1
|
Bauer TM, Moon JY, Shadiow J, Buckley SD, Gallagher KA. Mechanisms of Impaired Wound Healing in Type 2 Diabetes: The Role of Epigenetic Factors. Arterioscler Thromb Vasc Biol 2025; 45:632-642. [PMID: 40109262 DOI: 10.1161/atvbaha.124.321446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Despite decades of research, impaired extremity wound healing in type 2 diabetes remains a significant driver of patient morbidity, mortality, and health care costs. Advances in surgical and medical therapies, including the advent of endovascular interventions for peripheral artery disease and topical therapies developed to promote wound healing, have not reduced the frequency of lower leg amputations for nonhealing wounds in type 2 diabetes. This brief report is aimed at reviewing the roles of various cell types in tissue repair and summarizing the known dysfunctions of these cell types in diabetic foot ulcers. Recent advances in our understanding of the epigenetic regulation in immune cells identified to be altered in type 2 diabetes are summarized, and particular attention is paid to the developing research defining the epigenetic regulation of structural cells, including keratinocytes, fibroblasts, and endothelial cells. Gaps in knowledge are highlighted, and potential future directions are suggested based on the current state of the field.
Collapse
Affiliation(s)
- Tyler M Bauer
- Departments of Surgery (T.M.B., J.Y.M., J.S., S.D.B., K.A.G.), University of Michigan, Ann Arbor
| | - Jadie Yoonjoo Moon
- Departments of Surgery (T.M.B., J.Y.M., J.S., S.D.B., K.A.G.), University of Michigan, Ann Arbor
| | - James Shadiow
- Departments of Surgery (T.M.B., J.Y.M., J.S., S.D.B., K.A.G.), University of Michigan, Ann Arbor
| | - Samuel D Buckley
- Departments of Surgery (T.M.B., J.Y.M., J.S., S.D.B., K.A.G.), University of Michigan, Ann Arbor
| | - Katherine A Gallagher
- Departments of Surgery (T.M.B., J.Y.M., J.S., S.D.B., K.A.G.), University of Michigan, Ann Arbor
- Microbiology and Immunology (K.A.G.), University of Michigan, Ann Arbor
| |
Collapse
|
2
|
Torregrossa M, Davies L, Hans-Günther M, Simon JC, Franz S, Rinkevich Y. Effects of embryonic origin, tissue cues and pathological signals on fibroblast diversity in humans. Nat Cell Biol 2025:10.1038/s41556-025-01638-5. [PMID: 40263573 DOI: 10.1038/s41556-025-01638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/18/2025] [Indexed: 04/24/2025]
Abstract
Fibroblasts, once perceived as a uniform cell type, are now recognized as a mosaic of distinct populations with specialized roles in tissue homeostasis and pathology. Here we provide a global overview of the expanding compendium of fibroblast cell types and states, their diverse lineage origins and multifaceted functions across various human organs. By integrating insights from developmental biology, lineage tracing and single-cell technologies, we highlight the complex nature of fibroblasts. We delve into their origination from embryonic mesenchyme and tissue-resident populations, elucidating lineage-specific behaviours in response to physiological cues. Furthermore, we highlight the pivotal role of fibroblasts in orchestrating tissue repair, connective tissue remodelling and immune modulation across diverse pathologies. This knowledge is essential to develop novel fibroblast-targeted therapies to restore steady-state fibroblast function and advance regenerative medicine strategies across multiple diseases.
Collapse
Affiliation(s)
- Marta Torregrossa
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Faculty, Leipzig, Germany
| | - Lindsay Davies
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Machens Hans-Günther
- Department for Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Faculty, Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Faculty, Leipzig, Germany.
| | - Yuval Rinkevich
- Chinese Institutes for Medical Research, Beijing, China.
- Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Thompson AD, McAlister KW, Scholpa NE, Janda J, Hortareas J, Schnellmann RG. Lasmiditan induces mitochondrial biogenesis in primary mouse renal peritubular endothelial cells and augments wound healing and tubular network formation. Am J Physiol Cell Physiol 2025; 328:C1318-C1332. [PMID: 40080391 DOI: 10.1152/ajpcell.00116.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Kidney disease (KD) is a progressive and life-threatening illness that has manifested into a global health crisis, impacting >10% of the general population. Hallmarks of KD include tubular interstitial fibrosis, renal tubular cell atrophy/necrosis, glomerulosclerosis, persistent inflammation, microvascular endothelial cell (MV-EC) dysfunction/rarefaction, and mitochondrial dysfunction. Following acute kidney injury (AKI), and/or during KD onset/progression, MV-ECs of the renal peritubular endothelial capillaries (RPECs) are highly susceptible to injury, dysfunction, and rarefaction. Pharmacological induction of mitochondrial biogenesis (MB) via 5-hydroxytryptamine receptor 1F (HTR1F) agonism has been shown to enhance mitochondrial function and renal vascular recovery post-AKI in mice; however, little is known about MB in relation to renal MV-ECs and RPEC repair mechanisms. To address this gap in knowledge, the in vitro effects of the potent and selective FDA-approved HTR1F agonist lasmiditan were tested on primary mouse renal peritubular endothelial cells (MRPECs). Lasmiditan increased mitochondrial maximal respiration rates, mRNA and protein expression of MB-related genes, and mitochondrial number in MRPECs. MRPECs were then exposed to pro-inflammatory agents associated with renal MV-EC dysfunction, AKI, and KD (i.e., lipopolysaccharides, transforming growth factor-β1, and tumor necrosis factor-α), in the presence/absence of lasmiditan. Lasmiditan treatment augmented MRPEC wound healing, endothelial tubular network formation (ETNF), enhanced barrier integrity, and blunted inflammatory-induced MV-EC dysfunctions. Together, these data suggest that lasmiditan induces MB and improves wound healing and ETNF of primary MRPECs in the presence/absence of pro-inflammatory agents, highlighting a potential therapeutic role for lasmiditan treatment in renal MV-EC dysfunction, AKI, and/or KD.NEW & NOTEWORTHY Lasmiditan, an FDA-approved HTR1F agonist, induces mitochondrial biogenesis (MB) and enhances recovery following acute kidney injury in mice. Renal microvascular endothelial cells (MV-ECs) are highly susceptible to dysfunction/rarefaction postinjury. The effect of MB on MV-EC repair/recovery is unknown. We show that lasmiditan induces MB in primary mouse renal peritubular endothelial cells and improves wound healing, endothelial tubular network formation, and barrier integrity after inflammatory-induced dysfunction, indicative of its potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Austin D Thompson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States
- Southern Arizona VA Health Care System, Tucson, Arizona, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, United States
| | - Kai W McAlister
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States
- Southern Arizona VA Health Care System, Tucson, Arizona, United States
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States
| | - John Hortareas
- College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States
- Southern Arizona VA Health Care System, Tucson, Arizona, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
4
|
Ambrosi TH, Taheri S, Chen K, Sinha R, Wang Y, Hunt EJ, Goodnough LH, Murphy MP, Steininger HM, Hoover MY, Felix F, Weldon KC, Koepke LS, Sokol J, Liu DD, Zhao L, Conley SD, Lu WJ, Morri M, Neff NF, Van Rysselberghe NL, Wheeler EE, Wang Y, Leach JK, Saiz A, Wang A, Yang GP, Goodman S, Bishop JA, Gardner MJ, Wan DC, Weissman IL, Longaker MT, Sahoo D, Chan CKF. Human skeletal development and regeneration are shaped by functional diversity of stem cells across skeletal sites. Cell Stem Cell 2025:S1934-5909(25)00081-5. [PMID: 40118065 DOI: 10.1016/j.stem.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/17/2024] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
The skeleton is one of the most structurally and compositionally diverse organ systems in the human body, depending on unique cellular dynamisms. Here, we integrate prospective isolation of human skeletal stem cells (hSSCs; CD45-CD235a-TIE2-CD31-CD146-PDPN+CD73+CD164+) from ten skeletal sites with functional assays and single-cell RNA sequencing (scRNA-seq) analysis to identify chondrogenic, osteogenic, stromal, and fibrogenic subtypes of hSSCs during development and their linkage to skeletal phenotypes. We map the distinct composition of hSSC subtypes across multiple skeletal sites and demonstrate their unique in vivo clonal dynamics. We find that age-related changes in bone formation and regeneration disorders stem from a pathological fibroblastic shift in the hSSC pool. Utilizing a Boolean algorithm, we uncover gene regulatory networks that dictate differences in the ability of hSSCs to generate specific skeletal tissues. Importantly, hSSC lineage dynamics are pharmacologically malleable, providing a new strategy to treat aberrant hSSC diversity central to aging and skeletal maladies.
Collapse
Affiliation(s)
- Thomas H Ambrosi
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun Chen
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuting Wang
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ethan J Hunt
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| | - L Henry Goodnough
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Stanford, CA 94063, USA
| | - Matthew P Murphy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Holly M Steininger
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malachia Y Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Franco Felix
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelly C Weldon
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| | - Lauren S Koepke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jan Sokol
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liming Zhao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stephanie D Conley
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wan-Jin Lu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Norma F Neff
- Chan Zuckerberg BioHub, San Francisco, CA 94158, USA
| | | | - Erika E Wheeler
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Yongheng Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Augustine Saiz
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA; Department of Surgery, University of California Davis Health, Sacramento, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - George P Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Stuart Goodman
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Stanford, CA 94063, USA
| | - Julius A Bishop
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Stanford, CA 94063, USA
| | - Michael J Gardner
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Stanford, CA 94063, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Ludwig Center for Cancer Stem Cell Biology and Medicine at Stanford University, Stanford, CA 94305, USA
| | - Michael T Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Fu YC, Liang SB, Luo M, Wang XP. Intratumoral heterogeneity and drug resistance in cancer. Cancer Cell Int 2025; 25:103. [PMID: 40102941 PMCID: PMC11917089 DOI: 10.1186/s12935-025-03734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Intratumoral heterogeneity is the main cause of tumor treatment failure, varying across disease sites (spatial heterogeneity) and polyclonal properties of tumors that evolve over time (temporal heterogeneity). As our understanding of intratumoral heterogeneity, the formation of which is mainly related to the genomic instability, epigenetic modifications, plastic gene expression, and different microenvironments, plays a substantial role in drug-resistant as far as tumor metastasis and recurrence. Understanding the role of intratumoral heterogeneity, it becomes clear that a single therapeutic agent or regimen may only be effective for subsets of cells with certain features, but not for others. This necessitates a shift from our current, unchanging treatment approach to one that is tailored against the killing patterns of cancer cells in different clones. In this review, we discuss recent evidence concerning global perturbations of intratumoral heterogeneity, associations of specific intratumoral heterogeneity in lung cancer, the underlying mechanisms of intratumoral heterogeneity potentially leading to formation, and how it drives drug resistance. Our findings highlight the most up-to-date progress in intratumoral heterogeneity and its role in mediating tumor drug resistance, which could support the development of future treatment strategies.
