1
|
van der Kraan PM. Osteoarthritis as an evolutionary legacy: Biological ageing and chondrocyte hypertrophy. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100624. [PMID: 40492024 PMCID: PMC12145975 DOI: 10.1016/j.ocarto.2025.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/08/2025] [Indexed: 06/11/2025] Open
Abstract
Objective Osteoarthritis (OA) is a progressive joint disease habitually linked to ageing, characterized by the gradual breakdown of cartilage leading to pain and reduced mobility. Historically viewed as mainly a "wear and tear" condition, new insights suggest that OA may be part of an evolutionary, age-related biological process rather than mainly driven by mechanical damage. Design This conceptual paper discusses the model of antagonistic pleiotropy that proposes that certain genes beneficial early in life may contribute to diseases in the context of OA. Results Findings indicate that OA is connected to biological and not to chronological age supporting the idea that OA is not merely a wear and tear process. Chondrocyte hypertrophy, essential in endochondral bone formation at a (pre)reproductive age, is stimulated by a displaced and wrongly timed endochondral ossification quasi-program in age-related OA. Age-related chondrocyte hypertrophic differentiation in articular cartilage is likely driven by loss of loading-induced TGF-β signaling. Conclusion Comprehending OA within this evolutionary and biological frame provides a solid alternative to the theory of "wear and tear", offering insights into further understanding, prevention and disease management.
Collapse
|
2
|
Wu S, Bian Y, Zhang C, Liu K, Sun F, Chen E, Zhou C, Yu L, Chen G, Wu M. Merlin controls limb development and thumb formation by regulating primary cilium-hedgehog signaling. Cell Rep 2025; 44:115849. [PMID: 40503937 DOI: 10.1016/j.celrep.2025.115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/25/2025] [Accepted: 05/26/2025] [Indexed: 06/29/2025] Open
Abstract
Hedgehog (HH) signaling, transduced at the primary cilium, plays a crucial role in limb longitudinal growth and digit formation, but its involvement in thumb development has been underestimated. This study identifies Merlin (Nf2) as a critical regulator of limb development, modulating the ciliary trafficking of the HH receptor, Smoothened. Merlin is predominantly expressed in limb buds and growth plates. Conditional knockout of Merlin in limb mesenchyme in mice results in dwarfism, brachydactyly, and thumb hypoplasia, with transcriptomic profiling and molecular analyses revealing disrupted HH signaling. Mechanistically, Merlin interacts with ARF6 to regulate the ciliary transport of Smoothened via RAB11+ vesicles. Importantly, pharmacological enhancement of HH signaling significantly corrected the limb defects caused by Merlin deletion. These findings highlight the essential role of Merlin in regulating longitudinal limb growth and thumb morphogenesis via primary cilium-HH signaling, suggesting potential therapeutic strategies for related limb dysplasias.
Collapse
Affiliation(s)
- Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yan Bian
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Cui Zhang
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; Zhejiang University-Lishui City Joint Innovation Center for Life and Health, Lishui, Zhejiang 323000, China
| | - Kaixin Liu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310000, China
| | - Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Chenhe Zhou
- Department of Orthopedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Luyang Yu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; Zhejiang University-Lishui City Joint Innovation Center for Life and Health, Lishui, Zhejiang 323000, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310000, China.
| | - Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
3
|
Jin S, Wang X, Liu X, Xu Y, Wang W, Chen W, Chang H, Li Z, Geng Z. Effective IHH gene knockout by CRISPR/Cas9 system in chicken DF-1 cells. Poult Sci 2025; 104:105433. [PMID: 40527130 DOI: 10.1016/j.psj.2025.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 06/09/2025] [Accepted: 06/11/2025] [Indexed: 06/19/2025] Open
Abstract
Indian hedgehog (IHH) gene codes an important signal molecule mediating chondrogenesis and bone development in chickens, which are key factors that affect body weight and several other significant economic traits. The aim of this study was to construct an IHH knockout cell model using CRISPR-associated protein 9 (CRISPR/Cas9) technology to further analyze the function of IHH. TA cloning was used to screen the single-guide RNA (sgRNA1) [45 %] and sgRNA3 (30.8 %) with the highest targeting efficiency. Monoclonal cells were selected by flow cytometry for TA cloning sequencing to construct the IHH knockout cell model. Quantitative PCR (qPCR) was used to detect the changes in downstream gene expression levels after IHH knockout. TA cloning sequencing results showed that the IHH knockout cell model was successfully constructed, and two mutation types were generated with a 100 % mutation rate. In addition, qPCR results revealed that the expression of patched 1 (PTCH1), smoothened, frizzled class receptor (Smo), glioma-associated oncogene homolog 1 (Gli1), glioma-associated oncogene homolog 2 (Gli2), and osteopontin (OPN) was significantly lower in the IHH knockout group, while that of type II collagen (Col Ⅱ) was significantly higher. These results lay a theoretical foundation for the successful application of knockout technology in poultry functional genomics research and provide a stable knockout cell line model for further study of chicken IHH gene function.
Collapse
Affiliation(s)
- Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei 230036, PR China
| | - Xin Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei 230036, PR China
| | - Xuling Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei 230036, PR China
| | - Yuan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei 230036, PR China
| | - Weiqi Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei 230036, PR China
| | - Wenjing Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei 230036, PR China
| | - Haoming Chang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhitong Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Bio-Breeding, Hefei 230036, PR China.
| |
Collapse
|
4
|
He HX, Dong ZR, Jing W, Huang YK, Gao ZY, Yuan GC, Jiang LB, Zhao MD. Role of the hedgehog pathway in the formation, maintenance, and degeneration of intervertebral disc. Connect Tissue Res 2025:1-15. [PMID: 40492455 DOI: 10.1080/03008207.2025.2511821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 05/21/2025] [Indexed: 06/12/2025]
Abstract
Low back pain (LBP), one of the most common health problems, is the leading cause of disability globally. Intervertebral disc degeneration (IDD) accounts for most LBP. However, the molecular mechanism underlying IDD remains unclear, and the existing treatment strategy for IDD is still limited. A growing body of evidences suggest that the Hedgehog (HH) pathway plays an essential role in the formation, maintenance, and degeneration of intervertebral discs (IVDs), with Sonic HH (SHH) being primarily involved in the development and maturation of the IVDs and a strong link between Indian HH(IHH) and disc calcification. This review provides an overview of the role of the HH signaling pathway in the developmental maturation and degeneration of IVDs and suggests potential therapeutic targets for IDD that may interfere with HH signaling.
Collapse
Affiliation(s)
- Huan-Xin He
- Department of orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Rui Dong
- Department of orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wang Jing
- Department of orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yu-Kai Huang
- Department of orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Yang Gao
- Department of orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guang-Cheng Yuan
- Department of orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Bo Jiang
- Department of orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming-Dong Zhao
- Department of orthopaedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Griffiths JR, Miller M, Duerr TJ, Owen AE, Monaghan JR. A Characterization of Axolotl Digit Regeneration: Conserved Mechanisms, Divergent Patterning, and a Critical Role for Hedgehog Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.06.03.657663. [PMID: 40501565 PMCID: PMC12157609 DOI: 10.1101/2025.06.03.657663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
Axolotl digits offer an experimentally versatile model for studying complex tissue regeneration. Here, we provide a comprehensive morphological and molecular characterization of digit regeneration, revealing both conserved features and notable divergences from classical limb regeneration. Digit blastemas progress through similar morphological stages, are nerve-dependent, contain key regenerative cell populations, and express many canonical morphogens and mitogens. However, they exhibit minimal expression of the A-P patterning genes Shh, Fgf8, and Grem1; suggesting distal outgrowth and patterning occur independently of these signals. Joint regenerative fidelity varies significantly across digits and cannot be explained by differences in nerve supply, cell proliferation, or differential expression of any patterning genes assessed in this study. Furthermore, functional experiments reveal Hedgehog signaling is essential for interphalangeal joint regeneration, but activation alone is insufficient to improve fidelity in less robust digits. This system combines experimental accessibility with intrinsic variation in regenerative outcomes, making it an ideal platform to identify critical determinants of successful tissue regeneration and refine models of appendage patterning.
Collapse
Affiliation(s)
| | - Melissa Miller
- Northeastern University, Department of Biology, Boston, MA
| | - Timothy J Duerr
- Northeastern University, Department of Biology, Boston, MA
- Northeastern University, Institute for Chemical Imaging of Living Systems, Boston, MA
| | - Ashlin E Owen
- Northeastern University, Department of Biology, Boston, MA
| | - James R Monaghan
- Northeastern University, Department of Biology, Boston, MA
- Northeastern University, Institute for Chemical Imaging of Living Systems, Boston, MA
| |
Collapse
|
6
|
Killinger M, Szotkowská T, Lusková D, Zezula N, Bryja V, Buchtová M. Porcupine inhibition enhances hypertrophic cartilage differentiation. JBMR Plus 2025; 9:ziaf048. [PMID: 40406350 PMCID: PMC12097805 DOI: 10.1093/jbmrpl/ziaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 05/26/2025] Open
Abstract
Porcupine (PORCN) is a membrane-bound protein of the endoplasmic reticulum, which modifies Wnt proteins by adding palmitoleic acid. This modification is essential for Wnt ligand secretion. Patients with mutated PORCN display various skeletal abnormalities likely stemming from disrupted Wnt signaling pathways during the chondrocyte differentiation. To uncover the mechanism of PORCN action during chondrogenesis, we used 2 different PORCN inhibitors, C59 and LGK974, in several model systems, including micromasses, 3D cell cultures, long bone tissue cultures, and zebrafish animal model. PORCN inhibitors enhanced cartilaginous extracellular matrix (ECM) production and accelerated chondrocyte differentiation, which resulted in the earlier induction of cellular hypertrophy as well as cartilaginous mass expansion in micromass cultures and cartilaginous organoids. In addition, both PORCN inhibitors expanded the hypertrophic zone and reduced the proliferative zone in the growth plate. This led to a significant increase in cartilaginous tissue and ultimately resulted in the elongation of tibias in the mouse organ cultures. Also, LGK974 treatment of Danio rerio embryos induced expansion of craniofacial cartilage width together with the shortening of the body axis, which was consistent with a phenomenon occurring upon inhibition of non-canonical Wnt signaling. By combining PORCN inhibition with exogenous Wnt proteins activating either canonical/β-catenin (WNT3a) or non-canonical (WNT5a) signaling, we propose that the key mechanism mediating pro-chondrogenic effects of PORCN inhibition is the removal of canonical ligands that prevent chondrocyte differentiation. In summary, our results provide evidence of the distinct role of PORCN in both the early and late stages of cartilage development. Further, our data demonstrate that PORCN inhibitors can be used in the experimental and clinical strategies that need to trigger chondrocyte differentiation and/or cartilage outgrowth.
Collapse
Affiliation(s)
- Michael Killinger
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Tereza Szotkowská
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Denisa Lusková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 62504 Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 62504 Brno, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 62504 Brno, Czech Republic
| |
Collapse
|
7
|
Yang W, Lefebvre V. PTPN11 in cartilage development, adult homeostasis, and diseases. Bone Res 2025; 13:53. [PMID: 40379623 DOI: 10.1038/s41413-025-00425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 05/19/2025] Open
Abstract
The SH2 domain-containing protein tyrosine phosphatase 2 (SHP2, also known as PTP2C), encoded by PTPN11, is ubiquitously expressed and has context-specific effects. It promotes RAS/MAPK signaling downstream of receptor tyrosine kinases, cytokine receptors, and extracellular matrix proteins, and was shown in various lineages to modulate cell survival, proliferation, differentiation, and migration. Over the past decade, PTPN11 inactivation in chondrocytes was found to cause metachondromatosis, a rare disorder characterized by multiple enchondromas and osteochondroma-like lesions. Moreover, SHP2 inhibition was found to mitigate osteoarthritis pathogenesis in mice, and abundant but incomplete evidence suggests that SHP2 is crucial for cartilage development and adult homeostasis, during which its expression and activity are tightly regulated transcriptionally and posttranslationally, and by varying sets of functional partners. Fully uncovering SHP2 actions and regulation in chondrocytes is thus fundamental to understanding the mechanisms underlying both rare and common cartilage diseases and to designing effective disease treatments. We here review current knowledge, highlight recent discoveries and controversies, and propose new research directions to answer remaining questions.
