1
|
Akunjee MM, Khosla SG, Nylen ES, Sen S. SGLT2 inhibitors use in kidney disease: what did we learn? Am J Physiol Endocrinol Metab 2025; 328:E856-E868. [PMID: 40279256 DOI: 10.1152/ajpendo.00034.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/26/2025] [Accepted: 04/18/2025] [Indexed: 04/27/2025]
Abstract
Chronic kidney disease (CKD) increases the risk for cardiovascular morbidity and mortality and it's prevalence continues to rise throughout the world. Newer, more efficacious therapies, slow progression of CKD, decrease long-term sequela like end-stage kidney disease (ESKD) and cardiovascular events, improving survival. Postmarketing cardiovascular outcome trials (CVOT) have demonstrated improved cardiovascular outcomes with the use of sodium-glucose cotransporter-2 inhibitors (SGLT2i) like canagliflozin, dapagliflozin, empagliflozin, ertugliflozin, and sotagliflozin in patients with type 2 diabetes mellitus (T2DM), Similarly, secondary analysis of CVOT and renal outcome trials with the use of SGLT2i in patients without T2DM showed improved renal function and albuminuria. In these studies, nondiabetic CKD was defined as an estimated glomerular filtration rate (eGFR) of 20-75 mL/min/1.73 m2 with albuminuria ranging from 200 to 5,000 mg/g in the absence of diabetes. As a class effect, in addition to modulation of hemodynamic and metabolic activities, SGLT2i exert renal protection by suppressing inflammation and fibrosis. We conducted an extensive search in the PubMed database for original papers published from 2009 through 2024 using keywords such as nondiabetic kidney disease, diabetic kidney disease, SGLT2i, and kidney outcomes. Based on our research of published literature, we present a review and propose, consideration of SGLT2i in nondiabetic kidney disease for long-term cardiovascular and renal benefit (Dharia A, Khan A, Sridhar VS, Cherney DZI. Annu Rev Med 74: 369-384, 2023). We will highlight relevant translational studies to propose a possible cell-based mechanism for cardiovascular benefits noted secondary to use of SGLT2i.
Collapse
Affiliation(s)
- Munaza M Akunjee
- Division of Endocrinology, Department of Medicine, Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Division of Endocrinology, Department of Medicine, The George Washington University, Washington, District of Columbia, United States
| | - Shikha G Khosla
- Division of Endocrinology, Department of Medicine, Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Division of Endocrinology, Department of Medicine, The George Washington University, Washington, District of Columbia, United States
| | - Eric S Nylen
- Division of Endocrinology, Department of Medicine, Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Division of Endocrinology, Department of Medicine, The George Washington University, Washington, District of Columbia, United States
| | - Sabyasachi Sen
- Division of Endocrinology, Department of Medicine, Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Division of Endocrinology, Department of Medicine, The George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
2
|
Del Vecchio L, Peiti S, Pucci Bella G, Locatelli F. SGLT2 Inhibitors in Glomerulonephritis: Beyond Nephroprotection? J Clin Med 2025; 14:3533. [PMID: 40429528 PMCID: PMC12112720 DOI: 10.3390/jcm14103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors, initially developed for glycaemic control in type 2 diabetes, have demonstrated substantial renal and cardiovascular protective effects across various chronic kidney diseases (CKD), including glomerulonephritis. Beyond their established haemodynamic and metabolic benefits, recent evidence points to additional mechanisms of action potentially relevant to immune-mediated kidney diseases, such as the modulation of inflammation, immunometabolism, and oxidative stress. Randomised clinical trials (DAPA-CKD and EMPA-KIDNEY) and real-world observational studies consistently show that SGLT2 inhibitors reduce proteinuria and slow estimated glomerular filtration rate (eGFR) decline in patients with glomerulonephritis, including IgA nephropathy and focal segmental glomerulosclerosis. These benefits may extend to patients with stable immunosuppression. Further data are needed in this subgroup. Importantly, SGLT2 inhibitors display a favourable safety profile, even among those with immunosuppressed status. Again, further evidence is awaited in this respect. Despite these promising findings, unanswered questions remain regarding their efficacy in nephrotic syndrome, early-stage disease, and in comparison or combination with other supportive therapies. Overall, the evolving evidence supports the inclusion of SGLT2 inhibitors as a key component of supportive therapy in glomerulonephritis, with potential benefits extending beyond proteinuria reduction.
Collapse
Affiliation(s)
- Lucia Del Vecchio
- Department of Nephrology and Dialysis, ASST Lariana, 22100 Como, Italy; (S.P.); (G.P.B.)
| | - Silvia Peiti
- Department of Nephrology and Dialysis, ASST Lariana, 22100 Como, Italy; (S.P.); (G.P.B.)
| | - Giulio Pucci Bella
- Department of Nephrology and Dialysis, ASST Lariana, 22100 Como, Italy; (S.P.); (G.P.B.)
| | - Francesco Locatelli
- Department of Nephrology and Dialysis, (Past Director), ASST Lecco, 23900 Lecco, Italy;
| |
Collapse
|
3
|
Ammar A, Edwin SB, Whitney R, Lipari M, Giuliano C. Updates in chronic kidney disease management: A systematic review. Pharmacotherapy 2025; 45:291-306. [PMID: 40152479 DOI: 10.1002/phar.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Chronic kidney disease (CKD) is a significant global health challenge that impacts both patients and the health care system. This systematic review aims to evaluate the efficacy and safety of emerging therapeutic strategies for CKD management, including sodium-glucose cotransporter 2 inhibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1RA), finerenone, sacubitril/valsartan, and potassium binders. We conducted searches in databases including PubMed, Scopus, CINAHL Complete, and Web of Science Core Collection to identify experimental and observational studies pertaining to each of these agents. Included studies were those that enrolled adult patients with CKD who evaluated SGLT2i, GLP-1RA, finerenone, sacubitril/valsartan, and potassium binders compared to other medications or placebo and evaluated renal-related outcomes as a primary or secondary outcome. Methodological quality and risk of bias were assessed using the Cochrane Risk of Bias (version 2) tool for experimental studies and ROBINS-I for observational studies. After screening 2135 unique studies, 138 studies were eligible for this review. These studies describe a substantial and growing body of evidence focused on improving the management of CKD beyond renin-angiotensin system inhibitors (RASi), such as angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs). Currently, SGLT2i have demonstrated consistent benefits with large effect sizes in preventing the progression of CKD, solidifying this class as a first-line treatment along with RASi. Subsequent consideration for GLP-1RA, finerenone, and sacubitril/valsartan should be dependent on patient-specific comorbidities, while potassium binders may allow for longer use of RASi.
Collapse
Affiliation(s)
- Amina Ammar
- Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy, Henry Ford St. John Hospital, Detroit, Michigan, USA
| | - Stephanie B Edwin
- Department of Pharmacy, Henry Ford St. John Hospital, Detroit, Michigan, USA
| | - Rachel Whitney
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Melissa Lipari
- Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy, Henry Ford St. John Hospital, Detroit, Michigan, USA
| | - Christopher Giuliano
- Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy, Henry Ford St. John Hospital, Detroit, Michigan, USA
| |
Collapse
|
4
|
Lai W, Liu L, Wang S, Liu Y, Chai Y. Integrated Omics Insights into Dapagliflozin Effects in Sepsis-Induced Cardiomyopathy. Biomolecules 2025; 15:286. [PMID: 40001588 PMCID: PMC11853349 DOI: 10.3390/biom15020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SIC) is a life-threatening cardiac complication of sepsis with limited therapeutic options. Dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has demonstrated cardioprotective effects in heart failure, but its role in mitigating sepsis-related cardiac dysfunction remains unclear. METHODS A retrospective cohort analysis was conducted to assess the impact of pre-hospital dapagliflozin use on major adverse cardiovascular events (MACEs) and survival in patients with SIC. Additionally, a murine SIC model was established using cecal ligation and puncture (CLP) to evaluate the effects of dapagliflozin on cardiac function, histopathology, and biomarkers of myocardial injury. Transcriptomic and metabolomic profiling, combined with multi-omics integration, was employed to elucidate the molecular mechanisms underlying dapagliflozin's cardioprotective effects. RESULTS In the clinical cohort, pre-hospital dapagliflozin use was associated with a significant reduction in the risk of MACE and improved survival outcomes. In the murine SIC model, dapagliflozin restored cardiac function, reduced biomarkers of myocardial injury, and alleviated histological damage. Multi-omics analysis revealed that dapagliflozin modulates inflammatory responses, enhances autophagy, and regulates metabolic pathways such as AMPK signaling and lipid metabolism. Key regulatory genes and metabolites were identified, providing mechanistic insights into the underlying actions of dapagliflozin. CONCLUSIONS Dapagliflozin significantly improves cardiac outcomes in sepsis-induced cardiomyopathy through the multi-level regulation of inflammation, energy metabolism, and cellular survival pathways. These findings establish dapagliflozin as a promising therapeutic strategy for SIC, offering translational insights into the treatment of sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
| | | | | | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
5
|
Zhu Y, Xu G. Advances in Focal Segmental Glomerulosclerosis Treatment From the Perspective of the Newest Mechanisms of Podocyte Injury. Drug Des Devel Ther 2025; 19:857-875. [PMID: 39935575 PMCID: PMC11812565 DOI: 10.2147/dddt.s498457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025] Open
Abstract
Podocyte injury was widely recognized as a fundamental mechanism driving the progression of focal segmental glomerulosclerosis (FSGS). Recent research has therefore focused on the development of targeted therapies aimed at disrupting specific pathogenic signaling cascades within podocytes, resulting in noteworthy advancements. The role of mechanisms such as alterations in the actin cytoskeleton, oxidative stress, mitochondrial dysfunction, and inadequate autophagy within the microenvironment of podocyte injury have garnered increasing attention. Corresponding targeted medications such as Abatacept, chemokine receptor (CCR) inhibitors, CDDO-Im (2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide), adenosine monophosphate-activated protein kinase (AMPK) activators, and Adalimumab are currently under investigation. Notably, some medications such as Rituximab and Sparsentan, may simultaneously target multiple downstream mechanisms, Furthermore, exploring molecular strategies for established medications and developing novel treatments guided by biomarkers such as Anti-CD40 antibody, blood microRNA, urinary microRNA, and tumor necrosis factor-alpha (TNF-α) may provide additional therapeutic avenues for patients with FSGS.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| |
Collapse
|
6
|
Trachtman H, Modi ZJ, Ju W, Lee E, Chinnakotla S, Massengill S, Sedor J, Mariani L, Zhai Y, Hao W, Desmond H, Eddy S, Ramani K, Spino C, Kretzler M. Precision Medicine Proof-of-Concept Study of a TNF Inhibitor in FSGS and Treatment-Resistant Minimal Change Disease. KIDNEY360 2025; 6:284-295. [PMID: 39808779 PMCID: PMC11882258 DOI: 10.34067/kid.0000000635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
Key Points Precision medicine trials are feasible in patients with primary glomerular diseases. Patients with FSGS and the best-preserved kidney parenchyma demonstrated the most favorable biomarker response to short-term adalimumab treatment. Targeted therapies for FSGS are more likely to succeed during the course of disease when the injury pathway is activated and can be modified. Background FSGS and treatment-resistant minimal change disease (TR-MCD) are heterogeneous disorders with subgroups defined by distinct underlying mechanisms of glomerular and tubulointerstitial injury. A noninvasive urinary biomarker profile has been generated to identify patients with intrakidney TNF activation and to predict response to anti-TNF treatment. We conducted this proof-of-concept, multicenter, open-label clinical trial to test the hypothesis that in patients with FSGS or TR-MCD and evidence of intrarenal TNF activation based on their biomarker profile, short-term treatment with adalimumab would reverse the elevated urinary excretion of monocyte chemoattractant protein-1 (MCP-1) and tissue inhibitor of metalloproteinases 1. Methods Patients with FSGS or TR-MCD, eGFR >30 ml/min per 1.73 m2, urine protein:creatinine ratio ≥1.5 g/g, and age 6–80 years were eligible for this trial. Adalimumab, 20–40 mg, was administered through subcutaneous injection every 2 weeks for five doses. Participants were evaluated at weeks 0 (baseline), 2, 8, and 10. Excretion of urinary monocyte chemoattractant protein-1, urinary tissue inhibitor of metalloproteinases 1, urinary excretion of EGF, and plasma monocyte chemoattractant protein-1 were measured at each visit. Results Seven participants were enrolled, with median baseline urine protein:creatinine ratio 12.1 mg/mg (interquartile range [IQR], 2.2–18.6), serum albumin 2.4 g/dl (IQR, 2.0–2.8), and eGFR 57 ml/min per 1.73 m2 (IQR, 44–96). On the basis of self-report, they received all prescribed doses of adalimumab. The patients with the most favorable response on the basis of changes in urinary biomarkers had the best preserved kidney parenchyma based on urinary excretion of EGF. Conclusions Precision medicine trials are feasible in rare glomerular disorders. In this pilot study, adalimumab resulted in a heterogenous response of the candidate mechanistic-predictive biomarkers of TNF-mediated inflammation in patients with FSGS or TR-MCD. A reduction was seen in a subgroup of patients with preserved kidney parenchyma. The findings may reflect the challenge to reverse chronic injury at advanced stages of kidney disease or insufficient intrarenal target engagement with the intervention drug dose. Clinical Trial registry name and registration number: NCT04009668 .
