1
|
Dong L, Yang Z, Liu J, Wu R, Liao Y, Kuang L. SERPINF1 knockdown attenuates chondrocyte senescence, hypertrophy, and inflammation in osteoarthritis to offer a potential therapeutic strategy. Cell Signal 2025; 132:111840. [PMID: 40306348 DOI: 10.1016/j.cellsig.2025.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/15/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Osteoarthritis (OA) is characterized by cartilage degradation, synovial inflammation, subchondral bone remodeling, and osteophyte formation, leading to chronic pain and impaired mobility. Chondrocyte senescence, inflammation, and hypertrophic differentiation critically contribute to OA progression. Integrated analysis of four GEO datasets identified SERPINF1 as a consistently upregulated gene in both human and animal OA samples. Histopathological and immunohistochemical analyses confirmed increased SERPINF1 in OA cartilage, where chondrocytes showed elevated SERPINF1 protein alongside reduced aggrecan expression. Functional studies revealed that SERPINF1 knockdown in OA chondrocytes diminished senescence markers (p21, p16, p53) while increasing Lamin B1, and reduced levels of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6). Conversely, overexpression of SERPINF1 in normal chondrocytes induced senescence and increased inflammatory mediator expression, accompanied by altered extracellular matrix metabolism and hypertrophy marker expression. Mechanistic analysis further implicated the TNF-α/NF-κB signaling pathway in mediating these effects. In a destabilization of the medial meniscus (DMM) mouse model, intra-articular SERPINF1 knockdown attenuated cartilage destruction, reduced senescence and inflammatory markers, and restored ECM integrity. Collectively, these findings demonstrate that SERPINF1 promotes OA progression by exacerbating chondrocyte senescence, inflammation, and hypertrophy, suggesting that targeting SERPINF1 may offer a novel therapeutic strategy for OA.
Collapse
Affiliation(s)
- Lini Dong
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiwei Yang
- Department of Orthopaedics, Changde Hospital of Xiangya School of Medicine, Central South University (The First People's Hospital of Changde), Changde 415000, Hunan, China
| | - Jie Liu
- Department of Spinal Surgery, The Fourth People's Hospital of Guiyang, Guiyang 550002, Guizhou, China
| | - Ren Wu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yunlong Liao
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Lei Kuang
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
2
|
Lavarti R, Alvarez-Diaz T, Marti K, Kar P, Raju RP. The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging. Ageing Res Rev 2025; 109:102760. [PMID: 40318767 PMCID: PMC12145239 DOI: 10.1016/j.arr.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Aging is characterized by a steady loss of physiological integrity, leading to impaired function and increased vulnerability to death. Cell senescence is a biological process that progresses with aging and is believed to be a key driver of age-related diseases. Senescence, a hallmark of aging, also demonstrates its beneficial physiological aspects as an anti-cancer, pro-regenerative, homeostatic, and developmental mechanism. A transitory response in which the senescent cells are quickly formed and cleared may promote tissue regeneration and organismal fitness. At the same time, senescence-related secretory phenotypes associated with extended senescence can have devastating effects. The fact that the interaction between senescent cells and their surroundings is very context-dependent may also help to explain this seemingly opposing pleiotropic function. Further, mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. This review summarizes the mechanism of cellular senescence and the significance of acute senescence. We concisely introduced the context-dependent role of senescent cells and SASP, aspects of mitochondrial biology altered in the senescent cells, and their impact on the senescent phenotype. Finally, we conclude with recent therapeutic advancements targeting cellular senescence, focusing on acute injuries and age-associated diseases. Collectively, these insights provide a future roadmap for the role of senescence in organismal fitness and life span extension.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tatiana Alvarez-Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kyarangelie Marti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
3
|
Li D, Wang J, Li X, Wang Z, Yu Q, Koh SB, Wu R, Ye L, Guo Y, Okoli U, Pati-Alam A, Mota E, Wei W, Yoo KH, Cho WC, Feng D, Heavey S. Interactions between radiotherapy resistance mechanisms and the tumor microenvironment. Crit Rev Oncol Hematol 2025; 210:104705. [PMID: 40107436 DOI: 10.1016/j.critrevonc.2025.104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Resistance to radiotherapy (RT) presents a significant clinical challenge in management of cancer. Recent evidence points to specific mechanisms of resistance within the tumor microenvironment (TME), which we aim to discuss, with the aim of overcoming the clinical challenge. METHODS We performed the narrative review using PubMed and Web of Science databases to identify studies that reported the regulative network and treatments of RT resistance from TME perspectives. RESULTS RT significantly changes the immune TME of cancers, which is closely appearing to play a key role in RT resistance (RTR) by modulating immune cell infiltration and function. Various phenotypes are involved in the development of RTR, such as autophagy, senescence, oxidative stress, cell polarization, ceramide metabolism, and angiogenesis in the TME. Key genes and pathways are also implicated in RTR, including immune and inflammatory cytokines, TGF-β, P53, the NF-κB pathway, the cGAS/STING pathway, the ERK and AKT pathway, and the STAT pathway. Based on the mechanism of RTR in the TME, many proposed routes to overcome RTR, several specifically target the TME including targeting fibroblast activation protein, exosomes management, nanomedicine, and immunotherapy. Many challenges in RT resistance still need to be further explored with emerging investigative methods, such as artificial intelligence, genetic technologies, and bioengineering. CONCLUSIONS The complex interactions between RT and TME significantly affect the efficiency of RT. Novel approaches to overcome this clinical difficulty are promising, which needs future work to further explore and identify better treatment strategies.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315211, China
| | - Siang Boon Koh
- Faculty of Health and Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Uzoamaka Okoli
- Division of Surgery & Interventional Science, University College London, London, UK; Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka, Enugu, Nigeria
| | - Alisha Pati-Alam
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Eduardo Mota
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region of China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Division of Surgery & Interventional Science, University College London, London, UK.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, UK.
| |
Collapse
|
4
|
Zong D, Sun B, Ye Q, Cao H, Guan H. Circadian Gene BMAL1 Regulation of Cellular Senescence in Thyroid Aging. Aging Cell 2025:e70119. [PMID: 40434135 DOI: 10.1111/acel.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/18/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
As global aging accelerates, the incidence of thyroid diseases, particularly hypothyroidism, is rising in the elderly. The thyroid-stimulating hormone (TSH) levels increase in healthy elderly populations. However, whether the thyroid undergoes cellular senescence and how this relates to thyroid hormone (TH) synthesis remain unclear. To investigate the molecular and functional characteristics of thyroid aging, we performed scRNA-seq on human thyroids from young, middle-aged, and old groups, identifying thousands of aging-related differentially expressed genes and revealing the early onset of aging in the middle-aged group. As aging progresses, the expression levels of genes related to TH synthesis increase, suggesting that epithelial cells (EPI) adjust their gene expression in response to elevated TSH levels. Additionally, the senescence-associated secretory phenotype (SASP) in EPI cells is progressively enhanced with aging. We identified a subgroup of epithelial cells (CDKN1A_EPI) characterized by reduced functionality and significantly elevated levels of cellular senescence. We found that the core circadian rhythm gene BMAL1 (ARNTL) is downregulated during aging. We further validated this finding using the thyroid-specific Bmal1 knockout mouse model, showing that the downregulation of Bmal1 inhibits the expression of Nfkbia (NF-κB inhibitor alpha), thereby accelerating cellular senescence and impairing hormone synthesis. Finally, through cell line experiments and transcriptome sequencing, we confirmed that BMAL1 knockout leads to decreased NFKBIA expression, promoting thyroid cellular senescence. Our study demonstrates that circadian rhythm disruption accelerates cellular senescence in the thyroid and exacerbates the decline of thyroid function, providing a novel theoretical foundation for understanding thyroid aging mechanisms and maintaining thyroid function stability.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Endocrinology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baihui Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiting Ye
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongxin Cao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Grossi E, Marchese FP, González J, Goñi E, Fernández-Justel JM, Amadoz A, Herranz N, Puchades-Carrasco L, Montes M, Huarte M. A lncRNA-mediated metabolic rewiring of cell senescence. Cell Rep 2025; 44:115747. [PMID: 40408249 DOI: 10.1016/j.celrep.2025.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/21/2025] [Accepted: 05/06/2025] [Indexed: 05/25/2025] Open
Abstract
Despite not proliferating, senescent cells remain metabolically active to maintain the senescence program. However, the mechanisms behind this metabolic reprogramming are not well understood. We identify senescence-induced long noncoding RNA (sin-lncRNA), a previously uncharacterized long noncoding RNA (lncRNA), a key player in this response. While strongly activated in senescence by C/EBPβ, sin-lncRNA loss reinforces the senescence program by altering oxidative phosphorylation and rewiring mitochondrial metabolism. By interacting with dihydrolipoamide S-succinyltransferase (DLST), it facilitates its mitochondrial localization. Depletion of sin-lncRNA causes DLST nuclear translocation, leading to transcriptional changes in oxidative phosphorylation (OXPHOS) genes. While not expressed in highly proliferative cancer cells, it is strongly induced upon cisplatin-induced senescence. Depletion of sin-lncRNA in ovarian cancer cells reduces oxygen consumption and increases extracellular acidification, sensitizing cells to cisplatin treatment. Altogether, these results indicate that sin-lncRNA is specifically induced in senescence to maintain metabolic homeostasis, unveiling an RNA-dependent metabolic rewiring specific to senescent cells.
Collapse
Affiliation(s)
- Elena Grossi
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Francesco P Marchese
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Goñi
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - José Miguel Fernández-Justel
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Alicia Amadoz
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Nicolás Herranz
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Leonor Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46026 Valencia, Spain
| | - Marta Montes
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
6
|
Mury P, Dagher O, Fortier A, Diaz A, Lamarche Y, Noly PE, Ibrahim M, Pagé P, Demers P, Bouchard D, Bernier PL, Poirier N, Moss E, Durrleman N, Jeanmart H, Pellerin M, Lettre G, Thorin-Trescases N, Carrier M, Thorin E. Quercetin Reduces Vascular Senescence and Inflammation in Symptomatic Male but Not Female Coronary Artery Disease Patients. Aging Cell 2025:e70108. [PMID: 40375481 DOI: 10.1111/acel.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
Recent studies suggest that vascular senescence and its associated inflammation fuel the inflammaging to favor atherogenesis; whether these pathways can be therapeutically targeted in coronary artery disease (CAD) patients remains unknown. In a randomized, double-blind trial, 97 patients (78 men) undergoing coronary artery bypass graft surgery were treated with either quercetin (500 mg twice daily, 47 patients) or placebo (50 patients) for two days pre-surgery through hospital discharge. Primary outcomes were reduced inflammation and improved endothelial function ex vivo. Exploratory analyses included plasma proteomics and single-nuclei RNA sequencing of internal thoracic artery (ITA) samples. Quercetin treatment showed a trend toward reduced C-reactive protein at discharge (p = 0.073) and differentially modulated circulating inflammatory protein expression between men and women, with a pro-inflammatory effect of quercetin in females. Endothelial acetylcholine-induced relaxation improved significantly with quercetin (p = 0.049), with effects in men (p = 0.043) but not in women (p = 0.852). ITA transcriptomics revealed the overexpression of senescence and inflammaging pathways in male vascular cells, which quercetin reversed. In female cells, quercetin had minimal endothelial benefit and increased inflammaging in fibroblasts. In male cells, a candidate target of quercetin involves interactions between the receptor PLAUR and its ligands PLAU and SERPINE1. Post-operative atrial fibrillation incidence was significantly lower with quercetin, representing 4% of the patients compared to 18% in the placebo group (p = 0.033). In conclusion, short-term quercetin treatment effectively targeted vascular senescence in male CAD patients, improving inflammatory and functional outcomes. However, these benefits were not observed in female patients. Trial Registration: https://clinicaltrials.gov, NCT04907253.