Collapse
Affiliation(s)
- Wentian Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA.
| | - Véronique Lefebvre
- Division of Orthopaedic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Tsutsumi-Arai C, Tran A, Arai Y, Ono W, Ono N. Mandibular Condylar Cartilage in Development and Diseases: A PTHrP-Centric View. Orthod Craniofac Res 2025. [PMID: 40251915 DOI: 10.1111/ocr.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 12/25/2024] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
The mandibular condylar cartilage (MCC) is a dual-function component of the temporomandibular joint (TMJ), acting as both articular cartilage for jaw movement and growth cartilage for vertical growth of the mandibular condyle. Parathyroid hormone-related protein (PTHrP) plays a critical role in orchestrating chondrogenesis in the long bone, and its importance is also highlighted in both MCC development and TMJ function. Here, we discuss the role of PTHrP in the development, growth and diseases of the MCC. PTHrP is a key morphogen in the MCC that regulates chondrogenesis by promoting chondrocyte proliferation and preventing premature hypertrophic differentiation. Exclusively expressed in the superficial layer, PTHrP diffuses across the MCC and targets chondrocytes in deeper layers, regulating transcription factors such as RUNX2 and SOX9. PTHrP regulates chondrocyte differentiation through two main pathways: the PTHrP-PTH1R signalling pathway, which suppresses hypertrophy and the PTHrP-Ihh negative feedback loop, which balances proliferation and hypertrophy. In the postnatal murine MCC, PTHrP levels are high early on and decrease after the onset of mastication around P21. Altered mechanical environments, such as those therapeutically induced as mandibular advancement, increase PTHrP expression, promoting chondrocyte proliferation and delaying hypertrophy. PTHrP also plays a dual role in adult TMJ diseases, particularly in osteoarthritis (OA); PTHrP expression transiently increases during the early stages of TMJ-OA to promote cell proliferation, but its eventual decrease contributes to the progression of the disease. This highlights the complex role of PTHrP in maintaining MCC homeostasis and its potential involvement in TMJ-OA pathology. The MCC combines the characteristics of growth and articular cartilage and functions distinctively in three phases: development before occlusion, growth after the occlusion is established, and maintenance after the growth is complete. While PTHrP plays a multifaceted role in all phases, further research is needed to fully understand how it regulates MCC development, growth and diseases.
Collapse
Affiliation(s)
- Chiaki Tsutsumi-Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Amy Tran
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Yuki Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
9
|
Iyer S, Tarique M, Sahay P, Giri S, Bava EP, Guan J, Jain T, Vaish U, Jin X, Moon S, Crossman DK, Dudeja V. Inhibition of hedgehog signaling ameliorates severity of chronic pancreatitis in experimental mouse models. Am J Physiol Gastrointest Liver Physiol 2025; 328:G342-G363. [PMID: 39499252 DOI: 10.1152/ajpgi.00212.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024]
Abstract
Chronic pancreatitis (CP) is a fibro-inflammatory disease of the pancreas with no specific cure. Research highlighting the pathogenesis and especially the therapeutic aspect remains limited. Aberrant activation of developmental pathways in adults has been implicated in several diseases. Hedgehog pathway is a notable embryonic signaling pathway, known to promote fibrosis of various organs when overactivated. The aim of this study is to explore the role of the hedgehog pathway in the progression of CP and evaluate its inhibition as a novel therapeutic strategy against CP. CP was induced in mice by repeated injections of l-arginine or caerulein in two separate models. Mice were administered with the FDA-approved pharmacological hedgehog pathway inhibitor, vismodegib during or after establishing the disease condition to inhibit hedgehog signaling. Various parameters of CP were analyzed to determine the effect of hedgehog pathway inhibition on the severity and progression of the disease. Our study shows that hedgehog signaling was overactivated during CP and its inhibition was effective in improving the histopathological parameters associated with CP. Vismodegib administration not only halted the progression of CP but was also able to resolve already-established fibrosis. In addition, inhibition of hedgehog signaling resulted in the reversal of pancreatic stellate cell activation ex vivo. Findings from our study justify conducting clinical trials using vismodegib against CP and, thus, could lead to the development of a novel therapeutic strategy for the treatment of CP.NEW & NOTEWORTHY Hedgehog signaling is activated in human and experimental models of CP. Inhibition of hedgehog signaling using an FDA-approved inhibitor, vismodegib, leads to the resolution of fibrosis and improves CP. This study has immense and immediate translational benefits.
Collapse
Affiliation(s)
- Srikanth Iyer
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mohammad Tarique
- Department of Pediatrics, University of Missouri, Columbia, Missouri, United States
| | - Preeti Sahay
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sagnik Giri
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ejas P Bava
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - JiaShiung Guan
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tejeshwar Jain
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Utpreksha Vaish
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Xiuwen Jin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sabrina Moon
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veteran Affairs Medical Center, Birmingham, Alabama, United States
| |
Collapse
|
10
|
Thakore P, Delany AM. miRNA-based regulation in growth plate cartilage: mechanisms, targets, and therapeutic potential. Front Endocrinol (Lausanne) 2025; 16:1530374. [PMID: 40225327 PMCID: PMC11985438 DOI: 10.3389/fendo.2025.1530374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of the skeleton. In the growth plate, these small non-coding RNAs modulate gene networks that drive key stages of chondrogenesis, including proliferation, differentiation, extracellular matrix synthesis and hypertrophy. These processes are orchestrated through the interaction of pivotal pathways including parathyroid hormone-related protein (PTHrP), Indian hedgehog (IHH), and bone morphogenetic protein (BMP) signaling. This review highlights the miRNA-mRNA target networks essential for chondrocyte differentiation. Many miRNAs are differentially expressed in resting, proliferating and hypertrophic cartilage zones. Moreover, differential enrichment of specific miRNAs in matrix vesicles is also observed, providing means for chondrocytes to influence the function and differentiation of their neighbors by via matrix vesicle protein and RNA cargo. Notably, miR-1 and miR-140 emerge as critical modulators of chondrocyte proliferation and hypertrophy by regulating multiple signaling pathways, many of them downstream from their mutual target Hdac4. Demonstration that a human gain-of-function mutation in miR-140 causes skeletal dysplasia underscores the clinical relevance of understanding miRNA-mediated regulation. Further, miRNAs such as miR-26b have emerged as markers for skeletal disorders such as idiopathic short stature, showcasing the translational relevance of miRNAs in skeletal health. This review also highlights some miRNA-based therapeutic strategies, including innovative delivery systems that could target chondrocytes via cartilage affinity peptides, and potential applications related to treatment of physeal bony bridge formation in growing children. By synthesizing current research, this review offers a nuanced understanding of miRNA functions in growth plate biology and their broader implications for skeletal health. It underscores the translational potential of miRNA-based therapies in addressing skeletal disorders and aims to inspire further investigations in this rapidly evolving field.
Collapse
|
11
|
Xu P, Cheng S, Yang X, Xu K, Hou W, Liu L, Peng K, Wen Y, Zhang F. Integrative single-cell analysis reveals transcriptional and epigenetic regulatory features of human developmental dysplasia of the hip. Osteoarthritis Cartilage 2025:S1063-4584(25)00866-0. [PMID: 40154730 DOI: 10.1016/j.joca.2025.02.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/18/2025] [Accepted: 02/14/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE Developmental dysplasia of the hip (DDH) is a developmental disorder that has long-term chronic pain and limited hip joint mobility. The aim of the current study is to understand the specific chondrocyte composition involved in DDH development, identify effective biomarkers for DDH prediction, and elucidate the gene regulatory elements driving DDH progression. METHOD In this study, we performed an integrated analysis combining single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing to investigate the molecular programs and epigenetic changes governing human DDH pathogenesis. Validation of marker genes for distinct chondrocyte populations was performed via immunohistochemical assays, alongside characterization of regulatory elements specific to DDH. RESULTS Our analysis identified seven molecularly distinct chondrocyte populations in DDH cartilage, including a novel inflammatory chondrocyte population with unique molecular signatures. Furthermore, we reconstructed the differentiation trajectory of chondrocytes, shedding light on their roles in DDH pathogenesis. Integrative analyses of transcriptomic and chromatin accessibility profiles highlighted shared regulatory features and transcriptional programs among chondrocyte subtypes, with several regulatory elements linked to DDH progression. Immunohistochemical validation corroborated the presence of key marker genes in distinct chondrocyte subsets. CONCLUSION Our findings contribute to clarifying the cellular heterogeneity of DDH and offer insights into potential early diagnostic and therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Weikun Hou
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Kan Peng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
12
|
Xing L, Qi X, Liu Y, Wu J, Jiang B. Ectodysplasin-A deficiency exacerbates TMJOA by upregulating ATF4/Ihh signaling in mice. Osteoarthritis Cartilage 2025:S1063-4584(25)00865-9. [PMID: 40139647 DOI: 10.1016/j.joca.2025.02.789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Ectodysplasin-A (EDA) has been reported to be involved in mouse condylar development, but the specific functions of EDA in maintaining homeostasis of the temporomandibular joint (TMJ) remain unclear. This study aimed to explore the underlying roles and related mechanisms of EDA in temporomandibular joint osteoarthritis (TMJOA). DESIGN The TMJOA mouse model was established by unilateral discectomy and the alteration of EDA expression was detected. EDA knockout male mice and their wild-type male littermates were used to clarify the effect of EDA on TMJOA. Mouse condylar chondrocytes were extracted to explore the potential mechanisms. The effects of local injection of supplementary EDA on condyles were also evaluated morphologically and histologically. RESULTS The expression of EDA was downregulated in condylar cartilage after TMJOA modeling. EDA deficiency aggravated degeneration and inflammation of condylar cartilage in TMJOA mice. In vitro studies demonstrated that EDA deficiency upregulated the expression of inflammatory cytokines, while supplementary EDA exhibited anticatabolic and anti-inflammatory effects on tumor necrosis factor-α (TNFα)-treated mouse condylar chondrocytes. Mechanistically, EDA deficiency effectively activated activating transcription factor 4 (ATF4) to upregulate Indian hedgehog (Ihh) signaling pathway and thereby aggravated the inflammation. Inhibition of ATF4 resulted in blocking of Ihh signaling. The selective pharmacological inhibition of Ihh signaling attenuated TNF-α-induced chondrocyte destruction and the release of inflammatory cytokines. Furthermore, intra-articular application of EDA significantly alleviated the osteoarthritic cartilage destruction after discectomy. CONCLUSIONS EDA deficiency aggravated TMJOA by modulating ATF4/Ihh pathway, which confirmed the essential role of EDA in maintaining TMJ cartilage homeostasis and its potential application in TMJOA treatment.