Collapse
Affiliation(s)
- Howard Trachtman
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Zubin J. Modi
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, Michigan
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Edmond Lee
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Silpa Chinnakotla
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Susan Massengill
- Atrium Health Levine Children's Hospital, Charlotte, North Carolina
| | - John Sedor
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Lerner College of Medicine Case Western University School of Medicine, Cleveland, Ohio
| | - Laura Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yan Zhai
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Wei Hao
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Hailey Desmond
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Karthik Ramani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Cathie Spino
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Di Carlo S, Longhitano E, Spinella C, Maressa V, Casuscelli C, Peritore L, Santoro D. Traditional, alternative, and emerging therapeutics for focal segmental glomerulosclerosis. Expert Opin Pharmacother 2025; 26:179-186. [PMID: 39743782 DOI: 10.1080/14656566.2024.2446621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Segmental focal glomerulosclerosis is a histological lesion characterized by podocyte damage. It may be a primary disease linked to an unknown circulating factor, secondary to viral infections, drug toxicity, or a disadaptive response to the loss of nephrons, or it may depend on gene mutations or have an indeterminate cause. The treatment of the primary form involves immunosuppressors. Additional pharmacotherapies for residual proteinuria are used, and emerging therapies are being studied to target other pathological pathways. AREAS COVERED This paper covers the treatment of FSGS, focusing on traditional and emerging therapeutic strategies. It is based on the KDIGO 2021 guidelines and supplemented by a literature search conducted on PubMed. EXPERT OPINION Treating FSGS is challenging due to its heterogeneity. Immunosuppression is adequate for primary FSGS but harmful in genetic or secondary forms. Key strategies include targeting the underlying cause and using agents that affect renal hemodynamics. Antifibrotic drugs can help slow kidney damage by addressing chronic inflammation and fibrosis. Alongside pharmacological treatments, managing blood pressure and restricting dietary salt are crucial. Finally, personalized treatment requires stratifying patients based on clinical, genetic, and histological data to improve clinical trial design and outcomes.
Collapse
Affiliation(s)
- Silvia Di Carlo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| | - Elisa Longhitano
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| | - Claudia Spinella
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| | - Veronica Maressa
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| | - Chiara Casuscelli
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| | - Luigi Peritore
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, A.O.U. "G.Martino", University of Messina, Messina, Italy
| |
Collapse
|
8
|
Portalatin GM, Hong-McAtee I, Burgner AM, Gould ER, Hunley TE. Sodium glucose co-transporter 2 inhibitors (SGLT2i) for pediatric kidney disease: the future is near. Front Pediatr 2025; 13:1521425. [PMID: 39950157 PMCID: PMC11821607 DOI: 10.3389/fped.2025.1521425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
The sodium glucose co-transporter 2 (SGLT2) functions in the proximal tubule to reabsorb the bulk of filtered glucose. SGLT2 inhibitors have been developed to promote renal glucose excretion to improve glycemic control in diabetes. Regulatory guidance mandated adequately powered studies to detect increased cardiovascular risk from emerging hypoglycemic medications. This led to recognition of remarkable improvement in cardiovascular and kidney outcomes with SGLT2 inhibition. Moreover, cardiovascular and kidney benefits extend beyond patients with diabetes. The dramatic kidney benefits of SGLT2 inhibitors documented in CKD in adult patients underscores the need for pediatric nephrologists to familiarize themselves with SGLT2 inhibitor therapies. This review explores the currently available body of knowledge regarding the kidney protective effects of SGLT2 inhibitors in adults and mechanisms thought to contribute to improved kidney outcomes. The limited data for SGLT2i treatment in pediatric kidney disease are reviewed and highlight the need for randomized controlled trials of this drug class in pediatric kidney patients as has been done for pediatric diabetes. Dosing patterns for SGLT2 inhibitors from other pediatric settings are reviewed as well as guidance for initiating SGLT2 inhibition in young adults remaining in pediatric nephrology care.
Collapse
Affiliation(s)
- Gilda M. Portalatin
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Irene Hong-McAtee
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, TN, United States
- Monroe Carell Jr. Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Anna M. Burgner
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Edward R. Gould
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tracy E. Hunley
- Monroe Carell Jr. Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
9
|
Jiang B, Cheng Z, Wang D, Liu F, Wang J, Fu H, Mao J. Unveiling the podocyte-protective effect of sodium-glucose cotransporter-2 inhibitors. Kidney Res Clin Pract 2025; 44:69-78. [PMID: 39639415 PMCID: PMC11838849 DOI: 10.23876/j.krcp.24.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
The renoprotective effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors in both diabetic and nondiabetic nephropathy are widely recognized due to results from randomized controlled trials notably the DAPA-CKD and EMPA-KIDNEY trials. Research exploring the mechanisms of renoprotection indicates that SGLT2 inhibitors exert protective effects on podocytes by enhancing autophagy and stabilizing the structure of podocytes and basement membranes. Furthermore, reductions in lipotoxicity, oxidative stress, and inflammation have been confirmed with SGLT2 inhibitor treatment. Recent clinical studies have also begun to explore the effects of SGLT2 inhibitors on nondiabetic podocytopathies, such as focal segmental glomerulosclerosis. In this review, we summarize clinical and laboratory studies that focus on the podocyte-protective effects of SGLT2 inhibitors, exploring the potential for broader applications of this novel therapeutic agent in kidney disease.
Collapse
Affiliation(s)
- Buchun Jiang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Zhiwen Cheng
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Department of General Pediatrics, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongjie Wang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Jingjing Wang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| |
Collapse
|
10
|
Boeckhaus J, Gale DP, Simon J, Ding J, Zhang Y, Bergmann C, Turner AN, Hall M, Sayer JA, Srivastava S, Kang HG, Cerkauskaite-Kerpauskiene A, Gillion V, Claes KJ, Krueger B, de Fallois J, Walden U, Choi M, Schueler M, Mueller RU, Todorova P, Hohenstein B, Zeisberg M, Friede T, Knebelmann B, Halbritter J, Gross O. SGLT2-Inhibition in Patients With Alport Syndrome. Kidney Int Rep 2024; 9:3490-3500. [PMID: 39698346 PMCID: PMC11652101 DOI: 10.1016/j.ekir.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Large-scale trials showed positive outcomes of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in adults with chronic kidney disease (CKD). Whether the use of SGLT2i is safe and effective in patients with the common hereditary CKD Alport syndrome (AS) has not yet been investigated specifically in larger cohorts. Methods This observational, multicenter, international study (NCT02378805) assessed 112 patients with AS after start of SGLT2i. The study's primary end point was change of albuminuria in albumin/g creatinine from the start of therapy. Results Compared to randomized trials investigating the effect of SGLT2i in CKD, the adult patients in this study were younger (aged 38 ± 14 years) and had a better estimated glomerular filtration rate (eGFR, 63 ± 35 ml/min per 1.73 m2; n = 98). Maximum follow-up was 32 months. Compared to baseline, at the first 3 follow-up visits (months 1 to 3, 4 to 8, and 9 to 15) after initiation of SGLT2i therapy, a significant reduction of albuminuria in mg albumin/g creatinine (>30%) was observed. Mean loss of eGFR was 9 ± 12 ml/min per 1.73 m2 almost 1 year after initiation of SGLT2i therapy (n = 35). At a total of 71 patient-years at risk, 0.24 adverse events (AEs) per patient-year on SGLT2i were reported. Conclusion This study indicates that, additive to renin-angiotensin system (RAS)-inhibition (RASi), SGLT2i have the potential to reduce the amount of albuminuria in patients with AS. Future studies are needed to investigate the long-term effects of SGLT2i on CKD progression in patients with AS to assess whether the observed reduction in albuminuria translates to a delay in kidney failure (KF).
