- Neuroscience Therapeutic Area, GlaxoSmithKline R&DStevenageHertfordshireUK
| | | | - Sebastiaan Engelborghs
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB), JetteBrusselsBelgium
| | - Ellen de Roeck
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Pablo Martinez‐Lage
- Center for Research and Advanced TherapiesFundación CITA‐Alzhéimer FundazioaSan SebastianGipuzkoaSpain
| | - Miren Altuna
- Center for Research and Advanced TherapiesFundación CITA‐Alzhéimer FundazioaSan SebastianGipuzkoaSpain
| | - Mikel Tainta
- Center for Research and Advanced TherapiesFundación CITA‐Alzhéimer FundazioaSan SebastianGipuzkoaSpain
| | - Alberto Lleó
- Servicio de Neurología, Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)Hospital Sant PauBarcelonaSpain
| | - Isabel Sala
- Servicio de Neurología, Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)Hospital Sant PauBarcelonaSpain
| | - Julius Popp
- University Hospital of Psychiatry Zürich, University of ZürichZürichSwitzerland
| | - Gwendoline Peyratout
- Department of PsychiatryUniversity Hospital of Lausanne (CHUV)LausanneSwitzerland
| | | | | | - Frans Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtThe Netherlands
| | - Magda Tsolaki
- 1st Department of NeurologySchool of MedicineLaboratory of Neurodegenerative DiseasesCenter for Interdisciplinary Research and InnovationAristotle University of Thessaloniki, and Alzheimer HellasThessalonikiGreece
| | - Ulf Andreasson
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
- Paris Brain InstituteICM, Pitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiPR China
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative Diseases, N.T.ShatinHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public Health, University of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Stephanie J. B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtThe Netherlands
| | - Simon Lovestone
- Department of PsychiatryUniversity Hospital of Lausanne (CHUV)LausanneSwitzerland
- Currently at: Johnson & Johnson Innovative MedicinesBeerseBelgium
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtThe Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA)University of LübeckLübeckGermany
| | - Katie Lunnon
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
| |
Collapse
|
6
|
Grijaldo-Alvarez SJB, Alvarez MRS, Schindler RL, Oloumi A, Hernandez N, Seales T, Angeles JGC, Nacario RC, Completo GC, Zivkovic AM, Bruce German J, Lebrilla CB. N-Glycan profile of the cell membrane as a probe for lipopolysaccharide-induced microglial neuroinflammation uncovers the effects of common fatty acid supplementation. Food Funct 2024; 15:8258-8273. [PMID: 39011570 PMCID: PMC11668514 DOI: 10.1039/d4fo01598c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Altered N-glycosylation of proteins on the cell membrane is associated with several neurodegenerative diseases. Microglia are an ideal model for studying glycosylation and neuroinflammation, but whether aberrant N-glycosylation in microglia can be restored by diet remains unknown. Herein, we profiled the N-glycome, proteome, and glycoproteome of the human microglia following lipopolysaccharide (LPS) induction to probe the impact of dietary and gut microbe-derived fatty acids-oleic acid, lauric acid, palmitic acid, valeric acid, butyric acid, isobutyric acid, and propionic acid-on neuroinflammation using liquid chromatography-tandem mass spectrometry. LPS changed N-glycosylation in the microglial glycocalyx altering high mannose and sialofucosylated N-glycans, suggesting the dysregulation of mannosidases, fucosyltransferases, and sialyltransferases. The results were consistent as we observed the restoration effect of the fatty acids, especially oleic acid, on the LPS-treated microglia, specifically on the high mannose and sialofucosylated glycoforms of translocon-associated proteins, SSRA and SSRB along with the cell surface proteins, CD63 and CD166. In addition, proteomic analysis and in silico modeling substantiated the potential of fatty acids in reverting the effects of LPS on microglial N-glycosylation. Our results showed that N-glycosylation is likely affected by diet by restoring alterations following LPS challenge, which may then influence the disease state.
Collapse
Affiliation(s)
- Sheryl Joyce B Grijaldo-Alvarez
- Department of Chemistry, University of California, Davis, 95616, USA.
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | | | | | - Armin Oloumi
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Noah Hernandez
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Tristan Seales
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Jorge Gil C Angeles
- Philippine Genome Center - Program for Agriculture, Livestock, Fisheries and Forestry, University of the Philippines Los Baños, Philippines, 4031.
| | - Ruel C Nacario
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | - Gladys C Completo
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, 95616, USA.