Collapse
Affiliation(s)
- Ludan Xing
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Xin Qi
- Department of Stomatology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuan Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Jiayan Wu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Beizhan Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
| |
Collapse
|
13
|
Xiong J, Ma R, Xie K, Shan C, Chen H, Wang Y, Liao Y, Deng Y, Ye G, Wang Y, Zhu Q, Zhang Y, Cai H, Guo W, Yin Y, Li Z. Recapitulation of endochondral ossification by hPSC-derived SOX9 + sclerotomal progenitors. Nat Commun 2025; 16:2781. [PMID: 40118845 PMCID: PMC11928506 DOI: 10.1038/s41467-025-58122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
Endochondral ossification generates most of the load-bearing bones, recapitulating it in human cells remains a challenge. Here, we report generation of SOX9+ sclerotomal progenitors (scl-progenitors), a mesenchymal precursor at the pre-condensation stage, from human pluripotent stem cells and development of osteochondral induction methods for these cells. Upon lineage-specific induction, SOX9+ scl-progenitors have not only generated articular cartilage but have also undergone spontaneous condensation, cartilaginous anlagen formation, chondrocyte hypertrophy, vascular invasion, and finally bone formation with stroma, thereby recapitulating key stages during endochondral ossification. Moreover, self-organized growth plate-like structures have also been induced using SOX9+ scl-progenitor-derived fusion constructs with chondro- and osteo-spheroids, exhibiting molecular and cellular similarities to the primary growth plates. Furthermore, we have identified ITGA9 as a specific surface marker for reporter-independent isolation of SOX9+ scl-progenitors and established a culture system to support their expansion. Our work highlights SOX9+ scl-progenitors as a promising tool for modeling human skeletal development and bone/cartilage bioengineering.
Collapse
Affiliation(s)
- Jingfei Xiong
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Runxin Ma
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kun Xie
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ce Shan
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hanyi Chen
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuqing Wang
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuansong Liao
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanhui Deng
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guogen Ye
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yifu Wang
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qing Zhu
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Anesthesiology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Yunqiu Zhang
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Weihua Guo
- Yunnan Key Laboratory of Stomatology, Department of Pediatric Dentistry, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Yike Yin
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Zhonghan Li
- Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
- Yunnan Key Laboratory of Stomatology, Department of Pediatric Dentistry, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
| |
Collapse
|
14
|
Villegas Villarroel M, Huber C, Baujat G, Bonnard A, Collet C, Cormier-Daire V. Loss-of-function of DDR1 is responsible for a chondrodysplasia with multiple dislocations. J Bone Miner Res 2025; 40:362-371. [PMID: 39714220 DOI: 10.1093/jbmr/zjae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Chondrodysplasias with multiple dislocations are rare skeletal disorders characterized by hyperlaxity, joint dislocations, and growth retardation. Chondrodysplasias with multiple dislocations have been linked to pathogenic variants in genes encoding proteins involved in the proteoglycan (PG) biosynthesis. In this study, by exome sequencing analysis, we identified a homozygous nonsense variant (NM_001297654.2: c.1825C>T, p.Arg609*) in the discoidin domain receptor 1 (DDR1) gene in a patient presenting joint dislocations, hyperlaxity, and cerebellar hypoplasia. Functional studies revealed decreased PG production in patient fibroblasts. We further demonstrated that DDR1 inhibition impaired the Indian Hedgehog signaling pathway in chondrocytes, decreased differentiation and mineralization in osteoblasts, and disrupted p38 MAPK signaling in both cell types. Additionally, we showed that DDR1 inhibition affected the noncanonical WNT signaling pathway in human skeletal cells and decreased PG production in chondrocytes. These findings suggest that DDR1 is a new gene involved in the group of chondrodysplasias with multiple dislocations and highlights its essential role in human skeletal and brain development.
Collapse
Affiliation(s)
- Miriam Villegas Villarroel
- Reference Center for Skeletal Dysplasia, INSERM UMR 1163, Paris Cité University, Imagine Institute, Necker Enfants Malades Hospital (AP-HP), 75015 Paris, France
| | - Céline Huber
- Reference Center for Skeletal Dysplasia, INSERM UMR 1163, Paris Cité University, Imagine Institute, Necker Enfants Malades Hospital (AP-HP), 75015 Paris, France
| | - Geneviève Baujat
- Reference Center for Skeletal Dysplasia, INSERM UMR 1163, Paris Cité University, Imagine Institute, Necker Enfants Malades Hospital (AP-HP), 75015 Paris, France
| | - Adeline Bonnard
- Department of Molecular Genetics, Robert Debré Hospital (AP-HP), 75019 Paris, France
| | - Corinne Collet
- Reference Center for Skeletal Dysplasia, INSERM UMR 1163, Paris Cité University, Imagine Institute, Necker Enfants Malades Hospital (AP-HP), 75015 Paris, France
| | - Valérie Cormier-Daire
- Reference Center for Skeletal Dysplasia, INSERM UMR 1163, Paris Cité University, Imagine Institute, Necker Enfants Malades Hospital (AP-HP), 75015 Paris, France
| |
Collapse
|
15
|
Reno PL, Wallace S, Doelp SN, Biancaniello M, Kjosness KM. The role of the PTHrP/Ihh feedback loop in the unusual growth plate location in mammalian metatarsals and pisiforms. Dev Dyn 2025. [PMID: 40088130 DOI: 10.1002/dvdy.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Longitudinal skeletal growth takes place in the cartilaginous growth plates. While growth plates are found at either end of conventional long bones, they occur at a variety of locations in the mammalian skeleton. For example, the metacarpals and metatarsals (MT) in the hands and feet form only a single growth plate at one end, and the pisiform in the wrist is the only carpal bone to contain a growth plate. We take advantage of this natural anatomical variation to test which components of the PTHrP/Ihh feedback loop, a fundamental regulator of chondrocyte differentiation, are specific to growth plate function. RESULTS Parathyroid hormone-like hormone (Pthlh), the gene that transcribes parathyroid hormone-related peptide (PTHrP), is expressed in the reserve zone of the growth plate-forming end of the MT. At the opposite end, the absence of a PTHrP+ reserve zone results in premature chondrocyte differentiation and Indian hedgehog (Ihh) expression. Pthlh is expressed in the reserve zone of the developing pisiform, confirming the existence of a true growth plate. CONCLUSION A pool of PTHrP+ reserve zone chondrocytes is a defining characteristic of growth plates, and its patterning may be key to evolved differences in growth plate location in the mammalian skeleton.
Collapse
Affiliation(s)
- Philip L Reno
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Sherrie Wallace
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Sarah N Doelp
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Maria Biancaniello
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Kelsey M Kjosness
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Wang J, Sun Z, Yu C, Zhao H, Yan M, Sun S, Han X, Wang T, Zhang Y, Li J, Yu T. Single-cell RNA sequencing generates an atlas of normal tibia cartilage under mechanical loading conditions. Mol Cell Biochem 2025:10.1007/s11010-025-05234-x. [PMID: 40072674 DOI: 10.1007/s11010-025-05234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Chondrocytes in articular cartilage can secrete extracellular matrix to maintain cartilage homeostasis. It is well known that articular cartilage chondrocytes are sensitive to mechanical loading and that mechanical stimuli can be translated to biological processes. This study provides deep insight into the impact of mechanical loading on chondrocytes via single-cell RNA sequencing (scRNA-seq). Five cartilage tissue samples from the high-loading region of medial cartilage from the upper tibia (the TL group) and six cartilage tissue samples from the low-loading region of lateral cartilage from the upper tibia (the TN group) were obtained from six donors and subjected to scRNA-seq. TL and TN cartilage tissues from another donor were subjected to immunohistochemical staining. In total, 132,685 cells were analyzed and assigned to 11 cell types. The functions, developmental relationships and interactions of these cell types were determined, and gene transcription data were also evaluated. In addition, differentially expressed genes between the TL and TN groups and their functions were identified. The hub genes for the TL group were identified as GAPDH, FN1, VEGFA, LDHA, SOD1, CTGF, DCN, SERPINE1, ENO1 and CAV1, whereas the hub genes for the TN group included ACTB, CD44, MMP2, COL1A1, COL1A2, SPP1, CTGF, MYC, CCL2, and IGF1. The different enrichment terms indicated that physiological mechanical loading may induce reactive oxygen species accumulation and thus cause ferroptosis in chondrocytes.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110000, Liaoning Province, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zewen Sun
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Chenghao Yu
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Haibo Zhao
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Mingyue Yan
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Shenjie Sun
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, China
| | - Xu Han
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, Plastic Surgery Hospital, Chinese Academy of Medial Sciences, Beijing, China
| | - Tianrui Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, China.
| | - Jianjun Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110000, Liaoning Province, China.
| | - Tengbo Yu
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
17
|
Yoshida S, Yoshida K. Regulatory mechanisms governing GLI proteins in hedgehog signaling. Anat Sci Int 2025; 100:143-154. [PMID: 39576500 DOI: 10.1007/s12565-024-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 02/16/2025]
Abstract
The Hedgehog (Hh) signaling pathway is critical for regulating cell growth, survival, fate determination, and the overall patterning of both vertebrate and invertebrate body plans. Aberrations in Hh signaling are associated with congenital abnormalities and tumorigenesis. In vertebrates, Hh signaling depends uniquely on primary cilia, microtubule-based organelles that extend from the cell surface. Over the last 2 decades, studies have demonstrated that key molecules regulating Hh signaling dynamically accumulate in primary cilia via intraflagellar transport systems. Moreover, through the primary cilia, extracellular signals are converted to stabilize GLI2 and GLI3 that are transcription factors that play a central role in regulating Hh signaling at the post-translational modification level. Recent in vivo and anatomical studies have uncovered crucial molecules that facilitate the conversion of extracellular signals into the intracellular stabilization of GLI2/GLI3 via primary cilia, emphasizing their essential roles in tissue development and tumorigenesis. This review explores the regulatory mechanisms of GLI2/GLI3 with a focus on mammalian tissue development.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan.
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
18
|
Wang Z, Ren L, Li Z, Qiu Q, Wang H, Huang X, Ma D. Impact of Different Cell Types on the Osteogenic Differentiation Process of Mesenchymal Stem Cells. Stem Cells Int 2025; 2025:5551222. [PMID: 39980864 PMCID: PMC11842143 DOI: 10.1155/sci/5551222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
The skeleton is an important organ in the human body. Bone defects caused by trauma, inflammation, tumors, and other reasons can impact the quality of life of patients. Although the skeleton has a certain ability to repair itself, the current most effective method is still autologous bone transplantation due to factors such as blood supply and defect size. Modern medicine is attempting to overcome these limitations through cell therapy, with mesenchymal stem cells (MSCs) playing a crucial role. MSCs can be extracted from different tissues, and their differentiation potential varies depending on the source. Various cells and cell secretions can influence this process. This article, based on previous research, reviews the effects of macrophages, endothelial cells (ECs), nerve cells, periodontal cells, and even some bacteria on MSC osteogenic differentiation, aiming to provide a reference for multicell coculture strategies related to osteogenesis.