Collapse
Affiliation(s)
- Jan Boeckhaus
- Clinic for Nephrology and Rheumatology, University Medical Center Goettingen, Germany
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London, UK
- National Registry of Rare Kidney Diseases, Bristol, UK
| | - James Simon
- Department of Kidney Medicine, Medical Specialties Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | | | | | - John A. Sayer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, Newcastle upon Tyne National Health Service Foundation Trust, Newcastle upon Tyne, UK
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Shalabh Srivastava
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
- Newcastle University, Newcastle Upon Tyne, UK
| | - Hee Gyung Kang
- Departments of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
- Departments of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | | | - Valentine Gillion
- Nephrology Department, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Kathleen J. Claes
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
- Department of Microbiology, Immunology, and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Bastian Krueger
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Jonathan de Fallois
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Ulrike Walden
- Paediatric and Adolescent Medicine, University Medical Center Augsburg, Augsburg, Germany
| | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Schueler
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Roman-Ulrich Mueller
- Department II of Internal Medicine and Center for Rare Diseases Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Polina Todorova
- Department II of Internal Medicine and Center for Rare Diseases Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bernd Hohenstein
- Nephrologisches Zentrum Villingen-Schwenningen, Villingen-Schwenningen, Germany
| | - Michael Zeisberg
- Clinic for Nephrology and Rheumatology, University Medical Center Goettingen, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Goettingen, Goettingen, Germany
| | - Bertrand Knebelmann
- Faculté de médecine, Université Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Service de Néphrologie, Paris, France
| | - Jan Halbritter
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medical Center Goettingen, Germany
| |
Collapse
|
11
|
Choi N, Kim JH, Park PG, Lee H, Min J, Park HW, Ahn YH, Kang HG. Efficacy and safety of dapagliflozin in children with kidney disease: real-world data. Pediatr Nephrol 2024; 39:3551-3558. [PMID: 39103536 PMCID: PMC11511754 DOI: 10.1007/s00467-024-06481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Dapagliflozin, a sodium-glucose cotransporter-2 inhibitor, has shown results in slowing estimated glomerular filtration rate (eGFR) decline and reducing proteinuria in adult patients with chronic kidney disease. This retrospective study examines dapagliflozin's effects in 22 children with kidney disease and proteinuria. METHODS Children with a median age of 15.6 years were treated with dapagliflozin for > 3 months between July 2022 and December 2023. All children had been treated with either an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker for at least 1 month before starting dapagliflozin. RESULTS The most common kidney disease diagnoses in this study included Alport syndrome (n = 7) and medication-resistant nephrotic syndrome or focal segmental glomerulosclerosis (n = 7). After 6.1 months of treatment, dapagliflozin treatment did not result in significant changes in eGFR or proteinuria. However, at the latest follow-up, a statistically significant decrease in eGFR was noted (65.5 compared to the baseline 71.1 mL/min/1.73 m2, P = 0.003). Proteinuria remained stable between baseline and the last follow-up (final spot urine protein/creatinine ratio (uPCR) 0.7 vs. baseline uPCR 0.6 mg/mg, P = 0.489). In the subgroup analysis of children treated for > 8 months, the eGFR decline post-treatment changed from - 0.5 to - 0.2 ml/min/1.73 m2 per month (P = 0.634). Only two children discontinued dapagliflozin due to suspected adverse events. CONCLUSIONS Dapagliflozin has not been associated with serious side effects. Further prospective clinical trials are needed to confirm the efficacy and safety of dapagliflozin in children with kidney disease.
Collapse
Affiliation(s)
- Naye Choi
- Department of Pediatrics, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Ji Hyun Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Peong Gang Park
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyeonju Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Jeesu Min
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Hye Won Park
- Suwon Center for Environmental Disease Atopy, Ajou University Hospital, Suwon, Republic of Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Sheth S. Clinical Case Scenarios in the Management of Non-diabetic Chronic Kidney Diseases. Cureus 2024; 16:e75770. [PMID: 39816316 PMCID: PMC11733397 DOI: 10.7759/cureus.75770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 01/18/2025] Open
Abstract
Research conducted in India has shown that there is a high prevalence of non-diabetic kidney disease (NDKD) among Indian patients. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are emerging as potential treatments for preventing the progression of chronic kidney disease to advanced stages, regardless of their anti-diabetic effects. Dapagliflozin, which has been approved by the Central Drugs Standard Control Organization, is the SGLT2i drug class approved for use in both DKD and NDKD patients. Taking this validation into account, the case series was planned to showcase four different real-life case studies in an Indian clinical setting, which involved the utilization of dapagliflozin in different patient profiles with NDKD. The real-world cases substantiate the renoprotective effects of dapagliflozin as seen by changes in the estimated glomerular filtration rate levels and proteinuria post-treatment. These case scenarios highlight the benefits of reducing renal risk factors in patients with NDKD. Notably, in all the cases, the risk of renal disease progression was delayed in NDKD patients with dapagliflozin.
Collapse
Affiliation(s)
- Sharad Sheth
- Nephrology, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, IND
| |
Collapse
|
13
|
Hu G, Wu Y, Chen F, Tang J. Progress of SGLT2 inhibitors in the treatment of common immune-related nephropathies. Int Urol Nephrol 2024; 56:3807-3813. [PMID: 38963512 DOI: 10.1007/s11255-024-04141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
The immune system can lead to a variety of renal diseases through direct or indirect mechanisms. In immune-mediated nephropathy, though standardized treatment, there are still a small number of patients with further decline in renal function, which may even progress to renal failure; sodium-glucose cotransporter protein 2 (SLC5A2,SGLT2) inhibitors not only can significantly reduce blood glucose, but also have an additional protective effect on the kidneys and the heart; this review concludes the potential mechanism of the renal protective effect of SGLT2i and the new advances in the recent years in common immune-mediated nephropathies, which can provide new theoretical references to optimize the therapeutic strategy of common immune-mediated nephropathies.
Collapse
Affiliation(s)
- Guoqian Hu
- Department of Urology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yifan Wu
- Department of Urology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Feng Chen
- Department of Nephrology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| | - Jin Tang
- Department of Urology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
14
|
ElSharkawy M, Emara A, Ahmed MM, Ghonamy E, Teama NM. Clinical value of adding Dapagliflozin in patients with nephrotic syndrome. Int Urol Nephrol 2024; 56:3617-3625. [PMID: 38862701 DOI: 10.1007/s11255-024-04099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors in nephrotic patients on immunosuppression are underexplored. We evaluated dapagliflozin's impact in non-diabetic primary nephrotic syndrome. METHODS Randomized controlled clinical trial was conducted on 60 non-diabetic primary nephrotic syndrome patients, equally assigned to dapagliflozin and control groups. All patients received the standard of care medication and the Dapagliflozin group received 10 mg dapagliflozin in addition. Demographic data, nephrotic syndrome etiology, proteinuria levels, eGFR, and immunosuppression doses, were well-matched. After 6 months of follow up primary outcomes included changes in and eGFR. RESULTS Both groups exhibited significant reductions in proteinuria after 6 months, with the dapagliflozin group achieving a mean UPCR reduction of - 94.7%, and the control group - 86.7% (p < 0.001). However, the comparative change in proteinuria between both groups did not reach statistical significance (p = 0.158). Dapagliflozin initially led to a transient eGFR decline. Dapagliflozin also resulted in a significant mean body weight reduction (p < 0.001) and notable improvements in triglyceride levels compared to the control group (p = 0.045). CONCLUSION In primary nephrotic syndrome patients, adjunct dapagliflozin may enhance the standard of care. While notable, the reduction in proteinuria was comparable to that of the control group by the study's end. Furthermore, after 6 months, eGFR remained stable in both groups. However, significant weight loss and serum triglyceride reduction were particularly pronounced in the dapagliflozin group. Further long-term investigations are necessary to address potential immunosuppression-related confounding effects in patients with primary glomerular disease.
Collapse
Affiliation(s)
- Magdy ElSharkawy
- Faculty of Medicine, Internal Medicine and Nephrology Department, Ain Shams University, Ramsis Street 38, Abbasia, Cairo, Postal Code: 11566, Egypt
| | - Ahmed Emara
- Faculty of Medicine, Internal Medicine and Nephrology Department, Ain Shams University, Ramsis Street 38, Abbasia, Cairo, Postal Code: 11566, Egypt
| | - Mohamed Mohyeldin Ahmed
- Faculty of Medicine, Internal Medicine and Nephrology Department, Ain Shams University, Ramsis Street 38, Abbasia, Cairo, Postal Code: 11566, Egypt
| | - ElSayed Ghonamy
- Faculty of Medicine, Medical Physiology Department, Ain Shams University, Cairo, Egypt
| | - Nahla Mohamed Teama
- Faculty of Medicine, Internal Medicine and Nephrology Department, Ain Shams University, Ramsis Street 38, Abbasia, Cairo, Postal Code: 11566, Egypt.
| |
Collapse
|
15
|
Meliambro K, He JC, Campbell KN. Podocyte-targeted therapies - progress and future directions. Nat Rev Nephrol 2024; 20:643-658. [PMID: 38724717 DOI: 10.1038/s41581-024-00843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 09/14/2024]
Abstract
Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.
Collapse
Affiliation(s)
- Kristin Meliambro
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Caravaca-Fontán F, del Vecchio L, Praga M, Floege J, Zoccali C. Sodium glucose co-transporter 2 inhibitors in the treatment of glomerular diseases: a CKJ controversy. Clin Kidney J 2024; 17:sfae237. [PMID: 39228996 PMCID: PMC11367167 DOI: 10.1093/ckj/sfae237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
Integrating sodium-glucose co-transporter 2 inhibitors (SGLT2i) into the treatment for chronic kidney disease (CKD) has marked a significant therapeutic advance in nephrology. Clinical trials such as DAPA-CKD and EMPA-KIDNEY have demonstrated the beneficial effects of SGLT2i in slowing CKD progression and reducing proteinuria. However, the applicability of these results to patients with glomerulonephritis is still unresolved due to various limitations. This manuscript combines the evidence supporting the use of SGLT2i in glomerular diseases, highlights the limitations and strikes a conclusive balance on their role in clinical practice.
Collapse
Affiliation(s)
- Fernando Caravaca-Fontán
- Department of Nephrology, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Manuel Praga
- Department of Medicine, Complutense University, Madrid, Spain
| | - Jürgen Floege
- Department of Nephrology and Rheumatology and Department of Cardiology, RWTH University Hospital Aachen, Aachen, Germany
| | - Carmine Zoccali
- Renal Research Institute, NY, USA
- Institute of Molecular Biology and Genetics, (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| |
Collapse
|
17
|
Xagas E, Drouzas K, Liapis G, Lionaki S. Evidence based treatment for lupus nephritis: present perspectives and challenges. FRONTIERS IN NEPHROLOGY 2024; 4:1417026. [PMID: 39165275 PMCID: PMC11333434 DOI: 10.3389/fneph.2024.1417026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease known for its high heterogeneity among individuals, which affects various organs including the kidneys. Lupus nephritis (LN) is a frequent and life-threatening manifestation of the disease, with up to 50% of patients developing kidney involvement. Classification of renal involvement in lupus is based on specific histopathological findings, guiding therapeutical decisions. Immunosuppressive therapy, particularly glucocorticoids combined with cyclophosphamide or mycophenolate mofetil, has been the mainstay of treatment for many years, while rates of complete remission have not changed dramatically. Despite advancements in therapy, in an important proportion of patients LN leads to end-stage kidney disease (ESKD). Emerging therapies including belimumab, voclosporin, and obinutuzumab offer promising results in improving renal outcomes, especially in refractory or relapsing disease. Maintenance therapy is crucial to prevent disease flares and preserve renal function. Supportive measures including lifestyle modifications and non-immunosuppressive pharmacological interventions are nowadays also essential in managing LN. This review emphasizes recent advances of therapy and challenges regarding treatment optimization with strategies to improve long-term outcomes.