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, 95616, USA.
| | | |
Collapse
|
7
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
8
|
Yakabi K, Berson E, Montine KS, Bendall SC, MacCoss MJ, Poston KL, Montine TJ. Human cerebrospinal fluid single exosomes in Parkinson's and Alzheimer's diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573124. [PMID: 38187636 PMCID: PMC10769431 DOI: 10.1101/2023.12.22.573124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Exosomes are proposed to be important in the pathogenesis of prevalent neurodegenerative diseases. We report the first application of solid-state technology to perform multiplex analysis of single exosomes in human cerebrospinal fluid (CSF) obtained from the lumbar sac of people diagnosed with Alzheimer's disease dementia (ADD, n=30) or Parkinson's disease dementia (PDD, n=30), as well as age-matched health controls (HCN, n=30). Single events were captured with mouse monoclonal antibodies to one of three different tetraspanins (CD9, CD63, or CD81) or with mouse (M) IgG control, and then probed with fluorescently labeled antibodies to prion protein (PrP) or CD47 to mark neuronal or presynaptic origin, as well as ADD- and PDD-related proteins: amyloid beta (Aβ), tau, α-synuclein, and Apolipoprotein (Apo) E. Data were collected only from captured events that were within the size range of 50 to 200 nm. Exosomes were present at approximately 100 billion per mL human CSF and were similarly abundant for CD9+ and CD81+ events, but CD63+ were only 22% to 25% of CD9+ (P<0.0001) or CD81+ (P<0.0001) events. Approximately 24% of CSF exosomes were PrP+, while only 2% were CD47+. The vast majority of exosomes were surface ApoE+, and the number of PrP-ApoE+ (P<0.001) and PrP+ApoE+ (P<0.01) exosomes were significantly reduced in ADD vs. HCN for CD9+ events only. Aβ, tau, and α-synuclein were not detected on the exosome surface or in permeabilized cargo. These data provide new insights into single exosome molecular features and highlight reduction in the CSF concentration of ApoE+ exosomes in patients with ADD.
Collapse
|
9
|
Taha HB, Ati SS. Evaluation of α-synuclein in CNS-originating extracellular vesicles for Parkinsonian disorders: A systematic review and meta-analysis. CNS Neurosci Ther 2023; 29:3741-3755. [PMID: 37416941 PMCID: PMC10651986 DOI: 10.1111/cns.14341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND & AIMS Parkinsonian disorders, such as Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), share early motor symptoms but have distinct pathophysiology. As a result, accurate premortem diagnosis is challenging for neurologists, hindering efforts for disease-modifying therapeutic discovery. Extracellular vesicles (EVs) contain cell-state-specific biomolecules and can cross the blood-brain barrier to the peripheral circulation, providing a unique central nervous system (CNS) insight. This meta-analysis evaluated blood-isolated neuronal and oligodendroglial EVs (nEVs and oEVs) α-synuclein levels in Parkinsonian disorders. METHODS Following PRISMA guidelines, the meta-analysis included 13 studies. An inverse-variance random-effects model quantified effect size (SMD), QUADAS-2 assessed risk of bias and publication bias was evaluated. Demographic and clinical variables were collected for meta-regression. RESULTS The meta-analysis included 1,565 patients with PD, 206 with MSA, 21 with DLB, 172 with PSP, 152 with CBS and 967 healthy controls (HCs). Findings suggest that combined concentrations of nEVs and oEVs α-syn is higher in patients with PD compared to HCs (SMD = 0.21, p = 0.021), while nEVs α-syn is lower in patients with PSP and CBS compared to patients with PD (SMD = -1.04, p = 0.0017) or HCs (SMD = -0.41, p < 0.001). Additionally, α-syn in nEVs and/or oEVs did not significantly differ in patients with PD vs. MSA, contradicting the literature. Meta-regressions show that demographic and clinical factors were not significant predictors of nEVs or oEVs α-syn concentrations. CONCLUSION The results highlight the need for standardized procedures and independent validations in biomarker studies and the development of improved biomarkers for distinguishing Parkinsonian disorders.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Shomik S. Ati
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
10
|
Adhit KK, Wanjari A, Menon S, K S. Liquid Biopsy: An Evolving Paradigm for Non-invasive Disease Diagnosis and Monitoring in Medicine. Cureus 2023; 15:e50176. [PMID: 38192931 PMCID: PMC10772356 DOI: 10.7759/cureus.50176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Liquid biopsy stands as an innovative instrument in the realm of precision medicine, enabling non-invasive disease diagnosis and the early detection of cancer. Liquid biopsy helps in the extraction of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and cell-free DNA (cfDNA) from blood samples and other body fluids, thereby facilitating disease diagnosis and prediction of high-risk patients. Various techniques such as advanced sequencing methods and biomarker-based cell capture have led to the isolation and study of the different biomarkers such as ctDNA, cfDNA, and CTCs. These biopsies also have immense potential in the early detection and diagnosis of various diseases across all medical specialties, prediction and screening of high-risk cases, and detection of different immune response patterns in response to infectious diseases, and also help in predicting treatment outcomes. Although liquid biopsy has the potential to disrupt the field of medical diagnosis, it is met by various challenges such as limited tumor-derived components, less specificity, and inadequate advancement in methods to isolate biomarkers. Despite all these challenges, liquid biopsies provide the potential to become a minimally invasive method of diagnosis that would facilitate real-time monitoring of patients, which differentiates them from traditional tissue biopsies. This article aims to provide a complete overview of the current technologies, different biomarkers, and body fluids that can be used in liquid biopsy and its clinical applications and the potential impact that liquid biopsy holds in the field of precision medicine, facilitating early diagnosis and prompt management of various diseases and cancers.