Collapse
Affiliation(s)
- Zixin Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhengtao Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Qingyuan Qiu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Haonan Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Dongyang Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| |
Collapse
|
19
|
Wang L, Ruan M, Bu Q, Zhao C. Signaling Pathways Driving MSC Osteogenesis: Mechanisms, Regulation, and Translational Applications. Int J Mol Sci 2025; 26:1311. [PMID: 39941080 PMCID: PMC11818554 DOI: 10.3390/ijms26031311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for skeletal development, homeostasis, and repair, primarily through their differentiation into osteoblasts and other skeletal lineage cells. Key signaling pathways, including Wnt, TGF-β/BMP, PTH, Hedgehog, and IGF, act as critical regulators of MSC osteogenesis, playing pivotal roles in maintaining bone homeostasis and facilitating regeneration. These pathways interact in distinct ways at various stages of bone development, mineralization, and remodeling. This review provides an overview of the molecular mechanisms by which these pathways regulate MSC osteogenesis, their influence on bone tissue formation, and their implications in bone diseases and therapeutic strategies. Additionally, we explore the potential applications of these pathways in bone tissue engineering, with a particular focus on promoting the use of MSCs as seed cells for bone defect repair. Ultimately, this review aims to highlight potential avenues for advancing bone biology research, treating bone disorders, and enhancing regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
20
|
Dong DL, Jin GZ. Targeting Chondrocyte Hypertrophy as Strategies for the Treatment of Osteoarthritis. Bioengineering (Basel) 2025; 12:77. [PMID: 39851351 PMCID: PMC11760869 DOI: 10.3390/bioengineering12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by pain and functional impairment, which severely impacts the quality of life of middle-aged and elderly individuals. During normal bone development, chondrocyte hypertrophy is a natural physiological process. However, in the progression of OA, chondrocyte hypertrophy becomes one of its key pathological features. Although there is no definitive evidence to date confirming that chondrocyte hypertrophy is the direct cause of OA, substantial experimental data indicate that it plays an important role in the disease's pathogenesis. In this review, we first explore the mechanisms underlying chondrocyte hypertrophy in OA and offer new insights. We then propose strategies for inhibiting chondrocyte hypertrophy from the perspectives of targeting signaling pathways and tissue engineering, ultimately envisioning the future prospects of OA treatment.
Collapse
Affiliation(s)
- Da-Long Dong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
21
|
Song C, Sawall JK, Ji X, Song F, Liao X, Peng R, Ren H, Koyama E, Pacifici M, Long F. Tgfβ signaling stimulates glycolysis to promote the genesis of synovial joint interzone in developing mouse embryonic limbs. SCIENCE ADVANCES 2025; 11:eadq4991. [PMID: 39772668 PMCID: PMC11708888 DOI: 10.1126/sciadv.adq4991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025]
Abstract
The initial interzone cells for synovial joints originate from chondrocytes, but such critical transition is minimally understood. With single-cell RNA sequencing (scRNA-seq) of murine embryonic knee joint primordia, we discovered that heightened expression of glycolysis genes characterized developing interzone cells when compared to flanking chondrocytes. Conditional deletion of the glucose transporters Glut1 and/or Glut3, in either the incipient pre-skeletal mesenchyme with Prx1Cre or in chondrocytes with Col2Cre, disrupted interzone formation dose-dependently. In contrast, deletion of Glut1/3 in established interzone cells with Gdf5Cre did not have similar severe disruption of joint development. scRNA-seq revealed that Glut1/3 deletion by Prx1Cre impeded Tgfβ signaling in the developing interzone cells. Direct elimination of Tgfβ signaling with Prx1Cre partially phenocopied the deletion of Glut1/3 in impairing interzone formation. Tgfβ stimulated glycolysis in chondrocytes via activation of mTOR and Hif1α in vitro. The data support that the essential conversion of chondrocytes to interzone cells requires a transient elevation of glycolysis partly dependent on Tgfβ signaling.
Collapse
Affiliation(s)
- Chao Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jasmin Koehnken Sawall
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xing Ji
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fangfang Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xueyang Liao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Renpeng Peng
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Ren
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Deaprtment of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Deaprtment of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Deaprtment of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Hata K, Wakamori K, Hirakawa‐Yamamura A, Ichiyama‐Kobayashi S, Yamaguchi M, Okuzaki D, Takahata Y, Murakami T, Uzawa N, Yamashiro T, Nishimura R. Serinc5 Regulates Sequential Chondrocyte Differentiation by Inhibiting Sox9 Function in Pre-Hypertrophic Chondrocytes. J Cell Physiol 2025; 240:e31490. [PMID: 39568258 PMCID: PMC11747958 DOI: 10.1002/jcp.31490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
The growth plate is the primary site of longitudinal bone growth with chondrocytes playing a pivotal role in endochondral bone development. Chondrocytes undergo a series of differentiation steps, resulting in the formation of a unique hierarchical columnar structure comprising round, proliferating, pre-hypertrophic, and hypertrophic chondrocytes. Pre-hypertrophic chondrocytes, which exist in the transitional stage between proliferating and hypertrophic stages, are a critical cell population in the growth plate. However, the molecular basis of pre-hypertrophic chondrocytes remains largely undefined. Here, we employed scRNA-seq analysis on fluorescently labeled growth plate chondrocytes for their molecular characterization. Serine incorporator 5 (Serinc5) was identified as a marker gene for pre-hypertrophic chondrocytes. Histological analysis revealed that Serinc5 is specifically expressed in pre-hypertrophic chondrocytes, overlapping with Indian hedgehog (Ihh). Serinc5 represses cell proliferation and Col2a1 and Acan expression by inhibiting the transcriptional activity of Sox9 in primary chondrocytes. Chromatin profiling using ChIP-seq and ATAC-seq revealed an active enhancer of Serinc5 located in intron 1, with its chromatin status progressively activated during chondrocyte differentiation. Collectively, our findings suggest that Serinc5 regulates sequential chondrocyte differentiation from proliferation to hypertrophy by inhibiting Sox9 function in pre-hypertrophic chondrocytes, providing novel insights into the mechanisms underlying chondrocyte differentiation in growth plates.
Collapse
Affiliation(s)
- Kenji Hata
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
| | - Kanta Wakamori
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of DentistryOsakaJapan
| | - Akane Hirakawa‐Yamamura
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
- Department of Orthodontics and Dentofacial OrthopedicsOsaka University Graduate School of DentistryOsakaJapan
| | - Sachi Ichiyama‐Kobayashi
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of DentistryOsakaJapan
| | - Masaya Yamaguchi
- Bioinformatics Research UnitOsaka University Graduate School of DentistryOsakaJapan
- Department of MicrobiologyOsaka University Graduate School of DentistryOsakaJapan
- Center for Infectious Diseases Education and ResearchOsaka UniversityOsakaJapan
| | - Daisuke Okuzaki
- Laboratory for Human Immunology (Single Cell Genomics)WPI Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
- Genome Editing Research and Development UnitOsaka University Graduate School of DentistryOsakaJapan
| | - Tomohiko Murakami
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of DentistryOsakaJapan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial OrthopedicsOsaka University Graduate School of DentistryOsakaJapan
| | - Riko Nishimura
- Department of Molecular and Cellular BiochemistryOsaka University Graduate School of DentistryOsakaJapan
| |
Collapse
|
23
|
Komori T. Bone development by Hedgehog and Wnt signaling, Runx2, and Sp7. J Bone Miner Metab 2025; 43:33-38. [PMID: 39352550 DOI: 10.1007/s00774-024-01551-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 04/01/2025]
Abstract
Hedgehog and canonical Wnt signaling pathways and the transcription factors Runx2 and Sp7 are essential for osteoblast differentiation. Ihh is necessary for the commitment of perichondrial mesenchymal cells to Runx2+ osteoprogenitors and for the formation of the bone collar and primary spongiosa. Runx2 is needed for osteoblast differentiation during both endochondral and intramembranous ossification. It regulates the commitment of mesenchymal cells to osteoblast-lineage cells and their proliferation by inducing the expression of Hedgehog, Fgf, Wnt, Pthlh signaling pathway genes, and Dlx5. The Runx2-induced expression of Fgfr2 and Fgfr3 is important for the proliferation of osteoblast-lineage cells. Runx2 induces Sp7 expression and Runx2+ osteoprogenitors become Runx2+Sp7+ preosteoblasts. Runx2, Sp7, and canonical Wnt signaling induce the differentiation of preosteoblasts into osteoblasts. Canonical Wnt signaling, but not Sp7, enhances the proliferation of osteoblast-lineage cells. In mature osteoblasts, Runx2 plays an important role in the expression of major bone matrix protein genes, including Col1a1, Col1a2, Spp1, Ibsp, and Bglap/Bglap2. The canonical Wnt signaling pathway is also crucial for bone formation by mature osteoblasts. Sp7 is needed for osteocytes to acquire a sufficient number of processes and a reduction in these processes results in osteocyte apoptosis and cortical porosity.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan.
| |
Collapse
|
24
|
Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: Insights from Cre/loxP-based cell lineage tracing studies. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:109-119. [PMID: 38406212 PMCID: PMC10885318 DOI: 10.1016/j.jdsr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Bone tissue provides structural support for our bodies, with the inner bone marrow (BM) acting as a hematopoietic organ. Within the BM tissue, two types of stem cells play crucial roles: mesenchymal stem cells (MSCs) (or skeletal stem cells) and hematopoietic stem cells (HSCs). These stem cells are intricately connected, where BM-MSCs give rise to bone-forming osteoblasts and serve as essential components in the BM microenvironment for sustaining HSCs. Despite the mid-20th century proposal of BM-MSCs, their in vivo identification remained elusive owing to a lack of tools for analyzing stemness, specifically self-renewal and multipotency. To address this challenge, Cre/loxP-based cell lineage tracing analyses are being employed. This technology facilitated the in vivo labeling of specific cells, enabling the tracking of their lineage, determining their stemness, and providing a deeper understanding of the in vivo dynamics governing stem cell populations responsible for maintaining hard tissues. This review delves into cell lineage tracing studies conducted using commonly employed genetically modified mice expressing Cre under the influence of LepR, Gli1, and Axin2 genes. These studies focus on research fields spanning long bones and oral/maxillofacial hard tissues, offering insights into the in vivo dynamics of stem cell populations crucial for hard tissue homeostasis.
Collapse
|
25
|
Xie X, Shi L, Hou G, Zhong Z, Wang Z, Pan D, Na W, Xiao Q. Genome wide detection of CNV and their association with body size in Danzhou chickens. Poult Sci 2024; 103:104266. [PMID: 39293262 PMCID: PMC11426044 DOI: 10.1016/j.psj.2024.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Copy number variation (CNV) is a crucial component of genetic diversity in the genome, serving as the foundation for the genetic architecture and phenotypic variability of complex traits. In this study, we examined CNVs in the Danzhou (DZ) chicken, an indigenous breed exclusive to Hainan Province, China. By employing whole-genome resequencing data from 200 DZ chickens, we conducted a comprehensive genome-wide analysis of CNVs using CNVpytor and performed CNV-based genome-wide association studies (GWAS) on 6 body size traits, including body slope length (BSL), keel length (KeL), tibial length (TiL), tibial circumference (TiC), chest width (ChW), and chest depth (ChD) utilizing linear mixed model methods considering a genomic relationship matrix. We identified a total of 144,265 autosomal CNVs among the 200 individuals, comprising 67,818 deletions and 76,447 duplications. After merging these variants together, we obtained 4,824 distinct copy number variant regions, which accounted for approximately 20% of the chicken autosomal genome. Furthermore, we discovered several significantly associated CNV segments with body size traits located proximal to genes such as IHH, WNT6, WNT10A, LPR4, FZD2, WNT7B, and GNAS that have been extensively implicated in skeletal development and growth processes. These findings enhance our understanding of CNVs in chickens and their potential impact on body size traits by revealing candidate genes involved in the regulation of these traits. This establishes a solid framework for future studies and may prove particularly beneficial for exploring genetic structural variation in chickens.