Collapse
Affiliation(s)
- Efstathios Xagas
- Department of Nephrology, 2 Department of Propaedeutic Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Drouzas
- Department of Nephrology, 2 Department of Propaedeutic Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Liapis
- 1 Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Lionaki
- Department of Nephrology, 2 Department of Propaedeutic Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Song R, Hou Q, Zhang X, Zhao W, Liu G, Li M, Zhang X, Ji L. Retrospective analysis of the effect of SGLT-2 inhibitors on renal function in patients with type 2 diabetes in the real world. Front Pharmacol 2024; 15:1376850. [PMID: 39161902 PMCID: PMC11330817 DOI: 10.3389/fphar.2024.1376850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction The protective effect of sodium-glucose cotransporter-2 (SGLT-2) inhibitors on the kidneys has been widely recognized. However, limited research has reported the changes in estimated glomerular filtration rate (eGFR) of real-world patients with type 2 diabetes mellitus (T2DM) over time after administration of SGLT-2 inhibitors. This study aimed to reflect the trend of eGFR changes over time in T2DM patients having different baseline eGFR after SGLT-2 inhibitors administration in the real world. Methods A single-center retrospective study was performed in a tertiary public hospital in Beijing, China. In total, 998 outpatients with T2DM who initiated SGLT-2 inhibitors treatment were included in the study. The changes in eGFR, urinary albumin/creatinine ratio (UACR), and glycolipid metabolism indicators were analyzed during the 18-month follow-up period. Results The eGFR levels significantly decreased to their lowest point (-3.04 mL/min/1.73 m2) in the first 3 months after initiation of SGLT-2 inhibitors treatment, however, gradually returned to the baseline level after 1 year. Compared to the subgroup with eGFR >90 mL/min/1.73 m2, improvements in renal function were more significant in patients with T2DM from the 60 < eGFR ≤90 mL/min/1.73 m2 and eGFR ≤60 mL/min/1.73 m2 subgroups after treatment with SGLT-2 inhibitors. Similarly, SGLT-2 inhibitors reduced the UACR in patients with diabetic nephropathy. Conclusion This study further confirmed the real-world long-term protective effect of SGLT-2 inhibitors on the kidneys of patients with T2DM, which is not related to baseline renal function and blood glucose.
Collapse
Affiliation(s)
- Rongjing Song
- Department of Pharmacy, Peking University People’s Hospital, Beijing, China
| | - Qiaoyu Hou
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Centre, Beijing, China
| | - Wei Zhao
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Centre, Beijing, China
| | - Gang Liu
- Department of Pharmacy, Peking University People’s Hospital, Beijing, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Centre, Beijing, China
| | - Xiaohong Zhang
- Department of Pharmacy, Peking University People’s Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Centre, Beijing, China
| |
Collapse
|
19
|
Fisher M, Ross M, DiFranza L, Reidy K. An Update on Viral Infection-Associated Collapsing Glomerulopathy. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:317-325. [PMID: 39084757 PMCID: PMC11296492 DOI: 10.1053/j.akdh.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 08/02/2024]
Abstract
The COVID-19 era has been a reminder to clinicians around the world of the important role that viral infections play in promoting glomerular disease. Several viral infections including human immunodeficiency virus (HIV), severe acute respiratory syndrome coronavirus 2, Epstein-Barr virus, cytomegalovirus, and parvovirus B19 can cause podocyte injury and present with a collapsing glomerulopathy (CG) variant of focal segmental glomerulosclerosis or minimal change disease. CG associated with COVID-19 has been termed COVID-19-associated nephropathy due to its striking resemblance to HIV-associated nephropathy. Host susceptibility is a major determinant of viral infection-associated CG, and the presence of two APOL1 risk variants explains most of the racial predilection to viral-associated CG observed in individuals of African ancestry. Interactions between APOL1 risk variants, viral genes, and the systemic inflammatory response to viral infection all contribute to kidney injury. This review will summarize our current knowledge of viral infection-associated CG, focusing primarily on the clinical presentation, histological features, mechanisms, and disease course of HIV-associated nephropathy and COVID-19-associated nephropathy.
Collapse
Affiliation(s)
- Molly Fisher
- Division of Nephrology, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY.
| | - Michael Ross
- Division of Nephrology, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Lanny DiFranza
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY
| | - Kimberly Reidy
- Division of Pediatric Nephrology, The Children's Hospital at Montefiore/Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
20
|
Natale P, Tunnicliffe DJ, Toyama T, Palmer SC, Saglimbene VM, Ruospo M, Gargano L, Stallone G, Gesualdo L, Strippoli GF. Sodium-glucose co-transporter protein 2 (SGLT2) inhibitors for people with chronic kidney disease and diabetes. Cochrane Database Syst Rev 2024; 5:CD015588. [PMID: 38770818 PMCID: PMC11106805 DOI: 10.1002/14651858.cd015588.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Diabetes is associated with high risks of premature chronic kidney disease (CKD), cardiovascular diseases, cardiovascular death and impaired quality of life. People with diabetes are more likely to develop kidney impairment, and approximately one in three adults with diabetes have CKD. People with CKD and diabetes experience a substantially higher risk of cardiovascular outcomes. Sodium-glucose co-transporter protein 2 (SGLT2) inhibitors have shown potential effects in preventing kidney and cardiovascular outcomes in people with CKD and diabetes. However, new trials are emerging rapidly, and evidence synthesis is essential to summarising cumulative evidence. OBJECTIVES This review aimed to assess the benefits and harms of SGLT2 inhibitors for people with CKD and diabetes. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 17 November 2023 using a search strategy designed by an Information Specialist. Studies in the Register are continually identified through regular searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled studies were eligible if they evaluated SGLT2 inhibitors versus placebo, standard care or other glucose-lowering agents in people with CKD and diabetes. CKD includes all stages (from 1 to 5), including dialysis patients. DATA COLLECTION AND ANALYSIS Two authors independently extracted data and assessed the study risk of bias. Treatment estimates were summarised using random effects meta-analysis and expressed as a risk ratio (RR) or mean difference (MD), with a corresponding 95% confidence interval (CI). Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. The primary review outcomes were all-cause death, 3-point and 4-point major adverse cardiovascular events (MACE), fatal or nonfatal myocardial infarction (MI), fatal or nonfatal stroke, and kidney failure. MAIN RESULTS Fifty-three studies randomising 65,241 people with CKD and diabetes were included. SGLT2 inhibitors with or without other background treatments were compared to placebo, standard care, sulfonylurea, dipeptidyl peptidase-4 (DPP-4) inhibitors, or insulin. In the majority of domains, the risks of bias in the included studies were low or unclear. No studies evaluated the treatment in children or in people treated with dialysis. No studies compared SGLT2 inhibitors with glucagon-like peptide-1 receptor agonists or tirzepatide. Compared to placebo, SGLT2 inhibitors decreased the risk of all-cause death (20 studies, 44,397 participants: RR 0.85, 95% CI 0.78 to 0.94; I2 = 0%; high certainty) and cardiovascular death (16 studies, 43,792 participants: RR 0.83, 95% CI 0.74 to 0.93; I2 = 29%; high certainty). Compared to placebo, SGLT2 inhibitors probably make little or no difference to the risk of fatal or nonfatal MI (2 studies, 13,726 participants: RR 0.95, 95% CI 0.80 to 1.14; I2 = 24%; moderate certainty), and fatal or nonfatal stroke (2 studies, 13,726 participants: RR 1.07, 95% CI 0.88 to 1.30; I2 = 0%; moderate certainty). Compared to placebo, SGLT2 inhibitors probably decrease 3-point MACE (7 studies, 38,320 participants: RR 0.89, 95% CI 0.81 to 0.98; I2 = 46%; moderate certainty), and 4-point MACE (4 studies, 23,539 participants: RR 0.82, 95% CI 0.70 to 0.96; I2 = 77%; moderate certainty), and decrease hospital admission due to heart failure (6 studies, 28,339 participants: RR 0.70, 95% CI 0.62 to 0.79; I2 = 17%; high certainty). Compared to placebo, SGLT2 inhibitors may decrease creatinine clearance (1 study, 132 participants: MD -2.63 mL/min, 95% CI -5.19 to -0.07; low certainty) and probably decrease the doubling of serum creatinine (2 studies, 12,647 participants: RR 0.70, 95% CI 0.56 to 0.89; I2 = 53%; moderate certainty). SGLT2 inhibitors decrease the risk of kidney failure (6 studies, 11,232 participants: RR 0.70, 95% CI 0.62 to 0.79; I2 = 0%; high certainty), and kidney composite outcomes (generally reported as kidney failure, kidney death with or without ≥ 40% decrease in estimated glomerular filtration rate (eGFR)) (7 studies, 36,380 participants: RR 0.68, 95% CI 0.59 to 0.78; I2 = 25%; high certainty) compared to placebo. Compared to placebo, SGLT2 inhibitors incur less hypoglycaemia (16 studies, 28,322 participants: RR 0.93, 95% CI 0.89 to 0.98; I2 = 0%; high certainty), and hypoglycaemia requiring third-party assistance (14 studies, 26,478 participants: RR 0.75, 95% CI 0.65 to 0.88; I2 = 0%; high certainty), and probably decrease the withdrawal from treatment due to adverse events (15 studies, 16,622 participants: RR 0.94, 95% CI 0.82 to 1.08; I2 = 16%; moderate certainty). The effects of SGLT2 inhibitors on eGFR, amputation and fracture were uncertain. No studies evaluated the effects of treatment on fatigue, life participation, or lactic acidosis. The effects of SGLT2 inhibitors compared to standard care alone, sulfonylurea, DPP-4 inhibitors, or insulin were uncertain. AUTHORS' CONCLUSIONS SGLT2 inhibitors alone or added to standard care decrease all-cause death, cardiovascular death, and kidney failure and probably decrease major cardiovascular events while incurring less hypoglycaemia compared to placebo in people with CKD and diabetes.