Collapse
Affiliation(s)
- Pauline Mury
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Department of Pharmacology & Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Department of Pharmacology & Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Annik Fortier
- Department of Biostatistics, Montreal Health Innovations Coordinating Centre (MHICC), Montréal, Québec, Canada
| | - Ariel Diaz
- CIUSSS-MCQ, Université de Montréal, Campus Mauricie, Trois-Rivières, Québec, Canada
| | - Yoan Lamarche
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Pierre-Emmanuel Noly
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Marina Ibrahim
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Pagé
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Philippe Demers
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Denis Bouchard
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Pierre-Luc Bernier
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Nancy Poirier
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Emmanuel Moss
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Nicolas Durrleman
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Hughes Jeanmart
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Michel Pellerin
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Lettre
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | - Michel Carrier
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Eric Thorin
- Montreal Heart Institute, Research Center, Université de Montréal, Montréal, Québec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
da Silva GC, Amaral MNS, Peruchetti DB, Lemos VS. Upregulation of COX-2 and NADPH Oxidase and Reduced eNOS in Perivascular Adipose Tissue Are Associated With Resistance Artery Dysfunction and Hypertension in Naturally Aged Mice. J Gerontol A Biol Sci Med Sci 2025; 80:glaf050. [PMID: 40037608 DOI: 10.1093/gerona/glaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 03/06/2025] Open
Abstract
Aging is a major risk factor for cardiovascular disease, with hypertension being the most common outcome. Hypertension often stems from resistance arteries endothelial dysfunction. Recent research highlights the pivotal role of perivascular adipose tissue (PVAT) in regulating endothelial function. We hypothesized that PVAT senescence contributes to vascular dysfunction and hypertension during aging. We showed that naturally aged mice developed hypertension and elevated pro-inflammatory cytokines levels. Moreover, resistance mesenteric arteries showed impaired vascular relaxation that was normalized by apocynin, an antioxidant. The vascular dysfunction was endothelium- and PVAT-dependent, and marked by: decreased nitric oxide- and cyclooxygenase-dependent vascular relaxation, decreased expression of endothelial nitric oxide synthase, and increased cyclooxygenase 2 and NADPH oxidase subunits p22phox and gp91phox expressions in the endothelium and PVAT. Additionally, we observed that PVAT shows greater signs of senescence, particularly with higher p16 expression, indicating that PVAT is more prone to age-related cellular aging. Our findings suggest that in resistance mesenteric arteries PVAT-derived factors are crucial for triggering and amplifying vascular dysfunction in aging, leading to hypertension. The underlying mechanisms involve downregulation of endothelial nitric oxide synthase-derived nitric oxide, NADPH oxidase-dependent oxidative stress, and cyclooxygenase 2-derived vascular contractile factors. This research improves our understanding of the mechanisms behind age-related vascular dysfunction and associated hypertension and opens perspectives for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Grazielle Caroline da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Faculty of Health, Centro Universitário de Lavras (UNILAVRAS), Lavras, Brazil
| | - Maisa Nascimento Soares Amaral
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Diogo Barros Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Virginia Soares Lemos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
8
|
Athar F, Zheng Z, Riquier S, Zacher M, Lu JY, Zhao Y, Volobaev V, Alcock D, Galazyuk A, Cooper LN, Schountz T, Wang LF, Teeling EC, Seluanov A, Gorbunova V. Limited cell-autonomous anticancer mechanisms in long-lived bats. Nat Commun 2025; 16:4125. [PMID: 40319021 PMCID: PMC12049446 DOI: 10.1038/s41467-025-59403-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Several bat species live >20-40 years, suggesting that they possess efficient anti-aging and anti-cancer defenses. Here we investigate the requirements for malignant transformation in primary fibroblasts from four bat species Myotis lucifugus, Eptesicus fuscus, Eonycteris spelaea, and Artibeus jamaicensis - spanning the bat evolutionary tree and including the longest-lived genera. We show that bat fibroblasts do not undergo replicative senescence, express active telomerase, and show attenuated SIPs with dampened secretory phenotype. Unexpectedly, unlike other long-lived mammals, bat fibroblasts are readily transformed by two oncogenic "hits": inactivation of p53 or pRb and activation of HRASG12V. Bat fibroblasts exhibit increased TP53 and MDM2 transcripts and elevated p53-dependent apoptosis. M. lucifugus shows a genomic duplication of TP53. We hypothesize that some bat species have evolved enhanced p53 activity as an additional anti-cancer strategy, similar to elephants. Further, the absence of unique cell-autonomous tumor suppressive mechanisms may suggest that in vivo bats may rely on enhanced immunosurveillance.
Collapse
Affiliation(s)
- Fathima Athar
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Sebastien Riquier
- School of Biology and Environmental Science, Belfield, University College Dublin, Dublin, Ireland
| | - Max Zacher
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - J Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Dominic Alcock
- School of Biology and Environmental Science, Belfield, University College Dublin, Dublin, Ireland
| | - Alex Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Lisa Noelle Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - Emma C Teeling
- School of Biology and Environmental Science, Belfield, University College Dublin, Dublin, Ireland
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
9
|
Bajtai E, Kiss C, Bakos É, Langó T, Lovrics A, Schád É, Tisza V, Hegedűs K, Fürjes P, Szabó Z, Tusnády GE, Szakács G, Tantos Á, Spisák S, Tóvári J, Füredi A. Therapy-induced senescence is a transient drug resistance mechanism in breast cancer. Mol Cancer 2025; 24:128. [PMID: 40312750 PMCID: PMC12044945 DOI: 10.1186/s12943-025-02310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/23/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Therapy-induced senescence (TIS) is considered a permanent cell cycle arrest following DNA-damaging treatments; however, its irreversibility has recently been challenged. Here, we demonstrate that escape from TIS is universal across breast cancer cells. Moreover, TIS provides a reversible drug resistance mechanism that ensures the survival of the population, and could contribute to relapse. METHODS TIS was induced in four different breast cancer cell line with high-dose chemotherapy and cultured until cells escaped TIS. Parental, TIS and repopulating cells were analyzed by bulk and single-cell RNA sequencing and surface proteomics. A genetically engineered mouse model of triple-negative breast cancer was used to prove why current senolytics cannot overcome TIS in tumors. RESULTS Screening the toxicity of a diverse panel of FDA-approved anticancer drugs revealed that TIS meditates resistance to half of these compounds, despite their distinct mechanism of action. Bulk and single-cell RNA sequencing, along with surface proteome analysis, showed that while parental and repopulating cells are almost identical, TIS cells are significantly different from both, highlighting their transient nature. Furthermore, investigating dozens of known drug resistance mechanisms offered no explanation for this unique drug resistance pattern. Additionally, TIS cells expressed a gene set associated with immune evasion and a potential KRAS-driven escape mechanism from TIS. CONCLUSION Our results reveal that TIS, as a transient drug resistance mechanism, could contribute to overcome the immune response and to relapse by reverting to a proliferative stage.
Collapse
Affiliation(s)
- Eszter Bajtai
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Semmelweis University Doctoral School, Budapest, 1085, Hungary
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
- National Laboratory for Drug Research and Development, Budapest, 1117, Hungary
| | - Csaba Kiss
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Éva Bakos
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Tamás Langó
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Anna Lovrics
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Éva Schád
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Viktória Tisza
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Károly Hegedűs
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Semmelweis University Doctoral School, Budapest, 1085, Hungary
| | - Péter Fürjes
- Institute of Technical Physics and Materials Science, HUN-REN Centre of Energy Research, Budapest, 1121, Hungary
| | - Zoltán Szabó
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6725, Hungary
| | - Gábor E Tusnády
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, 1085, Hungary
| | - Gergely Szakács
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Center for Cancer Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Ágnes Tantos
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Sándor Spisák
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| | - József Tóvári
- Semmelweis University Doctoral School, Budapest, 1085, Hungary.
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary.
| | - András Füredi
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
- Semmelweis University Doctoral School, Budapest, 1085, Hungary.
- National Laboratory for Drug Research and Development, Budapest, 1117, Hungary.
- Institute of Technical Physics and Materials Science, HUN-REN Centre of Energy Research, Budapest, 1121, Hungary.
- Physiological Controls Research Center, University Research and Innovation Center, Obuda University, Budapest, 1034, Hungary.
| |
Collapse
|
10
|
Lou J, Dong F, Lu H, Fang S, Pan X. Prolonged Exposure to Environmental Levels of Haloacetamides Exacerbates Cellular Senescence: Phenotypic and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7890-7899. [PMID: 40231784 DOI: 10.1021/acs.est.5c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Disinfection byproducts (DBPs), such as haloacetamides (HAMs), have been associated with adverse health outcomes, including bladder cancer. The potential for DBPs to exacerbate cellular senescence, thereby linking exposure to health impacts, remains underexplored. In this study, MRC-5 cells were exposed to HAMs at concentrations of 2, 5, and 8 μg/L for 30 days to simulate long-term exposure to levels found in drinking water. All six tested HAMs significantly increased the cellular senescence degree and enriched the cellular senescence pathway at the proteomic-wide level. Specifically, HAMs upregulated microRNA-24 expression, which increased p16 mRNA levels and decreased p16 protein levels, thereby activating oncogene-induced senescence pathways. Additionally, HAMs were found to covalently bind to TNRC6A, activating the p53/p21 pathway. Principal component analysis highlighted the critical role of functional groups in activating senescence, and the interaction between HAMs and TNRC6A could extend to at least 27 other amide-containing DBPs. Prolonged exposure to HAMs at environmentally relevant levels notably exacerbates cellular senescence, shedding light on a commonly overlooked phenomenon. Given the widespread presence of DBPs in drinking water and their continuous exposure in humans, their role in cellular senescence represents an ongoing public health concern.
Collapse
Affiliation(s)
- Jinxiu Lou
- Zhejiang Carbon Neutral Innovation Institute and Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feilong Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijie Lu
- College of Environmental and Resource Sciences and Academy of Ecological Civilization, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuangxi Fang
- Zhejiang Carbon Neutral Innovation Institute and Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
11
|
Włodarski A, Szymczak-Pajor I, Kasznicki J, Antanaviciute EM, Szymańska B, Śliwińska A. Dysregulated miR-21/SOD3, but Not miR-30b/CAT, Profile in Elderly Patients with Carbohydrate Metabolism Disorders: A Link to Oxidative Stress and Metabolic Dysfunction. Int J Mol Sci 2025; 26:4127. [PMID: 40362367 PMCID: PMC12071572 DOI: 10.3390/ijms26094127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Carbohydrate metabolism disorders (CMDs), including prediabetes and type 2 diabetes mellitus (T2DM), are increasingly prevalent in the aging population. Oxidative stress (OxS) plays a pivotal role in CMD pathogenesis, with extracellular superoxide dismutase (SOD3) and catalase (CAT) serving as critical antioxidant defenses. Additionally, microRNAs (miR-21 and miR-30b) regulate the oxidative and inflammatory pathways, yet their roles in elderly CMD patients remain unclear. This study evaluated miR-21 and miR-30b expression alongside SOD3 and CAT plasma levels in individuals aged ≥ 65 years (n = 126) categorized into control (n = 38), prediabetes (n = 37), and T2DM (n = 51) groups. Quantitative PCR assessed miRNA expression, while ELISA measured the enzyme levels. SOD3 levels were significantly reduced in CMDs, particularly in T2DM, whereas miR-21 was upregulated. A negative correlation between SOD3 and miR-21 was strongest in T2DM, suggesting a regulatory interplay. Neither CAT levels nor miR-30b expression differed among groups. Logistic regression indicated SOD3 as a protective biomarker, with each 1 ng/mL increase reducing the CMD risk by ~5-6%. The ROC analysis supported SOD3's diagnostic potential, while miR-21 showed a modest association. These findings highlight SOD3 downregulation and miR-21 upregulation as potential contributors to CMD progression in elderly patients, warranting further research into their mechanistic roles and therapeutic potential.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (A.W.); (I.S.-P.)
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (A.W.); (I.S.-P.)