Collapse
Affiliation(s)
- Xinfeng Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Liguang Shi
- Chinese Academy of Tropical Agricultural Sciences,Haikou, Hainan 571101, China
| | - Guanyu Hou
- Chinese Academy of Tropical Agricultural Sciences,Haikou, Hainan 571101, China
| | - Ziqi Zhong
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ziyi Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Deyou Pan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Na
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qian Xiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
26
|
Sautchuk R, Martinez J, Catheline SE, Eliseev RA. Cyclophilin D, regulator of the mitochondrial permeability transition, impacts bone development and fracture repair. Bone 2024; 189:117258. [PMID: 39299628 PMCID: PMC11924584 DOI: 10.1016/j.bone.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Mitochondrial Permeability Transition Pore (MPTP) and its key positive regulator, Cyclophilin D (CypD), control activity of cell oxidative metabolism important for differentiation of stem cells of various lineages including osteogenic lineage. Our previous work (Sautchuk et al., 2022) showed that CypD gene, Ppif, is transcriptionally repressed during osteogenic differentiation by regulatory Smad transcription factors in BMP canonical pathway, a major driver of osteoblast (OB) differentiation. Such a repression favors closure of the MPTP, priming OBs to higher usage of mitochondrial oxidative metabolism. The physiological role of CypD/MPTP regulation was demonstrated by its inverse correlation with BMP signaling in aging and bone fracture healing in addition to the negative effect of CypD gain-of-function (GOF) on bone maintenance. Here we show evidence that CypD GOF also negatively affects bone development and growth as well as fracture healing in adult mice. Developing craniofacial and long bones presented with delayed ossification and decreased growth rate, respectively, whereas in fracture, bony callus volume was diminished. Given that Genome Wide Association Studies showed that PPIF locus is associated with both body height and bone mineral density, our new data provide functional evidence for the role of PPIF gene product, CypD, and thus MPTP in bone growth and repair.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, USA
| | - John Martinez
- Department of Biology, University of Rochester, Rochester, NY 14642, USA
| | - Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, USA; Department of Pharmacology & Physiology, University of Rochester, Rochester, NY 14624, USA; Department of Pathology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
27
|
Zhang C, Zhao R, Dong Z, Liu Y, Liu M, Li H, Yin Y, Che X, Wu G, li Guo, Li P, Wei X, Yang Z. IHH-GLI-1-HIF-2α signalling influences hypertrophic chondrocytes to exacerbate osteoarthritis progression. J Orthop Translat 2024; 49:207-217. [PMID: 39498143 PMCID: PMC11532729 DOI: 10.1016/j.jot.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024] Open
Abstract
Background Chondrocyte hypertrophy is a potential target for osteoarthritis (OA) treatment, with Indian hedgehog (IHH), glioma-associated oncogene homolog (GLI), and hypoxia-inducible factor-2α (HIF-2α) being closely associated with chondrocyte hypertrophy during OA progression. Whereas IHH can modulate chondrocyte hypertrophy, interference with IHH signalling has not achieved the anticipated therapeutic effects and poses safety concerns, necessitating further clarification of the specific mechanisms by which IHH affects articular cartilage degeneration. Inhibition of the HIF-2α overexpression in cartilage slows the progression of early OA, but the mechanisms underlying HIF-2α accumulation in OA cartilage remain unclear. The aim of this study was to determine the function of Ihh, as well as its downstream factors, in chondrocytes, based on an early osteoarthritis (OA) mouse model and in vitro chondrocyte model. Methods Investigated the expression levels and locations of IHH-GLI-1 pathway in normal and early degenerated human cartilage, comparing them with HIF-2α and its downstream factors. RT-qPCR, Western blotting, Crystal violet staining, and EdU assays were used to evaluate the pecific regulatory mechanisms of the IHH-GLI-1-HIF-2α signalling axis in normal chondrocytes and in chondrocytes under inflammatory conditions. Validated the impact of IHH on early cartilage degeneration and the relationship between the IHH-GLI-1 pathway and the expression levels and expression locations of HIF-2α and its downstream factors in Col2a1-CreERT2;Ihhfl/fl mice. Results In early-stage degenerative joint cartilage, the GLI-1 pathway in hypertrophic chondrocytes exhibited similar changes in location and levels to HIF-2α and its downstream factor vascular endothelial growth factor (VEGF). In vitro, IHH-GLI-1-HIF-2α signalling activation in chondrocytes under physiological hypoxic conditions inhibited chondrocyte proliferation. In chondrocytes stimulated by inflammatory environments, IHH inhibited the degradation of HIF-2α via the GLI-1 pathway, thereby promoting HIF-2α protein expression. Elevated HIF-2α expression further enhanced intracellular IHH-GLI-1 levels, generating a positive feedback loop to collectively regulate the expression of downstream hypertrophic factors and matrix-degradation factors. In vivo, conditional Ihh knockout in mouse chondrocytes downregulated Hif-2α protein expression in early degenerative cartilage tissue and affected the expression of downstream Vegf and hypertrophic factors. Conclusions During OA progression, the IHH-GLI-1-HIF-2α axis mainly operates within hypertrophic chondrocytes, exacerbating cartilage degeneration by regulating hypertrophic chondrocyte functions, cartilage matrix degradation, and microvascular invasion. The translational potential of this article This study identifies the IHH-GLI-1-HIF-2α signalling axis and reveals its potential as a therapeutic target for OA.
Collapse
Affiliation(s)
- Chengming Zhang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Ruipeng Zhao
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Zhengquan Dong
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yang Liu
- Department of Laboratory Medicine, Handan Second Hospital, Hebei University of Engineering, Handan, 056000, PR China
| | - Mengrou Liu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Haoqian Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yukun Yin
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Xianda Che
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Gaige Wu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - li Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Ziquan Yang
- Department of Orthopedics, First Hospital of Shanxi Medical University, Taiyuan, 030000, PR China
| |
Collapse
|
28
|
Zhang C, Chang Y, Shu L, Chen Z. Pathogenesis of thoracic ossification of the ligamentum flavum. Front Pharmacol 2024; 15:1496297. [PMID: 39545059 PMCID: PMC11560781 DOI: 10.3389/fphar.2024.1496297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is characterized by ectopic ossification of the ligamentum flavum in the thoracic spine and is considered the main cause of thoracic spinal stenosis and spinal cord disease. Osteoblast specific transcription factor Osterix (Osx) is required for bone formation, and there is no bone formation or ossification without Osx. Surgical intervention is recognized as the only effective method for TOLF treatment with set of complications. However, underlying mechanisms of TOLF are not well understood. This paper summarizes the pathogenesis of TOLF. Some relevant factors have been discussed, such as mechanical stress, genetic susceptibility genes, endocrine and trace element metabolism abnormalities, which may associate with TOLF. More recent studies using proteomics technology and RNA sequencing approach have discovered that some new factors participate in TOLF by upregulation of Osx gene expression including inflammatory factors. TOLF is a unique disease involving multiple factors. On the other hand, studies on TOLF pathogenic mechanism may provide new ideas for finding possible upstream regulatory factors of Osx and further developing novel drugs to stimulate new bone formation to treat osteoporosis.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Central Laboratory, Peking University International Hospital, Beijing, China
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yanan Chang
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Shu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University International Hospital, Beijing, China
| |
Collapse
|
29
|
Weber CJ, Weitzel AJ, Liu AY, Gacasan EG, Sah RL, Cooper KL. Cellular and molecular mechanisms that shape the development and evolution of tail vertebral proportion in mice and jerboas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620311. [PMID: 39484405 PMCID: PMC11527341 DOI: 10.1101/2024.10.25.620311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite the functional importance of the vertebral skeleton, little is known about how individual vertebrae elongate or achieve disproportionate lengths as in the giraffe neck. Rodent tails are an abundantly diverse and more tractable system to understand mechanisms of vertebral growth and proportion. In many rodents, disproportionately long mid-tail vertebrae form a 'crescendo-decrescendo' of lengths in the tail series. In bipedal jerboas, these vertebrae grow exceptionally long such that the adult tail is 1.5x the length of a mouse tail, relative to body length, with four fewer vertebrae. How do vertebrae with the same regional identity elongate differently from their neighbors to establish and diversify adult proportion? Here, we find that vertebral lengths are largely determined by differences in growth cartilage height and the number of cells progressing through endochondral ossification. Hypertrophic chondrocyte size, a major contributor to differential elongation in mammal limb bones, differs only in the longest jerboa mid-tail vertebrae where they are exceptionally large. To uncover candidate molecular mechanisms of disproportionate vertebral growth, we performed intersectional RNA-Seq of mouse and jerboa tail vertebrae with similar and disproportionate elongation rates. Many regulators of posterior axial identity and endochondral elongation are disproportionately differentially expressed in jerboa vertebrae. Among these, the inhibitory natriuretic peptide receptor C (NPR3) appears in multiple studies of rodent and human skeletal proportion suggesting it refines local growth rates broadly in the skeleton and broadly in mammals. Consistent with this hypothesis, NPR3 loss of function mice have abnormal tail and limb proportions. Therefore, in addition to genetic components of the complex process of vertebral evolution, these studies reveal fundamental mechanisms of skeletal growth and proportion.
Collapse
Affiliation(s)
- Ceri J Weber
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alexander J Weitzel
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alexander Y Liu
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Erica G Gacasan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Robert L Sah
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Kimberly L Cooper
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Bertels JC, He G, Long F. Metabolic reprogramming in skeletal cell differentiation. Bone Res 2024; 12:57. [PMID: 39394187 PMCID: PMC11470040 DOI: 10.1038/s41413-024-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.
Collapse
Affiliation(s)
- Joshua C Bertels
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guangxu He
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedics, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Fanxin Long
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Hawkes G, Beaumont RN, Li Z, Mandla R, Li X, Albert CM, Arnett DK, Ashley-Koch AE, Ashrani AA, Barnes KC, Boerwinkle E, Brody JA, Carson AP, Chami N, Chen YDI, Chung MK, Curran JE, Darbar D, Ellinor PT, Fornage M, Gordeuk VR, Guo X, He J, Hwu CM, Kalyani RR, Kaplan R, Kardia SLR, Kooperberg C, Loos RJF, Lubitz SA, Minster RL, Naseri T, Viali S, Mitchell BD, Murabito JM, Palmer ND, Psaty BM, Redline S, Shoemaker MB, Silverman EK, Telen MJ, Weiss ST, Yanek LR, Zhou H, Liu CT, North KE, Justice AE, Locke JM, Owens N, Murray A, Patel K, Frayling TM, Wright CF, Wood AR, Lin X, Manning A, Weedon MN. Whole-genome sequencing in 333,100 individuals reveals rare non-coding single variant and aggregate associations with height. Nat Commun 2024; 15:8549. [PMID: 39362880 PMCID: PMC11450065 DOI: 10.1038/s41467-024-52579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
The role of rare non-coding variation in complex human phenotypes is still largely unknown. To elucidate the impact of rare variants in regulatory elements, we performed a whole-genome sequencing association analysis for height using 333,100 individuals from three datasets: UK Biobank (N = 200,003), TOPMed (N = 87,652) and All of Us (N = 45,445). We performed rare ( < 0.1% minor-allele-frequency) single-variant and aggregate testing of non-coding variants in regulatory regions based on proximal-regulatory, intergenic-regulatory and deep-intronic annotation. We observed 29 independent variants associated with height at P < 6 × 10 - 10 after conditioning on previously reported variants, with effect sizes ranging from -7cm to +4.7 cm. We also identified and replicated non-coding aggregate-based associations proximal to HMGA1 containing variants associated with a 5 cm taller height and of highly-conserved variants in MIR497HG on chromosome 17. We have developed an approach for identifying non-coding rare variants in regulatory regions with large effects from whole-genome sequencing data associated with complex traits.