Collapse
Affiliation(s)
- Yue-Chun Fu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shao-Bo Liang
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Min Luo
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Xue-Ping Wang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
6
|
Pfeiferová L, Španko M, Šáchová J, Hradilová M, Pienta KJ, Valach J, Machoň V, Výmolová B, Šedo A, Bušek P, Szabo P, Lacina L, Gál P, Kolář M, Smetana K. The HOX code of human adult fibroblasts reflects their ectomesenchymal or mesodermal origin. Histochem Cell Biol 2025; 163:38. [PMID: 40063181 PMCID: PMC11893657 DOI: 10.1007/s00418-025-02362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Fibroblasts, the most abundant cell type in the human body, play crucial roles in biological processes such as inflammation and cancer progression. They originate from the mesoderm or neural-crest-derived ectomesenchyme. Ectomesenchyme-derived fibroblasts contribute to facial formation and do not express HOX genes during development. The expression and role of the HOX genes in adult fibroblasts is not known. We investigated whether the developmental pattern persists into adulthood and under pathological conditions, such as cancer. We collected adult fibroblasts of ectomesenchymal and mesodermal origins from distinct body parts. The isolated fibroblasts were characterised by immunocytochemistry, and their transcriptome was analysed by whole genome profiling. Significant differences were observed between normal fibroblasts from the face (ectomesenchyme) and upper limb (mesoderm), particularly in genes associated with limb development, including HOX genes, e.g., HOXA9 and HOXD9. Notably, the pattern of HOX gene expression remained consistent postnatally, even in fibroblasts from pathological tissues, including inflammatory states and cancer-associated fibroblasts from primary and metastatic tumours. Therefore, the distinctive HOX gene expression pattern can serve as an indicator of the topological origin of fibroblasts. The influence of cell position and HOX gene expression in fibroblasts on disease progression warrants further investigation.
Collapse
Grants
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- LX22NPO5102 Ministry of Education, Youth and Sports of the Czech Republic
- NW24-03-00459 Ministry of Health of the Czech Republic
- NW24-03-00459 Ministry of Health of the Czech Republic
- NW24-03-00459 Ministry of Health of the Czech Republic
- NU22-03-00318 Ministry of Health of the Czech Republic
- NU22-03-00318 Ministry of Health of the Czech Republic
- NU22-03-00318 Ministry of Health of the Czech Republic
- NW24-03-00459 Ministry of Health of the Czech Republic
- NW24-03-00459 Ministry of Health of the Czech Republic
- NW24-03-00459 Ministry of Health of the Czech Republic
- NW24-03-00459 Ministry of Health of the Czech Republic
- COOPERATIO-Onco Charles University in Prague
- COOPERATIO-Onco Charles University in Prague
- COOPERATIO-Onco Charles University in Prague
- COOPERATIO-Onco Charles University in Prague
- COOPERATIO-Onco Charles University in Prague
- COOPERATIO-Onco Charles University in Prague
- COOPERATIO-Onco Charles University in Prague
- COOPERATIO-Onco Charles University in Prague
- COOPERATIO-Onco Charles University in Prague
- COOPERATIO-Onco Charles University in Prague
- Charles University
Collapse
Affiliation(s)
- Lucie Pfeiferová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Chemical Technology, Department of Informatics and Chemistry, University of Chemistry and Technology in Prague, Prague, Czech Republic
| | - Michal Španko
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic
- First Faculty of Medicine and The General University Hospital, Department of Stomatology, Charles University, Prague, Czech Republic
| | - Jana Šáchová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Miluše Hradilová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Kenneth J Pienta
- School of Medicine, Johns Hopkins University, James Buchanan Brady Urological Institute, Baltimore, USA
| | - Jaroslav Valach
- First Faculty of Medicine and The General University Hospital, Department of Stomatology, Charles University, Prague, Czech Republic
| | - Vladimír Machoň
- First Faculty of Medicine and The General University Hospital, Department of Stomatology, Charles University, Prague, Czech Republic
| | - Barbora Výmolová
- First Faculty of Medicine, Institute of Biochemistry and Experimental Oncology, Charles University, Prague, Czech Republic
| | - Aleksi Šedo
- First Faculty of Medicine, Institute of Biochemistry and Experimental Oncology, Charles University, Prague, Czech Republic
| | - Petr Bušek
- First Faculty of Medicine, Institute of Biochemistry and Experimental Oncology, Charles University, Prague, Czech Republic
| | - Pavol Szabo
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic
| | - Lukáš Lacina
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic
- First Faculty of Medicine, Charles University, BIOCEV, Vestec, Prague, Czech Republic
- First Faculty of Medicine and General University Hospital, Department of Dermatovenereology, Charles University, Prague, Czech Republic
| | - Peter Gál
- Faculty of Medicine, Department of Pharmacology, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc, Košice, Slovak Republic
- Faculty of Pharmacy, Department of Pharmacognosy and Botany, Comenius University in Bratislava, Bratislava, Slovak Republic
- Third Faculty of Medicine, Charles University, Prague Burn Center, Prague, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Chemical Technology, Department of Informatics and Chemistry, University of Chemistry and Technology in Prague, Prague, Czech Republic
| | - Karel Smetana
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.
- First Faculty of Medicine, Charles University, BIOCEV, Vestec, Prague, Czech Republic.
| |
Collapse
|
7
|
Chen L, Wu P, Zhu Y, Luo H, Tan Q, Chen Y, Luo D, Chen Z. Electrospinning strategies targeting fibroblast for wound healing of diabetic foot ulcers. APL Bioeng 2025; 9:011501. [PMID: 40027546 PMCID: PMC11869202 DOI: 10.1063/5.0235412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
The high incidence and prevalence of diabetic foot ulcers (DFUs) present a substantial clinical and economic burden, necessitating innovative therapeutic approaches. Fibroblasts, characterized by their intrinsic cellular plasticity and multifunctional capabilities, play key roles in the pathophysiological processes underlying DFUs. Hyperglycemic conditions lead to a cascade of biochemical alterations that culminate in the dysregulation of fibroblast phenotype and function, which is the primary cause of impaired wound healing in DFUs. Biomaterials, particularly those engineered at the nanoscale, hold significant promise for enhancing DFU treatment outcomes. Electrospun nanofiber scaffolds, with their structural and compositional similarities to the natural extracellular matrix, serve as an effective substrate for fibroblast adhesion, proliferation, and migration. This review comprehensively summarizes the biological behavior of fibroblasts in DFUs and the mechanism mediating wound healing. At the same time, the mechanism of biological materials, especially electrospun nanofiber scaffolds, to improve the therapeutic effect by regulating the activity of fibroblasts was also discussed. By highlighting the latest advancements and clinical applications, we aim to provide a clear perspective on the future direction of DFU treatment strategies centered on fibroblast-targeted therapies.
Collapse
Affiliation(s)
| | - Ping Wu
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Yu Zhu
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Han Luo
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Qiang Tan
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Yongsong Chen
- Department of Burn plastic and Cosmetology, Chongqing University FuLing HospitalChina
| | - Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Zhiyong Chen
- Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
Ohlendieck CM, Matellan C, Manresa MC. Regulation of pathologic fibroblast functions in digestive diseases: a role for hypoxia? Am J Physiol Gastrointest Liver Physiol 2025; 328:G229-G242. [PMID: 39873349 DOI: 10.1152/ajpgi.00277.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/14/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025]
Abstract
The recent uncovering of fibroblast heterogeneity has given great insight into the versatility of the stroma. Among other cellular processes, fibroblasts are now thought to contribute to the coordination of immune responses in a range of chronic inflammatory diseases and cancer. Although the pathologic roles of myofibroblasts, inflammatory fibroblasts, and cancer-associated fibroblasts in disease are reasonably well understood, the mechanisms behind their activation remain to be uncovered. In the gastrointestinal (GI) tract, several interleukins and tumor necrosis factor superfamily members have been identified as possible mediators driving the acquisition of inflammatory and fibrotic properties in fibroblasts. In addition to cytokines, other microenvironmental factors such as nutrient and oxygen availability are likely contributors to this process. In this respect, the phenomenon of low cellular oxygen levels known as hypoxia is common in a plethora of GI diseases. Indeed, the cross talk between hypoxia and inflammation is well-documented, with an abundance of studies suggesting that oxygen-sensing enzymes may have regulatory effects on inflammatory signaling pathways such as NF-κB. However, the impact that this has in GI fibroblasts in the context of chronic diseases has not been fully uncovered. Here we discuss the role of fibroblasts in GI diseases, the mediators that have emerged as regulators of their functions and the potential impact of hypoxia in this process, highlighting areas that require further investigation.
Collapse
Affiliation(s)
- Cian M Ohlendieck
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Carlos Matellan
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mario C Manresa
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Srivastava SP, Zhou H, Shenoi R, Morris M, Lainez-Mas B, Goedeke L, Rajendran BK, Setia O, Aryal B, Kanasaki K, Koya D, Inoki K, Dardik A, Bell T, Fernández-Hernando C, Shulman GI, Goodwin JE. Renal Angptl4 is a key fibrogenic molecule in progressive diabetic kidney disease. SCIENCE ADVANCES 2024; 10:eadn6068. [PMID: 39630889 PMCID: PMC11616692 DOI: 10.1126/sciadv.adn6068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Angiopoietin-like 4 (ANGPTL4), a key protein involved in lipoprotein metabolism, has diverse effects. There is an association between Angptl4 and diabetic kidney disease; however, this association has not been well investigated. We show that both podocyte- and tubule-specific ANGPTL4 are crucial fibrogenic molecules in diabetes. Diabetes accelerates the fibrogenic phenotype in control mice but not in ANGPTL4 mutant mice. The protective effect observed in ANGPTL4 mutant mice is correlated with a reduction in stimulator of interferon genes pathway activation, expression of pro-inflammatory cytokines, reduced epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition, lessened mitochondrial damage, and increased fatty acid oxidation. Mechanistically, we demonstrate that podocyte- or tubule-secreted Angptl4 interacts with Integrin β1 and influences the association between dipeptidyl-4 with Integrin β1. We demonstrate the utility of a targeted pharmacologic therapy that specifically inhibits Angptl4 gene expression in the kidneys and protects diabetic kidneys from proteinuria and fibrosis. Together, these data demonstrate that podocyte- and tubule-derived Angptl4 is fibrogenic in diabetic kidneys.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Han Zhou
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | - Rachel Shenoi
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Myshal Morris
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Begoña Lainez-Mas
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | - Leigh Goedeke
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ocean Setia
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT, USA
| | - Binod Aryal
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
- The Center for Integrated Kidney Research and Advance, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT, USA
| | | | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I. Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Alvarado-Vasquez N, Rangel-Escareño C, de Jesús Ramos-Abundis J, Becerril C, Negrete-García MC. The possible role of hypoxia-induced exosomes on the fibroblast metabolism in idiopathic pulmonary fibrosis. Biomed Pharmacother 2024; 181:117680. [PMID: 39549361 DOI: 10.1016/j.biopha.2024.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) has a high incidence and prevalence among patients over 65 years old. While its exact etiology remains unknown, several risk factors have recently been identified. Hypoxia is associated with IPF due to the abnormal architecture of lung parenchyma and the accumulation of extracellular matrix produced by activated fibroblasts. Exosomes play a crucial role in intercellular communication during both physiological and pathological processes, including hypoxic diseases like IPF. Recent findings suggest that a hypoxic microenvironment influences the content of exosomes in various diseases, thereby altering cellular metabolism. Although the role of exosomes in IPF is an emerging area of research, the significance of hypoxic exosomes as inducers of metabolic reprogramming in fibroblasts is still underexplored. In this study, we analyze and discuss the relationship between hypoxia, exosomal cargo, and the metabolic reprogramming of fibroblasts in the progression of IPF.