Collapse
Affiliation(s)
- Kanishk K Adhit
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anil Wanjari
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sharanya Menon
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Siddhaarth K
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
11
|
Ferreira MJC, Soares Martins T, Alves SR, Rosa IM, Vogelgsang J, Hansen N, Wiltfang J, da Cruz E Silva OAB, Vitorino R, Henriques AG. Bioinformatic analysis of the SPs and NFTs proteomes unravel putative biomarker candidates for Alzheimer's disease. Proteomics 2023; 23:e2200515. [PMID: 37062942 DOI: 10.1002/pmic.202200515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
Aging is the main risk factor for the appearance of age-related neurodegenerative diseases, including Alzheimer's disease (AD). AD is the most common form of dementia, characterized by the presence of senile plaques (SPs) and neurofibrillary tangles (NFTs), the main histopathological hallmarks in AD brains. The core of these deposits are predominantly amyloid fibrils in SPs and hyperphosphorylated Tau protein in NFTs, but other molecular components can be found associated with these pathological lesions. Herein, an extensive literature review was carried out to obtain the SPs and NFTs proteomes, followed by a bioinformatic analysis and further putative biomarker validation. For SPs, 857 proteins were recovered, and, for NFTs, 627 proteins of which 375 occur in both groups and represent the common proteome. Gene Ontology (GO) enrichment analysis permitted the identification of biological processes and the molecular functions most associated with these lesions. Analysis of the SPs and NFTs common proteins unraveled pathways and molecular targets linking both histopathological events. Further, validation of a putative phosphotarget arising from the in silico analysis was performed in serum-derived extracellular vesicles from AD patients. This bioinformatic approach contributed to the identification of putative molecular targets, valuable for AD diagnostic or therapeutic intervention.
Collapse
Affiliation(s)
- Maria J Cardoso Ferreira
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Tânia Soares Martins
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Steven R Alves
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ilka Martins Rosa
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany
- Translational Neuroscience Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany
| | - Jens Wiltfang
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| | - Odete A B da Cruz E Silva
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
12
|
Georgieva I, Tchekalarova J, Iliev D, Tzoneva R. Endothelial Senescence and Its Impact on Angiogenesis in Alzheimer's Disease. Int J Mol Sci 2023; 24:11344. [PMID: 37511104 PMCID: PMC10379128 DOI: 10.3390/ijms241411344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial cells are constantly exposed to environmental stress factors that, above a certain threshold, trigger cellular senescence and apoptosis. The altered vascular function affects new vessel formation and endothelial fitness, contributing to the progression of age-related diseases. This narrative review highlights the complex interplay between senescence, oxidative stress, extracellular vesicles, and the extracellular matrix and emphasizes the crucial role of angiogenesis in aging and Alzheimer's disease. The interaction between the vascular and nervous systems is essential for the development of a healthy brain, especially since neurons are exceptionally dependent on nutrients carried by the blood. Therefore, anomalies in the delicate balance between pro- and antiangiogenic factors and the consequences of disrupted angiogenesis, such as misalignment, vascular leakage and disturbed blood flow, are responsible for neurodegeneration. The implications of altered non-productive angiogenesis in Alzheimer's disease due to dysregulated Delta-Notch and VEGF signaling are further explored. Additionally, potential therapeutic strategies such as exercise and caloric restriction to modulate angiogenesis and vascular aging and to mitigate the associated debilitating symptoms are discussed. Moreover, both the roles of extracellular vesicles in stress-induced senescence and as an early detection marker for Alzheimer's disease are considered. The intricate relationship between endothelial senescence and angiogenesis provides valuable insights into the mechanisms underlying angiogenesis-related disorders and opens avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Irina Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 23, 1113 Sofia, Bulgaria
| | - Dimitar Iliev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
13
|