Collapse
Affiliation(s)
- Gareth Hawkes
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| | - Robin N Beaumont
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Zilin Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ravi Mandla
- Department of Medicine, Harvard Medical School, Broad Institute, Boston, Massachusetts, USA
| | - Xihao Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine M Albert
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Donna K Arnett
- Provost Office, University of South Carolina, Columbia, SC, USA
| | - Allison E Ashley-Koch
- Department of Medicine, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Aneel A Ashrani
- Division of Hematology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Kathleen C Barnes
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, OH, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Myrian Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Victor R Gordeuk
- Department of Medicine, School of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Rita R Kalyani
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steven A Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan L Minster
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, Brown University, Providence, Rhode Island, US
| | - Satupa'itea Viali
- Oceania University of Medicine, Apia, Samoa
- School of Medicine, National University of Samoa, Apia, Samoa
- Dept of Chronic Disease Epidemiology, Yale University, New Haven, Connecticut, US
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joanne M Murabito
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-, Salem, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - M Benjamin Shoemaker
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne E Justice
- Population Health Sciences, Geisinger, Danville, PA, USA
| | - Jonathan M Locke
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Nick Owens
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Anna Murray
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Kashyap Patel
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | | | - Andrew R Wood
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Alisa Manning
- Department of Medicine, Harvard Medical School, Broad Institute, Boston, Massachusetts, USA
| | - Michael N Weedon
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
32
|
Snijesh VP, Krishnamurthy S, Bhardwaj V, Punya KM, Niranjana Murthy AS, Almutadares M, Habhab WT, Nasser KK, Banaganapalli B, Shaik NA, Albaqami WF. SHH Signaling as a Key Player in Endometrial Cancer: Unveiling the Correlation with Good Prognosis, Low Proliferation, and Anti-Tumor Immune Milieu. Int J Mol Sci 2024; 25:10443. [PMID: 39408773 PMCID: PMC11477284 DOI: 10.3390/ijms251910443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Endometrial Cancer (EC) is one of the most common gynecological malignancies. Despite its prevalence, molecular pathways, such as the Sonic Hedgehog (SHH) pathway, have not been extensively studied in the context of EC. This study aims to explore the clinical implications of SHH expression in EC, potentially uncovering new insights into the disease's pathogenesis and offering valuable insights for therapeutic strategies in EC. We utilized data from The Cancer Genome Atlas (TCGA) to divide the dataset into 'High SHH' and 'Low SHH' groups based on a gene signature score derived from SHH pathway-related genes. We explored the clinical and tumor characteristics of these groups, focusing on key cancer hallmarks, including stemness, proliferation, cytolytic activity, tumor micro-environment, and genomic instability. 'High SHH' tumors emerged as a distinct category with favorable clinical and molecular features. These tumors exhibited lower proliferation rates, reduced angiogenesis, and diminished genomic instability, indicating a controlled and less aggressive tumor growth pattern. Moreover, 'High SHH' tumors displayed lower stemness, highlighting a less invasive phenotype. The immune micro-environment in 'High SHH' tumors was enriched with immune cell types, such as macrophage M0, monocytes, B cells, CD8 T cells, CD4 T cells, follicular helper T cells, and natural killer cells. This immune enrichment, coupled with higher cytolytic activity, suggested an improved anti-tumor immune response. Our study sheds light on the clinical significance of Sonic signaling in EC. 'High SHH' tumors exhibit a unique molecular and clinical profile associated with favorable cancer hallmarks, lower grades, and better survival. These findings underscore the potential utility of SHH expression as a robust prognostic biomarker, offering valuable insights for tailored therapeutic strategies in EC. Understanding the SHH pathway's role in EC contributes to our growing knowledge of this cancer and may pave the way for more effective treatment strategies in the future.
Collapse
Affiliation(s)
- V. P. Snijesh
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore 560034, Karnataka, India;
| | - Shivakumar Krishnamurthy
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore 560034, Karnataka, India;
| | - Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - K. M. Punya
- Electronics & Communication Engineering, Excel College of Technology, Namakkal 637303, Tamilnadu, India;
| | - Ashitha S. Niranjana Murthy
- Department of Psychiatry, National Institute of Mental Health And Neuro Sciences, Bangalore 560029, Karnataka, India;
| | - Mahmoud Almutadares
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.); (W.T.H.); (B.B.); (N.A.S.)
| | - Wisam Tahir Habhab
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.); (W.T.H.); (B.B.); (N.A.S.)
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.); (W.T.H.); (B.B.); (N.A.S.)
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.); (W.T.H.); (B.B.); (N.A.S.)
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Walaa F. Albaqami
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran 31932, Saudi Arabia
| |
Collapse
|
33
|
Komori T. Regulation of Skeletal Development and Maintenance by Runx2 and Sp7. Int J Mol Sci 2024; 25:10102. [PMID: 39337587 PMCID: PMC11432631 DOI: 10.3390/ijms251810102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Runx2 (runt related transcription factor 2) and Sp7 (Sp7 transcription factor 7) are crucial transcription factors for bone development. The cotranscription factor Cbfb (core binding factor beta), which enhances the DNA-binding capacity of Runx2 and stabilizes the Runx2 protein, is necessary for bone development. Runx2 is essential for chondrocyte maturation, and Sp7 is partly involved. Runx2 induces the commitment of multipotent mesenchymal cells to osteoblast lineage cells and enhances the proliferation of osteoprogenitors. Reciprocal regulation between Runx2 and the Hedgehog, fibroblast growth factor (Fgf), Wnt, and parathyroid hormone-like hormone (Pthlh) signaling pathways and Dlx5 (distal-less homeobox 5) plays an important role in these processes. The induction of Fgfr2 (Fgf receptor 2) and Fgfr3 expression by Runx2 is important for the proliferation of osteoblast lineage cells. Runx2 induces Sp7 expression, and Runx2+ osteoprogenitors become Runx2+Sp7+ preosteoblasts. Sp7 induces the differentiation of preosteoblasts into osteoblasts without enhancing their proliferation. In osteoblasts, Runx2 is required for bone formation by inducing the expression of major bone matrix protein genes, including Col1a1 (collagen type I alpha 1), Col1a2, Spp1 (secreted phosphoprotein 1), Ibsp (integrin binding sialoprotein), and Bglap (bone gamma carboxyglutamate protein)/Bglap2. Bglap/Bglap2 (osteocalcin) regulates the alignment of apatite crystals parallel to collagen fibrils but does not function as a hormone that regulates glucose metabolism, testosterone synthesis, and muscle mass. Sp7 is also involved in Co1a1 expression and regulates osteoblast/osteocyte process formation, which is necessary for the survival of osteocytes and the prevention of cortical porosity. SP7 mutations cause osteogenesis imperfecta in rare cases. Runx2 is an important pathogenic factor, while Runx1, Runx3, and Cbfb are protective factors in osteoarthritis development.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
34
|
Pei Y, Liu F, Zhao Y, Lin H, Huang X. Role of hedgehog signaling in the pathogenesis and therapy of heterotopic ossification. Front Cell Dev Biol 2024; 12:1454058. [PMID: 39364140 PMCID: PMC11447292 DOI: 10.3389/fcell.2024.1454058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process that generates ectopic bone in soft tissues. Hedgehog signaling (Hh signaling) is a signaling pathway that plays an important role in embryonic development and involves three ligands: sonic hedgehog (Shh), Indian hedgehog (Ihh) and desert hedgehog (Dhh). Hh signaling also has an important role in skeletal development. This paper discusses the effects of Hh signaling on the process of HO formation and describes several signaling molecules that are involved in Hh-mediated processes: parathyroid Hormone-Related Protein (PTHrP) and Fkbp10 mediate the expression of Hh during chondrogenesic differentiation. Extracellular signal-regulated kinase (ERK), GNAs and Yes-Associated Protein (YAP) interact with Hh signaling to play a role in osteogenic differentiation. Runt-Related Transcription Factor 2 (Runx2), Mohawk gene (Mkx) and bone morphogenetic protein (BMP) mediate Hh signaling during both chondrogenic and osteogenic differentiation. This paper also discusses possible therapeutic options for HO, lists several Hh inhibitors and explores whether they could serve as emerging targets for the treatment of HO.
Collapse
Affiliation(s)
- Yiran Pei
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Fangzhou Liu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yike Zhao
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyan Huang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
35
|
Schlissel G, Meziane M, Narducci D, Hansen AS, Li P. Diffusion barriers imposed by tissue topology shape Hedgehog morphogen gradients. Proc Natl Acad Sci U S A 2024; 121:e2400677121. [PMID: 39190357 PMCID: PMC11388384 DOI: 10.1073/pnas.2400677121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Animals use a small number of morphogens to pattern tissues, but it is unclear how evolution modulates morphogen signaling range to match tissues of varying sizes. Here, we used single-molecule imaging in reconstituted morphogen gradients and in tissue explants to determine that Hedgehog diffused extracellularly as a monomer, and rapidly transitioned between membrane-confined and -unconfined states. Unexpectedly, the vertebrate-specific protein SCUBE1 expanded Hedgehog gradients by accelerating the transition rates between states without affecting the relative abundance of molecules in each state. This observation could not be explained under existing models of morphogen diffusion. Instead, we developed a topology-limited diffusion model in which cell-cell gaps create diffusion barriers, which morphogens can only overcome by passing through a membrane-unconfined state. Under this model, SCUBE1 promoted Hedgehog secretion and diffusion by allowing it to transiently overcome diffusion barriers. This multiscale understanding of morphogen gradient formation unified prior models and identified knobs that nature can use to tune morphogen gradient sizes across tissues and organisms.
Collapse
Affiliation(s)
- Gavin Schlissel
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
| | - Miram Meziane
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Domenic Narducci
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA02142
- Koch Institute for Integrative Cancer Research, Cambridge, MA02139
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA02142
- Koch Institute for Integrative Cancer Research, Cambridge, MA02139
| | - Pulin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
36
|
Harboe M, Kjaer-Sorensen K, Füchtbauer EM, Fenton RA, Thomsen JS, Brüel A, Oxvig C. The metalloproteinase PAPP-A is required for IGF-dependent chondrocyte differentiation and organization. Sci Rep 2024; 14:20161. [PMID: 39215168 PMCID: PMC11364822 DOI: 10.1038/s41598-024-71062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Insulin-like growth factor (IGF) signaling is required for proper growth and skeletal development in vertebrates. Consequently, its dysregulation may lead to abnormalities of growth or skeletal structures. IGF is involved in the regulation of cell proliferation and differentiation of chondrocytes. However, the availability of bioactive IGF may be controlled by antagonizing IGF binding proteins (IGFBPs) in the circulation and tissues. As the metalloproteinase PAPP-A specifically cleaves members of the IGFBP family, we hypothesized that PAPP-A activity liberates bioactive IGF in cartilage. In PAPP-A knockout mice, the femur length was reduced and the mice showed a disorganized columnar organization of growth plate chondrocytes. Similarly, zebrafish lacking pappaa showed reduced length of Meckel's cartilage and disorganized chondrocytes, reminiscent of the mouse knockout phenotype. Expression of chondrocyte differentiation markers (sox9a, ihha, and col10a1) was markedly affected in Meckel's cartilage of pappaa knockout zebrafish, indicating that differentiation of chondrocytes was compromised. Additionally, the zebrafish pappaa knockout phenotype was mimicked by pharmacological inhibition of IGF signaling, and it could be rescued by treatment with exogenous recombinant IGF-I. In conclusion, our data suggests that IGF activity in the growing cartilage, and hence IGF signaling in chondrocytes, requires the presence of PAPP-A. The absence of PAPP-A causes aberrant chondrocyte organization and compromised growth in both mice and zebrafish.