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Egle Morta Antanaviciute
- Centre for Cellular Microenvironments, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bożena Szymańska
- CoreLab, Central Scientific Laboratory of the Medical University of Lodz, Mazowiecka 6/8 St., 92-215 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (A.W.); (I.S.-P.)
| |
Collapse
|
12
|
Li A, Xu D. Integrative Bioinformatic Analysis of Cellular Senescence Genes in Ovarian Cancer: Molecular Subtyping, Prognostic Risk Stratification, and Chemoresistance Prediction. Biomedicines 2025; 13:877. [PMID: 40299498 PMCID: PMC12025183 DOI: 10.3390/biomedicines13040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Ovarian cancer (OC) is a heterogeneous malignancy associated with a poor prognosis, necessitating robust biomarkers for risk stratification and therapy optimization. Cellular senescence-related genes (CSGs) are emerging as pivotal regulators of tumorigenesis and immune modulation, yet their prognostic and therapeutic implications in OC remain underexplored. Methods: We integrated RNA-sequencing data from TCGA-OV (n = 376), GTEx (n = 88), and GSE26712 (n = 185) to identify differentially expressed CSGs (DE-CSGs). Consensus clustering, Cox regression, LASSO-penalized modeling, and immune infiltration analyses were employed to define molecular subtypes, construct a prognostic risk score, and characterize tumor microenvironment (TME) dynamics. Drug sensitivity was evaluated using the Genomics of Drug Sensitivity in Cancer (GDSC)-derived chemotherapeutic response profiles. Results: Among 265 DE-CSGs, 31 were prognostic in OC, with frequent copy number variations (CNVs) in genes such as STAT1, FOXO1, and CCND1. Consensus clustering revealed two subtypes (C1/C2): C2 exhibited immune-rich TME, elevated checkpoint expression (PD-L1, CTLA4), and poorer survival. A 19-gene risk model stratified patients into high-/low-risk groups, validated in GSE26712 (AUC: 0.586-0.713). High-risk patients showed lower tumor mutation burden (TMB), immune dysfunction, and resistance to Docetaxel/Olaparib. Six hub genes (HMGB3, MITF, CKAP2, ME1, CTSD, STAT1) were independently predictive of survival. Conclusions: This study establishes CSGs as critical determinants of OC prognosis and immune evasion. The molecular subtypes and risk model provide actionable insights for personalized therapy, while identified therapeutic vulnerabilities highlight opportunities to overcome chemoresistance through senescence-targeted strategies.
Collapse
Affiliation(s)
| | - Dianbo Xu
- Department of Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China
| |
Collapse
|
13
|
Foffa I, Esposito A, Simonini L, Berti S, Vecoli C. Telomere Length and Clonal Hematopoiesis of Indeterminate Potential: A Loop Between Two Key Players in Aortic Valve Disease? J Cardiovasc Dev Dis 2025; 12:135. [PMID: 40278194 PMCID: PMC12027716 DOI: 10.3390/jcdd12040135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Aortic valve stenosis (AVS) is the most common valvular heart disease that was considered, for a long time, a passive degenerative disease due to physiological aging. More recently, it has been recognized as an active, modifiable disease in which many cellular processes are involved. Nevertheless, since aging remains the major risk factor for AVS, a field of research has focused on the role of early (biological) aging and its dependent pathways in the initiation and progression of AVS. Telomeres are regions at the ends of chromosomes that are critical for maintaining genome stability in eukaryotic cells. Telomeres are the hallmarks and molecular drivers of aging and age-related degenerative pathologies. Clonal hematopoiesis of indeterminate potential (CHIP), a condition caused by somatic mutations of leukemia-associated genes in individuals without hematologic abnormalities or clonal disorders, has been reported to be associated with aging. CHIP represents a new and independent risk factor in cardiovascular diseases, including AVS. Interestingly, evidence suggests a causal link between telomere biology and CHIP in several pathological disorders. In this review, we discussed the current knowledge of telomere biology and CHIP as possible mechanisms of aortic valve degeneration. We speculated on how a better understanding of the complex relationship between telomere and CHIP might provide great potential for an early diagnosis and for developing novel medical therapies to reduce the constant increasing health burden of AVS.
Collapse
Affiliation(s)
- Ilenia Foffa
- CNR Institute of Clinical Physiology, 54100 Massa, Italy;
- Cardiology Unit, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (A.E.); (S.B.)
| | - Augusto Esposito
- Cardiology Unit, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (A.E.); (S.B.)
| | - Ludovica Simonini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Sergio Berti
- Cardiology Unit, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (A.E.); (S.B.)
| | - Cecilia Vecoli
- CNR Institute of Clinical Physiology, 54100 Massa, Italy;
- Cardiology Unit, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (A.E.); (S.B.)
| |
Collapse
|
14
|
Bhattacharya R, Avdieiev SS, Bukkuri A, Whelan CJ, Gatenby RA, Tsai KY, Brown JS. The Hallmarks of Cancer as Eco-Evolutionary Processes. Cancer Discov 2025; 15:685-701. [PMID: 40170539 DOI: 10.1158/2159-8290.cd-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/03/2025]
Abstract
SIGNIFICANCE Viewing the hallmarks as a sequence of adaptations captures the "why" behind the "how" of the molecular changes driving cancer. This eco-evolutionary view distils the complexity of cancer progression into logical steps, providing a framework for understanding all existing and emerging hallmarks of cancer and developing therapeutic interventions.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cancer Biology, University of South Florida, Tampa, Florida
| | - Stanislav S Avdieiev
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anuraag Bukkuri
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher J Whelan
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Frediani E, Anceschi C, Ruzzolini J, Ristori S, Nerini A, Laurenzana A, Chillà A, Germiniani CEZ, Fibbi G, Del Rosso M, Mocali A, Venturin M, Battaglia C, Giovannelli L, Margheri F. Divergent regulation of long non-coding RNAs H19 and PURPL affects cell senescence in human dermal fibroblasts. GeroScience 2025; 47:2079-2097. [PMID: 39438391 PMCID: PMC11979041 DOI: 10.1007/s11357-024-01399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Cellular senescence is a permanent cell growth arrest that occurs in response to various intrinsic and extrinsic stimuli and is associated with cellular and molecular changes. Long non-coding RNAs (lncRNAs) are key regulators of cellular senescence by affecting the expression of many important genes involved in senescence-associated pathways and processes. Here, we evaluated a panel of lncRNAs associated with senescence for their differential expression between young and senescent human dermal fibroblasts (NHDFs) and studied the effect of a known senomorphic compound, resveratrol, on the expression of lncRNAs in senescent NHDFs. As markers of senescence, we evaluated cell growth, senescence-associated (SA)-β-Gal staining, and the expression of p21, Lamin B1 and γH2AX. We found that H19 and PURPL were the most altered lncRNAs in replicative, in doxorubicin (DOXO) and ionising radiation (IR)-induced senescence models. We then investigated the function of H19 and PURPL in cell senescence by siRNA-mediated silencing in young and senescent fibroblasts, respectively. Our results showed that H19 knockdown reduced cell viability and induced cell senescence and autophagy of NHDFs through the regulation of the PI3K/AKT/mTOR pathway; conversely, PURPL silencing reversed senescence by reducing (SA)-β-Gal staining, recovering cell proliferation with an increase of S-phase cells, and reducing the p53-dependent DNA damage response. Overall, our data highlighted the role of H19 and PURPL in the senescent phenotype and suggested that these lncRNAs may have important implications in senescence-related diseases.
Collapse
Affiliation(s)
- Elena Frediani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni, 50 - 50134, Florence, Italy
| | - Cecilia Anceschi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni, 50 - 50134, Florence, Italy
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni, 50 - 50134, Florence, Italy
| | - Sara Ristori
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni, 50 - 50134, Florence, Italy
| | - Alice Nerini
- Department of Neurofarba (Department of Neurosciences, Drug Research and Child Health), University of Florence, Viale Pieraccini, 6 - 50139, Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni, 50 - 50134, Florence, Italy
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni, 50 - 50134, Florence, Italy
| | - Claudia Elena Zoe Germiniani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli, 32 - 20133, Milan, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni, 50 - 50134, Florence, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni, 50 - 50134, Florence, Italy
| | - Alessandra Mocali
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni, 50 - 50134, Florence, Italy
| | - Marco Venturin
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli, 32 - 20133, Milan, Italy
| | - Cristina Battaglia
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli, 32 - 20133, Milan, Italy
| | - Lisa Giovannelli
- Department of Neurofarba (Department of Neurosciences, Drug Research and Child Health), University of Florence, Viale Pieraccini, 6 - 50139, Florence, Italy.
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni, 50 - 50134, Florence, Italy.
| |
Collapse
|
16
|
Czajkowski K, Herbet M, Murias M, Piątkowska-Chmiel I. Senolytics: charting a new course or enhancing existing anti-tumor therapies? Cell Oncol (Dordr) 2025; 48:351-371. [PMID: 39633108 PMCID: PMC11996976 DOI: 10.1007/s13402-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Cell senescence is a natural response within our organisms. Initially, it was considered an effective anti-tumor mechanism. However, it is now believed that while cell senescence initially acts as a robust barrier against tumor initiation, the subsequent accumulation of senescent cells can paradoxically promote cancer recurrence and cause damage to neighboring tissues. This intricate balance between cell proliferation and senescence plays a pivotal role in maintaining tissue homeostasis. Moreover, senescence cells secrete many bioactive molecules collectively termed the senescence-associated secretory phenotype (SASP), which can induce chronic inflammation, alter tissue architecture, and promote tumorigenesis through paracrine signaling. Among the myriads of compounds, senotherapeutic drugs have emerged as exceptionally promising candidates in anticancer treatment. Their ability to selectively target senescent cells while sparing healthy tissues represents a paradigm shift in therapeutic intervention, offering new avenues for personalized oncology medicine. Senolytics have introduced new therapeutic possibilities by enabling the targeted removal of senescent cells. As standalone agents, they can clear tumor cells in a senescent state and, when combined with chemo- or radiotherapy, eliminate residual senescent cancer cells after treatment. This dual approach allows for the intentional use of lower-dose therapies or the removal of unintended senescent cells post-treatment. Additionally, by targeting non-cancerous senescent cells, senolytics may help reduce tumor formation risk, limit recurrence, and slow disease progression. This article examines the mechanisms of cellular senescence, its role in cancer treatment, and the importance of senotherapy, with particular attention to the therapeutic potential of senolytic drugs.
Collapse
Affiliation(s)
- Konrad Czajkowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
17
|
Outskouni Z, Prapa S, Goutas A, Klagkou E, Vatsellas G, Kosta A, Trachana V, Papathanasiou I. Comparative analysis of transcriptomic profiles of mesenchymal stem cells at the onset of senescence and after exposure to acute exogenous oxidative stress. Biochem Biophys Res Commun 2025; 754:151506. [PMID: 39999682 DOI: 10.1016/j.bbrc.2025.151506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Cellular senescence can be triggered by a wide range of stress-inducing factors, including environmental and internal damaging events, such as oxidative stress. Moreover, stressed and senescent cells exhibit modifications in their transcriptional expression profile, but little is known regarding the common genes and pathways regulating these processes. Here, we analyzed the effects of long-term culture as well as exogenous acute oxidative stress on the transcriptional program of Wharton's jelly mesenchymal stem cells (WJ-MSCs). We demonstrate that, exposure to H2O2 compromised genomic stability and mitochondrial function in early passage WJ-MSCs, potentially initiating senescence to prevent cellular transformation. On the other hand, prolonged in vitro expansion of WJ-MSCs activated processes linked to integrins and extracellular matrix organization, possibly indicating the unfavorable consequences that senescence has on tissue integrity. Additionally, cells entering senescence and oxidative stressed young WJ-MSCs over-activated transcription factors related to permanent proliferative arrest and suppressed anti-senescence factors. Common differentially expressed genes in the late passage and H2O2-treated WJ-MSCs were implicated in DNA damage response and cell cycle arrest, which are known to trigger a senescent phenotype. Notably, the TP53INP1 gene emerged as a significantly upregulated gene in both late passage and H2O2-treated young WJ-MSCs, marking it as a potent senescence indicator. Silencing TP53INP1 mitigated the senescent phenotype, a role that appeared to be facilitated by autophagy regulation. Taken together, our results shed light on how transcriptomic changes govern MSCs' senescence program and identify key molecular drivers that could prove crucial for WJ-MSCs-based clinical applications.