Collapse
Affiliation(s)
- Noé Alvarado-Vasquez
- Department of Molecular Biomedicine and Translational Research, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Claudia Rangel-Escareño
- Computational Genomics, National Institute of Genomic Medicine, Mexico City 14610, Mexico; School of Engineering and Sciences, Tecnologico de Monterrey, NL 64700, Mexico
| | | | - Carina Becerril
- Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - María Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico.
| |
Collapse
|
11
|
Rinne A, Pluteanu F. Ca 2+ Signaling in Cardiovascular Fibroblasts. Biomolecules 2024; 14:1365. [PMID: 39595542 PMCID: PMC11592142 DOI: 10.3390/biom14111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Fibrogenesis is a physiological process required for wound healing and tissue repair. It is induced by activation of quiescent fibroblasts, which first proliferate and then change their phenotype into migratory, contractile myofibroblasts. Myofibroblasts secrete extracellular matrix proteins, such as collagen, to form a scar. Once the healing process is terminated, most myofibroblasts undergo apoptosis. However, in some tissues, such as the heart, myofibroblasts remain active and sensitive to neurohumoral factors and inflammatory mediators, which lead eventually to excessive organ fibrosis. Many cellular processes involved in fibroblast activation, including cell proliferation, protein secretion and cell contraction, are highly regulated by intracellular Ca2+ signals. This review summarizes current research on Ca2+ signaling pathways underlying fibroblast activation. We present receptor- and ion channel-mediated Ca2+ signaling pathways, discuss how localized Ca2+ signals of the cell nucleus may be involved in fibroblast activation and present Ca2+-sensitive transcription pathways relevant for fibroblast biology. When investigated, we highlight how the function of Ca2+-handling proteins changes during cardiac and pulmonary fibrosis. Many aspects of Ca2+ signaling remain unexplored in different types of cardiovascular fibroblasts in relation to pathologies, and a better understanding of Ca2+ signaling in fibroblasts will help to design targeted therapies against fibrosis.
Collapse
Affiliation(s)
- Andreas Rinne
- Department of Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania;
| | - Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
12
|
Zhou Y, Jian N, Jiang C, Wang J. m 6A modification in non-coding RNAs: Mechanisms and potential therapeutic implications in fibrosis. Biomed Pharmacother 2024; 179:117331. [PMID: 39191030 DOI: 10.1016/j.biopha.2024.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent and reversible forms of RNA methylation, with increasing evidence indicating its critical role in numerous physiological and pathological processes. m6A catalyzes messenger RNA(mRNA) as well as regulatory non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs, and circular RNAs. This modification modulates ncRNA fate and cell functions in various bioprocesses, including ncRNA splicing, maturity, export, and stability. Key m6A regulators, including writers, erasers, and readers, have been reported to modify the ncRNAs involved in fibrogenesis. NcRNAs affect fibrosis progression by targeting m6A regulators. The interactions between m6A and ncRNAs can influence multiple cellular life activities. In this review, we discuss the impact of the interaction between m6A modifications and ncRNAs on the pathological mechanisms of fibrosis, revealing the possibility of these interactions as diagnostic markers and therapeutic targets in fibrosis.
Collapse
Affiliation(s)
- Yutong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China.
| |
Collapse
|
13
|
Takei J, Maeda M, Fukasawa N, Kawashima M, Miyake M, Tomoto K, Nawate S, Teshigawara A, Suzuki T, Yamamoto Y, Nagashima H, Mori R, Fukushima R, Matsushima S, Kino H, Muroi A, Tsurubuchi T, Sakamoto N, Nishiwaki K, Yano S, Hasegawa Y, Murayama Y, Akasaki Y, Shimoda M, Ishikawa E, Tanaka T. Comparative analyses of immune cells and alpha-smooth muscle actin-positive cells under the immunological microenvironment between with and without dense fibrosis in primary central nervous system lymphoma. Brain Tumor Pathol 2024; 41:97-108. [PMID: 39186169 PMCID: PMC11499374 DOI: 10.1007/s10014-024-00488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Histopathologic examinations of primary central nervous system lymphoma (PCNSL) reveal concentric accumulation of lymphocytes in the perivascular area with fibrosis. However, the nature of this fibrosis in "stiff" PCNSL remains unclear. We have encountered some PCNSLs with hard masses as surgical findings. This study investigated the dense fibrous status and tumor microenvironment of PCNSLs with or without stiffness. We evaluated by silver-impregnation nine PCNSLs with stiffness and 26 PCNSLs without stiffness. Six of the nine stiff PCNSLs showed pathological features of prominent fibrosis characterized by aggregation of reticulin fibers, and collagen accumulations. Alpha-smooth muscle actin (αSMA)-positive spindle cells as a cancer-associated fibroblast, the populations of T lymphocytes, and macrophages were compared between fibrous and control PCNSLs. Fibrous PCNSLs included abundant αSMA-positive cells in both intra- and extra-tumor environments (5/6, 87% and 3/6, 50%, respectively). Conversely, only one out of the seven control PCNSL contained αSMA-positive cells in the intra-tumoral area. Furthermore, the presence of extra-tumoral αSMA-positive cells was associated with infiltration of T lymphocytes and macrophages. In conclusion, recognizing the presence of dense fibrosis in PCNSL can provide insights into the tumor microenvironment. These results may help stratify patients with PCNSL and improve immunotherapies for these patients.
Collapse
Affiliation(s)
- Jun Takei
- Department of Neurosurgery, The Jikei University Katsushika Medical Center, 6-41-2 Aoto, Katsushika-ku, Tokyo, 125-8506, Japan
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Miku Maeda
- Department of Pathology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Nei Fukasawa
- Department of Pathology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Masaharu Kawashima
- Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Misayo Miyake
- Department of Pathology, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Kyoichi Tomoto
- Department of Neurosurgery, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Shohei Nawate
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Akihiko Teshigawara
- Department of Neurosurgery, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Tomoya Suzuki
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Yohei Yamamoto
- Department of Neurosurgery, The Jikei University Daisan Hospital, 4-11-1 Izumi-honcho, Komae-shi, Tokyo, 201-8601, Japan
| | - Hiroyasu Nagashima
- Department of Neurosurgery, The Jikei University Katsushika Medical Center, 6-41-2 Aoto, Katsushika-ku, Tokyo, 125-8506, Japan
| | - Ryosuke Mori
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Ryoko Fukushima
- Division of Clinical Oncology and Hematology, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Satoshi Matsushima
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroyoshi Kino
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Ai Muroi
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takao Tsurubuchi
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Noriaki Sakamoto
- Department of Clinical Pathology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kaichi Nishiwaki
- Division of Clinical Oncology and Hematology, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Shingo Yano
- Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuzuru Hasegawa
- Department of Neurosurgery, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan.
- Department of Neurosurgery, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan.
| |
Collapse
|
14
|
Wu L, Liu Q, Li G, Shi W, Peng W. A cancer-associated fibroblasts related risk score (CAFscore) helps to guide prognosis and personal treatment for Glioblastoma. Discov Oncol 2024; 15:420. [PMID: 39254749 PMCID: PMC11387281 DOI: 10.1007/s12672-024-01314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Recent studies have identified the presence of cancer-associated fibroblasts (CAFs) within glioblastoma (GBM), yet their biological roles and underlying mechanisms remain poorly understood. This study aimed to construct a CAF-related prognostic model to guide patient prognosis and treatment strategies. METHOD We employed various bioinformatics methods, including enrichment analysis, Weighted Gene Co-expression Network Analysis (WGCNA), Lasso regression analysis, and machine learning techniques such as XGBoost and Random Forest, to develop a novel risk index termed CAFscore. Patients were stratified into high and low CAFscore groups for subsequent survival analysis. The area under the curve (AUC) and concordance index (C-index) for CAFscore were calculated and compared against other clinical characteristics and existing prognostic models. Drug sensitivity assessments were conducted using the Oncopredict package. Functional validation of key genes was performed through scratch and invasion assays in GBM cells. RESULTS Our analyses revealed four core CAF-related genes, leading to the establishment of CAFscore. Notably, patients in the high CAFscore group exhibited significantly reduced survival and exhibited enrichment in epithelial-mesenchymal transition (EMT) and inflammation response pathways. Furthermore, CAFscore showed a significant negative correlation with the sensitivity to irinotecan and its analogs, while demonstrating a positive correlation with sensitivity to 505,124 (a TGFβRI inhibitor). LRP10 emerged as a central gene within the CAFscore, displaying markedly elevated expression in GBM and a strong association with CAF infiltration. Silencing LRP10 significantly inhibited the invasive capabilities of GBM cells. CONCLUSION This study presented the first CAF related prognostic model (CAFscore) in GBM, and demonstrated that the model could effectively guide patient prognosis and potentially inform personalized treatment strategies. The core gene of CAFscore, LRP10, was significantly overexpressed in GBM and might play a pivotal role in regulating CAF infiltration as well as tumor invasion and metastasis, highlighting LRP10 as a promising therapeutic target for GBM management.
Collapse
Affiliation(s)
- Lili Wu
- Department of Encephalopathy, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, 466099, China
| | - Qinjian Liu
- Medical Affairs Section, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, 466099, China
| | - Guoyin Li
- Department of Encephalopathy, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, 466099, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466000, China
| | - Weidong Shi
- Department of Orthopedics, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, 466099, China.
| | - Weifeng Peng
- Department of Encephalopathy, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou, 466099, China.
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466000, China.
| |
Collapse
|
15
|
Zhang G, Tai P, Fang J, Wang Z, Yu R, Yin Z, Cao K. Multi-omics reveals the impact of cancer-associated fibroblasts on the prognosis and treatment response of adult diffuse highest-grade gliomas. Heliyon 2024; 10:e34526. [PMID: 39157370 PMCID: PMC11327523 DOI: 10.1016/j.heliyon.2024.e34526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Background Cancer associated fibroblasts (CAF), an important cancer-promoting and immunosuppressive component of the tumor immune microenvironment (TIME), have recently been found to infiltrate adult diffuse highest-grade gliomas (ADHGG) (gliomas of grade IV). Methods Gene expression and clinical data of ADHGG patients were obtained from the CGGA and TCGA databases. Consensus clustering was used to identify CAF subtypes based on CAF key genes acquired from single-cell omics and spatial transcriptomomics. CIBERSORT, ssGSEA, MCPcounter, and ESTIMATE analyses were used to assess the TIME of GBM. Survival analysis, drug sensitivity analysis, TCIA database, TIDE and cMap algorithms were used to compare the prognosis and treatment response between patients with different CAF subtypes. An artificial neural network (ANN) model based on random forest was constructed to exactly identify CAF subtypes, which was validated in a real-world patient cohort of ADHGG. Results Consensus clustering classified ADHGG into two CAF subtypes. Compared with subtype B, patients with ADHGG subtype A had a poorer prognosis, worse responsiveness to immunotherapy and radiotherapy, higher CAF infiltration in TIME, but higher sensitivity to temozolomide. Furthermore, patients with subtype A had a much lower proportion of IDH mutations. Finally, the ANN model based on five genes (COL3A1, COL1A2, CD248, FN1, and COL1A1) could exactly discriminate CAF subtypes, and the validation of the real-world cohort indicated consistent results with the bioinformatics analyses. Conclusion This study revealed a novel CAF subtype to distinguish ADHGG patients with different prognosis and treatment responsiveness, which may be helpful for accurate clinical decision-making of ADHGG.
Collapse
Affiliation(s)
| | | | - Jianing Fang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui Yu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Yin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Kromidas E, Geier A, Weghofer A, Liu HY, Weiss M, Loskill P. Immunocompetent PDMS-Free Organ-on-Chip Model of Cervical Cancer Integrating Patient-Specific Cervical Fibroblasts and Neutrophils. Adv Healthc Mater 2024; 13:e2302714. [PMID: 38029413 DOI: 10.1002/adhm.202302714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/04/2023] [Indexed: 12/01/2023]
Abstract
Despite preventive measures and available treatments, cervical cancer still ranks as the fourth most prevalent cancer among women worldwide and remains the leading cause of cancer death in women in many developing countries. To gain further insights into pathogenesis and to develop novel (immuno)therapies, more sophisticated human models recreating patient heterogeneities and including aspects of the tumor microenvironment are urgently required. A novel polydimethylsiloxane-free microfluidic platform, designed specifically for the generation and ccultivation of cervical cancerous tissue, is introduced. The microscale open-top tissue chambers of the cervical cancer-on-chip (CCoC) enable facile generation and long-term cultivation of SiHa spheroids in co-culture with donor-derived cervical fibroblasts. The resulting 3D tissue emulates physiological architecture and allows dissection of distinct effects of the stromal tissue on cancer viability and growth. Treatment with cisplatin at clinically-relevant routes of administration and dosing highlights the platform's applicability for drug testing. Moreover, the model is amenable for integration and recruitment of donor-derived neutrophils from the microvasculature-like channel into the tissue, all while retaining their ability to produce neutrophil extracellular traps. In the future, the immunocompetent CCoC featuring donor-specific primary cells and tumor spheroids has the potential to contribute to the development of new (immuno)therapeutic options.