Collapse
Affiliation(s)
- Mette Harboe
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Ernst-Martin Füchtbauer
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark.
| |
Collapse
|
37
|
Wang CL, Li P, Liu B, Ma YQ, Feng JX, Xu YN, Liu L, Li ZH. Decrypting the skeletal toxicity of vertebrates caused by environmental pollutants from an evolutionary perspective: From fish to mammals. ENVIRONMENTAL RESEARCH 2024; 255:119173. [PMID: 38763280 DOI: 10.1016/j.envres.2024.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The rapid development of modern society has led to an increasing severity in the generation of new pollutants and the significant emission of old pollutants, exerting considerable pressure on the ecological environment and posing a serious threat to both biological survival and human health. The skeletal system, as a vital supportive structure and functional unit in organisms, is pivotal in maintaining body shape, safeguarding internal organs, storing minerals, and facilitating blood cell production. Although previous studies have uncovered the toxic effects of pollutants on vertebrate skeletal systems, there is a lack of comprehensive literature reviews in this field. Hence, this paper systematically summarizes the toxic effects and mechanisms of environmental pollutants on the skeletons of vertebrates based on the evolutionary context from fish to mammals. Our findings reveal that current research mainly focuses on fish and mammals, and the identified impact mechanisms mainly involve the regulation of bone signaling pathways, oxidative stress response, endocrine system disorders, and immune system dysfunction. This study aims to provide a comprehensive and systematic understanding of research on skeletal toxicity, while also promoting further research and development in related fields.
Collapse
Affiliation(s)
- Cun-Long Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yu-Qing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ya-Nan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
38
|
Bouchenafa R, Johnson de Sousa Brito FM, Piróg KA. Involvement of kinesins in skeletal dysplasia: a review. Am J Physiol Cell Physiol 2024; 327:C278-C290. [PMID: 38646780 PMCID: PMC11293425 DOI: 10.1152/ajpcell.00613.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Skeletal dysplasias are group of rare genetic diseases resulting from mutations in genes encoding structural proteins of the cartilage extracellular matrix (ECM), signaling molecules, transcription factors, epigenetic modifiers, and several intracellular proteins. Cell division, organelle maintenance, and intracellular transport are all orchestrated by the cytoskeleton-associated proteins, and intracellular processes affected through microtubule-associated movement are important for the function of skeletal cells. Among microtubule-associated motor proteins, kinesins in particular have been shown to play a key role in cell cycle dynamics, including chromosome segregation, mitotic spindle formation, and ciliogenesis, in addition to cargo trafficking, receptor recycling, and endocytosis. Recent studies highlight the fundamental role of kinesins in embryonic development and morphogenesis and have shown that mutations in kinesin genes lead to several skeletal dysplasias. However, many questions concerning the specific functions of kinesins and their adaptor molecules as well as specific molecular mechanisms in which the kinesin proteins are involved during skeletal development remain unanswered. Here we present a review of the skeletal dysplasias resulting from defects in kinesins and discuss the involvement of kinesin proteins in the molecular mechanisms that are active during skeletal development.
Collapse
Affiliation(s)
- Roufaida Bouchenafa
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Anna Piróg
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
39
|
Yoshida S, Kawamura A, Aoki K, Wiriyasermkul P, Sugimoto S, Tomiyoshi J, Tajima A, Ishida Y, Katoh Y, Tsukada T, Tsuneoka Y, Yamada K, Nagamori S, Nakayama K, Yoshida K. Positive regulation of Hedgehog signaling via phosphorylation of GLI2/GLI3 by DYRK2 kinase. Proc Natl Acad Sci U S A 2024; 121:e2320070121. [PMID: 38968120 PMCID: PMC11252808 DOI: 10.1073/pnas.2320070121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/02/2024] [Indexed: 07/07/2024] Open
Abstract
Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Akira Kawamura
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Katsuhiko Aoki
- Radioisotope Research Facilities, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Pattama Wiriyasermkul
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Laboratory of Amyloid Regulation, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Junnosuke Tomiyoshi
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Ayasa Tajima
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Toho University, Chiba274-8510, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo143-8540, Japan
| | - Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Shushi Nagamori
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| |
Collapse
|
40
|
Jin M, An Y, Wang Z, Wang G, Lin Z, Ding P, Lu E, Zhao Z, Bi H. Distraction force promotes the osteogenic differentiation of Gli1 + cells in facial sutures via primary cilia-mediated Hedgehog signaling pathway. Stem Cell Res Ther 2024; 15:198. [PMID: 38971766 PMCID: PMC11227703 DOI: 10.1186/s13287-024-03811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Trans-sutural distraction osteogenesis (TSDO) involves the application of distraction force to facial sutures to stimulate osteogenesis. Gli1+ cells in the cranial sutures play an important role in bone growth. However, whether Gli1+ cells in facial sutures differentiate into bone under distraction force is unknown. METHODS 4-week-old Gli1ER/Td and C57BL/6 mice were used to establish a TSDO model to explore osteogenesis of zygomaticomaxillary sutures. A Gli1+ cell lineage tracing model was used to observe the distribution of Gli1+ cells and explore the role of Gli1+ cells in facial bone remodeling. RESULTS Distraction force promoted bone remodeling during TSDO. Fluorescence and two-photon scanning images revealed the distribution of Gli1+ cells. Under distraction force, Gli1-lineage cells proliferated significantly and co-localized with Runx2+ cells. Hedgehog signaling was upregulated in Gli1+ cells. Inhibition of Hedgehog signaling suppresses the proliferation and osteogenesis of Gli1+ cells induced by distraction force. Subsequently, the stem cell characteristics of Gli1+ cells were identified. Cell-stretching experiments verified that mechanical force promoted the osteogenic differentiation of Gli1+ cells through Hh signaling. Furthermore, immunofluorescence staining and RT-qPCR experiments demonstrated that the primary cilia in Gli1+ cells exhibit Hedgehog-independent mechanosensitivity, which was required for the osteogenic differentiation induced by mechanical force. CONCLUSIONS Our study indicates that the primary cilia of Gli1+ cells sense mechanical stimuli, mediate Hedgehog signaling activation, and promote the osteogenic differentiation of Gli1+ cells in zygomaticomaxillary sutures.
Collapse
Affiliation(s)
- Mengying Jin
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, Henan, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zheng Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhiyu Lin
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Enhang Lu
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
41
|
Díaz-González F, Sentchordi-Montané L, Lucas-Castro E, Modamio-Høybjør S, Heath KE. Variants in both the N- or C-terminal domains of IHH lead to defective secretion causing short stature and skeletal defects. Eur J Endocrinol 2024; 191:38-46. [PMID: 38917024 DOI: 10.1093/ejendo/lvae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Heterozygous Indian Hedgehog gene (IHH) variants are associated with brachydactyly type A1 (BDA1). However, in recent years, numerous variants have been identified in patients with short stature and more variable forms of brachydactyly. Many are located in the C-terminal domain of IHH (IHH-C), which lacks signaling activity but is critical for auto-cleavage and activation of the N-terminal (IHH-N) peptide. The absence of functional studies of IHH variants, particularly for those located in IHH-C, has led to these variants being classified as variants of uncertain significance (VUS). OBJECTIVE To establish a simple functional assay to determine the pathogenicity of IHH VUS and confirm that variants in the C-terminal domain affect protein function. DESIGN/METHODS In vitro studies were performed for 9 IHH heterozygous variants, to test their effect on secretion and IHH intracellular processing by western blot of cells expressing each variant. RESULTS IHH secretion was significantly reduced in all mutants, regardless of the location. Similarly, intracellular levels of N-terminal and C-terminal IHH peptides were severely reduced in comparison with the control. Two variants present at a relatively high frequency in the general population also reduced secretion but to a lesser degree in the heterozygous state. CONCLUSIONS These studies provide the first evidence that variants in the C-terminal domain affect the secretion capacity of IHH and thus, reduce availability of IHH ligand, resulting in short stature and mild skeletal defects. The secretion assay permits a relatively easy test to determine the pathogenicity of IHH variants. All studied variants affected secretion and interestingly, more frequent population variants appear to have a deleterious effect and thus contribute to height variation.
Collapse
Affiliation(s)
- Francisca Díaz-González
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Lucía Sentchordi-Montané
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
- Department of Pediatrics, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Department of Pediatrics, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elsa Lucas-Castro
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Silvia Modamio-Høybjør
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, ISCIII, 28029 Madrid, Spain
| |
Collapse
|
42
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
43
|
Venkatasubramanian D, Senevirathne G, Capellini TD, Craft AM. Leveraging single cell multiomic analyses to identify factors that drive human chondrocyte cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598666. [PMID: 38915712 PMCID: PMC11195167 DOI: 10.1101/2024.06.12.598666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cartilage plays a crucial role in skeletal development and function, and abnormal development contributes to genetic and age-related skeletal disease. To better understand how human cartilage develops in vivo , we jointly profiled the transcriptome and open chromatin regions in individual nuclei recovered from distal femurs at 2 fetal timepoints. We used these multiomic data to identify transcription factors expressed in distinct chondrocyte subtypes, link accessible regulatory elements with gene expression, and predict transcription factor-based regulatory networks that are important for growth plate or epiphyseal chondrocyte differentiation. We developed a human pluripotent stem cell platform for interrogating the function of predicted transcription factors during chondrocyte differentiation and used it to test NFATC2 . We expect new regulatory networks we uncovered using multiomic data to be important for promoting cartilage health and treating disease, and our platform to be a useful tool for studying cartilage development in vitro . Statement of Significance The identity and integrity of the articular cartilage lining our joints are crucial to pain-free activities of daily living. Here we identified a gene regulatory landscape of human chondrogenesis at single cell resolution, which is expected to open new avenues of research aimed at mitigating cartilage diseases that affect hundreds of millions of individuals world-wide.
Collapse
|
44
|
Sun Q, Huang J, Tian J, Lv C, Li Y, Yu S, Liu J, Zhang J. Key Roles of Gli1 and Ihh Signaling in Craniofacial Development. Stem Cells Dev 2024; 33:251-261. [PMID: 38623785 DOI: 10.1089/scd.2024.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
The Hedgehog (Hh) signaling pathway orchestrates its influence through a dynamic interplay of Hh proteins, the cell surface receptor Ptch1, Smo, and Gli transcription factors, contributing to a myriad of developmental events. Indian Hedgehog (Ihh) and Gli zinc finger transcription factor 1 (Gli1) play crucial roles in developmental regulation within the Hh signaling pathway. Ihh regulates chondrocyte proliferation, differentiation, and bone formation, impacting the development of cranial bones, cartilage, and the temporomandibular joint (TMJ). Losing Ihh results in cranial bone malformation and decreased ossification and affects the formation of cranial base cartilage unions, TMJ condyles, and joint discs. Gli1 is predominantly expressed during early craniofacial development, and Gli1+ cells are identified as the primary mesenchymal stem cells (MSCs) for craniofacial bones, crucial for cell differentiation and morphogenesis. In addition, a complex mutual regulatory mechanism exists between Gli1 and Ihh, ensuring the normal function of the Hh signaling pathway by directly or indirectly regulating each other's expression levels. And the interaction between Ihh and Gli1 significantly impacts the normal development of craniofacial tissues. This review summarizes the pivotal roles of Gli1 and Ihh in the intricate landscape of mammalian craniofacial development and outlines the molecular regulatory mechanisms and intricate interactions governing the growth of bone and cartilage exhibited by Gli1 and Ihh, which provides new insights into potential therapeutic strategies for related diseases or researches of tissue regeneration.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Jie Huang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Jingjun Tian
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Changhai Lv
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Yanhong Li
- Department of Preventive Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Siyuan Yu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Juan Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Jun Zhang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| |
Collapse
|
45
|
Schlissel G, Meziane M, Narducci D, Hansen AS, Li P. Diffusion barriers imposed by tissue topology shape morphogen gradients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592050. [PMID: 38746265 PMCID: PMC11092646 DOI: 10.1101/2024.05.01.592050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Animals use a small number of morphogens to pattern tissues, but it is unclear how evolution modulates morphogen signaling range to match tissues of varying sizes. Here, we used single molecule imaging in reconstituted morphogen gradients and in tissue explants to determine that Hedgehog diffused extra-cellularly as a monomer, and rapidly transitioned between membrane-confined and -unconfined states. Unexpectedly, the vertebrate-specific protein SCUBE1 expanded Hedgehog gradients by accelerating the transition rates between states without affecting the relative abundance of molecules in each state. This observation could not be explained under existing models of morphogen diffusion. Instead, we developed a topology-limited diffusion model in which cell-cell gaps create diffusion barriers, and morphogens can only overcome the barrier by passing through a membrane-unconfined state. Under this model, SCUBE1 promotes Hedgehog secretion and diffusion by allowing it to transiently overcome diffusion barriers. This multiscale understanding of morphogen gradient formation unified prior models and discovered novel knobs that nature can use to tune morphogen gradient sizes across tissues and organisms.