Collapse
Affiliation(s)
- Patrizia Natale
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - David J Tunnicliffe
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Tadashi Toyama
- Department of Nephrology, Kanazawa University, Kanazawa, Japan
- Innovative Clinical Research Center, Kanazawa University, Kanazawa, Japan
| | - Suetonia C Palmer
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Valeria M Saglimbene
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marinella Ruospo
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Letizia Gargano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Fm Strippoli
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
21
|
Diana NE, Naicker S. The changing landscape of HIV-associated kidney disease. Nat Rev Nephrol 2024; 20:330-346. [PMID: 38273026 DOI: 10.1038/s41581-023-00801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/27/2024]
Abstract
The HIV epidemic has devastated millions of people globally, with approximately 40 million deaths since its start. The availability of antiretroviral therapy (ART) has transformed the prognosis of millions of individuals infected with HIV such that a diagnosis of HIV infection no longer automatically confers death. However, morbidity and mortality remain substantial among people living with HIV. HIV can directly infect the kidney to cause HIV-associated nephropathy (HIVAN) - a disease characterized by podocyte and tubular damage and associated with an increased risk of kidney failure. The reports of HIVAN occurring primarily in those of African ancestry led to the discovery of its association with APOL1 risk alleles. The advent of ART has led to a substantial decrease in the prevalence of HIVAN; however, reports have emerged of an increase in the prevalence of other kidney pathology, such as focal segmental glomerulosclerosis and pathological conditions associated with co-morbidities of ageing, such as hypertension and diabetes mellitus. Early initiation of ART also results in a longer cumulative exposure to medications, increasing the likelihood of nephrotoxicity. A substantial body of literature supports the use of kidney transplantation in people living with HIV, demonstrating significant survival benefits compared with that of people undergoing chronic dialysis, and similar long-term allograft and patient survival compared with that of HIV-negative kidney transplant recipients.
Collapse
Affiliation(s)
- Nina E Diana
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Saraladevi Naicker
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
22
|
Ivković V, Bruchfeld A. Endothelin receptor antagonists in diabetic and non-diabetic chronic kidney disease. Clin Kidney J 2024; 17:sfae072. [PMID: 38660120 PMCID: PMC11040512 DOI: 10.1093/ckj/sfae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic kidney disease (CKD) is one of the major causes of morbidity and mortality, affecting >800 million persons globally. While we still lack efficient, targeted therapies addressing the major underlying pathophysiologic processes in CKD, findings of several recent trials have brought about a shifting landscape of promising therapies. The endothelin system has been implicated in the pathophysiology of CKD and endothelin receptor antagonists are one class of drugs for which we have increasing evidence of efficacy in these patients. In this review we summarize the most recent findings on the safety and efficacy of endothelin receptor antagonists in diabetic and non-diabetic CKD, future directions of research and upcoming treatments.
Collapse
Affiliation(s)
- Vanja Ivković
- University Hospital Center Zagreb, Department of Nephrology, Hypertension, Dialysis and Transplantation, Zagreb, Croatia
- University of Rijeka, Faculty of Health Studies, Rijeka, Croatia
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Trachtman H, Radhakrishnan J, Rheault MN, Alpers CE, Barratt J, Heerspink HJ, Noronha IL, Perkovic V, Rovin B, Trimarchi H, Wong MG, Mercer A, Inrig J, Rote W, Murphy E, Bedard PW, Roth S, Bieler S, Komers R. Focal Segmental Glomerulosclerosis Patient Baseline Characteristics in the Sparsentan Phase 3 DUPLEX Study. Kidney Int Rep 2024; 9:1020-1030. [PMID: 38765567 PMCID: PMC11101813 DOI: 10.1016/j.ekir.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction The phase 3 DUPLEX trial is evaluating sparsentan, a novel, nonimmunosuppressive, single-molecule dual endothelin angiotensin receptor antagonist, in patients with focal segmental glomerulosclerosis (FSGS). Methods DUPLEX (NCT03493685) is a global, multicenter, randomized, double-blind, parallel-group, active-controlled study evaluating the efficacy and safety of sparsentan 800 mg once daily versus irbesartan 300 mg once daily in patients aged 8 to 75 years (USA/UK) and 18 to 75 years (ex-USA/UK) weighing ≥20 kg with biopsy-proven FSGS or documented genetic mutation in a podocyte protein associated with FSGS, and urine protein-to-creatinine ratio (UP/C) ≥1.5 g/g. Baseline characteristics blinded to treatment allocation are reported descriptively. Results The primary analysis population includes 371 patients (336 adult, 35 pediatric [<18 years]) who were randomized and received study drug (median age, 42 years). Patients were White (73.0%), Asian (13.2%), Black/African American (6.7%), or Other race (7.0%); and from North America (38.8%), Europe (36.1%), South America (12.7%), or Asia Pacific (12.4%). Baseline median UP/C was 3.0 g/g; 42.6% in nephrotic-range (UP/C >3.5 g/g [adults]; >2.0 g/g [pediatrics]). Patients were evenly distributed across estimated glomerular filtration rate (eGFR) categories corresponding to chronic kidney disease (CKD) stages 1 to 3b. Thirty-three patients (9.4% of 352 evaluable samples) had pathogenic or likely pathogenic (P/LP) variants of genes essential to podocyte structural integrity and function, 27 (7.7%) had P/LP collagen gene (COL4A3/4/5) variants, and 14 (4.0%) had high-risk APOL1 genotypes. Conclusions Patient enrollment in DUPLEX, the largest interventional study in FSGS to date, will enable important characterization of the treatment effect of sparsentan in a geographically broad and clinically diverse FSGS population.
Collapse
Affiliation(s)
- Howard Trachtman
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jai Radhakrishnan
- Division of Nephrology, Columbia University, New York, New York, USA
| | - Michelle N. Rheault
- Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Charles E. Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, UK
| | - Hiddo J.L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- The George Institute for Global Health, Sydney, Australia
| | - Irene L. Noronha
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Vlado Perkovic
- Faculty of Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brad Rovin
- Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hernán Trimarchi
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Muh Geot Wong
- The George Institute for Global Health, Sydney, Australia
- Concord Clinical School, University of Sydney, Concord, New South Wales, Australia
| | | | - Jula Inrig
- Travere Therapeutics Inc., San Diego, California, USA
| | - William Rote
- Travere Therapeutics Inc., San Diego, California, USA
| | - Ed Murphy
- Travere Therapeutics Inc., San Diego, California, USA
| | | | - Sandra Roth
- Travere Therapeutics Inc., San Diego, California, USA
| | | | - Radko Komers
- Travere Therapeutics Inc., San Diego, California, USA
| |
Collapse
|
24
|
Mirioglu S, Daniel-Fischer L, Berke I, Ahmad SH, Bajema IM, Bruchfeld A, Fernandez-Juarez GM, Floege J, Frangou E, Goumenos D, Griffith M, Moran SM, van Kooten C, Steiger S, Stevens KI, Turkmen K, Willcocks LC, Kronbichler A. Management of adult patients with podocytopathies: an update from the ERA Immunonephrology Working Group. Nephrol Dial Transplant 2024; 39:569-580. [PMID: 38341276 PMCID: PMC11024823 DOI: 10.1093/ndt/gfae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 02/12/2024] Open
Abstract
The histopathological lesions, minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) are entities without immune complex deposits which can cause podocyte injury, thus are frequently grouped under the umbrella of podocytopathies. Whether MCD and FSGS may represent a spectrum of the same disease remains a matter of conjecture. Both frequently require repeated high-dose glucocorticoid therapy with alternative immunosuppressive treatments reserved for relapsing or resistant cases and response rates are variable. There is an unmet need to identify patients who should receive immunosuppressive therapies as opposed to those who would benefit from supportive strategies. Therapeutic trials focusing on MCD are scarce, and the evidence used for the 2021 Kidney Disease: Improving Global Outcomes (KDIGO) guideline for the management of glomerular diseases largely stems from observational and pediatric trials. In FSGS, the differentiation between primary forms and those with underlying genetic variants or secondary forms further complicates trial design. This article provides a perspective of the Immunonephrology Working Group (IWG) of the European Renal Association (ERA) and discusses the KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases focusing on the management of MCD and primary forms of FSGS in the context of recently published evidence, with a special emphasis on the role of rituximab, cyclophosphamide, supportive treatment options and ongoing clinical trials in the field.
Collapse
Affiliation(s)
- Safak Mirioglu
- Division of Nephrology, Bezmialem Vakif University School of Medicine, Istanbul, Turkey
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Lisa Daniel-Fischer
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Ilay Berke
- Division of Nephrology, Marmara University School of Medicine, Istanbul, Turkey
| | - Syed Hasan Ahmad
- Department of Renal Medicine, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Ingeborg M Bajema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| | | | - Jürgen Floege
- Division of Nephrology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleni Frangou
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus; University of Nicosia Medical School, Nicosia, Cyprus
| | - Dimitrios Goumenos
- Department of Nephrology and Renal Transplantation, Patras University Hospital, Patras, Greece
| | - Megan Griffith
- Imperial College Healthcare NHS Trust Renal and Transplant Centre, Hammersmith Hospital, London, United Kingdom
| | - Sarah M Moran
- Cork University Hospital, University College Cork, Cork, Ireland
| | - Cees van Kooten
- Division of Nephrology and Transplant Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefanie Steiger
- Division of Nephrology, Department of Internal Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Kate I Stevens
- Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Kultigin Turkmen
- Division of Nephrology, Department of Internal Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Lisa C Willcocks
- Department of Renal Medicine, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Koubar SH, Garcia-Rivera A, Mohamed MMB, Hall JE, Hall ME, Hassanein M. Underlying Mechanisms and Treatment of Hypertension in Glomerular Diseases. Curr Hypertens Rep 2024; 26:119-130. [PMID: 37982994 DOI: 10.1007/s11906-023-01287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the underlying mechanisms that lead to hypertension in glomerular diseases and the advancements in treatment strategies and to provide clinicians with valuable insights into the pathophysiological mechanisms and evidence-based therapeutic approaches for managing hypertension in patients with glomerular diseases. RECENT FINDINGS In recent years, there have been remarkable advancements in our understanding of the immune and non-immune mechanisms that are involved in the pathogenesis of hypertension in glomerular diseases. Furthermore, this review will encompass the latest data on management strategies, including RAAS inhibition, endothelin receptor blockers, SGLT2 inhibitors, and immune-based therapies. Hypertension (HTN) and cardiovascular diseases are leading causes of mortality in glomerular diseases. The latter are intricately related with hypertension and share common pathophysiological mechanisms. Hypertension in glomerular disease represents a complex and multifaceted interplay between kidney dysfunction, immune-mediated, and non-immune-mediated pathology. Understanding the complex mechanisms involved in this relationship has evolved significantly over the years, shedding light on the pathophysiological processes underlying the development and progression of glomerular disease-associated HTN, and is crucial for developing effective therapeutic strategies and improving patients' outcomes.