Collapse
Affiliation(s)
- Zozo Outskouni
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Stavroula Prapa
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Andreas Goutas
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece; Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Eleftheria Klagkou
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Giannis Vatsellas
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Artemis Kosta
- Microscopy Core Facility, Institut de Microbiologie de la Méditerranée (IMM), FR3479, CNRS, Aix-Marseille University, Marseille, France
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| | - Ioanna Papathanasiou
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| |
Collapse
|
18
|
Zang Y, Yoshimoto M, Igaki T. Programmed cell senescence is required for sensory organ development in Drosophila. iScience 2025; 28:112048. [PMID: 40124515 PMCID: PMC11928871 DOI: 10.1016/j.isci.2025.112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/31/2024] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
Cellular senescence is an irreversible cell-cycle arrest often associated with cancer and aging, yet its physiological role remains elusive. Here, we show developmentally programmed cellular senescence occurs in Drosophila imaginal epithelium. In developing wing discs, two clusters of cells exhibit hallmarks of cellular senescence such as elevated senescence-associated β-galactosidase activity, cell-cycle arrest, heterochromatinization, upregulation of a cyclin-dependent kinase (CDK) inhibitor Dacapo, cellular hypertrophy, Ras signaling activation, and upregulation of an inflammatory cytokine unpaired3, a possible component of the senescence-associated secretory phenotype. Blocking programmed cell senescence by inhibiting Ras signaling or its downstream transcription factor Pointed (Pnt) results in loss of sensory organ campaniform sensilla. Ras-Pnt signaling causes programmed cell senescence through a transcription factor Zfh2, thereby contributing to campaniform sensilla formation via the achaete-scute complex. Our observations uncover the evolutionary conservation of programmed cell senescence in invertebrates, which is required for the induction of the proper number of sensory organs.
Collapse
Affiliation(s)
- Yiran Zang
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masanari Yoshimoto
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Zhang X, Gao Y, Zhang S, Wang Y, Du Y, Hao S, Ni T. The Regulation of Cellular Senescence in Cancer. Biomolecules 2025; 15:448. [PMID: 40149983 PMCID: PMC11940315 DOI: 10.3390/biom15030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Cellular senescence is a stable state of cell cycle arrest caused by telomere shortening or various stresses. After senescence, cells cease dividing and exhibit many age-related characteristics. Unlike the halted proliferation of senescence cells, cancer cells are considered to have unlimited growth potential. When cells display senescence-related features, such as telomere loss or stem cell failure, they can inhibit tumor development. Therefore, inducing cells to enter a senescence state can serve as a barrier to tumor cell development. However, many recent studies have found that sustained senescence of tumor cells or normal cells under certain circumstances can exert environment-dependent effects of tumor promotion and inhibition by producing various cytokines. In this review, we first introduce the causes and characteristics of induced cellular senescence, analyze the senescence process of immune cells and cancer cells, and then discuss the dual regulatory role of cell senescence on tumor growth and senescence-induced therapies targeting cancer cells. Finally, we discuss the role of senescence in tumor progression and treatment opportunities, and propose further studies on cellular senescence and cancer therapy.
Collapse
Affiliation(s)
- Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Siyu Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yixiong Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| |
Collapse
|
20
|
Chang O, Cheon S, Semenova N, Azad N, Iyer AK, Yakisich JS. Prolonged Low-Dose Administration of FDA-Approved Drugs for Non-Cancer Conditions: A Review of Potential Targets in Cancer Cells. Int J Mol Sci 2025; 26:2720. [PMID: 40141362 PMCID: PMC11942989 DOI: 10.3390/ijms26062720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Though not specifically designed for cancer therapy, several FDA-approved drugs such as metformin, aspirin, and simvastatin have an effect in lowering the incidence of cancer. However, there is a great discrepancy between in vitro concentrations needed to eliminate cancer cells and the plasma concentration normally tolerated within the body. At present, there is no universal explanation for this discrepancy and several mechanisms have been proposed including targeting cancer stem cells (CSCs) or cellular senescence. CSCs are cells with the ability of self-renewal and differentiation known to be resistant to chemotherapy. Senescence is a response to damage and stress, characterized by permanent cell-cycle arrest and apoptotic resistance. Although, for both situations, there are few examples where low concentrations of the FDA-approved drugs were the most effective, there is no satisfactory data to support that either CSCs or cellular senescence are the target of these drugs. In this review, we concisely summarize the most used FDA-approved drugs for non-cancer conditions as well as their potential mechanisms of action in lowering cancer incidence. In addition, we propose that prolonged low-dose administration (PLDA) of specific FDA-approved drugs can be useful for effectively preventing metastasis formation in selected patients.
Collapse
Affiliation(s)
- Olivia Chang
- Governor’s School for Science and Technology, Hampton, VA 23666, USA; (O.C.); (S.C.)
| | - Sarah Cheon
- Governor’s School for Science and Technology, Hampton, VA 23666, USA; (O.C.); (S.C.)
| | - Nina Semenova
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA; (N.S.); (A.K.I.)
| | - Neelam Azad
- The Office of the Vice President for Research, Hampton University, Hampton, VA 23668, USA;
| | - Anand Krishnan Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA; (N.S.); (A.K.I.)
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA; (N.S.); (A.K.I.)
| |
Collapse
|
21
|
Chen Y, Jiang F, Zeng Y, Zhang M. The role of retinal pigment epithelial senescence and the potential of senotherapeutics in age-related macular degeneration. Surv Ophthalmol 2025:S0039-6257(25)00053-0. [PMID: 40089029 DOI: 10.1016/j.survophthal.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment in the aging population. Evidence showing the presence of cellular senescence in retinal pigment epithelium (RPE) of patients with AMD is growing. Senescent RPE play a pivotal role in its pathogenesis. The senescent RPE suffers from structural and functional alterations and disruption of the surrounding microenvironment due to the development of the senescence-associated secretory phenotype, which contributes to metabolic dysfunctions and inflammatory responses in the retina. Senotherapeutics, including senolytics, senomorphics and others, are novel treatments targeting senescent cells and are promising treatments for AMD. As senotherapeutic targets are being developed, it is promising that the burden of AMD could be decreased.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology and Laboratory of Macular Disease, West China Hospital, Sichuan University, China.
| | - Feipeng Jiang
- Department of Ophthalmology and Laboratory of Macular Disease, West China Hospital, Sichuan University, China.
| | - Yue Zeng
- Department of Ophthalmology and Laboratory of Macular Disease, West China Hospital, Sichuan University, China.
| | - Meixia Zhang
- Department of Ophthalmology and Laboratory of Macular Disease, West China Hospital, Sichuan University, China.
| |
Collapse
|
22
|
Gaggi G, Hausman C, Cho S, Badalamenti BC, Trinh BQ, Di Ruscio A, Ummarino S. LncRNAs Ride the Storm of Epigenetic Marks. Genes (Basel) 2025; 16:313. [PMID: 40149464 PMCID: PMC11942515 DOI: 10.3390/genes16030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Advancements in genome sequencing technologies have uncovered the multifaceted roles of long non-coding RNAs (lncRNAs) in human cells. Recent discoveries have identified lncRNAs as major players in gene regulatory pathways, highlighting their pivotal role in human cell growth and development. Their dysregulation is implicated in the onset of genetic disorders and age-related diseases, including cancer. Specifically, they have been found to orchestrate molecular mechanisms impacting epigenetics, including DNA methylation and hydroxymethylation, histone modifications, and chromatin remodeling, thereby significantly influencing gene expression. This review provides an overview of the current knowledge on lncRNA-mediated epigenetic regulation of gene expression, emphasizing the biomedical implications of lncRNAs in the development of different types of cancers and genetic diseases.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Clinton Hausman
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Soomin Cho
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Brianna C. Badalamenti
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bon Q. Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Annalisa Di Ruscio
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Simone Ummarino
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
23
|
Li S, Li Q, Xiang H, Wang C, Zhu Q, Ruan D, Zhu YZ, Mao Y. H 2S Donor SPRC Ameliorates Cardiac Aging by Suppression of JMJD3, a Histone Demethylase. Antioxid Redox Signal 2025; 42:301-320. [PMID: 39212692 DOI: 10.1089/ars.2024.0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aims: S-propargyl-cysteine (SPRC) is an endogenous hydrogen sulfide (H2S) donor obtained by modifying the structure of S-allyl cysteine in garlic. This study aims to investigate the effect of SPRC on mitigating cardiac aging and the involvement of jumonji domain-containing protein 3 (JMJD3), a histone demethylase, which represents the primary risk factor in major aging related diseases, in this process, elucidating the preliminary mechanism through which SPRC regulation of JMJD3 occurs. Results: In vitro, SPRC mitigated the elevated levels of reactive oxygen species, senescence-associated β-galactosidase, p53, and p21, reversing the decline in mitochondrial membrane potential, which represented a reduction in cellular senescence. In vivo, SPRC improved Dox-induced cardiac pathological structure and function. Overexpression of JMJD3 accelerated cardiomyocytes and cardiac senescence, whereas its knockdown in vitro reduced the senescence phenotype. The potential binding site of the upstream transcription factor of JMJD3, sheared X box binding protein 1 (XBP1s), was determined using online software. SPRC promoted the expression of cystathionine γ-lyase (CSE), which subsequently inhibited the IRE1α/XBP1s signaling pathway and decreased JMJD3 expression. Innovations: This study is the first to establish JMJD3 as a crucial regulator of cardiac aging. SPRC can alleviate cardiac aging by upregulating CSE and inhibiting endoplasmic reticulum stress pathways, which in turn suppress JMJD3 expression. Conclusions: JMJD3 plays an essential role in cardiac aging regulation, whereas SPRC can suppress the expression of JMJD3 by upregulating CSE, thus delaying cardiac aging, which suggests that SPRC may serve as an aging protective agent, and pharmacological targeting of JMJD3 may also be a promising therapeutic approach in age-related heart diseases. Antioxid. Redox Signal. 42, 301-320.
Collapse
Affiliation(s)
- Sha Li
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Qixiu Li
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Hong Xiang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Chenye Wang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Qi Zhu
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Danping Ruan
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Yi Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yicheng Mao
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Consoli V, Sorrenti V, Gulisano M, Spampinato M, Vanella L. Navigating heme pathways: the breach of heme oxygenase and hemin in breast cancer. Mol Cell Biochem 2025; 480:1495-1518. [PMID: 39287890 PMCID: PMC11842487 DOI: 10.1007/s11010-024-05119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Breast cancer remains a significant global health challenge, with diverse subtypes and complex molecular mechanisms underlying its development and progression. This review comprehensively examines recent advances in breast cancer research, with a focus on classification, molecular pathways, and the role of heme oxygenases (HO), heme metabolism implications, and therapeutic innovations. The classification of breast cancer subtypes based on molecular profiling has significantly improved diagnosis and treatment strategies, allowing for tailored approaches to patient care. Molecular studies have elucidated key signaling pathways and biomarkers implicated in breast cancer pathogenesis, shedding light on potential targets for therapeutic intervention. Notably, emerging evidence suggests a critical role for heme oxygenases, particularly HO-1, in breast cancer progression and therapeutic resistance, highlighting the importance of understanding heme metabolism in cancer biology. Furthermore, this review highlights recent advances in breast cancer therapy, including targeted therapies, immunotherapy, and novel drug delivery systems. Understanding the complex interplay between breast cancer subtypes, molecular pathways, and innovative therapeutic approaches is essential for improving patient outcomes and developing more effective treatment strategies in the fight against breast cancer.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mariarita Spampinato
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
25
|
Short E, Huckstepp RTR, Alavian K, Amoaku WMK, Barber TM, van Beek EJR, Benbow E, Bhandari S, Bloom P, Cota C, Chazot P, Christopher G, Demaria M, Erusalimsky JD, Ferenbach DA, Foster T, Gazzard G, Glassock R, Jamal N, Kalaria R, Kanamarlapudi V, Khan AH, Krishna Y, Leeuwenburgh C, van der Linde I, Lorenzini A, Maier AB, Medina RJ, Miotto CL, Mukherjee A, Mukkanna K, Murray JT, Nirenberg A, Palmer DB, Pawelec G, Reddy V, Rosa AC, Rule AD, Shiels PG, Sheridan C, Tree J, Tsimpida D, Venables ZC, Wellington J, Calimport SRG, Bentley BL. International Consortium to Classify Ageing-related Pathologies (ICCARP) senescence definitions: achieving international consensus. GeroScience 2025:10.1007/s11357-025-01509-9. [PMID: 39982667 DOI: 10.1007/s11357-025-01509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 02/22/2025] Open
Affiliation(s)
- Emma Short
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK.