Collapse
Affiliation(s)
- Elena Kromidas
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Alicia Geier
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Adrian Weghofer
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Hui-Yu Liu
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
| | - Martin Weiss
- Department for Biomedicine and Materials Science, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- Department for Women's Health, Faculty of Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Peter Loskill
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, 72074, Tübingen, Germany
- Department for Biomedicine and Materials Science, NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- 3R Center Tübingen for In Vitro Models and Alternatives to Animal Testing, 72074, Tübingen, Germany
| |
Collapse
|
17
|
Hagedorn M, Parenti LR, Craddock RA, Comizzoli P, Mabee P, Meinke B, Wolf SM, Bischof JC, Sandlin RD, Tessier SN, Toner M. Safeguarding Earth's biodiversity by creating a lunar biorepository. Bioscience 2024; 74:561-566. [PMID: 39229623 PMCID: PMC11367668 DOI: 10.1093/biosci/biae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 09/05/2024] Open
Abstract
Earth's biodiversity is increasingly threatened and at risk. We propose a passive lunar biorepository for long-term storage of prioritized taxa of live cryopreserved samples to safeguard Earth's biodiversity and to support future space exploration and planet terraforming. Our initial focus will be on cryopreserving animal skin samples with fibroblast cells. An exemplar system has been developed using cryopreserved fish fins from the Starry Goby, Asterropteryx semipunctata. Samples will be expanded into fibroblast cells, recryopreserved, and then tested in an Earth-based laboratory for robust packaging and sensitivity to radiation. Two key factors for this biorepository are the needs to reduce damage from radiation and to maintain the samples near -196° Celsius. Certain lunar sites near the poles may meet these criteria. If possible, further testing would occur on the International Space Station prior to storage on the Moon. To secure a positive shared future, this is an open call to participate in this decades-long program.
Collapse
Affiliation(s)
- Mary Hagedorn
- Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, United States of America
- Hawaii Institute of Marine Biology, Kaneohe, HI, United States of America
| | - Lynne R Parenti
- Smithsonian National Museum of Natural History, Washington, DC, United States of America
| | - Robert A Craddock
- Center for Earth and Planetary Studies, Smithsonian National Air and Space Museum, Washington, DC, United States of America
| | - Pierre Comizzoli
- Smithsonian National Zoo and Conservation Biology Institute, Office of the Smithsonian Under Secretary for Science and Research Washington, DC, United States of America
| | - Paula Mabee
- NEON, Battelle, Boulder, CO, United States of America
| | - Bonnie Meinke
- External Engagement and Business Development, University Corporation for Atmospheric Research (UCAR), Boulder, CO, United States of America
| | - Susan M Wolf
- McKnight Presidential Professor of Law, Medicine & Public Policy; Faegre Drinker Professor of Law, Professor of Medicine at the University of Minnesota, Minneapolis, MN, United States of America
| | - John C Bischof
- McKnight University Professor of Mechanical and Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Rebecca D Sandlin
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Mehmet Toner
- Bioengineering, Massachusetts General Hospital and Harvard Medical School, Shriners Children's Boston, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States of America
| |
Collapse
|
18
|
Fantini V, Ferrari RR, Bordoni M, Spampinato E, Pandini C, Davin A, Medici V, Gagliardi S, Guaita A, Pansarasa O, Cereda C, Poloni TE. Functional analysis and transcriptome profile of meninges and skin fibroblasts from human-aged donors. Cell Prolif 2024; 57:e13627. [PMID: 38421110 PMCID: PMC11294439 DOI: 10.1111/cpr.13627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is surrounded by three membranes called meninges. Specialised fibroblasts, originating from the mesoderm and neural crest, primarily populate the meninges and serve as a binding agent. Our goal was to compare fibroblasts from meninges and skin obtained from the same human-aged donors, exploring their molecular and cellular characteristics related to CNS functions. We isolated meningeal fibroblasts (MFs) from brain donors and skin fibroblasts (SFs) from the same subjects. A functional analysis was performed measuring cell appearance, metabolic activity, and cellular orientation. We examined fibronectin, serpin H1, β-III-tubulin, and nestin through qPCR and immunofluorescence. A whole transcriptome analysis was also performed to characterise the gene expression of MFs and SFs. MFs appeared more rapidly in the post-tissue processing, while SFs showed an elevated cellular metabolism and a well-defined cellular orientation. The four markers were mostly similar between the MFs and SFs, except for nestin, more expressed in MFs. Transcriptome analysis reveals significant differences, particularly in cyclic adenosine monophosphate (cAMP) metabolism and response to forskolin, both of which are upregulated in MFs. This study highlights MFs' unique characteristics, including the timing of appearance, metabolic activity, and gene expression patterns, particularly in cAMP metabolism and response to forskolin. These findings contribute to a deeper understanding of non-neuronal cells' involvement in CNS activities and potentially open avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Valentina Fantini
- Laboratory of Neurobiology and NeurogeneticGolgi‐Cenci FoundationAbbiategrassoItaly
| | | | - Matteo Bordoni
- Cellular Model and Neuroepigenetics UnitIRCCS Mondino FoundationPaviaItaly
| | - Eleonora Spampinato
- Cellular Model and Neuroepigenetics UnitIRCCS Mondino FoundationPaviaItaly
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Cecilia Pandini
- Molecular Biology and Transcriptomics UnitIRCCS Mondino FoundationPaviaItaly
- Department of BiosciencesUniversity of MilanMilanItaly
| | - Annalisa Davin
- Laboratory of Neurobiology and NeurogeneticGolgi‐Cenci FoundationAbbiategrassoItaly
| | - Valentina Medici
- Department of Neurology and NeuropathologyGolgi‐Cenci FoundationAbbiategrassoItaly
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics UnitIRCCS Mondino FoundationPaviaItaly
| | - Antonio Guaita
- Laboratory of Neurobiology and NeurogeneticGolgi‐Cenci FoundationAbbiategrassoItaly
- Department of Neurology and NeuropathologyGolgi‐Cenci FoundationAbbiategrassoItaly
| | - Orietta Pansarasa
- Cellular Model and Neuroepigenetics UnitIRCCS Mondino FoundationPaviaItaly
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of PediatricsBuzzi Children's HospitalMilanItaly
| | - Tino Emanuele Poloni
- Department of Neurology and NeuropathologyGolgi‐Cenci FoundationAbbiategrassoItaly
- Department of RehabilitationASP Golgi‐Redaelli Geriatric HospitalAbbiategrassoItaly
| |
Collapse
|
19
|
Lin J, Lu W, Huang B, Yang W, Wang X. The role of tissue-derived extracellular vesicles in tumor microenvironment. Tissue Cell 2024; 89:102470. [PMID: 39002287 DOI: 10.1016/j.tice.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The tumor microenvironment (TME) is a highly heterogeneous ecosystem that plays critical roles in the initiation, progression, invasion, and metastasis of cancers. Extracellular vesicles (EVs), as emerging components of the host-tumor communication, are lipid-bilayer membrane structures that are secreted by most cell types into TEM and increasingly recognized as critical elements that regulate the interaction between tumor cells and their surroundings. They contain a variety of bioactive molecules, such as proteins, nucleic acids, and lipids, and participate in various pathophysiological processes while regulating intercellular communication. While many studies have focused on the EVs derived from different body fluids or cell culture supernatants, the direct isolation of tissue-derived EVs (Ti-EVs) has garnered more attention due to the advantages of tissue specificity and accurate reflection of tissue microenvironment. In this review, we summarize the protocol for isolating Ti-EVs from different tissue interstitium, discuss the role of tumor-derived and adipose tissue-derived Ti-EVs in regulating TME. In addition, we sum up the latest application of Ti-EVs as potential biomarkers for cancer diseases.
Collapse
Affiliation(s)
- Jin Lin
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wan Lu
- Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Medical Genetics Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weiming Yang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
20
|
Agorku DJ, Bosio A, Alves F, Ströbel P, Hardt O. Colorectal cancer-associated fibroblasts inhibit effector T cells via NECTIN2 signaling. Cancer Lett 2024; 595:216985. [PMID: 38821255 DOI: 10.1016/j.canlet.2024.216985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Cancer-associated fibroblasts play a crucial role within the tumor microenvironment. However, a comprehensive characterization of CAF in colorectal cancer (CRC) is still missing. We combined scRNA-seq and spatial proteomics to decipher fibroblast heterogeneity in healthy human colon and CRC at high resolution. Analyzing nearly 23,000 fibroblasts, we identified 11 distinct clusters and verified them by spatial proteomics. Four clusters, consisting of myofibroblastic CAF (myCAF)-like, inflammatory CAF (iCAF)-like and proliferating fibroblasts as well as a novel cluster, which we named "T cell-inhibiting CAF" (TinCAF), were primarily found in CRC. This new cluster was characterized by the expression of immune-interacting receptors and ligands, including CD40 and NECTIN2. Co-culture of CAF and T cells resulted in a reduction of the effector T cell compartment, impaired proliferation, and increased exhaustion. By blocking its receptor interaction, we demonstrated that NECTIN2 was the key driver of T cell inhibition. Analysis of clinical datasets showed that NECTIN2 expression is a poor prognostic factor in CRC and other tumors. In conclusion, we identified a new class of immuno-suppressive CAF with features rendering them a potential target for future immunotherapies.
Collapse
Affiliation(s)
- David J Agorku
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany; University Medical Center Göttingen (UMG), Institute of Pathology, Göttingen, Lower Saxony, Germany
| | - Andreas Bosio
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Frauke Alves
- University Medical Center Göttingen, Department of Hematology and Medical Oncology, Göttingen, Lower Saxony, Germany; University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Göttingen, Lower Saxony, Germany; Max Planck Institute for Multidisciplinary Sciences, Translational Molecular Imaging, Göttingen, Lower Saxony, Germany
| | - Philipp Ströbel
- University Medical Center Göttingen (UMG), Institute of Pathology, Göttingen, Lower Saxony, Germany
| | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany.