Collapse
Affiliation(s)
- Sahar H Koubar
- Division of Nephrology and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alejandro Garcia-Rivera
- Department of Nephrology. Hospital General Regional 46, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Muner M B Mohamed
- Department of Nephrology, Ochsner Health System, New Orleans, LA, USA
- Ochsner Clinical School, The University of Queensland, Brisbane, QLD, Australia
| | - John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael E Hall
- Division of Cardiovascular Disease, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mohamed Hassanein
- Division of Nephrology and Hypertension, Department of Medicine, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.
| |
Collapse
|
26
|
Jarraya F, Niang A, Bagha H, Tannor EK, Sumaili EK, Wan DIM, Chothia MY, Mengistu YT, Kaze FF, Ulasi II, Naicker S, Hafez MH, Yao KH. The Role of Sodium-Glucose Cotransporter-2 Inhibitors in the Treatment Paradigm of CKD in Africa: An African Association of Nephrology Panel Position Paper. Kidney Int Rep 2024; 9:526-548. [PMID: 38481515 PMCID: PMC10928012 DOI: 10.1016/j.ekir.2023.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 11/01/2024] Open
Affiliation(s)
- Faical Jarraya
- Nephrology Department and Research Laboratory LR19ES11, Faculty of Medicine, Sfax University, Sfax, Tunisia
| | - Abdou Niang
- Nephrology Department, Dalal Jamm Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Hussein Bagha
- Department of Internal Medicine and Nephrology, M.P Shah Hospital, Nairobi, Kenya
| | - Elliot Koranteng Tannor
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Renal Unit, Directorate of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Ernest Kiswaya Sumaili
- Renal Unit, Internal Medicine Department, University of Kinshasa, the Democratic Republic of Congo
| | - Davy Ip Min Wan
- Nephrology Unit, SSR National Hospital, Pamplemousses, Mauritius
| | - Mogamat-Yazied Chothia
- Division of Nephrology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Yewondwossen Tadesse Mengistu
- Renal Unit, Department of Internal Medicine School of Medicine, College of Health Sciences Addis Ababa University, Addis Ababa, Ethiopia
| | - Francois Folefack Kaze
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Ifeoma Isabella Ulasi
- Renal Unit, Department of Medicine, College of Medicine, University of Nigeria, Ituku-Ozalla, Enugu Nigeria
- Renal Unit, Department of Internal Medicine, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Nigeria
| | - Saraladevi Naicker
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohamed Hany Hafez
- Department of Medicine, Cairo University, Giza, Egypt; Egyptian Society of Nephrology and Transplantation; African Association of Nephrology (AFRAN), Arab Board of Nephrology; MESOT; Councilor DICG
| | - Kouame Hubert Yao
- Department of Nephrology and Internal Medicine, University Hospital of Treichville, Felix Houphouet-Boigny University, Abidjan, Côte d’Ivoire
| |
Collapse
|
27
|
Abdelrahman AM, Awad AS, Abdel-Rahman EM. Sodium-Glucose Co-Transporter 2 Inhibitors: Mechanism of Action and Efficacy in Non-Diabetic Kidney Disease from Bench to Bed-Side. J Clin Med 2024; 13:956. [PMID: 38398269 PMCID: PMC10888733 DOI: 10.3390/jcm13040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are currently available for the management of type 2 diabetes mellitus. SGLT2i acts by inhibiting renal SGLT2, thereby increasing glucosuria and lowering serum glucose. Recent trials are emerging supporting a role for SGLT2i irrespective of the diabetic status pointing towards that SGLT2i have other mechanisms of actions beyond blood sugar control. In this review, we will shed light on the role of this group of medications that act as SGLT2i in non-diabetics focusing on pre-clinical and clinical data highlighting the mechanism of renoprotection and effects of SGLT2i in the non-diabetic kidneys.
Collapse
Affiliation(s)
- Aly M. Abdelrahman
- Department of Pharmacology & Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Alkhod 123, Oman;
| | - Alaa S. Awad
- Division of Nephrology, University of Florida, Jacksonville, FL 32209, USA;
| | | |
Collapse
|
28
|
Caravaca-Fontán F, Stevens K, Padrón M, Huerta A, Montomoli M, Villa J, González F, Vega C, López Mendoza M, Fernández L, Shabaka A, Rodríguez-Moreno A, Martín-Gómez A, Labrador PJ, Molina Andújar A, Prados Soler MC, Martín-Penagos L, Yerovi E, Medina Zahonero L, De La Flor JC, Mon C, Ibernon M, Rodríguez Gómez A, Miquel R, Sierra M, Mascarós V, Luzardo L, Papasotiriou M, Arroyo D, Verdalles Ú, Martínez-Miguel P, Ramírez-Guerrero G, Pampa-Saico S, Moral Berrio E, Canga JLP, Tarragón B, Fraile Gómez P, Regidor D, Relea J, Xipell M, Andrades Gómez C, Navarro M, Álvarez Á, Rivas B, Quintana LF, Gutiérrez E, Pérez-Valdivia MÁ, Odler B, Kronbichler A, Geddes C, Anders HJ, Floege J, Fernández-Juárez G, Praga M. Sodium-glucose cotransporter 2 inhibition in primary and secondary glomerulonephritis. Nephrol Dial Transplant 2024; 39:328-340. [PMID: 37550217 DOI: 10.1093/ndt/gfad175] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The role of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in the management glomerular/systemic autoimmune diseases with proteinuria in real-world clinical settings is unclear. METHODS This is a retrospective, observational, international cohort study. Adult patients with biopsy-proven glomerular diseases were included. The main outcome was the percentage reduction in 24-h proteinuria from SGLT2i initiation to 3, 6, 9 and 12 months. Secondary outcomes included percentage change in estimated glomerular filtration rate (eGFR), proteinuria reduction by type of disease and reduction of proteinuria ≥30% from SGLT2i initiation. RESULTS Four-hundred and ninety-three patients with a median age of 55 years and background therapy with renin-angiotensin system blockers were included. Proteinuria from baseline changed by -35%, -41%, -45% and -48% at 3, 6, 9 and 12 months after SGLT2i initiation, while eGFR changed by -6%, -3%, -8% and -10.5% at 3, 6, 9 and 12 months, respectively. Results were similar irrespective of the underlying disease. A correlation was found between body mass index (BMI) and percentage proteinuria reduction at last follow-up. By mixed-effects logistic regression model, serum albumin at SGLT2i initiation emerged as a predictor of ≥30% proteinuria reduction (odds ratio for albumin <3.5 g/dL, 0.53; 95% CI 0.30-0.91; P = .02). A slower eGFR decline was observed in patients achieving a ≥30% proteinuria reduction: -3.7 versus -5.3 mL/min/1.73 m2/year (P = .001). The overall tolerance to SGLT2i was good. CONCLUSIONS The use of SGLT2i was associated with a significant reduction of proteinuria. This percentage change is greater in patients with higher BMI. Higher serum albumin at SGLT2i onset is associated with higher probability of achieving a ≥30% proteinuria reduction.
Collapse
Affiliation(s)
| | - Kate Stevens
- Department of Nephrology and Transplantation, Queen Elizabeth University Hospital, Glasgow, UK
| | - Maite Padrón
- Department of Nephrology, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Ana Huerta
- Department of Nephrology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Marco Montomoli
- Department of Nephrology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Juan Villa
- Department of Nephrology, Hospital Universitario de Badajoz, Badajoz, Spain
| | - Fayna González
- Department of Nephrology, Hospital Doctor Negrín, Gran Canaria, Spain
| | - Cristina Vega
- Department of Nephrology, Hospital Universitario La Paz, Madrid, Spain
| | - Manuel López Mendoza
- Department of Nephrology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Loreto Fernández
- Department of Nephrology, Complejo Hospitalario de Navarra, Navarra, Spain
| | - Amir Shabaka
- Department of Nephrology, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | | | | | - Pedro J Labrador
- Department of Nephrology, Hospital San Pedro de Alcántara, Cáceres, Spain
| | | | | | - Luis Martín-Penagos
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Estefanía Yerovi
- Department of Nephrology, Hospital Universitario de Burgos, Burgos, Spain
| | | | | | - Carmen Mon
- Department of Nephrology, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - Meritxell Ibernon
- Department of Nephrology, Hospital Sant Joan Despí Moisès Broggi, Barcelona, Spain
| | | | - Rosa Miquel
- Department of Nephrology, Hospital Universitario Canarias, Tenerife, Spain
| | - Milagros Sierra
- Department of Nephrology, Hospital San Pedro de Logroño, La Rioja, Logroño, Spain
| | - Victoria Mascarós
- Department of Nephrology, Hospital Francesc de Borja, Gandia, Valencia, Spain
| | - Leonella Luzardo
- Department of Nephrology, Hospital de Clínicas "Dr Manuel Quintela", Universidad de la República, Montevideo, Uruguay
| | | | - David Arroyo
- Department of Nephrology, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Úrsula Verdalles
- Department of Nephrology, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | | | | | - Saúl Pampa-Saico
- Department of Nephrology, Hospital Universitario Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Esperanza Moral Berrio
- Department of Nephrology, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - José Luis Pérez Canga
- Department of Nephrology, Hospital Universitario San Agustín, Avilés, Asturias, Spain
| | - Blanca Tarragón
- Department of Nephrology, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Pilar Fraile Gómez
- Department of Nephrology, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Dabaiba Regidor
- Department of Nephrology, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Javier Relea
- Department of Nephrology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Marc Xipell
- Department of Nephrology, Hospital Clinic, Barcelona, Spain
| | | | - Maruja Navarro
- Department of Nephrology, Hospital Sant Joan Despí Moisès Broggi, Barcelona, Spain
| | - Álvaro Álvarez
- Department of Nephrology, Hospital Universitario de Badajoz, Badajoz, Spain
| | - Begoña Rivas
- Department of Nephrology, Hospital Universitario La Paz, Madrid, Spain
| | | | - Eduardo Gutiérrez
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Balazs Odler
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Kronbichler
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Colin Geddes
- Department of Nephrology and Transplantation, Queen Elizabeth University Hospital, Glasgow, UK
| | - Hans-Joachim Anders
- Department of Internal Medicine IV, Hospital of the Ludwig Maximilians University, Munich, Germany
| | - Jürgen Floege
- Division of Nephrology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Manuel Praga
- Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
29
|
Verma S, Mudaliar S, Greasley PJ. Potential Underlying Mechanisms Explaining the Cardiorenal Benefits of Sodium-Glucose Cotransporter 2 Inhibitors. Adv Ther 2024; 41:92-112. [PMID: 37943443 PMCID: PMC10796581 DOI: 10.1007/s12325-023-02652-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/17/2023] [Indexed: 11/10/2023]
Abstract
There is a bidirectional pathophysiological interaction between the heart and the kidneys, and prolonged physiological stress to the heart and/or the kidneys can cause adverse cardiorenal complications, including but not limited to subclinical cardiomyopathy, heart failure and chronic kidney disease. Whilst more common in individuals with Type 2 diabetes, cardiorenal complications also occur in the absence of diabetes. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were initially approved to reduce hyperglycaemia in patients with Type 2 diabetes. Recently, these agents have been shown to significantly improve cardiovascular and renal outcomes in patients with and without Type 2 diabetes, demonstrating a robust reduction in hospitalisation for heart failure and reduced risk of progression of chronic kidney disease, thus gaining approval for use in treatment of heart failure and chronic kidney disease. Numerous potential mechanisms have been proposed to explain the cardiorenal effects of SGLT2i. This review provides a simplified summary of key potential cardiac and renal mechanisms underlying the cardiorenal benefits of SGT2i and explains these mechanisms in the clinical context. Key mechanisms related to the clinical effects of SGLT2i on the heart and kidneys explained in this publication include their impact on (1) tissue oxygen delivery, hypoxia and resultant ischaemic injury, (2) vascular health and function, (3) substrate utilisation and metabolic health and (4) cardiac remodelling. Knowing the mechanisms responsible for SGLT2i-imparted cardiorenal benefits in the clinical outcomes will help healthcare practitioners to identify more patients that can benefit from the use of SGLT2i.