- Department of Cellular Pathology, Swansea Bay University Health Board, Swansea, UK.
| | | | - Kambiz Alavian
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | - Thomas M Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Edwin J R van Beek
- Edinburgh Imaging Facility, Queen's Medical Research Institute, Edinburgh, UK
- NHS Lothian Health Board, Edinburgh, UK
| | - Emyr Benbow
- Manchester Medical School, University of Manchester, Manchester, UK
| | - Sunil Bhandari
- Hull Teaching Hospitals NHS Trust, Hull, UK
- Hull York Medical School, Hull, UK
| | | | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | | | - Gary Christopher
- Centre for Ageing and Dementia Research, Swansea University, Swansea, UK
| | - Marco Demaria
- European Research Institute for the Biology of Ageing, Groningen, the Netherlands
- Institute for Mechanisms of Health, Ageing and Disease (MoHAD), University Medical Center Groningen, Groningen, the Netherlands
| | - Jorge D Erusalimsky
- The Cellular and Molecular Pathophysiology Group, Cardiff Metropolitan University, Cardiff, UK
| | - David A Ferenbach
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | | | - Gus Gazzard
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, London, UK
| | - Richard Glassock
- Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Raj Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Adnan H Khan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Yamini Krishna
- Liverpool Clinical Laboratories, National Specialist Ophthalmic Pathology Service, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Christiaan Leeuwenburgh
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ian van der Linde
- Cognition and Neuroscience Group, ARU Centre for Mind and Behaviour, Faculty of Science & Engineering, Anglia Ruskin University, Cambridge, UK
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- National Institute of Biosystems and Biostructures INBB, Rome, Italy
| | - Andrea Britta Maier
- NUS Academy for Healthy Longevity, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, the Netherlands
| | - Reinhold J Medina
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | | | - Abhik Mukherjee
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | | | - James T Murray
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Alexander Nirenberg
- Australasian College of Cutaneous Oncology, Docklands, Australia
- Dorevitch Pathology, Heidelberg West, Australia
| | - Donald B Palmer
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Venkat Reddy
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, UK
- Department of Rheumatology, University College Hospital, London, UK
| | | | - Andrew D Rule
- Departments of Medicine and of Quantitative Health Sciences, Mayo Clinic, Rochester, USA
| | - Paul G Shiels
- Glasgow Geroscience Group, School of Molecular Biosciences, MVLS, University of Glasgow, Glasgow, UK
| | - Carl Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Jeremy Tree
- Director of the Advanced Diagnostics and Medical Technologies Research Institute, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, UK
| | - Dialechti Tsimpida
- Centre for Research On Ageing, Department of Gerontology, University of Southampton, Southampton, UK
| | - Zoe C Venables
- Norfolk and Norwich University Hospital, Norwich, UK
- Norwich Medical School, Norwich, UK
| | | | - Stuart R G Calimport
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
- Collaboration for the Advancement of Sustainable Medical Innovation (CASMI), University College London, London, UK
| | - Barry L Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
- Collaboration for the Advancement of Sustainable Medical Innovation (CASMI), University College London, London, UK
- Center for Engineering in Medicine and Surgery, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
| |
Collapse
|
26
|
Gong H, Liu J, Chen N, Zhao H, He B, Zhang H, Wang W, Tian Y. EDN1 and NTF3 in keloid pathogenesis: computational and experimental evidence as novel diagnostic biomarkers for fibrosis and inflammation. Front Genet 2025; 16:1516451. [PMID: 40051702 PMCID: PMC11882859 DOI: 10.3389/fgene.2025.1516451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025] Open
Abstract
Objective To investigate the roles of oxidative stress-related differentially expressed genes (OSRDEGs) in keloid formation and explore their potential value in diagnosis and treatment. Methods Gene expression data from the GEO database, including GSE145725 and GSE44270 as training sets and GSE7890 as a validation set, were utilized. OSRDEGs were identified, followed by Weighted Gene Co-expression Network Analysis (WGCNA), GO/KEGG enrichment analysis, and Gene Set Enrichment Analysis (GSEA). Key genes were further screened through protein-protein interaction (PPI) network analysis and receiver operating characteristic (ROC) curve analysis. miRNA targets, transcription factors (TF), and potential drug targets of these genes were predicted. Immune cell infiltration analysis was performed to assess the association between OSRDEGs and immune cells, which was validated using GSE7890. Finally, the expression of key genes was experimentally validated using quantitative PCR (qPCR), immunohistochemistry (IHC), and hematoxylin-eosin (HE) staining. Results A total of 13 OSRDEGs were identified. WGCNA and functional enrichment analyses revealed that these genes were primarily involved in fibrosis and inflammatory processes in keloids, such as the MAPK signaling pathway, lymphocyte and monocyte proliferation, and inflammatory pathways involving IL-18 and IL-23. PPI network analysis, ROC analysis, and immune infiltration results identified Endothelin-1 (EDN1) and Neurotrophin-3(NTF3) as key genes with high sensitivity and specificity. These genes were positively and negatively correlated with activated mast cells, respectively, suggesting their dual regulatory roles in fibrosis and inflammation. External dataset validation, qPCR, correlation analysis, HE staining, and IHC results demonstrated that EDN1 and NTF3 were highly expressed in keloid tissues and were associated with excessive collagen deposition and immune cell infiltration. Conclusion EDN1 and NTF3, as OSRDEGs, play critical roles in the pathogenesis and progression of keloids. They may contribute to fibrosis and inflammation through the regulation of oxidative stress, the MAPK signaling pathway, and mast cell activation. These findings highlight EDN1 and NTF3 as potential diagnostic biomarkers and therapeutic targets, providing novel insights into the pathogenesis and treatment strategies for keloids.
Collapse
Affiliation(s)
- Hui Gong
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Liu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Nanji Chen
- Center of Medical Cosmetology, The People’s Hospital of Wusheng, Chongqing, China
| | - Hengguang Zhao
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin He
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongpei Zhang
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenping Wang
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Tian
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Farrokhnazar E, Moghbelinejad S, Najafipour R, Teimoori-Toolabi L. MiR-3664-3p through suppressing ABCG2, CYP3A4, MCL1, and MLH1 increases the sensitivity of colorectal cancer cells to irinotecan. Heliyon 2025; 11:e41933. [PMID: 39931465 PMCID: PMC11808512 DOI: 10.1016/j.heliyon.2025.e41933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 02/13/2025] Open
Abstract
Background Colorectal cancer (CRC) is the third most frequently diagnosed malignancy worldwide. Currently, irinotecan (CPT-11) is used alone or in combination with other drugs to treat patients with advanced CRC. However, the 5-year survival rate for metastatic CRC remains below 10 %, largely due to chemotherapy resistance. Several genes, including ABCG2, CYP3A4, MCL1, and MLH1 contribute to irinotecan resistance. This study aimed to identify microRNAs that simultaneously regulate the expression of these genes in irinotecan-resistant cell lines and study their effect on resistant colorectal cancer cells. Methods Irinotecan-resistant colorectal cancer cell lines were developed by intermittently exposing HCT116 and SW480 cell lines to gradually increasing doses of irinotecan over four generations. These resistant cell lines were designated HCT116-R1, HCT116-R2, HCT116-R3, HCT116-R4 and SW480-R1, SW480-R2, SW480-R3, SW480-R4. The induction of resistance was confirmed using MTT assays, by calculating IC50 values for each generation and comparing them to the parental cells. The expression levels of the ABCG2, CYP3A4, MCL1, and MLH1 genes, along with miR-3664-3p, were initially measured in all resistant and parental cell lines using quantitative real-time PCR. Following transfection of HCT116-R3 and SW480-R3 cells with pre-miR-3664-3p, the expression levels of ABCG2, CYP3A4, MCL1, MLH1, and miR-3664-3p were re-evaluated using real-time PCR. Results In resistant cell lines derived from HCT116 and SW480, increased expression of the ABCG2, CYP3A4, and MCL1 genes was observed. However, a reduction in CYP3A4 expression was noted in the final resistant lines from both cell lines. Additionally, while MLH1 expression increased in HCT116-derived cell lines, no significant increase was observed in SW480-derived lines. A consistent decrease in miR-3664-3p expression was found across all resistant cell lines. When we transfected HCT116-R3 and SW480-R3 cells with pre-miR-3664-3p, there was an increase in miR-3664-3p expression and a reduction in ABCG2, CYP3A4, MCL1, and MLH1 gene expression. This led to increased sensitivity to irinotecan. Conclusion It can be concluded that miR-3664-3p can be considered a regulator of resistance to irinotecan by modulating the expression of ABCG2, CYP3A4, MCL1, and MLH1 genes.
Collapse
Affiliation(s)
- Elham Farrokhnazar
- Research Institute for Prevention of Non-Communicable Diseases, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
- Department of Molecular Medicine, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sahar Moghbelinejad
- Research Institute for Prevention of Non-Communicable Diseases, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Najafipour
- Genetics Research Center, University of Social Welfare and Rehabilitation Science, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| |
Collapse
|
28
|
Wang S, Li B, Li J, Cai Z, Hugo C, Sun Y, Qian L, Tcw J, Chui HC, Dikeman D, Asante I, Louie SG, Bennett DA, Arvanitakis Z, Remaley AT, Kerman BE, Yassine HN. Cellular senescence induced by cholesterol accumulation is mediated by lysosomal ABCA1 in APOE4 and AD. Mol Neurodegener 2025; 20:15. [PMID: 39901180 PMCID: PMC11792374 DOI: 10.1186/s13024-025-00802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Cellular senescence, a hallmark of aging, has been implicated in Alzheimer's disease (AD) pathogenesis. Cholesterol accumulation is known to drive cellular senescence; however, its underlying mechanisms are not fully understood. ATP-binding cassette transporter A1 (ABCA1) plays an important role in cholesterol homeostasis, and its expression and trafficking are altered in APOE4 and AD models. However, the role of ABCA1 trafficking in cellular senescence associated with APOE4 and AD remains unclear. METHODS We examined the association between cellular senescence and ABCA1 expression in human postmortem brain samples using transcriptomic, histological, and biochemical analyses. Unbiased proteomic screening was performed to identify the proteins that mediate cellular ABCA1 trafficking. We created ABCA1 knock out cell lines and mouse models to validate the role of ABCA1 in cholesterol-induced mTORC1 activation and senescence. Additionally, we used APOE4-TR mice and induced pluripotent stem cell (iPSC) models to explore cholesterol-ABCA1-senescence pathways. RESULTS Transcriptomic profiling of the human dorsolateral prefrontal cortex from the Religious Order Study/Memory Aging Project (ROSMAP) cohort revealed the upregulation of cellular senescence transcriptome signatures in AD, which correlated with ABCA1 expression and oxysterol levels. Immunofluorescence and immunoblotting analyses confirmed increased lipofuscin-stained lipids and ABCA1 expression in AD brains and an association with mTOR phosphorylation. Discovery proteomics identified caveolin-1, a sensor of cellular cholesterol accumulation, as a key promoter of ABCA1 endolysosomal trafficking. Greater caveolin-1 expression was observed in APOE4-TR mouse models and AD human brains. Oxysterol induced mTORC1 activation and senescence were regulated by ABCA1 lysosomal trapping. Treatment of APOE4-TR mice with cyclodextrin reduced brain oxysterol levels, ABCA1 lysosome trapping, mTORC1 activation, and attenuated senescence and neuroinflammation markers. In human iPSC-derived astrocytes, the reduction of cholesterol by cyclodextrin attenuated inflammatory responses. CONCLUSIONS Oxysterol accumulation in APOE4 and AD induced ABCA1 and caveolin-1 expression, contributing to lysosomal dysfunction and increased cellular senescence markers. This study provides novel insights into how cholesterol metabolism accelerates features of brain cellular senescence pathway and identifies therapeutic targets to mitigate these processes.