| |
Collapse
|
21
|
Boraldi F, Lofaro FD, Bonacorsi S, Mazzilli A, Garcia-Fernandez M, Quaglino D. The Role of Fibroblasts in Skin Homeostasis and Repair. Biomedicines 2024; 12:1586. [PMID: 39062158 PMCID: PMC11274439 DOI: 10.3390/biomedicines12071586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Fibroblasts are typical mesenchymal cells widely distributed throughout the human body where they (1) synthesise and maintain the extracellular matrix, ensuring the structural role of soft connective tissues; (2) secrete cytokines and growth factors; (3) communicate with each other and with other cell types, acting as signalling source for stem cell niches; and (4) are involved in tissue remodelling, wound healing, fibrosis, and cancer. This review focuses on the developmental heterogeneity of dermal fibroblasts, on their ability to sense changes in biomechanical properties of the surrounding extracellular matrix, and on their role in aging, in skin repair, in pathologic conditions and in tumour development. Moreover, we describe the use of fibroblasts in different models (e.g., in vivo animal models and in vitro systems from 2D to 6D cultures) for tissue bioengineering and the informative potential of high-throughput assays for the study of fibroblasts under different disease contexts for personalized healthcare and regenerative medicine applications.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Francesco Demetrio Lofaro
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Susanna Bonacorsi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Alessia Mazzilli
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Institute of Biomedical Investigation (IBIMA), University of Málaga, 29010 Málaga, Spain;
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| |
Collapse
|
22
|
Mozzer A, Pitha I. Cyclic strain alters the transcriptional and migratory response of scleral fibroblasts to TGFβ. Exp Eye Res 2024; 244:109917. [PMID: 38697276 DOI: 10.1016/j.exer.2024.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
In glaucoma, scleral fibroblasts are exposed to IOP-associated mechanical strain and elevated TGFβ levels. These stimuli, in turn, lead to scleral remodeling. Here, we examine the scleral fibroblast migratory and transcriptional response to these stimuli to better understand mechanisms of glaucomatous scleral remodeling. Human peripapillary scleral (PPS) fibroblasts were cultured on parallel grooves, treated with TGFβ (2 ng/ml) in the presence of vehicle or TGFβ signaling inhibitors, and exposed to uniaxial strain (1 Hz, 5%, 12-24 h). Axis of cellular orientation was determined at baseline, immediately following strain, and 24 h after strain cessation with 0° being completely aligned with grooves and 90° being perpendicular. Fibroblasts migration in-line and across grooves was assessed using a scratch assay. Transcriptional profiling of TGFβ-treated fibroblasts with or without strain was performed by RT-qPCR and pERK, pSMAD2, and pSMAD3 levels were measured by immunoblot. Pre-strain alignment of TGFβ-treated cells with grooves (6.2 ± 1.5°) was reduced after strain (21.7 ± 5.3°, p < 0.0001) and restored 24 h after strain cessation (9.5 ± 2.6°). ERK, FAK, and ALK5 inhibition prevented this reduction; however, ROCK, YAP, or SMAD3 inhibition did not. TGFβ-induced myofibroblast markers were reduced by strain (αSMA, POSTN, ASPN, MLCK1). While TGFβ-induced phosphorylation of ERK and SMAD2 was unaffected by cyclic strain, SMAD3 phosphorylation was reduced (p = 0.0004). Wound healing across grooves was enhanced by ROCK and SMAD3 inhibition but not ERK or ALK5 inhibition. These results provide insight into the mechanisms by which mechanical strain alters the cellular response to TGFβ and the potential signaling pathways that underlie scleral remodeling.
Collapse
Affiliation(s)
- Ann Mozzer
- Department of Ophthalmology, USA; Center for Nanomedicine, USA
| | - Ian Pitha
- Department of Ophthalmology, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
23
|
Doherty-Boyd WS, Donnelly H, Tsimbouri MP, Dalby MJ. Building bones for blood and beyond: the growing field of bone marrow niche model development. Exp Hematol 2024; 135:104232. [PMID: 38729553 DOI: 10.1016/j.exphem.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
The bone marrow (BM) niche is a complex microenvironment that provides the signals required for regulation of hematopoietic stem cells (HSCs) and the process of hematopoiesis they are responsible for. Bioengineered models of the BM niche incorporate various elements of the in vivo BM microenvironment, including cellular components, soluble factors, a three-dimensional environment, mechanical stimulation of included cells, and perfusion. Recent advances in the bioengineering field have resulted in a spate of new models that shed light on BM function and are approaching precise imitation of the BM niche. These models promise to improve our understanding of the in vivo microenvironment in health and disease. They also aim to serve as platforms for HSC manipulation or as preclinical models for screening novel therapies for BM-associated disorders and diseases.
Collapse
Affiliation(s)
- W Sebastian Doherty-Boyd
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom.
| | - Hannah Donnelly
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica P Tsimbouri
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| | - Matthew J Dalby
- The Centre for the Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
24
|
Xiao Y, Wang Z, Gu M, Wei P, Wang X, Li W. Cancer-associated fibroblasts: heterogeneity and their role in the tumor immune response. Clin Exp Med 2024; 24:126. [PMID: 38864912 PMCID: PMC11169017 DOI: 10.1007/s10238-024-01375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
In recent decades, many reports have been published on the composition and function of the tumor microenvironment (TME), among which cancer-associated fibroblasts (CAFs) have received much attention. CAFs have different degrees of heterogeneity in terms of their origin, phenotype, and function and can be divided into different subpopulations. These subgroups may play different roles in the occurrence and development of tumors. In addition, CAFs are closely associated with tumor immunity and have been found to regulate immune cell activity and to suppress the tumor immune response. In this review, we systematize the heterogeneity and characteristics of CAFs, discuss how specific CAF subgroups contribute to cancer progression by inducing an immunosuppressive microenvironment, and finally, we examine the future clinical applications of CAF subgroups.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziyu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weiying Li
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| |
Collapse
|
25
|
Rhodes JD, Goldenring JR, Lee SH. Regulation of metaplasia and dysplasia in the stomach by the stromal microenvironment. Exp Mol Med 2024; 56:1322-1330. [PMID: 38825636 PMCID: PMC11263556 DOI: 10.1038/s12276-024-01240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 06/04/2024] Open
Abstract
Research on the microenvironment associated with gastric carcinogenesis has focused on cancers of the stomach and often underestimates premalignant stages such as metaplasia and dysplasia. Since epithelial interactions with T cells, macrophages, and type 2 innate lymphoid cells (ILC2s) are indispensable for the formation of precancerous lesions in the stomach, understanding the cellular interactions that promote gastric precancer warrants further investigation. Although various types of immune cells have been shown to play important roles in gastric carcinogenesis, it remains unclear how stromal cells such as fibroblasts influence epithelial transformation in the stomach, especially during precancerous stages. Fibroblasts exist as distinct populations across tissues and perform different functions depending on the expression patterns of cell surface markers and secreted factors. In this review, we provide an overview of known microenvironmental components in the stroma with an emphasis on fibroblast subpopulations and their roles during carcinogenesis in tissues including breast, pancreas, and stomach. Additionally, we offer insights into potential targets of tumor-promoting fibroblasts and identify open areas of research related to fibroblast plasticity and the modulation of gastric carcinogenesis.
Collapse
Affiliation(s)
- Jared D Rhodes
- Program in Cancer Biology, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James R Goldenring
- Program in Cancer Biology, Nashville, TN, USA.
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Section of Surgical Sciences, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Nashville, TN, USA.
- Nashville VA Medical Center, Nashville, TN, USA.
| | - Su-Hyung Lee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Section of Surgical Sciences, Nashville, TN, USA.
| |
Collapse
|
26
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
27
|
Kumar N, Prakash PG, Wentland C, Kurian SM, Jethva G, Brinkmann V, Mollenkopf HJ, Krammer T, Toussaint C, Saliba AE, Biebl M, Jürgensen C, Wiedenmann B, Meyer TF, Gurumurthy RK, Chumduri C. Decoding spatiotemporal transcriptional dynamics and epithelial fibroblast crosstalk during gastroesophageal junction development through single cell analysis. Nat Commun 2024; 15:3064. [PMID: 38594232 PMCID: PMC11004180 DOI: 10.1038/s41467-024-47173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
The gastroesophageal squamocolumnar junction (GE-SCJ) is a critical tissue interface between the esophagus and stomach, with significant relevance in the pathophysiology of gastrointestinal diseases. Despite this, the molecular mechanisms underlying GE-SCJ development remain unclear. Using single-cell transcriptomics, organoids, and spatial analysis, we examine the cellular heterogeneity and spatiotemporal dynamics of GE-SCJ development from embryonic to adult mice. We identify distinct transcriptional states and signaling pathways in the epithelial and mesenchymal compartments of the esophagus and stomach during development. Fibroblast-epithelial interactions are mediated by various signaling pathways, including WNT, BMP, TGF-β, FGF, EGF, and PDGF. Our results suggest that fibroblasts predominantly send FGF and TGF-β signals to the epithelia, while epithelial cells mainly send PDGF and EGF signals to fibroblasts. We observe differences in the ligands and receptors involved in cell-cell communication between the esophagus and stomach. Our findings provide insights into the molecular mechanisms underlying GE-SCJ development and fibroblast-epithelial crosstalk involved, paving the way to elucidate mechanisms during adaptive metaplasia development and carcinogenesis.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Department of Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | - Gaurav Jethva
- Department of Microbiology, University of Würzburg, Würzburg, Germany
| | - Volker Brinkmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Tobias Krammer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Christophe Toussaint
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), Würzburg, Germany
| | - Matthias Biebl
- Surgical Clinic Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Christian Jürgensen
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rajendra Kumar Gurumurthy
- Department of Microbiology, University of Würzburg, Würzburg, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Cindrilla Chumduri
- Laboratory of Infections, Carcinogenesis and Regeneration, Medical Biotechnology Section, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
- Department of Microbiology, University of Würzburg, Würzburg, Germany.
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
- Department of Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany.
| |
Collapse
|
28
|
Tariq S, Shah SA, Hameed F, Mutahir Z, Khalid H, Tufail A, Akhtar H, Chaudhry AA, Khan AF. Tissue engineered periosteum: Fabrication of a gelatin basedtrilayer composite scaffold with biomimetic properties for enhanced bone healing. Int J Biol Macromol 2024; 263:130371. [PMID: 38423439 DOI: 10.1016/j.ijbiomac.2024.130371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The periosteum, a vascularized tissue membrane, is essential in bone regeneration following fractures and bone loss due to some other reasons, yet there exist several research gaps concerning its regeneration. These gaps encompass reduced cellular proliferation and bioactivity, potential toxicity, heightened stiffness of scaffold materials, unfavorable porosity, expensive materials and procedures, and suboptimal survivability or inappropriate degradation rates of the implanted materials. This research used an interdisciplinary approach by forming a new material fabricated through electrospinning for the proposed application as a layer-by-layer tissue-engineered periosteum (TEP). TEP comprises poly(ε-caprolactone) (PCL), PCL/gelatin/magnesium-doped zinc oxide (vascular layer), and gelatin/bioactive glass/COD liver oil (osteoconductive layer). These materials were selected for their diverse properties, when integrated into the scaffold formation, successfully mimic the characteristics of native periosteum. Scanning electron microscopy (SEM) was employed to confirm the trilayer structure of the scaffold and determine the average fiber diameter. In-vitro degradation and swelling studies demonstrated a uniform degradation rate that matches the typical recovery time of periosteum. The scaffold exhibited excellent mechanical properties comparable to natural periosteum. Furthermore, the sustained release kinetics of COD liver oil were observed in the trilayer scaffold. Cell culture results indicated that the three-dimensional topography of the scaffold promoted cell growth, proliferation, and attachment, confirming its non-toxicity, biocompatibility, and bioactivity. This study suggests that the fabricated scaffold holds promise as a potential artificial periosteum for treating periostitis and bone fractures.