Collapse
|
46
|
Yokoyama Y, Kameo Y, Sunaga J, Maki K, Adachi T. Chondrocyte hypertrophy in the growth plate promotes stress anisotropy affecting long bone development through chondrocyte column formation. Bone 2024; 182:117055. [PMID: 38412894 DOI: 10.1016/j.bone.2024.117055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
The length of long bones is determined by column formation of proliferative chondrocytes and subsequent chondrocyte hypertrophy in the growth plate during bone development. Despite the importance of mechanical loading in long bone development, the mechanical conditions of the cells within the growth plate, such as the stress field, remain unclear owing to the difficulty in investigating spatiotemporal changes within dynamically growing tissues. In this study, the mechanisms of longitudinal bone growth were investigated from a mechanical perspective through column formation of proliferative chondrocytes within the growth plate before secondary ossification center formation using continuum-based particle models (CbPMs). A one-factor model, which simply describes essential aspects of a biological signaling cascade regulating cell activities within the growth plate, was developed and incorporated into CbPM. Subsequently, the developmental process and maintenance of the growth plate structure and resulting bone morphogenesis were simulated. Thus, stress anisotropy in the proliferative zone that affects bone elongation through chondrocyte column formation was identified and found to be promoted by chondrocyte hypertrophy. These results provide further insights into the mechanical regulation of multicellular dynamics during bone development.
Collapse
Affiliation(s)
- Yuka Yokoyama
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshitaka Kameo
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Engineering Science and Mechanics, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu Koto-ku, Tokyo, 135-8548, Japan
| | - Junko Sunaga
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichiro Maki
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
47
|
Sun L, Niu H, Wu Y, Dong S, Li X, Kim BY, Liu C, Ma Y, Jiang W, Yuan Y. Bio-integrated scaffold facilitates large bone regeneration dominated by endochondral ossification. Bioact Mater 2024; 35:208-227. [PMID: 38327823 PMCID: PMC10847751 DOI: 10.1016/j.bioactmat.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Repair of large bone defects caused by severe trauma, non-union fractures, or tumor resection remains challenging because of limited regenerative ability. Typically, these defects heal through mixed routines, including intramembranous ossification (IMO) and endochondral ossification (ECO), with ECO considered more efficient. Current strategies to promote large bone healing via ECO are unstable and require high-dose growth factors or complex cell therapy that cause side effects and raise expense while providing only limited benefit. Herein, we report a bio-integrated scaffold capable of initiating an early hypoxia microenvironment with controllable release of low-dose recombinant bone morphogenetic protein-2 (rhBMP-2), aiming to induce ECO-dominated repair. Specifically, we apply a mesoporous structure to accelerate iron chelation, this promoting early chondrogenesis via deferoxamine (DFO)-induced hypoxia-inducible factor-1α (HIF-1α). Through the delicate segmentation of click-crosslinked PEGylated Poly (glycerol sebacate) (PEGS) layers, we achieve programmed release of low-dose rhBMP-2, which can facilitate cartilage-to-bone transformation while reducing side effect risks. We demonstrate this system can strengthen the ECO healing and convert mixed or mixed or IMO-guided routes to ECO-dominated approach in large-size models with clinical relevance. Collectively, these findings demonstrate a biomaterial-based strategy for driving ECO-dominated healing, paving a promising pave towards its clinical use in addressing large bone defects.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haoyi Niu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuqiong Wu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Shiyan Dong
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Xuefeng Li
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y.S. Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yifan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
48
|
Aydin A, Klenk C, Nemec K, Işbilir A, Martin LM, Zauber H, Rrustemi T, Toka HR, Schuster H, Gong M, Stricker S, Bock A, Bähring S, Selbach M, Lohse MJ, Luft FC. ADAM19 cleaves the PTH receptor and associates with brachydactyly type E. Life Sci Alliance 2024; 7:e202302400. [PMID: 38331475 PMCID: PMC10853454 DOI: 10.26508/lsa.202302400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Brachydactyly type E (BDE), shortened metacarpals, metatarsals, cone-shaped epiphyses, and short stature commonly occurs as a sole phenotype. Parathyroid hormone-like protein (PTHrP) has been shown to be responsible in all forms to date, either directly or indirectly. We used linkage and then whole genome sequencing in a small pedigree, to elucidate BDE and identified a truncated disintegrin-and-metalloproteinase-19 (ADAM19) allele in all affected family members, but not in nonaffected persons. Since we had shown earlier that the extracellular domain of the parathyroid hormone receptor (PTHR1) is subject to an unidentified metalloproteinase cleavage, we tested the hypothesis that ADAM19 is a sheddase for PTHR1. WT ADAM19 cleaved PTHR1, while mutated ADAM-19 did not. We mapped the cleavage site that we verified with mass spectrometry between amino acids 64-65. ADAM-19 cleavage increased Gq and decreased Gs activation. Moreover, perturbed PTHR1 cleavage by ADAM19 increased ß-arrestin2 recruitment, while cAMP accumulation was not altered. We suggest that ADAM19 serves as a regulatory element for PTHR1 and could be responsible for BDE. This sheddase may affect other PTHrP or PTH-related functions.
Collapse
Affiliation(s)
- Atakan Aydin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Christoph Klenk
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Katarina Nemec
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Department of Structural Biology and Center of Excellence for Data-Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ali Işbilir
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Lisa M Martin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Henrik Zauber
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Trendelina Rrustemi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Hakan R Toka
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Herbert Schuster
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Maolian Gong
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andreas Bock
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sylvia Bähring
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- ISAR Bioscience Institute, Munich, Germany
| | - Friedrich C Luft
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
49
|
Cai S, Chen M, Xue B, Zhu Z, Wang X, Li J, Wang H, Zeng X, Qiao S, Zeng X. Retinoic acid enhances ovarian steroidogenesis by regulating granulosa cell proliferation and MESP2/STAR/CYP11A1 pathway. J Adv Res 2024; 58:163-173. [PMID: 37315842 PMCID: PMC10982869 DOI: 10.1016/j.jare.2023.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION Ovarian steroidogenesis not only affects the embryonic development and pregnancy outcome, but also associates with many diseases in mammals and women. Exploring the nutrients and mechanisms influencing ovarian steroidogenesis is critical to maintaining the optimal reproductive performance, as well as guaranteeing body health. OBJECTIVES This research aimed to explore the effect of retinol metabolism on ovarian steroidogenesis and the underlying mechanisms. METHODS Comparative transcriptomic analysis of ovaries from normal and low reproductive performance sows were performed to identify the main causes leading to low fertility. The metabolites regulating steroid hormones synthesis were investigated in ovarian granulosa cells. Gene interference, overexpression, dual-luciferase reporter assays, chromatin immunoprecipitation and transcriptome analysis were further conducted to explore the underlying mechanisms of Aldh1a1 mediating ovarian steroidogenesis. RESULTS Transcriptome analysis of ovaries from normal and low reproductive performance sows showed the significant differences in both retinol metabolism and steroid hormones synthesis, indicating retinol metabolism probably influenced steroid hormones synthesis. The related metabolite retinoic acid was furtherly proven a highly active and potent substance strengthening estrogen and progesterone synthesis in ovarian granulosa cells. For the first time, we revealed that retinoic acid synthesis in porcine and human ovarian granulosa cells was dominated by Aldh1a1, and required the assistance of Aldh1a2. Importantly, we demonstrated that Aldh1a1 enhanced the proliferation of ovarian granulosa cells by activating PI3K-Akt-hedgehog signaling pathways. In addition, Aldh1a1 regulated the expression of transcription factor MESP2, which targeted the transcription of Star and Cyp11a1 through binding to corresponding promoter regions. CONCLUSION Our data identified Aldh1a1 modulates ovarian steroidogenesis through enhancing granulosa cell proliferation and MESP2/STAR/CYP11A1 pathway. These findings provide valuable clues for improving ovarian health in mammals.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, PR China; Beijing Biofeed Additive Key Laboratory, China Agricultural University, Beijing 100193, PR China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, PR China; Beijing Biofeed Additive Key Laboratory, China Agricultural University, Beijing 100193, PR China; Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Bangxin Xue
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, PR China; Beijing Biofeed Additive Key Laboratory, China Agricultural University, Beijing 100193, PR China
| | - Zhekun Zhu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, PR China; Beijing Biofeed Additive Key Laboratory, China Agricultural University, Beijing 100193, PR China
| | - Xinyu Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, PR China; Beijing Biofeed Additive Key Laboratory, China Agricultural University, Beijing 100193, PR China
| | - Jie Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, PR China
| | - Huakai Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, PR China; Beijing Biofeed Additive Key Laboratory, China Agricultural University, Beijing 100193, PR China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, PR China; Beijing Biofeed Additive Key Laboratory, China Agricultural University, Beijing 100193, PR China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, PR China; Beijing Biofeed Additive Key Laboratory, China Agricultural University, Beijing 100193, PR China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, PR China; Beijing Biofeed Additive Key Laboratory, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
50
|
Li B, Yang P, Shen F, You C, Wu F, Shi Y, Ye L. Gli1 labels progenitors during chondrogenesis in postnatal mice. EMBO Rep 2024; 25:1773-1791. [PMID: 38409269 PMCID: PMC11014955 DOI: 10.1038/s44319-024-00093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Skeletal growth promoted by endochondral ossification is tightly coordinated by self-renewal and differentiation of chondrogenic progenitors. Emerging evidence has shown that multiple skeletal stem cells (SSCs) participate in cartilage formation. However, as yet, no study has reported the existence of common long-lasting chondrogenic progenitors in various types of cartilage. Here, we identify Gli1+ chondrogenic progenitors (Gli1+ CPs), which are distinct from PTHrP+ or FoxA2+ SSCs, are responsible for the lifelong generation of chondrocytes in the growth plate, vertebrae, ribs, and other cartilage. The absence of Gli1+ CPs leads to cartilage defects and dwarfishness phenotype in mice. Furthermore, we show that the BMP signal plays an important role in self-renewal and maintenance of Gli1+ CPs. Deletion of Bmpr1α triggers Gli1+ CPs quiescence exit and causes the exhaustion of Gli1+ CPs, consequently disrupting columnar cartilage. Collectively, our data demonstrate that Gli1+ CPs are common long-term chondrogenic progenitors in multiple types of cartilage and are essential to maintain cartilage homeostasis.
Collapse
Affiliation(s)
- Boer Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Puying Yang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengjia You
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|