Collapse
Affiliation(s)
- Shaowei Wang
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Boyang Li
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jie Li
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Zhiheng Cai
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Cristelle Hugo
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yi Sun
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Lu Qian
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Julia Tcw
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- Bioinformatics Program, Faculty of Computing & Data Sciences, Boston University, Boston, MA, 02215, USA
| | - Helena C Chui
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Dante Dikeman
- Alfred E. Mann School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Isaac Asante
- Department of Ophthalmology, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Stan G Louie
- Alfred E. Mann School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Alan T Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bilal E Kerman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
29
|
Cheng Z, Gan W, Xiang Q, Zhao K, Gao H, Chen Y, Shi P, Zhang A, Li G, Song Y, Feng X, Yang C, Zhang Y. Impaired degradation of PLCG1 by chaperone-mediated autophagy promotes cellular senescence and intervertebral disc degeneration. Autophagy 2025; 21:352-373. [PMID: 39212196 PMCID: PMC11759519 DOI: 10.1080/15548627.2024.2395797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Defects in chaperone-mediated autophagy (CMA) are associated with cellular senescence, but the mechanism remains poorly understood. Here, we found that CMA inhibition induced cellular senescence in a calcium-dependent manner and identified its role in TNF-induced senescence of nucleus pulposus cells (NPC) and intervertebral disc degeneration. Based on structural and functional proteomic screens, PLCG1 (phospholipase C gamma 1) was predicted as a potential substrate for CMA deficiency to affect calcium homeostasis. We further confirmed that PLCG1 was a key mediator of CMA in the regulation of intracellular calcium flux. Aberrant accumulation of PLCG1 caused by CMA blockage resulted in calcium overload, thereby inducing NPC senescence. Immunoassays on human specimens showed that reduced LAMP2A, the rate-limiting protein of CMA, or increased PLCG1 was associated with disc senescence, and the TNF-induced disc degeneration in rats was inhibited by overexpression of Lamp2a or knockdown of Plcg1. Because CMA dysregulation, calcium overload, and cellular senescence are common features of disc degeneration and other age-related degenerative diseases, the discovery of actionable molecular targets that can link these perturbations may have therapeutic value.Abbreviation: ATRA: all-trans-retinoic acid; BrdU: bromodeoxyuridine; CDKN1A/p21: cyclin dependent kinase inhibitor 1A; CDKN2A/p16-INK4A: cyclin dependent kinase inhibitor 2A; CMA: chaperone-mediated autophagy; DHI: disc height index; ER: endoplasmic reticulum; IP: immunoprecipitation; IP3: inositol 1,4,5-trisphosphate; ITPR/IP3R: inositol 1,4,5-trisphosphate receptor; IVD: intervertebral disc; IVDD: intervertebral disc degeneration; KD: knockdown; KO: knockout; Leu: leupeptin; MRI: magnetic resonance imaging; MS: mass spectrometry; N/L: NH4Cl and leupeptin; NP: nucleus pulposus; NPC: nucleus pulposus cells; PI: protease inhibitors; PLC: phospholipase C; PLCG1: phospholipase C gamma 1; ROS: reactive oxygen species; RT-qPCR: real-time quantitative reverse transcription PCR; SA-GLB1/β-gal: senescence-associated galactosidase beta 1; SASP: senescence-associated secretory phenotype; STV: starvation; TMT: tandem mass tag; TNF: tumor necrosis factor; TP53: tumor protein p53; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weikang Gan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Xiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaocai Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Song
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaobo Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
30
|
Zapatería B, Arias E. Aging, cancer, and autophagy: connections and therapeutic perspectives. Front Mol Biosci 2025; 11:1516789. [PMID: 39935707 PMCID: PMC11811537 DOI: 10.3389/fmolb.2024.1516789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/24/2024] [Indexed: 02/13/2025] Open
Abstract
Aging and cancer are intricately linked through shared molecular processes that influence both the onset of malignancy and the progression of age-related decline. As organisms age, cellular stress, genomic instability, and an accumulation of senescent cells create a pro-inflammatory environment conducive to cancer development. Autophagy, a cellular process responsible for degrading and recycling damaged components, plays a pivotal role in this relationship. While autophagy acts as a tumor-suppressive mechanism by preventing the accumulation of damaged organelles and proteins, cancer cells often exploit it to survive under conditions of metabolic stress and treatment resistance. The interplay between aging, cancer, and autophagy reveals key insights into tumorigenesis, cellular senescence, and proteostasis dysfunction. This review explores the molecular connections between these processes, emphasizing the potential for autophagy-targeted therapies as strategies that could be further explored in both aging and cancer treatment. Understanding the dual roles of autophagy in suppressing and promoting cancer offers promising avenues for therapeutic interventions aimed at improving outcomes for elderly cancer patients while addressing age-related deterioration.
Collapse
Affiliation(s)
- Begoña Zapatería
- Department of Medicine (Marion Bessin Liver Research Center), Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Esperanza Arias
- Department of Medicine (Marion Bessin Liver Research Center), Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Aging Research Center, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
31
|
Xuan W, Song D, Hou J, Meng X. Regulation of Hippo-YAP1/TAZ pathway in metabolic dysfunction-associated steatotic liver disease. Front Pharmacol 2025; 16:1505117. [PMID: 39917623 PMCID: PMC11798981 DOI: 10.3389/fphar.2025.1505117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disease worldwide, but effective treatments are still lacking. Metabolic disorders such as iron overload, glycolysis, insulin resistance, lipid dysregulation, and glutaminolysis are found to induce liver senescence and ferroptosis, which are hot topics in the research of MASLD. Recent studies have shown that Hippo-YAP1/TAZ pathway is involved in the regulations of metabolism disorders, senescence, ferroptosis, inflammation, and fibrosis in MASLD, but their complex connections and contrast roles are also reported. In addition, therapeutics based on the Hippo-YAP1/TAZ pathway hold promising for MASLD treatment. In this review, we highlight the regulation and molecular mechanism of the Hippo-YAP1/TAZ pathway in MASLD and summarize potential therapeutic strategies for MASLD by regulating Hippo-YAP1/TAZ pathway.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jianghua Hou
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiuping Meng
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
32
|
Della Vedova L, Baron G, Morazzoni P, Aldini G, Gado F. The Potential of Polyphenols in Modulating the Cellular Senescence Process: Implications and Mechanism of Action. Pharmaceuticals (Basel) 2025; 18:138. [PMID: 40005954 PMCID: PMC11858549 DOI: 10.3390/ph18020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cellular senescence is a biological process with a dual role in organismal health. While transient senescence supports tissue repair and acts as a tumor-suppressive mechanism, the chronic accumulation of senescent cells contributes to aging and the progression of age-related diseases. Senotherapeutics, including senolytics, which selectively eliminate senescent cells, and senomorphics, which modulate the senescence-associated secretory phenotype (SASP), have emerged as promising strategies for managing age-related pathologies. Among these, polyphenols, a diverse group of plant-derived bioactive compounds, have gained attention for their potential to modulate cellular senescence. Methods: This review synthesizes evidence from in vitro, in vivo, and clinical studies on the senolytic and senomorphic activities of bioactive polyphenols, including resveratrol, kaempferol, apigenin, and fisetin. The analysis focuses on their molecular mechanisms of action and their impact on fundamental aging-related pathways. Results: Polyphenols exhibit therapeutic versatility by activating SIRT1, inhibiting NF-κB, and modulating autophagy. These compounds demonstrate a dual role, promoting the survival of healthy cells while inducing apoptosis in senescent cells. Preclinical evidence indicates their capacity to reduce SASP-associated inflammation, restore tissue homeostasis, and attenuate cellular senescence in various models of aging. Conclusions: Polyphenols represent a promising class of senotherapeutics for mitigating age-related diseases and promoting healthy lifespan extension. Further research should focus on clinical validation and the long-term effects of these compounds, paving the way for their development as therapeutic agents in geriatric medicine.
Collapse
Affiliation(s)
- Larissa Della Vedova
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (L.D.V.); (G.B.); (G.A.)
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (L.D.V.); (G.B.); (G.A.)
| | - Paolo Morazzoni
- Divisione Nutraceutica, Distillerie Umberto Bonollo S.p.A, Via G. Galilei 6, 35035 Mestrino, Italy;
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (L.D.V.); (G.B.); (G.A.)
| | - Francesca Gado
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (L.D.V.); (G.B.); (G.A.)
| |
Collapse
|
33
|
Guo S, Pan Q, Chen B, Huang Y, Li S, Gou C, Gao Y. Placental trophoblast aging in advanced maternal age is related to increased oxidative damage and decreased YAP. Front Cell Dev Biol 2025; 13:1479960. [PMID: 39906872 PMCID: PMC11790555 DOI: 10.3389/fcell.2025.1479960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Introduction The advanced maternal age (AMA) pregnancies escalate rapidly, which are frequently linked to higher risks of adverse outcomes. Advanced maternal age (AMA) placenta exhibited premature aging, presumably resulting in trophoblast dysfunction, inadequate placentation. However, the precise reasons and mechanisms of trophoblast aging in AMA placenta remain unclear, posing a significant limitation to provide effective guidance for prenatal healthcare in clinical settings. Notably, the organism shows heightened vulnerability to oxidative damage as it ages. YAP (Yes-associated protein) was reported to play a critical role in regulation of aging and resisting oxidative damage, yet these roles had not been elucidated in the placenta. Therefore, this study explored the relationship between trophoblast cell aging and oxidative injury and YAP in AMA pregnancy, which not only provided an insight into the mechanisms of trophoblast cell aging, but also provide valuable directions for healthcare during AMA pregnancy. Methods In this study, human term placentas were collected from AMA and normal pregnancies for the analysis of aging, oxidative damage and YAP level. HTR8/SVneo cells were manipulated with (hydrogen peroxide) H2O2 to explore the effects of oxidative damage on trophoblast cell senescence and YAP levels. YAP expression in HTR8/SVneo cells was manipulated to investigate its role in trophoblastic senescence and oxidative damage. Results Compared with the control group, the AMA placenta exhibits increased aging biomarkers, which is coupled with an elevation in oxidative damage within placental trophoblast cells and a notable decline in YAP levels. Cellular experiments demonstrated that oxidative damage from H2O2 triggered trophoblast cell senescence and resulted in a reduction of YAP levels. Furthermore, employing molecular modification to silence YAP expression in these cells led to an induction of aging. Conversely, overexpressing YAP ameliorated both trophoblast cell aging and the associated DNA oxidative damage that arised from H2O2. Conclusion The decline of YAP in AMA pregnancy should be responsible for the increased oxidative injury and premature placenta aging, indicating that YAP plays a significant role in combating oxidative damage and delaying aging, thereby providing a new guidance for prenatal care in AMA pregnancies. Maintaining YAP levels or implementing anti-oxidative stress interventions could potentially mitigate the incidence of complications involved AMA pregnancy.
Collapse
Affiliation(s)
- Song Guo
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qihao Pan
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baokang Chen
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yijuan Huang
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Li
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenyu Gou
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Gao
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Dong DL, Jin GZ. Targeting Chondrocyte Hypertrophy as Strategies for the Treatment of Osteoarthritis. Bioengineering (Basel) 2025; 12:77. [PMID: 39851351 PMCID: PMC11760869 DOI: 10.3390/bioengineering12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by pain and functional impairment, which severely impacts the quality of life of middle-aged and elderly individuals. During normal bone development, chondrocyte hypertrophy is a natural physiological process. However, in the progression of OA, chondrocyte hypertrophy becomes one of its key pathological features. Although there is no definitive evidence to date confirming that chondrocyte hypertrophy is the direct cause of OA, substantial experimental data indicate that it plays an important role in the disease's pathogenesis. In this review, we first explore the mechanisms underlying chondrocyte hypertrophy in OA and offer new insights. We then propose strategies for inhibiting chondrocyte hypertrophy from the perspectives of targeting signaling pathways and tissue engineering, ultimately envisioning the future prospects of OA treatment.
Collapse
Affiliation(s)
- Da-Long Dong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
35
|
Luan C, Gao Y, Zhao J, Zhang X, Wang C, Sun W, Li Y, Yang X, Chen J, Liu W, Gong W, Ma X. Chloride intracellular channel CLIC3 mediates fibroblast cellular senescence by interacting with ERK7. Commun Biol 2025; 8:51. [PMID: 39809890 PMCID: PMC11732983 DOI: 10.1038/s42003-025-07482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored. In this study, we conducted RNA sequencing on bleomycin-induced senescent lung tissues from mice and identified Clic3 as the most significantly upregulated CLIC member. Furthermore, our findings revealed that the knockdown of CLIC3 mitigated intracellular chloride ion lose, mitochondrial dysfunction, nuclear enlargement, DNA damage, CS progression, and expression of senescence-associated secretory phenotype (SASP) triggered by bleomycin. Mechanistically, CLIC3 controls CS by translocating to the membrane where it interacts with extracellular signal-regulated kinase 7 (ERK7). Overall, our work demonstrates that the chloride intracellular channel CLIC3 modulates CS by repressing ERK7 activity and provides novel insights into the role of chloride channels.