Collapse
Affiliation(s)
- Sana Tariq
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Saqlain A Shah
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Fareeha Hameed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Zeeshan Mutahir
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Hamad Khalid
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Asma Tufail
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Hafsah Akhtar
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan.
| |
Collapse
|
29
|
Nikoloudaki G, Hamilton DW. Assessing the fate and contribution of Foxd1-expressing embryonic precursors and their progeny in palatal development, homeostasis and excisional repair. Sci Rep 2024; 14:4969. [PMID: 38424240 PMCID: PMC10904772 DOI: 10.1038/s41598-024-55486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
Oral mucosal tissues heal rapidly with minimal scarring, although palatal mucosa can be associated with excessive fibrosis in response to injury. Investigations on the balance between neovascularization and tissue repair suggests regulation of angiogenesis is an important determinant of repair versus scarring. Associated with pericyte mediated fibrosis in kidney injury, FoxD1 is implicated in growth centres during cranio-facial development, although which cell lineages are derived from these embryonic populations in development and in adult animals is unknown. Using a lineage tracing approach, we assessed the fate of embryonic Foxd1-expressing progenitor cells and their progeny in palatal development and during wound healing in adult mice. During palatal development as well as in post-natal tissues, Foxd1-lineage progeny were associated with the vasculature and the epineurium. Post-injury, de novo expression of FoxD1 was not detectable, although Foxd1-lineage progeny expanded while exhibiting low association with the fibroblast/myofibroblast markers PDGFα, PDGFβ, vimentin, α-smooth muscle actin, as well as the neuronal associated markers S100β and p75NTR. Foxd1-lineage progeny were primarily associated with CD146, CD31, and to a lesser extent CD105, remaining in close proximity to developing neovascular structures. Our findings demonstrate that FoxD1 derived cells are predominantly associated with the palatal vasculature and provide strong evidence that FoxD1 derived cells do not give rise to populations involved directly in the scarring of the palate.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
- Schulich Dentistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
- Schulich Dentistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
| |
Collapse
|
30
|
Voza FA, Huerta CT, Le N, Shao H, Ribieras A, Ortiz Y, Atkinson C, Machuca T, Liu ZJ, Velazquez OC. Fibroblasts in Diabetic Foot Ulcers. Int J Mol Sci 2024; 25:2172. [PMID: 38396848 PMCID: PMC10889208 DOI: 10.3390/ijms25042172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Fibroblasts are stromal cells ubiquitously distributed in the body of nearly every organ tissue. These cells were previously considered to be "passive cells", solely responsible for ensuring the turnover of the extracellular matrix (ECM). However, their versatility, including their ability to switch phenotypes in response to tissue injury and dynamic activity in the maintenance of tissue specific homeostasis and integrity have been recently revealed by the innovation of technological tools such as genetically modified mouse models and single cell analysis. These highly plastic and heterogeneous cells equipped with multifaceted functions including the regulation of angiogenesis, inflammation as well as their innate stemness characteristics, play a central role in the delicately regulated process of wound healing. Fibroblast dysregulation underlies many chronic conditions, including cardiovascular diseases, cancer, inflammatory diseases, and diabetes mellitus (DM), which represent the current major causes of morbidity and mortality worldwide. Diabetic foot ulcer (DFU), one of the most severe complications of DM affects 40 to 60 million people. Chronic non-healing DFU wounds expose patients to substantial sequelae including infections, gangrene, amputation, and death. A complete understanding of the pathophysiology of DFU and targeting pathways involved in the dysregulation of fibroblasts are required for the development of innovative new therapeutic treatments, critically needed for these patients.
Collapse
Affiliation(s)
- Francesca A. Voza
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
| | - Carlos Theodore Huerta
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
| | - Nga Le
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hongwei Shao
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoine Ribieras
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
| | - Yulexi Ortiz
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carl Atkinson
- Department of Internal Medicine, Division of Pulmonary Critical Care & Sleep Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Tiago Machuca
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.A.V.); (C.T.H.); (H.S.); (A.R.); (Y.O.); (T.M.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
31
|
Salminen A. AMPK signaling inhibits the differentiation of myofibroblasts: impact on age-related tissue fibrosis and degeneration. Biogerontology 2024; 25:83-106. [PMID: 37917219 PMCID: PMC10794430 DOI: 10.1007/s10522-023-10072-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Disruption of the extracellular matrix (ECM) and an accumulation of fibrotic lesions within tissues are two of the distinctive hallmarks of the aging process. Tissue fibroblasts are mesenchymal cells which display an impressive plasticity in the regulation of ECM integrity and thus on tissue homeostasis. Single-cell transcriptome studies have revealed that tissue fibroblasts exhibit a remarkable heterogeneity with aging and in age-related diseases. Excessive stress and inflammatory insults induce the differentiation of fibroblasts into myofibroblasts which are fusiform contractile cells and abundantly secrete the components of the ECM and proteolytic enzymes as well as many inflammatory mediators. Detrimental stresses can also induce the transdifferentiation of certain mesenchymal and myeloid cells into myofibroblasts. Interestingly, many age-related stresses, such as oxidative and endoplasmic reticulum stresses, ECM stiffness, inflammatory mediators, telomere shortening, and several alarmins from damaged cells are potent inducers of myofibroblast differentiation. Intriguingly, there is convincing evidence that the signaling pathways stimulated by the AMP-activated protein kinase (AMPK) are potent inhibitors of myofibroblast differentiation and accordingly AMPK signaling reduces fibrotic lesions within tissues, e.g., in age-related cardiac and pulmonary fibrosis. AMPK signaling is not only an important regulator of energy metabolism but it is also able to control cell fate determination and many functions of the immune system. It is known that AMPK signaling can delay the aging process via an integrated signaling network. AMPK signaling inhibits myofibroblast differentiation, e.g., by suppressing signaling through the TGF-β, NF-κB, STAT3, and YAP/TAZ pathways. It seems that AMPK signaling can alleviate age-related tissue fibrosis and degeneration by inhibiting the differentiation of myofibroblasts.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
32
|
Ackerman JE, Muscat SN, Adjei-Sowah E, Korcari A, Nichols AEC, Buckley MR, Loiselle AE. Identification of Periostin as a critical niche for myofibroblast dynamics and fibrosis during tendon healing. Matrix Biol 2024; 125:59-72. [PMID: 38101460 PMCID: PMC10922883 DOI: 10.1016/j.matbio.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Tendon injuries are a major clinical problem, with poor patient outcomes caused by abundant scar tissue deposition during healing. Myofibroblasts play a critical role in the initial restoration of structural integrity after injury. However, persistent myofibroblast activity drives the transition to fibrotic scar tissue formation. As such, disrupting myofibroblast persistence is a key therapeutic target. While myofibroblasts are typically defined by the presence of αSMA+ stress fibers, αSMA is expressed in other cell types including the vasculature. As such, modulation of myofibroblast dynamics via disruption of αSMA expression is not a translationally tenable approach. Recent work has demonstrated that Periostin-lineage (PostnLin) cells are a precursor for cardiac fibrosis-associated myofibroblasts. In contrast to this, here we show that PostnLin cells contribute to a transient αSMA+ myofibroblast population that is required for functional tendon healing, and that Periostin forms a supportive matrix niche that facilitates myofibroblast differentiation and persistence. Collectively, these data identify the Periostin matrix niche as a critical regulator of myofibroblast fate and persistence that could be targeted for therapeutic manipulation to facilitate regenerative tendon healing.
Collapse
Affiliation(s)
- Jessica E Ackerman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; NDORMS, University of Oxford, Oxford, United Kingdom
| | - Samantha N Muscat
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Emmanuela Adjei-Sowah
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Antonion Korcari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Anne E C Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY, United States
| | - Mark R Buckley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States; Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States; Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
33
|
Miari KE, Williams MTS. Stromal bone marrow fibroblasts and mesenchymal stem cells support acute myeloid leukaemia cells and promote therapy resistance. Br J Pharmacol 2024; 181:216-237. [PMID: 36609915 DOI: 10.1111/bph.16028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
The bone marrow (BM) is the primary site of adult haematopoiesis, where stromal elements (e.g. fibroblasts and mesenchymal stem cells [MSCs]) work in concert to support blood cell development. However, the establishment of an abnormal clone can lead to a blood malignancy, such as acute myeloid leukaemia (AML). Despite our increased understanding of the pathophysiology of the disease, patient survival remains suboptimal, mainly driven by the development of therapy resistance. In this review, we highlight the importance of bone marrow fibroblasts and MSCs in health and acute myeloid leukaemia and their impact on patient prognosis. We discuss how stromal elements reduce the killing effects of therapies via a combination of contact-dependent (e.g. integrins) and contact-independent (i.e. secreted factors) mechanisms, accompanied by the establishment of an immunosuppressive microenvironment. Importantly, we underline the challenges of therapeutically targeting the bone marrow stroma to improve acute myeloid leukaemia patient outcomes, due to the inherent heterogeneity of stromal cell populations. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
34
|
Adhikari E, Liu Q, Johnson J, Stewart P, Marusyk V, Fang B, Izumi V, Bowers K, Guzman KM, Koomen JM, Marusyk A, Lau EK. Brain metastasis-associated fibroblasts secrete fucosylated PVR/CD155 that induces breast cancer invasion. Cell Rep 2023; 42:113463. [PMID: 37995180 DOI: 10.1016/j.celrep.2023.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Brain metastasis cancer-associated fibroblasts (bmCAFs) are emerging as crucial players in the development of breast cancer brain metastasis (BCBM), but our understanding of the underlying molecular mechanisms is limited. In this study, we aim to elucidate the pathological contributions of fucosylation (the post-translational modification of proteins by the dietary sugar L-fucose) to tumor-stromal interactions that drive the development of BCBM. Here, we report that patient-derived bmCAFs secrete high levels of polio virus receptor (PVR), which enhance the invasive capacity of BC cells. Mechanistically, we find that HIF1α transcriptionally upregulates fucosyltransferase 11, which fucosylates PVR, triggering its secretion from bmCAFs. Global phosphoproteomic analysis of BC cells followed by functional verification identifies cell-cell junction and actin cytoskeletal signaling as modulated by bmCAF-secreted, -fucosylated PVR. Our findings delineate a hypoxia- and fucosylation-regulated mechanism by which bmCAFs contribute to the invasiveness of BCBM in the brain.
Collapse
Affiliation(s)
- Emma Adhikari
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Qian Liu
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Joseph Johnson
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paul Stewart
- Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Viktoriya Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kiah Bowers
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kelly M Guzman
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Andriy Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric K Lau
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
35
|
Rajan AM, Rosin NL, Labit E, Biernaskie J, Liao S, Huang P. Single-cell analysis reveals distinct fibroblast plasticity during tenocyte regeneration in zebrafish. SCIENCE ADVANCES 2023; 9:eadi5771. [PMID: 37967180 PMCID: PMC10651129 DOI: 10.1126/sciadv.adi5771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Despite their importance in tissue maintenance and repair, fibroblast diversity and plasticity remain poorly understood. Using single-cell RNA sequencing, we uncover distinct sclerotome-derived fibroblast populations in zebrafish, including progenitor-like perivascular/interstitial fibroblasts, and specialized fibroblasts such as tenocytes. To determine fibroblast plasticity in vivo, we develop a laser-induced tendon ablation and regeneration model. Lineage tracing reveals that laser-ablated tenocytes are quickly regenerated by preexisting fibroblasts. By combining single-cell clonal analysis and live imaging, we demonstrate that perivascular/interstitial fibroblasts actively migrate to the injury site, where they proliferate and give rise to new tenocytes. By contrast, perivascular fibroblast-derived pericytes or specialized fibroblasts, including tenocytes, exhibit no regenerative plasticity. Active Hedgehog (Hh) signaling is required for the proliferation of activated fibroblasts to ensure efficient tenocyte regeneration. Together, our work highlights the functional diversity of fibroblasts and establishes perivascular/interstitial fibroblasts as tenocyte progenitors that promote tendon regeneration in a Hh signaling-dependent manner.
Collapse
Affiliation(s)
- Arsheen M. Rajan
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nicole L. Rosin
- Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elodie Labit
- Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shan Liao
- Inflammation Research Network, Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
36
|
Bonella F, Spagnolo P, Ryerson C. Current and Future Treatment Landscape for Idiopathic Pulmonary Fibrosis. Drugs 2023; 83:1581-1593. [PMID: 37882943 PMCID: PMC10693523 DOI: 10.1007/s40265-023-01950-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 10/27/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) remains a disease with poor survival. The pathogenesis is complex and encompasses multiple molecular pathways. The first-generation antifibrotics pirfenidone and nintedanib, approved more than 10 years ago, have been shown to reduce the rate of progression, increase the length of life for patients with IPF, and work for other fibrotic lung diseases. In the last two decades, most clinical trials on IPF have failed to meet the primary endpoint and an urgent unmet need remains to identify agents or treatment strategies that can stop disease progression. The pharmacotherapeutic landscape for IPF is moving forward with a number of new drugs currently in clinical development, mostly in phase I and II trials, while only a few phase III trials are running. Since our understanding of IPF pathogenesis is still limited, we should keep focusing our efforts to deeper understand the mechanisms underlying this complex disease and their reflection on clinical phenotypes. This review discusses the key pathogenetic concepts for the development of new antifibrotic agents, presents the newest data on approved therapies, and summarizes new compounds currently in clinical development. Finally, future directions in antifibrotics development are discussed.