Collapse
Affiliation(s)
- Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Sunder Mudaliar
- Endocrinology/Diabetes Section, Veterans Affairs Medical Centre, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| | - Peter J Greasley
- Early Discovery and Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
30
|
Judge PK, Staplin N, Mayne KJ, Wanner C, Green JB, Hauske SJ, Emberson JR, Preiss D, Ng SYA, Roddick AJ, Sammons E, Zhu D, Hill M, Stevens W, Wallendszus K, Brenner S, Cheung AK, Liu ZH, Li J, Hooi LS, Liu WJ, Kadowaki T, Nangaku M, Levin A, Cherney D, Maggioni AP, Pontremoli R, Deo R, Goto S, Rossello X, Tuttle KR, Steubl D, Massey D, Landray MJ, Baigent C, Haynes R, Herrington WG, Abat S, Abd Rahman R, Abdul Cader R, Abdul Hafidz MI, Abdul Wahab MZ, Abdullah NK, Abdul-Samad T, Abe M, Abraham N, Acheampong S, Achiri P, Acosta JA, Adeleke A, Adell V, Adewuyi-Dalton R, Adnan N, Africano A, Agharazii M, Aguilar F, Aguilera A, Ahmad M, Ahmad MK, Ahmad NA, Ahmad NH, Ahmad NI, Ahmad Miswan N, Ahmad Rosdi H, Ahmed I, Ahmed S, Ahmed S, Aiello J, Aitken A, AitSadi R, Aker S, Akimoto S, Akinfolarin A, Akram S, Alberici F, Albert C, Aldrich L, Alegata M, Alexander L, Alfaress S, Alhadj Ali M, Ali A, Ali A, Alicic R, Aliu A, Almaraz R, Almasarwah R, Almeida J, Aloisi A, Al-Rabadi L, Alscher D, Alvarez P, Al-Zeer B, Amat M, Ambrose C, Ammar H, An Y, Andriaccio L, Ansu K, Apostolidi A, et alJudge PK, Staplin N, Mayne KJ, Wanner C, Green JB, Hauske SJ, Emberson JR, Preiss D, Ng SYA, Roddick AJ, Sammons E, Zhu D, Hill M, Stevens W, Wallendszus K, Brenner S, Cheung AK, Liu ZH, Li J, Hooi LS, Liu WJ, Kadowaki T, Nangaku M, Levin A, Cherney D, Maggioni AP, Pontremoli R, Deo R, Goto S, Rossello X, Tuttle KR, Steubl D, Massey D, Landray MJ, Baigent C, Haynes R, Herrington WG, Abat S, Abd Rahman R, Abdul Cader R, Abdul Hafidz MI, Abdul Wahab MZ, Abdullah NK, Abdul-Samad T, Abe M, Abraham N, Acheampong S, Achiri P, Acosta JA, Adeleke A, Adell V, Adewuyi-Dalton R, Adnan N, Africano A, Agharazii M, Aguilar F, Aguilera A, Ahmad M, Ahmad MK, Ahmad NA, Ahmad NH, Ahmad NI, Ahmad Miswan N, Ahmad Rosdi H, Ahmed I, Ahmed S, Ahmed S, Aiello J, Aitken A, AitSadi R, Aker S, Akimoto S, Akinfolarin A, Akram S, Alberici F, Albert C, Aldrich L, Alegata M, Alexander L, Alfaress S, Alhadj Ali M, Ali A, Ali A, Alicic R, Aliu A, Almaraz R, Almasarwah R, Almeida J, Aloisi A, Al-Rabadi L, Alscher D, Alvarez P, Al-Zeer B, Amat M, Ambrose C, Ammar H, An Y, Andriaccio L, Ansu K, Apostolidi A, Arai N, Araki H, Araki S, Arbi A, Arechiga O, Armstrong S, Arnold T, Aronoff S, Arriaga W, Arroyo J, Arteaga D, Asahara S, Asai A, Asai N, Asano S, Asawa M, Asmee MF, Aucella F, Augustin M, Avery A, Awad A, Awang IY, Awazawa M, Axler A, Ayub W, Azhari Z, Baccaro R, Badin C, Bagwell B, Bahlmann-Kroll E, Bahtar AZ, Baigent C, Bains D, Bajaj H, Baker R, Baldini E, Banas B, Banerjee D, Banno S, Bansal S, Barberi S, Barnes S, Barnini C, Barot C, Barrett K, Barrios R, Bartolomei Mecatti B, Barton I, Barton J, Basily W, Bavanandan S, Baxter A, Becker L, Beddhu S, Beige J, Beigh S, Bell S, Benck U, Beneat A, Bennett A, Bennett D, Benyon S, Berdeprado J, Bergler T, Bergner A, Berry M, Bevilacqua M, Bhairoo J, Bhandari S, Bhandary N, Bhatt A, Bhattarai M, Bhavsar M, Bian W, Bianchini F, Bianco S, Bilous R, Bilton J, Bilucaglia D, Bird C, Birudaraju D, Biscoveanu M, Blake C, Bleakley N, Bocchicchia K, Bodine S, Bodington R, Boedecker S, Bolduc M, Bolton S, Bond C, Boreky F, Boren K, Bouchi R, Bough L, Bovan D, Bowler C, Bowman L, Brar N, Braun C, Breach A, Breitenfeldt M, Brenner S, Brettschneider B, Brewer A, Brewer G, Brindle V, Brioni E, Brown C, Brown H, Brown L, Brown R, Brown S, Browne D, Bruce K, Brueckmann M, Brunskill N, Bryant M, Brzoska M, Bu Y, Buckman C, Budoff M, Bullen M, Burke A, Burnette S, Burston C, Busch M, Bushnell J, Butler S, Büttner C, Byrne C, Caamano A, Cadorna J, Cafiero C, Cagle M, Cai J, Calabrese K, Calvi C, Camilleri B, Camp S, Campbell D, Campbell R, Cao H, Capelli I, Caple M, Caplin B, Cardone A, Carle J, Carnall V, Caroppo M, Carr S, Carraro G, Carson M, Casares P, Castillo C, Castro C, Caudill B, Cejka V, Ceseri M, Cham L, Chamberlain A, Chambers J, Chan CBT, Chan JYM, Chan YC, Chang E, Chang E, Chant T, Chavagnon T, Chellamuthu P, Chen F, Chen J, Chen P, Chen TM, Chen Y, Chen Y, Cheng C, Cheng H, Cheng MC, Cherney D, Cheung AK, Ching CH, Chitalia N, Choksi R, Chukwu C, Chung K, Cianciolo G, Cipressa L, Clark S, Clarke H, Clarke R, Clarke S, Cleveland B, Cole E, Coles H, Condurache L, Connor A, Convery K, Cooper A, Cooper N, Cooper Z, Cooperman L, Cosgrove L, Coutts P, Cowley A, Craik R, Cui G, Cummins T, Dahl N, Dai H, Dajani L, D'Amelio A, Damian E, Damianik K, Danel L, Daniels C, Daniels T, Darbeau S, Darius H, Dasgupta T, Davies J, Davies L, Davis A, Davis J, Davis L, Dayanandan R, Dayi S, Dayrell R, De Nicola L, Debnath S, Deeb W, Degenhardt S, DeGoursey K, Delaney M, Deo R, DeRaad R, Derebail V, Dev D, Devaux M, Dhall P, Dhillon G, Dienes J, Dobre M, Doctolero E, Dodds V, Domingo D, Donaldson D, Donaldson P, Donhauser C, Donley V, Dorestin S, Dorey S, Doulton T, Draganova D, Draxlbauer K, Driver F, Du H, Dube F, Duck T, Dugal T, Dugas J, Dukka H, Dumann H, Durham W, Dursch M, Dykas R, Easow R, Eckrich E, Eden G, Edmerson E, Edwards H, Ee LW, Eguchi J, Ehrl Y, Eichstadt K, Eid W, Eilerman B, Ejima Y, Eldon H, Ellam T, Elliott L, Ellison R, Emberson J, Epp R, Er A, Espino-Obrero M, Estcourt S, Estienne L, Evans G, Evans J, Evans S, Fabbri G, Fajardo-Moser M, Falcone C, Fani F, Faria-Shayler P, Farnia F, Farrugia D, Fechter M, Fellowes D, Feng F, Fernandez J, Ferraro P, Field A, Fikry S, Finch J, Finn H, Fioretto P, Fish R, Fleischer A, Fleming-Brown D, Fletcher L, Flora R, Foellinger C, Foligno N, Forest S, Forghani Z, Forsyth K, Fottrell-Gould D, Fox P, Frankel A, Fraser D, Frazier R, Frederick K, Freking N, French H, Froment A, Fuchs B, Fuessl L, Fujii H, Fujimoto A, Fujita A, Fujita K, Fujita Y, Fukagawa M, Fukao Y, Fukasawa A, Fuller T, Funayama T, Fung E, Furukawa M, Furukawa Y, Furusho M, Gabel S, Gaidu J, Gaiser S, Gallo K, Galloway C, Gambaro G, Gan CC, Gangemi C, Gao M, Garcia K, Garcia M, Garofalo C, Garrity M, Garza A, Gasko S, Gavrila M, Gebeyehu B, Geddes A, Gentile G, George A, George J, Gesualdo L, Ghalli F, Ghanem A, Ghate T, Ghavampour S, Ghazi A, Gherman A, Giebeln-Hudnell U, Gill B, Gillham S, Girakossyan I, Girndt M, Giuffrida A, Glenwright M, Glider T, Gloria R, Glowski D, Goh BL, Goh CB, Gohda T, Goldenberg R, Goldfaden R, Goldsmith C, Golson B, Gonce V, Gong Q, Goodenough B, Goodwin N, Goonasekera M, Gordon A, Gordon J, Gore A, Goto H, Goto S, Goto S, Gowen D, Grace A, Graham