Collapse
Affiliation(s)
- Changjiao Luan
- Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Lung, The Third People's Hospital of Yangzhou, Yangzhou, China
| | - Yue Gao
- Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Pathology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jun Zhao
- Department of Lung, The Third People's Hospital of Yangzhou, Yangzhou, China
| | - Xiaohui Zhang
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Chaofan Wang
- Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Wentao Sun
- Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yucheng Li
- Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xinxing Yang
- Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jiaxiao Chen
- Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Weili Liu
- Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
| | - Weijuan Gong
- Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
| | - Xingjie Ma
- Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
| |
Collapse
|
36
|
Yu F, Zhang L, Zhang X, Zeng J, Lai F. Integrated analysis of single-cell and bulk-RNA sequencing for the cellular senescence in prognosis of lung adenocarcinoma. Sci Rep 2025; 15:1442. [PMID: 39789322 PMCID: PMC11717922 DOI: 10.1038/s41598-025-85758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Non-small cell lung cancer (NSCLC), half of which are lung adenocarcinoma (LUAD), is one of the most widely spread cancers in the world. Telomerase, which maintains telomere length and chromosomal integrity, enables cancer cells to avoid replicative senescence. When telomerase is inhibited, cancer cells' senescence began, preventing them from growing indefinitely. Cellular senescence and telomeres are intrinsically linked. As of yet, still laking a systematic study of the involvement of telomere-senescence related genes in lung adenocarcinoma development. In this study, myeloid cells were identified as the cell type which are most correlated with cellular senescence based on its highest telomere-related gene activity. GO, KEGG, GSEA and GSVA analyses were used to explore the biological function of telomere-senescence related genes in LUAD. The combined analysis of single-cell RNA-sequencing and bulk-RNA sequencing identified a gene signature composed of 14 genes which can accurately predict the prognosis of patients with LUAD. In one training and four validation sets, patients with higher Telomere Related Gene Signature (TRGS) had a worse prognosis than those with lower TRGS. Different TRGS patient groups showed varying degrees of immune cell infiltration, frequency of gene missense mutation, sensitivity to different drugs, and tumor mutation burden (TMB). Collectively, we developed a brand new signature composed of telomere-senescence related genes that can accurately predicts patients' prognosis in LUAD, which provides new insights for future research into the role of cellular senescence in LUAD.
Collapse
Affiliation(s)
- Fengqiang Yu
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Liangyu Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xun Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jianshen Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fancai Lai
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
37
|
Xu W, Li L, Cao Z, Ye J, Gu X. Circadian Rhythms and Lung Cancer in the Context of Aging: A Review of Current Evidence. Aging Dis 2025:AD.2024.1188. [PMID: 39812541 DOI: 10.14336/ad.2024.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body. Both aging and the circadian clock are highly interlinked phenomena with a bidirectional relationship. The process of aging leads to circadian disruptions while dysfunctional circadian rhythms promote age-related complications. Both processes involve diverse physiological, molecular, and cellular changes such as modifications in the DNA repair mechanisms, mechanisms, ROS generation, apoptosis, and cell proliferation. This review aims to examine the role of aging and circadian rhythms in the context of lung cancer. This will also review the existing literature on the role of circadian disruptions in the process of aging and vice versa. Various molecular pathways and genes such as BMAL1, SIRT1, HLF, and PER1 and their implications in aging, circadian rhythms, and lung cancer will also be discussed.
Collapse
Affiliation(s)
- Wenhui Xu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Jinghong Ye
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Xuyu Gu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
38
|
Zhang M, Liu S, Chen Y, Chen Y, He J, Xia Y, Yang Y. Matrix Gla protein suppresses osteoblast senescence and promotes osteogenic differentiation by the PI3K-AKT signaling pathway. Exp Cell Res 2025; 444:114329. [PMID: 39536932 DOI: 10.1016/j.yexcr.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Age-related bone loss in mice is associated with senescent cell accumulation and reduced bone formation by osteoblasts. Matrix Gla protein (MGP), secreted by osteoblasts, is pivotal in regulating the bone extracellular matrix mineralization. Previous research has demonstrated that Mgp null mice exhibit osteopenia and fractures, and ultimately die prematurely. To elucidate the mechanisms underlying MGP's role of MGP in bone metabolism, we generated osteoblast-specific Mgp knockout (Mgp cKO) mice by crossing Mgpfl/fl mice with Bglap-Cre mice. The study revealed that in 3-month-old Mgp cKO male mice, trabecular bone volume decreased, and the senescence marker protein p21 increased. Primary osteoblasts from Mgp cKO mice exhibited markers of DNA damage and senescence, such as increased γH2AX foci, p21, and senescence-associated β-galactosidase staining, as well as attenuated cellular proliferation and osteogenic differentiation abilities. In addition, bone marrow stromal cells' colony formation and spontaneous osteogenic ability were impaired in Mgp cKO mice, whereas osteoclastogenesis was enhanced. In vitro treatment with recombinant human MGP promotes osteogenesis in osteoblasts derived from Mgp cKO mice via the PI3K-AKT signaling pathway. Thus, our results suggest that MGP is protective by suppressing osteoblast senescence, offering new insights into potential therapeutic strategies for age-related osteoporosis.
Collapse
Affiliation(s)
- Min Zhang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, 330006, China
| | - Sha Liu
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, 518000, Shenzhen, China
| | - Yulin Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, 330006, China
| | - Yifa Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, 330006, China
| | - Jiaojiao He
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, 330006, China
| | - Yuting Xia
- Department of General Practice, Jingzhou Central Hospital, 434000, Jingzhou, Hubei, China
| | - Ya Yang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, 330006, China.
| |
Collapse
|
39
|
Kundu S, Kumar V, Arora S, Prasad S, Singh C, Singh A. Nutrition in aging. ESSENTIAL GUIDE TO NEURODEGENERATIVE DISORDERS 2025:415-435. [DOI: 10.1016/b978-0-443-15702-8.00026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Hwang YJ, Kim MJ. Emerging Role of the DREAM Complex in Cancer and Therapeutic Opportunities. Int J Mol Sci 2025; 26:322. [PMID: 39796178 PMCID: PMC11719884 DOI: 10.3390/ijms26010322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
The DREAM (dimerization partner, RB-like, E2F, and multi-vulval class B) complex is an evolutionarily conserved transcriptional repression complex that coordinates nearly one thousand target genes, primarily associated with the cell cycle processes. The formation of the DREAM complex consequently inhibits cell cycle progression and induces cellular quiescence. Given its unique role in cell cycle control, the DREAM complex has gained significant interest across various physiological and pathological contexts, particularly in conditions marked by dysregulated cell cycles, such as cancer. However, the specific cancer types most significantly affected by alterations in the DREAM complex are yet to be determined. Moreover, the possibility of restoring or pharmacologically targeting the DREAM complex as a therapeutic intervention against cancer remains a relatively unexplored area of research and is currently under active investigation. In this review, we provide an overview of the latest advances in understanding the DREAM complex, focusing on its role in cancer. We also explore strategies for targeting the DREAM complex as a potential approach for cancer therapeutics. Advances in understanding the precise role of the DREAM complex in cancer, combined with ongoing efforts to develop targeted therapies, may pave the way for new options in cancer therapy.
Collapse
Affiliation(s)
- Ye-Jin Hwang
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
41
|
Zielińska M, Popek M, Albrecht J. Neuroglia in hepatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:191-212. [PMID: 40148045 DOI: 10.1016/b978-0-443-19102-2.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia contribute to the pathophysiology of hepatic encephalopathy (HE) either beneficially or detrimentally. Pathogenesis of HE is linked to damage triggered by blood-derived toxins, with ammonia being the main causative factor. Neuroglial cells, especially astrocytes and microglia, respond to HE-associated systemic and central signals and undergo complex and variable changes in their metabolism, morphology, and function, which include ion and water dyshomeostasis in conjunction with neurotransmission imbalance and neuroinflammation. HE-induced alterations of astrocytes are defined as astrocytopathy, with aberrant astrocytes resulting in either gain or loss of functions. In the chronic HE, the presence of Alzheimer type II cells is a histologic hallmark, with asthenic astrocytes emerging as a newcomer. In acute HE, rapid swelling of astrocytes is a primary cause of cerebral edema and mortality. This chapter reviews the dominant role of astrocytes in the pathogenesis of HE resulting from acute and chronic liver failure, mainly in experimental models. The focus is on the loss of homeostatic function bearing upon the functioning of the glymphatic system, aberrant neurotransmission as a consequence of astrocyte-neuron miscommunication, and the concordant neuroinflammatory response of astrocytes and microglia. The chapter concludes with a delineation of concepts for future research.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
42
|
Wang Z, Chen C, Ai J, Gao Y, Wang L, Xia S, Jia Y, Qin Y. The crosstalk between senescence, tumor, and immunity: molecular mechanism and therapeutic opportunities. MedComm (Beijing) 2025; 6:e70048. [PMID: 39811803 PMCID: PMC11731108 DOI: 10.1002/mco2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression. This dual role necessitates a careful evaluation of the beneficial and detrimental aspects of senescence within the tumor microenvironment (TME). Specifically, senescent cells display a unique senescence-associated secretory phenotype that releases a diverse array of soluble factors affecting the TME. Furthermore, the impact of senescence on tumor-immune interaction is complex and often underappreciated. Senescent immune cells create an immunosuppressive TME favoring tumor progression. In contrast, senescent tumor cells could promote a transition from immune evasion to clearance. Given these intricate dynamics, therapies targeting senescence hold promise for advancing antitumor strategies. This review aims to summarize the dual effects of senescence on tumor progression, explore its influence on tumor-immune interactions, and discuss potential therapeutic strategies, alongside challenges and future directions. Understanding how senescence regulates antitumor immunity, along with new therapeutic interventions, is essential for managing tumor cell senescence and remodeling the immune microenvironment.
Collapse
Affiliation(s)
- Zehua Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chen Chen
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yaping Gao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lei Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shurui Xia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yongxu Jia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yanru Qin
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
43
|
Bai L, Sawai K, Tani T, Nakai M, Matsusaka H, Ito K, Tomita H, Sugano E, Ozaki T, Fukuda T. Adipose-derived cells surpass muscle-derived cells in primary cell isolation efficacy. In Vitro Cell Dev Biol Anim 2025; 61:1-7. [PMID: 39379766 DOI: 10.1007/s11626-024-00979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Affiliation(s)
- Lanlan Bai
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.
| | - Ken Sawai
- Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Tetsuta Tani
- Laboratory of Animal Reproduction, Department of Agriculture, Kindai University, Nara, Japan
| | - Mayuko Nakai
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Himari Matsusaka
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Keiko Ito
- Amami Dog and Cat Animal Hospital, Amami Island, Kagoshima, Japan
| | - Hiroshi Tomita
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Eriko Sugano
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Taku Ozaki
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
44
|
Ahmed IA, Zamakshshari NH, Mikail MA, Bello I, Hossain MS. Garcinia flavonoids for healthy aging: Anti-senescence mechanisms and cosmeceutical applications in skin care. Fitoterapia 2025; 180:106282. [PMID: 39489352 DOI: 10.1016/j.fitote.2024.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Cellular senescence, the irreversible arrest of cell division, is a hallmark of aging and a key contributor to age-related disorders. Targeting senescent cells represents a promising therapeutic approach to combat these ailments. This review explores the potential of Garcinia species, a genus rich in flavonoids with established antioxidant and anti-inflammatory properties, as a source of natural anti-senescence agents. We investigate the intricate connections between aging, cellular senescence, and oxidative stress, highlighting the detrimental effects of free radicals on cellular health. Furthermore, we analyze the diverse array of flavonoids identified within Garcinia and their established cellular mechanisms. We critically evaluate the emerging evidence for the anti-senescence potential of flavonoids in general and the limited research on Garcinia flavonoids in this context. By identifying existing knowledge gaps and paving the way for future research, this review underscores the exciting potential of Garcinia flavonoids as natural anti-senescence agents. These agents hold promise for not only promoting healthy aging but also for the development of cosmeceutical products that combat the visible signs of aging.