Collapse
Affiliation(s)
- Francesco Bonella
- Pneumology Department, Center for Interstitial and Rare Lung Diseases, Ruhrlandklinik University Hospital, University of Duisburg Essen, Essen, Germany.
| | - Paolo Spagnolo
- Cardiac, Thoracic and Vascular, Sciences and Public Health, University of Padova School of Medicine and Surgery, Padua, Italy
| | - Chris Ryerson
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Asahina K, Ilangumaran S. Editorial: Mesenchymal and immune cell crosstalk in fibrotic diseases. Front Immunol 2023; 14:1304773. [PMID: 37901219 PMCID: PMC10600018 DOI: 10.3389/fimmu.2023.1304773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Affiliation(s)
- Kinji Asahina
- Central Research Laboratory, Shiga University of Medical Science, Otsu, Japan
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
38
|
Sweat ME, Cao Y, Zhang X, Burnicka-Turek O, Perez-Cervantes C, Arulsamy K, Lu F, Keating EM, Akerberg BN, Ma Q, Wakimoto H, Gorham JM, Hill LD, Kyoung Song M, Trembley MA, Wang P, Gianeselli M, Prondzynski M, Bortolin RH, Bezzerides VJ, Chen K, Seidman JG, Seidman CE, Moskowitz IP, Pu WT. Tbx5 maintains atrial identity in post-natal cardiomyocytes by regulating an atrial-specific enhancer network. NATURE CARDIOVASCULAR RESEARCH 2023; 2:881-898. [PMID: 38344303 PMCID: PMC10854392 DOI: 10.1038/s44161-023-00334-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/21/2023] [Indexed: 02/15/2024]
Abstract
Understanding how the atrial and ventricular heart chambers maintain distinct identities is a prerequisite for treating chamber-specific diseases. Here, we selectively knocked out (KO) the transcription factor Tbx5 in the atrial working myocardium to evaluate its requirement for atrial identity. Atrial Tbx5 inactivation downregulated atrial cardiomyocyte (aCM) selective gene expression. Using concurrent single nucleus transcriptome and open chromatin profiling, genomic accessibility differences were identified between control and Tbx5 KO aCMs, revealing that 69% of the control-enriched ATAC regions were bound by TBX5. Genes associated with these regions were downregulated in KO aCMs, suggesting they function as TBX5-dependent enhancers. Comparing enhancer chromatin looping using H3K27ac HiChIP identified 510 chromatin loops sensitive to TBX5 dosage, and 74.8% of control-enriched loops contained anchors in control-enriched ATAC regions. Together, these data demonstrate TBX5 maintains the atrial gene expression program by binding to and preserving the tissue-specific chromatin architecture of atrial enhancers.
Collapse
Affiliation(s)
- Mason E. Sweat
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Yangpo Cao
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Ozanna Burnicka-Turek
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Carlos Perez-Cervantes
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Kulandai Arulsamy
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Fujian Lu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Erin M. Keating
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Brynn N. Akerberg
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Hill
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Mi Kyoung Song
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Michael A. Trembley
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Peizhe Wang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Matteo Gianeselli
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | | | - Raul H. Bortolin
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | | | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| | - Jonathan G. Seidman
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Christine E. Seidman
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL
| | - Ivan P. Moskowitz
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115
| |
Collapse
|
39
|
Zhu L, Zhang X, Zhang S, Zhang Q, Cao L, Zhang Y, Wang D, Liang X, Wu W, Wu S, Jiang R, Liu Y, Zhao X, Zhou G, Xu K, Meng Z. Cancer-associated fibroblasts in papillary thyroid carcinoma. Clin Exp Med 2023; 23:2209-2220. [PMID: 36715834 DOI: 10.1007/s10238-023-00998-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023]
Abstract
Papillary thyroid carcinoma (PTC) has a relatively good prognosis, yet there are some invasive PTC cases with worse clinicopathological features and poor outcome. Cancer-associated fibroblasts (CAFs) play an important role in cancer invasion and metastasis. This study aimed to investigate the expression of marker proteins of CAFs in PTC and their correlations with clinicopathological features through immunohistochemistry. The medical records of 125 PTC patients were reviewed in this study, whose specimens were retrieved for immunohistochemistry. Four CAFs marker proteins, FAP fibroblast activated protein (FAP), α-smooth muscle actin (α-SMA), Vimentin and platelet-derived growth factor receptor-α(PDGFR-α), were stained and scored. Then, statistical analyses were performed. The immunoreactivity scores of FAP and α-SMA correlated with tumor size, BRAF mutation, extrathyroidal, invasion, pathological subtype, lymph node metastasis and ATA risk stratification. Moreover, binary logistic regression analysis and receiver operating characteristic curves showed that high FAP and α-SMA immunoreactivity scores were risk factors for extrathyroidal invasion, BRAF mutation, multi-focality and lymph node metastasis (especially N1b) with good sensitivity and accuracy in prediction. A better performance was found in FAP than α-SMA. Strong expressions of CAFs were risk factors for worse thyroid cancer clinicopathological features. FAP was the better CAFs marker for PTC.
Collapse
Affiliation(s)
- Li Zhu
- Department of Ultrasound, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Xuemei Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Shuhan Zhang
- Department of Preventive Medicine, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yujie Zhang
- Department of Pathology, Tianjin First Central Hospital, 300190, Tianjin, People's Republic of China
| | - Dan Wang
- Department of Pathology, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Weiming Wu
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Shuanghu Wu
- Department of General Surgery, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Ruoyu Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Yue Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, People's Republic of China
| | - Xue Zhao
- Pathology Section, Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China
| | - Guiming Zhou
- Department of Ultrasound, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China.
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, 300052, Tianjin, People's Republic of China.
| |
Collapse
|
40
|
Li R, Feng D, Han S, Zhai X, Yu X, Fu Y, Jin F. Macrophages and fibroblasts in foreign body reactions: How mechanical cues drive cell functions? Mater Today Bio 2023; 22:100783. [PMID: 37701130 PMCID: PMC10494263 DOI: 10.1016/j.mtbio.2023.100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Biomaterials, when implanted in the human body, can induce a series of cell- and cytokine-related reactions termed foreign body reactions (FBRs). In the progression of FBRs, macrophages regulate inflammation and healing by polarizing to either a pro-inflammatory or pro-healing phenotype and recruit fibroblasts by secreting cytokines. Stimulated by the biomaterials, fibrotic capsule is formed eventually. The implant, along with its newly formed capsule, introduces various mechanical cues that influence cellular functions. Mechanosensing proteins, such as integrins or ion channels, transduce extracellular mechanical signals into cytoplasm biochemical signals in response to mechanical stimuli. Consequently, the morphology, migration mode, function, and polarization state of the cells are affected. Modulated by different intracellular signaling pathways and their crosstalk, the expression of fibrotic genes increases with fibroblast activation and fibroblast to myofibroblast transition under stiff or force stimuli. However, summarized in most current studies, the outcomes of macrophage polarization in the effect of different mechanical cues are inconsistent. The underlying mechanisms should be investigated with more advanced technology and considering more interfering aspects. Further research is needed to determine how to modulate the progression of fibrotic capsule formation in FBR artificially.
Collapse
Affiliation(s)
- Rihan Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Dongdong Feng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Siyuan Han
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Xiaoyue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110000, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Yuanyuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110000, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
41
|
Salminen A. The role of immunosuppressive myofibroblasts in the aging process and age-related diseases. J Mol Med (Berl) 2023; 101:1169-1189. [PMID: 37606688 PMCID: PMC10560181 DOI: 10.1007/s00109-023-02360-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Tissue-resident fibroblasts are mesenchymal cells which control the structural integrity of the extracellular matrix (ECM). Fibroblasts possess a remarkable plasticity to allow them to adapt to the changes in the microenvironment and thus maintain tissue homeostasis. Several stresses, also those associated with the aging process, convert quiescent fibroblasts into myofibroblasts which not only display fibrogenic properties but also act as immune regulators cooperating both with tissue-resident immune cells and those immune cells recruited into affected tissues. TGF-β cytokine and reactive oxygen species (ROS) are major inducers of myofibroblast differentiation in pathological conditions either from quiescent fibroblasts or via transdifferentiation from certain other cell types, e.g., macrophages, adipocytes, pericytes, and endothelial cells. Intriguingly, TGF-β and ROS are also important signaling mediators between immunosuppressive cells, such as MDSCs, Tregs, and M2 macrophages. It seems that in pathological states, myofibroblasts are able to interact with the immunosuppressive network. There is clear evidence that a low-grade chronic inflammatory state in aging tissues is counteracted by activation of compensatory immunosuppression. Interestingly, common enhancers of the aging process, such as oxidative stress, loss of DNA integrity, and inflammatory insults, are inducers of myofibroblasts, whereas anti-aging treatments with metformin and rapamycin suppress the differentiation of myofibroblasts and thus prevent age-related tissue fibrosis. I will examine the reciprocal interactions between myofibroblasts and immunosuppressive cells within aging tissues. It seems that the differentiation of myofibroblasts with age-related harmful stresses enhances the activity of the immunosuppressive network which promotes tissue fibrosis and degeneration in elderly individuals.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
42
|
Zhang X, Shi X, Xie F, Liu Y, Wei X, Cai Y, Chao J. Dissecting pulmonary fibroblasts heterogeneity in lung development, health and diseases. Heliyon 2023; 9:e19428. [PMID: 37674845 PMCID: PMC10477496 DOI: 10.1016/j.heliyon.2023.e19428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Lung fibroblasts are the major components in the connective tissue of the pulmonary interstitium and play essential roles in the developing of postnatal lung, synthesizing the extracellular matrix and maintaining the integrity of the lung architecture. Fibroblasts are activated in various disease conditions and exhibit functional heterogeneities according to their origin, spatial location, activated state and microenvironment. In recent years, advances in technology have enabled researchers to identify fibroblast subpopulations in both mouse and human. Here, we discuss pulmonary fibroblast heterogeneity, focusing on the developing, healthy and pathological lung conditions. We firstly review the expression profiles of fibroblasts during lung development, and then consider fibroblast diversity according to different anatomical sites of lung architecture. Subsequently, we discuss fibroblast heterogeneity in genetic lineage. Finally, we focus on how fibroblast heterogeneity may shed light on different pathological lung conditions such as fibrotic diseases, infectious diseases including COVID-19, and lung cancers. We emphasize the importance of comparative studies to illuminate the overlapping characteristics, expression profiles and signaling pathways of the fibroblast subpopulations across disease conditions, a better characterization of the functional complexity rather than the expression of a particular gene may have important therapeutic applications.