He A, Wang M, Li X, Chen H, Lim K, Lu L, Zhang C. Role of Exosomes in the Pathogenesis and Theranostic of Alzheimer's Disease and Parkinson's Disease. Int J Mol Sci 2023; 24:11054. [PMID: 37446231 DOI: 10.3390/ijms241311054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases (NDDs) threatening the lives of millions of people worldwide, including especially elderly people. Currently, due to the lack of a timely diagnosis and proper intervention strategy, AD and PD largely remain incurable. Innovative diagnosis and therapy are highly desired. Exosomes are small vesicles that are present in various bodily fluids, which contain proteins, nucleic acids, and active biomolecules, and which play a crucial role especially in intercellular communication. In recent years, the role of exosomes in the pathogenesis, early diagnosis, and treatment of diseases has attracted ascending attention. However, the exact role of exosomes in the pathogenesis and theragnostic of AD and PD has not been fully illustrated. In the present review, we first introduce the biogenesis, components, uptake, and function of exosomes. Then we elaborate on the involvement of exosomes in the pathogenesis of AD and PD. Moreover, the application of exosomes in the diagnosis and therapeutics of AD and PD is also summarized and discussed. Additionally, exosomes serving as drug carriers to deliver medications to the central nervous system are specifically addressed. The potential role of exosomes in AD and PD is explored, discussing their applications in diagnosis and treatment, as well as their current limitations. Given the limitation in the application of exosomes, we also propose future perspectives for better utilizing exosomes in NDDs. Hopefully, it would pave ways for expanding the biological applications of exosomes in fundamental research as well as theranostics of NDDs.
Collapse
Affiliation(s)
- Aojie He
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Meiling Wang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Xiaowan Li
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Hong Chen
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Kahleong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| |
Collapse
|
14
|
Exosomes as Novel Delivery Systems for Application in Traditional Chinese Medicine. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227789. [PMID: 36431890 PMCID: PMC9695524 DOI: 10.3390/molecules27227789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Exosomes, as gifts of nature derived from various cell types with a size range from ~40 to 160 nm in diameter, have gained attention recently. They are composed of a lipid membrane bilayer structure containing different constituents, such as surface ligands and receptors, from the parental cells. Originating from a variety of sources, exosomes have the ability to participate in a diverse range of biological processes, including the regulation of cellular communication. On account of their ideal native structure and characteristics, exosomes are taken into account as drug delivery systems (DDSs). They can provide profound effects on conveying therapeutic agents with great advantages, including specific targeting, high biocompatibility, and non-toxicity. Further, they can also be considered to ameliorate natural compounds, the main constituents of traditional Chinese medicine (TCM), which are usually ignored due to the complexity of their structures, poor stability, and unclear mechanisms of action. This review summarizes the classification of exosomes as well as the research progress on exosome-based DDSs for the treatment of different diseases in TCM. Furthermore, this review discusses the advantages and challenges faced by exosomes to contribute to their further investigation and application.
Collapse
|
15
|
Vaz M, Soares Martins T, Henriques AG. Extracellular vesicles in the study of Alzheimer's and Parkinson's diseases: Methodologies applied from cells to biofluids. J Neurochem 2022; 163:266-309. [PMID: 36156258 PMCID: PMC9828694 DOI: 10.1111/jnc.15697] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023]
Abstract
Extracellular vesicles (EVs) are gaining increased importance in fundamental research as key players in disease pathogenic mechanisms, but also in translational and clinical research due to their value in biomarker discovery, either for diagnostics and/or therapeutics. In the first research scenario, the study of EVs isolated from neuronal models mimicking neurodegenerative diseases can open new avenues to better understand the pathological mechanisms underlying these conditions or to identify novel molecular targets for diagnosis and/or therapeutics. In the second research scenario, the easy availability of EVs in body fluids and the specificity of their cargo, which can reflect the cell of origin or disease profiles, turn these into attractive diagnostic tools. EVs with exosome-like characteristics, circulating in the bloodstream and other peripheral biofluids, constitute a non-invasive and rapid alternative to study several conditions, including brain-related disorders. In both cases, several EVs isolation methods are already available, but each neuronal model or biofluid presents its own challenges. Herein, a literature overview on EVs isolation methodologies from distinct neuronal models (cellular culture and brain tissue) and body fluids (serum, plasma, cerebrospinal fluid, urine and saliva) was carried out. Focus was given to approaches employed in the context of Alzheimer's and Parkinson's diseases, and the main research findings discussed. The topics here revised will facilitate the choice of EVs isolation methodologies and potentially prompt new discoveries in EVs research and in the neurodegenerative diseases field.
Collapse
Affiliation(s)
- Margarida Vaz
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Tânia Soares Martins
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Ana Gabriela Henriques
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| |
Collapse
|