Collapse
Affiliation(s)
- Idris Adewale Ahmed
- Department of Biotechnology, Faculty of Applied Science, Lincoln University College, 47301 Petaling Jaya, Selangor, Malaysia; Mimia Sdn. Bhd., Selangor, Malaysia.
| | - Nor Hisam Zamakshshari
- Department of Chemistry, Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | | | - Ibrahim Bello
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, USA.
| | - Md Sanower Hossain
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), University Malaysia Pahang Al-Sultan Abdullah, Kuantan 26300, Malaysia.
| |
Collapse
|
45
|
Goyal K, Afzal M, Altamimi ASA, Babu MA, Ballal S, Kaur I, Kumar S, Kumar MR, Chauhan AS, Ali H, Shahwan M, Gupta G. Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target. Biogerontology 2024; 26:32. [PMID: 39725742 DOI: 10.1007/s10522-024-10173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Chronic kidney diseases (CKD) are a group of multi-factorial disorders that markedly impair kidney functions with progressive renal deterioration. Aging contributes to age-specific phenotypes in kidneys, which undergo several structural and functional alterations, such as a decline in regenerative capacity and increased fibrosis, inflammation, and tubular atrophy, all predisposing them to disease and increasing their susceptibility to injury while impeding their recovery. A central feature of these age-related processes is the activation of the p53/p21 pathway signaling. The pathway is a key player in cellular senescence, apoptosis, and cell cycle regulation, which are all key to maintaining the health of the kidney. P53 is a transcription factor and a tumor suppressor protein that responds to cell stress and damage. Persistent activation of cell p53 can lead to the expression of p21, an inhibitor of the cell cycle known as a cyclin-dependent kinase. This causes cells to cease dividing and leads to senescence, where cells can no longer increase. The accumulation of senescent cells in the aging kidney impairs kidney function by altering the microenvironment. As the number of senescent cells increases, the capacity of the kidney to recover from injury decreases, accelerating the progression of end-stage renal disease. This article review extensively explores the relationship between the p53/p21 pathway and cellular senescence within an aging kidney and the emerging therapeutic strategies that target it to overcome the impacts of cellular senescence on CKD.
Collapse
Affiliation(s)
- Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | | | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab, 140307, India
| | - Ashish Singh Chauhan
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Haider Ali
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
46
|
Luo Y, Guo Q, Liu C, Zheng Y, Wang Y, Wang B. Adipose mesenchymal stem cell-derived extracellular vesicles regulate PINK1/parkin-mediated mitophagy to repair high glucose-induced dermal fibroblast senescence and promote wound healing in rats with diabetic foot ulcer. Acta Diabetol 2024:10.1007/s00592-024-02422-x. [PMID: 39680129 DOI: 10.1007/s00592-024-02422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
AIMS Diabetic foot ulcers (DFUs) cause prominent morbidity and mortality. Adipose mesenchymal stem cell (ASC)-derived extracellular vesicles (EVs) show property in facilitating diabetic wound healing, and we explored their role in DFU rats. METHODS ASCs were cultured in vitro, passaged and then identified by flow cytometry and induction of osteogenic/adipogenic differentiation. ASC-EVs were extracted and identified. DFU rat model was treated with ASC-EVs. High glucose (HG)-induced rat dermal fibroblasts were treated with ASC-EVs or 3-MA and sh-PINK1 plasmid in vitro. Wound healing was observed. Histological changes, inflammatory cytokines (TNF-α, IL-1β), and α-SMA and p21 double-positive cell level were assessed by HE staining, ELISA, and immunofluorescence. Mitochondrial membrane potential (MMP), cell viability and senescence, and ROS production in cells were assessed by fluorescence dye JC-1, CCK-8, SA-β-gal staining, and ROS kit. p21, LC3II/I, p62, PINK1 and parkin protein levels were determined by Western blot. RESULTS DFU rats had slow wound healing and elevated levels of IL-1β, TNF-α, α-SMA and p21 double-positive cells, and SA-β-gal, while HG-induced cells had weakened viability, elevated ROS, SA-β-gal, p21 and p62 protein levels, and decreased LC3II/I, PINK1 and parkin protein levels and MMP, which were reversed by ASC-EVs. HG inhibited mitophagy by suppressing the PINK1/parkin pathway to accelerate dermal fibroblast senescence. The PINK1/parkin pathway inhibition partly mitigated the effect of ASC-EVs. ASC-EVs promoted mitophagy by activating the PINK1/parkin pathway in vivo. CONCLUSIONS ASC-EVs mediated mitophagy by activating the PINK1/parkin pathway, thereby impeding HG-induced rat dermal fibroblast senescence and promoting wound healing in DFU rats.
Collapse
Affiliation(s)
- Yinji Luo
- Department of Bone Surgery, The Second Affiliated Hospital, Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510145, Guangdong Province, China
| | - Qijie Guo
- Department of Bone Surgery, The Second Affiliated Hospital, Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510145, Guangdong Province, China
| | - Chang Liu
- Department of Bone Surgery, The Second Affiliated Hospital, Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510145, Guangdong Province, China
| | - Yuxuan Zheng
- Department of Bone Surgery, The Second Affiliated Hospital, Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510145, Guangdong Province, China
| | - Yichong Wang
- Department of Bone Surgery, The Second Affiliated Hospital, Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510145, Guangdong Province, China
| | - Bin Wang
- Department of Bone Surgery, The Second Affiliated Hospital, Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510145, Guangdong Province, China.
| |
Collapse
|
47
|
Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res 2024; 12:69. [PMID: 39627227 PMCID: PMC11615234 DOI: 10.1038/s41413-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Ketao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Shenglong Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China.
| |
Collapse
|
48
|
Sun W, Gao Y, Wu Y, Wu W, Wang C, Chen J, Luan C, Hua M, Liu W, Gong W, Ma X. Targeted apoptosis of senescent cells by valproic acid alleviates therapy-induced cellular senescence and lung aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156131. [PMID: 39395326 DOI: 10.1016/j.phymed.2024.156131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Accumulation of senescent cells in tissues and their downstream effect programs have emerged as key drivers of aging and age-associated pathologies. Recent progresses in senotherapeutics indicated that either selectively killing senescent cells with senolytics or suppressing the senescence-associated secretory phenotype (SASP) secretion using senomorphics contributes to extending of the healthy lifespan and alleviating numerous age-related disorders in mice. PURPOSE However, the potential side-effects and long-term cytotoxicity of the above novel compounds have not yet been determined. Therefore, it seems to be more efficient to explore new senotherapeutical functions from approved drugs. METHODS The effects of valproic acid (VPA), a derivative of valine, in cellular senescence were evaluated by senescence-associated β galactosidase (SA-β-Gal) staining, flow cytometry and western blot (WB). The cell viability was tested using CCK-8 kits. Cell apoptosis was detected by Annexin V-EGFP/PI apoptosis detection kit. Cell autophagy was checked using GFP-RFP-LC3 ratiometric plasmid. The roles of VPA in lung aging were investigated by in vivo experiments using H&E and Masson staining, WB, as well as electronic microscope strategies. RESULTS Here we identified VPA was able to induce an over-accumulation of reactive oxygen species (ROS) (>1.5 times increasing) and apoptosis (>2 times increasing) of senescent cells. Mechanistically, VPA activated the phospholipid modifying enzyme membrane-bound O-acyltransferase domain-containing protein 1 (MBOAT1), which was repressed during senescence, then promoted mitochondrial autophagy and apoptosis. In addition, VPA was also found to alleviate therapy induced abnormal mitochondria and lung aging phenotype (>1.5 times decreasing of lung fibrosis markers and >2.5 times increasing of naïve/memory CD4+ or CD8+ T cells) in vivo. CONCLUSION Taken together, our study demonstrated that VPA was able to selectively kill senescent cells both in vitro and in vivo, and thus shedding light on new functions and novel potential application of VPA in anti-aging and anti-age-associated diseases.
Collapse
Affiliation(s)
- Wentao Sun
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Yue Gao
- Department of Pathology, Northern Jiangsu People's Hospital, Yangzhou, PR China
| | - Yubing Wu
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, PR China
| | - Wei Wu
- Department of Science and Technology, Linyi Central Hospital, Linyi, PR China
| | - Chaofan Wang
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - JiaXiao Chen
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Changjiao Luan
- Department of Lung, The Third People's Hospital of Yangzhou, Yangzhou, PR China
| | - Ming Hua
- Department of Intensive Care, Guannan Country District People's Hospital, Yancheng, PR China
| | - Weili Liu
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Weijuan Gong
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou, PR China.
| | - Xingjie Ma
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
49
|
Zhao Q, Huang Y, Fu N, Cui C, Peng X, Kang H, Xiao J, Ke G. Podocyte senescence: from molecular mechanisms to therapeutics. Ren Fail 2024; 46:2398712. [PMID: 39248407 PMCID: PMC11385655 DOI: 10.1080/0886022x.2024.2398712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
As an important component of the glomerular filtration membrane, the state of the podocytes is closely related to kidney function, they are also key cells involved in aging and play a central role in the damage caused by renal aging. Therefore, understanding the aging process of podocytes will allow us to understand their susceptibility to injury and identify targeted protective mechanisms. In fact, the process of physiological aging itself can induce podocyte senescence. Pathological stresses, such as oxidative stress, mitochondrial damage, secretion of senescence-associated secretory phenotype, reduced autophagy, oncogene activation, altered transcription factors, DNA damage response, and other factors, play a crucial role in inducing premature senescence and accelerating aging. Senescence-associated-β-galactosidase (SA-β-gal) is a marker of aging, and β-hydroxybutyric acid treatment can reduce SA-β-gal activity to alleviate cellular senescence and damage. In addition, CCAAT/enhancer-binding protein-α, transforming growth factor-β signaling, glycogen synthase kinase-3β, cycle-dependent kinase, programmed cell death protein 1, and plasminogen activator inhibitor-1 are closely related to aging. The absence or elevation of these factors can affect aging through different mechanisms. Podocyte injury is not an independent process, and injured podocytes interact with the surrounding epithelial cells or other kidney cells to mediate the injury or loss of podocytes. In this review, we discuss the manifestations, molecular mechanisms, biomarkers, and therapeutic drugs for podocyte senescence. We included elamipretide, lithium, calorie restriction, rapamycin; and emerging treatment strategies, such as gene and immune therapies. More importantly, we summarize how podocyte interact with other kidney cells.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongzhang Huang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningying Fu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caixia Cui
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xuan Peng
- Department of Nephrology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Haiyan Kang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibao Ke
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Zhang H, Xu J, Long Y, Maimaitijiang A, Su Z, Li W, Li J. Unraveling the Guardian: p53's Multifaceted Role in the DNA Damage Response and Tumor Treatment Strategies. Int J Mol Sci 2024; 25:12928. [PMID: 39684639 DOI: 10.3390/ijms252312928] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
DNA damage can lead to mutations that can alter the function of oncogenes or tumor suppressor genes, thus promoting the development of cancer. p53 plays a multifaceted and complex role in the DNA damage response and cancer progression and is known as the 'guardian of the gene'. When DNA damage occurs, p53 is activated through a series of post-translational modifications, which stabilize the protein and enhance its function as a transcription factor. It regulates processes including cell cycle checkpoints, DNA repair and apoptosis, thereby preventing the spread of damaged DNA and maintaining genome integrity. On the one hand, p53 can initiate cell cycle arrest and induce cells to enter the G1/S and G2/M checkpoints, preventing cells with damaged DNA from continuing to proliferate and gaining time for DNA repair. At the same time, p53 can promote the activation of DNA repair pathways, including base excision repair, nucleotide excision repair and other repair pathways, to ensure the integrity of genetic material. If the damage is too severe to repair, p53 will trigger the apoptosis process to eliminate potential cancer risks in time. p53 also plays a pivotal role in cancer progression. Mutations in the p53 gene are frequently found in many cancers, and the mutated p53 not only loses its normal tumor suppressor function but may even acquire pro-cancer activity. Therefore, we also discuss therapeutic strategies targeting the p53 pathway, such as the use of small-molecule drugs to restore the function of wild-type p53, the inhibition of negative regulatory factors and synthetic lethality approaches for p53-deficient tumors. This review therefore highlights the important role of p53 in maintaining genomic stability and its potential in therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Han Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jianxiong Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yuxuan Long
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ayitila Maimaitijiang
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Zhengding Su
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Wenfang Li
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|