Collapse
Affiliation(s)
- Xinxin Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Xiaoni Shi
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Feiyan Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yaping Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xinyan Wei
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yu Cai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
43
|
Ryan CN, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs MJ, Griffin MD, Zeugolis DI. Physicochemical cues are not potent regulators of human dermal fibroblast trans-differentiation. BIOMATERIALS AND BIOSYSTEMS 2023; 11:100079. [PMID: 37720487 PMCID: PMC10499661 DOI: 10.1016/j.bbiosy.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 09/19/2023] Open
Abstract
Due to their inherent plasticity, dermal fibroblasts hold great promise in regenerative medicine. Although biological signals have been well-established as potent regulators of dermal fibroblast function, it is still unclear whether physiochemical cues can induce dermal fibroblast trans-differentiation. Herein, we evaluated the combined effect of surface topography, substrate rigidity, collagen type I coating and macromolecular crowding in human dermal fibroblast cultures. Our data indicate that tissue culture plastic and collagen type I coating increased cell proliferation and metabolic activity. None of the assessed in vitro microenvironment modulators affected cell viability. Anisotropic surface topography induced bidirectional cell morphology, especially on more rigid (1,000 kPa and 130 kPa) substrates. Macromolecular crowding increased various collagen types, but not fibronectin, deposition. Macromolecular crowding induced globular extracellular matrix deposition, independently of the properties of the substrate. At day 14 (longest time point assessed), macromolecular crowding downregulated tenascin C (in 9 out of the 14 groups), aggrecan (in 13 out of the 14 groups), osteonectin (in 13 out of the 14 groups), and collagen type I (in all groups). Overall, our data suggest that physicochemical cues (such surface topography, substrate rigidity, collagen coating and macromolecular crowding) are not as potent as biological signals in inducing dermal fibroblast trans-differentiation.
Collapse
Affiliation(s)
- Christina N.M. Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Peadar Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Md Nahidul Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, University of Galway, Galway, Ireland
- Discipline of Biochemistry, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - Manus J. Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Matthew D. Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
44
|
Wang J, Yue Z, Che L, Li H, Hu R, Shi L, Zhang X, Zou H, Peng Q, Jiang Y, Wang Z. Establishment of SV40 Large T-Antigen-Immortalized Yak Rumen Fibroblast Cell Line and the Fibroblast Responses to Lipopolysaccharide. Toxins (Basel) 2023; 15:537. [PMID: 37755963 PMCID: PMC10537058 DOI: 10.3390/toxins15090537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
The yak lives in harsh alpine environments and the rumen plays a crucial role in the digestive system. Rumen-associated cells have unique adaptations and functions. The yak rumen fibroblast cell line (SV40T-YFB) was immortalized by introducing simian virus 40 large T antigen (SV40T) by lentivirus-mediated transfection. Further, we have reported the effects of lipopolysaccharide (LPS) of different concentrations on cell proliferation, extracellular matrix (ECM), and proinflammatory mediators in SV40T-YFB. The results showed that the immortalized yak rumen fibroblast cell lines were identified as fibroblasts that presented oval nuclei, a fusiform shape, and positive vimentin and SV40T staining after stable passage. Chromosome karyotype analysis showed diploid characteristics of yak (n = 60). LPS at different concentrations inhibited cell viability in a dose-dependent manner. SV40T-YFB treated with LPS increased mRNA expression levels of matrix metalloproteinases (MMP-2 and MMP-9), inflammatory cytokines (TNF-α, IL-1β, IL-6), and urokinase-type plasminogen activator system components (uPA, uPAR). LPS inhibits the expression of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), plasminogen activator inhibitor-2 (PAI-2), fibronectin (FN), anti-inflammatory factor IL-10, and collagen I (COL I) in SV40T-YFB. Overall, these results suggest that LPS inhibits cell proliferation and induces ECM degradation and inflammatory response in SV40T-YFB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhisheng Wang
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (Z.Y.); (L.C.); (H.L.); (R.H.); (L.S.); (X.Z.); (H.Z.); (Q.P.); (Y.J.)
| |
Collapse
|
45
|
Li HY, Huang LF, Huang XR, Wu D, Chen XC, Tang JX, An N, Liu HF, Yang C. Endoplasmic Reticulum Stress in Systemic Lupus Erythematosus and Lupus Nephritis: Potential Therapeutic Target. J Immunol Res 2023; 2023:7625817. [PMID: 37692838 PMCID: PMC10484658 DOI: 10.1155/2023/7625817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Approximately one-third to two-thirds of the patients with SLE progress to lupus nephritis (LN). The pathogenesis of SLE and LN has not yet been fully elucidated, and effective treatment for both conditions is lacking. The endoplasmic reticulum (ER) is the largest intracellular organelle and is a site of protein synthesis, lipid metabolism, and calcium storage. Under stress, the function of ER is disrupted, and the accumulation of unfolded or misfolded proteins occurs in ER, resulting in an ER stress (ERS) response. ERS is involved in the dysfunction of B cells, macrophages, T cells, dendritic cells, neutrophils, and other immune cells, causing immune system disorders, such as SLE. In addition, ERS is also involved in renal resident cell injury and contributes to the progression of LN. The molecular chaperones, autophagy, and proteasome degradation pathways inhibit ERS and restore ER homeostasis to improve the dysfunction of immune cells and renal resident cell injury. This may be a therapeutic strategy for SLE and LN. In this review, we summarize advances in this field.
Collapse
Affiliation(s)
- Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
46
|
Knoedler S, Broichhausen S, Guo R, Dai R, Knoedler L, Kauke-Navarro M, Diatta F, Pomahac B, Machens HG, Jiang D, Rinkevich Y. Fibroblasts - the cellular choreographers of wound healing. Front Immunol 2023; 14:1233800. [PMID: 37646029 PMCID: PMC10461395 DOI: 10.3389/fimmu.2023.1233800] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Injuries to our skin trigger a cascade of spatially- and temporally-synchronized healing processes. During such endogenous wound repair, the role of fibroblasts is multifaceted, ranging from the activation and recruitment of innate immune cells through the synthesis and deposition of scar tissue to the conveyor belt-like transport of fascial connective tissue into wounds. A comprehensive understanding of fibroblast diversity and versatility in the healing machinery may help to decipher wound pathologies whilst laying the foundation for novel treatment modalities. In this review, we portray the diversity of fibroblasts and delineate their unique wound healing functions. In addition, we discuss future directions through a clinical-translational lens.
Collapse
Affiliation(s)
- Samuel Knoedler
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Sonja Broichhausen
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Ruiji Guo
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Leonard Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Fortunay Diatta
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Hans-Guenther Machens
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
47
|
Parker JB, Valencia C, Akras D, DiIorio SE, Griffin MF, Longaker MT, Wan DC. Understanding Fibroblast Heterogeneity in Form and Function. Biomedicines 2023; 11:2264. [PMID: 37626760 PMCID: PMC10452440 DOI: 10.3390/biomedicines11082264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Historically believed to be a homogeneous cell type that is often overlooked, fibroblasts are more and more understood to be heterogeneous in nature. Though the mechanisms behind how fibroblasts participate in homeostasis and pathology are just beginning to be understood, these cells are believed to be highly dynamic and play key roles in fibrosis and remodeling. Focusing primarily on fibroblasts within the skin and during wound healing, we describe the field's current understanding of fibroblast heterogeneity in form and function. From differences due to embryonic origins to anatomical variations, we explore the diverse contributions that fibroblasts have in fibrosis and plasticity. Following this, we describe molecular techniques used in the field to provide deeper insights into subpopulations of fibroblasts and their varied roles in complex processes such as wound healing. Limitations to current work are also discussed, with a focus on future directions that investigators are recommended to take in order to gain a deeper understanding of fibroblast biology and to develop potential targets for translational applications in a clinical setting.
Collapse
Affiliation(s)
- Jennifer B. Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Valencia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Deena Akras
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Sarah E. DiIorio
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle F. Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| |
Collapse
|
48
|
Tajer B, Savage AM, Whited JL. The salamander blastema within the broader context of metazoan regeneration. Front Cell Dev Biol 2023; 11:1206157. [PMID: 37635872 PMCID: PMC10450636 DOI: 10.3389/fcell.2023.1206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Throughout the animal kingdom regenerative ability varies greatly from species to species, and even tissue to tissue within the same organism. The sheer diversity of structures and mechanisms renders a thorough comparison of molecular processes truly daunting. Are "blastemas" found in organisms as distantly related as planarians and axolotls derived from the same ancestral process, or did they arise convergently and independently? Is a mouse digit tip blastema orthologous to a salamander limb blastema? In other fields, the thorough characterization of a reference model has greatly facilitated these comparisons. For example, the amphibian Spemann-Mangold organizer has served as an amazingly useful comparative template within the field of developmental biology, allowing researchers to draw analogies between distantly related species, and developmental processes which are superficially quite different. The salamander limb blastema may serve as the best starting point for a comparative analysis of regeneration, as it has been characterized by over 200 years of research and is supported by a growing arsenal of molecular tools. The anatomical and evolutionary closeness of the salamander and human limb also add value from a translational and therapeutic standpoint. Tracing the evolutionary origins of the salamander blastema, and its relatedness to other regenerative processes throughout the animal kingdom, will both enhance our basic biological understanding of regeneration and inform our selection of regenerative model systems.
Collapse
Affiliation(s)
| | | | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
49
|
Salminen A. The plasticity of fibroblasts: A forgotten player in the aging process. Ageing Res Rev 2023; 89:101995. [PMID: 37391015 DOI: 10.1016/j.arr.2023.101995] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Tissue-resident fibroblasts are mesenchymal cells which possess an impressive plasticity in their ability to modify their properties according to the requirements of the microenvironment. There are diverse subgroups of fibroblast phenotypes associated with different tissue pathological conditions, e.g., cancers, wound healing, and many fibrotic and inflammatory conditions. The heterogeneous phenotypes can be subdivided into fibrogenic and non-fibrogenic, inflammatory and immunosuppressive subtypes as well as cellular senescent subsets. A major hallmark of activated fibroblasts is that they contain different amounts of stress fibers combined with α-smooth muscle actin (α-SMA) protein, i.e., commonly this phenotype has been called the myofibroblast. Interestingly, several stresses associated with the aging process are potent inducers of myofibroblast differentiation, e.g., oxidative and endoplasmic reticulum stresses, extracellular matrix (ECM) disorders, inflammatory mediators, and telomere shortening. Accordingly, anti-aging treatments with metformin and rapamycin inhibited the differentiation of myofibroblasts in tissues. There is evidence that the senescent phenotype induced in cultured fibroblasts does not represent the phenotype of fibroblasts in aged tissues. Considering the versatile plasticity of fibroblasts as well as their frequency and structural importance in tissues, it does seem that fibroblasts are overlooked players in the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
50
|
Ackerman JE, Adjei-Sowah E, Korcari A, Muscat SN, Nichols AE, Buckley MR, Loiselle AE. Identification of Periostin as a critical niche for myofibroblast dynamics and fibrosis during tendon healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550090. [PMID: 37502924 PMCID: PMC10370208 DOI: 10.1101/2023.07.21.550090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Tendon injuries are a major clinical problem, with poor patient outcomes caused by abundant scar tissue deposition during healing. Myofibroblasts play a critical role in the initial restoration of structural integrity after injury. However, persistent myofibroblast activity drives the transition to fibrotic scar tissue formation. As such, disrupting myofibroblast persistence is a key therapeutic target. While myofibroblasts are typically defined by the presence of αSMA+ stress fibers, αSMA is expressed in other cell types including the vasculature. As such, modulation of myofibroblast dynamics via disruption of αSMA expression is not a translationally tenable approach. Recent work has demonstrated that Periostin-lineage (PostnLin) cells are a precursor for cardiac fibrosis-associated myofibroblasts. In contrast to this, here we show that PostnLin cells contribute to a transient αSMA+ myofibroblast population that is required for functional tendon healing, and that Periostin forms a supportive matrix niche that facilitates myofibroblast differentiation and persistence. Collectively, these data identify the Periostin matrix niche as a critical regulator of myofibroblast fate and persistence that could be targeted for therapeutic manipulation to facilitate regenerative tendon healing.
Collapse
Affiliation(s)
- Jessica E. Ackerman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Current affiliation: NDORMS, University of Oxford, Oxford, United Kingdom
| | - Emmanuela Adjei-Sowah
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Antonion Korcari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Samantha N. Muscat
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Anne E.C. Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY
| | - Mark R. Buckley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
- Department of Orthopaedics & Physical Performance, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|