J, Grandaliano G, Gray M, Green JB, Greene T, Greenwood G, Grewal B, Grifa R, Griffin D, Griffin S, Grimmer P, Grobovaite E, Grotjahn S, Guerini A, Guest C, Gunda S, Guo B, Guo Q, Haack S, Haase M, Haaser K, Habuki K, Hadley A, Hagan S, Hagge S, Haller H, Ham S, Hamal S, Hamamoto Y, Hamano N, Hamm M, Hanburry A, Haneda M, Hanf C, Hanif W, Hansen J, Hanson L, Hantel S, Haraguchi T, Harding E, Harding T, Hardy C, Hartner C, Harun Z, Harvill L, Hasan A, Hase H, Hasegawa F, Hasegawa T, Hashimoto A, Hashimoto C, Hashimoto M, Hashimoto S, Haskett S, Hauske SJ, Hawfield A, Hayami T, Hayashi M, Hayashi S, Haynes R, Hazara A, Healy C, Hecktman J, Heine G, Henderson H, Henschel R, Hepditch A, Herfurth K, Hernandez G, Hernandez Pena A, Hernandez-Cassis C, Herrington WG, Herzog C, Hewins S, Hewitt D, Hichkad L, Higashi S, Higuchi C, Hill C, Hill L, Hill M, Himeno T, Hing A, Hirakawa Y, Hirata K, Hirota Y, Hisatake T, Hitchcock S, Hodakowski A, Hodge W, Hogan R, Hohenstatt U, Hohenstein B, Hooi L, Hope S, Hopley M, Horikawa S, Hosein D, Hosooka T, Hou L, Hou W, Howie L, Howson A, Hozak M, Htet Z, Hu X, Hu Y, Huang J, Huda N, Hudig L, Hudson A, Hugo C, Hull R, Hume L, Hundei W, Hunt N, Hunter A, Hurley S, Hurst A, Hutchinson C, Hyo T, Ibrahim FH, Ibrahim S, Ihana N, Ikeda T, Imai A, Imamine R, Inamori A, Inazawa H, Ingell J, Inomata K, Inukai Y, Ioka M, Irtiza-Ali A, Isakova T, Isari W, Iselt M, Ishiguro A, Ishihara K, Ishikawa T, Ishimoto T, Ishizuka K, Ismail R, Itano S, Ito H, Ito K, Ito M, Ito Y, Iwagaitsu S, Iwaita Y, Iwakura T, Iwamoto M, Iwasa M, Iwasaki H, Iwasaki S, Izumi K, Izumi K, Izumi T, Jaafar SM, Jackson C, Jackson Y, Jafari G, Jahangiriesmaili M, Jain N, Jansson K, Jasim H, Jeffers L, Jenkins A, Jesky M, Jesus-Silva J, Jeyarajah D, Jiang Y, Jiao X, Jimenez G, Jin B, Jin Q, Jochims J, Johns B, Johnson C, Johnson T, Jolly S, Jones L, Jones L, Jones S, Jones T, Jones V, Joseph M, Joshi S, Judge P, Junejo N, Junus S, Kachele M, Kadowaki T, Kadoya H, Kaga H, Kai H, Kajio H, Kaluza-Schilling W, Kamaruzaman L, Kamarzarian A, Kamimura Y, Kamiya H, Kamundi C, Kan T, Kanaguchi Y, Kanazawa A, Kanda E, Kanegae S, Kaneko K, Kaneko K, Kang HY, Kano T, Karim M, Karounos D, Karsan W, Kasagi R, Kashihara N, Katagiri H, Katanosaka A, Katayama A, Katayama M, Katiman E, Kato K, Kato M, Kato N, Kato S, Kato T, Kato Y, Katsuda Y, Katsuno T, Kaufeld J, Kavak Y, Kawai I, Kawai M, Kawai M, Kawase A, Kawashima S, Kazory A, Kearney J, Keith B, Kellett J, Kelley S, Kershaw M, Ketteler M, Khai Q, Khairullah Q, Khandwala H, Khoo KKL, Khwaja A, Kidokoro K, Kielstein J, Kihara M, Kimber C, Kimura S, Kinashi H, Kingston H, Kinomura M, Kinsella-Perks E, Kitagawa M, Kitajima M, Kitamura S, Kiyosue A, Kiyota M, Klauser F, Klausmann G, Kmietschak W, Knapp K, Knight C, Knoppe A, Knott C, Kobayashi M, Kobayashi R, Kobayashi T, Koch M, Kodama S, Kodani N, Kogure E, Koizumi M, Kojima H, Kojo T, Kolhe N, Komaba H, Komiya T, Komori H, Kon SP, Kondo M, Kondo M, Kong W, Konishi M, Kono K, Koshino M, Kosugi T, Kothapalli B, Kozlowski T, Kraemer B, Kraemer-Guth A, Krappe J, Kraus D, Kriatselis C, Krieger C, Krish P, Kruger B, Ku Md Razi KR, Kuan Y, Kubota S, Kuhn S, Kumar P, Kume S, Kummer I, Kumuji R, Küpper A, Kuramae T, Kurian L, Kuribayashi C, Kurien R, Kuroda E, Kurose T, Kutschat A, Kuwabara N, Kuwata H, La Manna G, Lacey M, Lafferty K, LaFleur P, Lai V, Laity E, Lambert A, Landray MJ, Langlois M, Latif F, Latore E, Laundy E, Laurienti D, Lawson A, Lay M, Leal I, Leal I, Lee AK, Lee J, Lee KQ, Lee R, Lee SA, Lee YY, Lee-Barkey Y, Leonard N, Leoncini G, Leong CM, Lerario S, Leslie A, Levin A, Lewington A, Li J, Li N, Li X, Li Y, Liberti L, Liberti ME, Liew A, Liew YF, Lilavivat U, Lim SK, Lim YS, Limon E, Lin H, Lioudaki E, Liu H, Liu J, Liu L, Liu Q, Liu WJ, Liu X, Liu Z, Loader D, Lochhead H, Loh CL, Lorimer A, Loudermilk L, Loutan J, Low CK, Low CL, Low YM, Lozon Z, Lu Y, Lucci D, Ludwig U, Luker N, Lund D, Lustig R, Lyle S, Macdonald C, MacDougall I, Machicado R, MacLean D, Macleod P, Madera A, Madore F, Maeda K, Maegawa H, Maeno S, Mafham M, Magee J, Maggioni AP, Mah DY, Mahabadi V, Maiguma M, Makita Y, Makos G, Manco L, Mangiacapra R, Manley J, Mann P, Mano S, Marcotte G, Maris J, Mark P, Markau S, Markovic M, Marshall C, Martin M, Martinez C, Martinez S, Martins G, Maruyama K, Maruyama S, Marx K, Maselli A, Masengu A, Maskill A, Masumoto S, Masutani K, Matsumoto M, Matsunaga T, Matsuoka N, Matsushita M, Matthews M, Matthias S, Matvienko E, Maurer M, Maxwell P, Mayne KJ, Mazlan N, Mazlan SA, Mbuyisa A, McCafferty K, McCarroll F, McCarthy T, McClary-Wright C, McCray K, McDermott P, McDonald C, McDougall R, McHaffie E, McIntosh K, McKinley T, McLaughlin S, McLean N, McNeil L, Measor A, Meek J, Mehta A, Mehta R, Melandri M, Mené P, Meng T, Menne J, Merritt K, Merscher S, Meshykhi C, Messa P, Messinger L, Miftari N, Miller R, Miller Y, Miller-Hodges E, Minatoguchi M, Miners M, Minutolo R, Mita T, Miura Y, Miyaji M, Miyamoto S, Miyatsuka T, Miyazaki M, Miyazawa I, Mizumachi R, Mizuno M, Moffat S, Mohamad Nor FS, Mohamad Zaini SN, Mohamed Affandi FA, Mohandas C, Mohd R, Mohd Fauzi NA, Mohd Sharif NH, Mohd Yusoff Y, Moist L, Moncada A, Montasser M, Moon A, Moran C, Morgan N, Moriarty J, Morig G, Morinaga H, Morino K, Morisaki T, Morishita Y, Morlok S, Morris A, Morris F, Mostafa S, Mostefai Y, Motegi M, Motherwell N, Motta D, Mottl A, Moys R, Mozaffari S, Muir J, Mulhern J, Mulligan S, Munakata Y, Murakami C, Murakoshi M, Murawska A, Murphy K, Murphy L, Murray S, Murtagh H, Musa MA, Mushahar L, Mustafa R, Mustafar R, Muto M, Nadar E, Nagano R, Nagasawa T, Nagashima E, Nagasu H, Nagelberg S, Nair H, Nakagawa Y, Nakahara M, Nakamura J, Nakamura R, Nakamura T, Nakaoka M, Nakashima E, Nakata J, Nakata M, Nakatani S, Nakatsuka A, Nakayama Y, Nakhoul G, Nangaku M, Naverrete G, Navivala A, Nazeer I, Negrea L, Nethaji C, Newman E, Ng SYA, Ng TJ, Ngu LLS, Nimbkar T, Nishi H, Nishi M, Nishi S, Nishida Y, Nishiyama A, Niu J, Niu P, Nobili G, Nohara N, Nojima I, Nolan J, Nosseir H, Nozawa M, Nunn M, Nunokawa S, Oda M, Oe M, Oe Y, Ogane K, Ogawa W, Ogihara T, Oguchi G, Ohsugi M, Oishi K, Okada Y, Okajyo J, Okamoto S, Okamura K, Olufuwa O, Oluyombo R, Omata A, Omori Y, Ong LM, Ong YC, Onyema J, Oomatia A, Oommen A, Oremus R, Orimo Y, Ortalda V, Osaki Y, Osawa Y, Osmond Foster J, O'Sullivan A, Otani T, Othman N, Otomo S, O'Toole J, Owen L, Ozawa T, Padiyar A, Page N, Pajak S, Paliege A, Pandey A, Pandey R, Pariani H, Park J, Parrigon M, Passauer J, Patecki M, Patel M, Patel R, Patel T, Patel Z, Paul R, Paul R, Paulsen L, Pavone L, Peixoto A, Peji J, Peng BC, Peng K, Pennino L, Pereira E, Perez E, Pergola P, Pesce F, Pessolano G, Petchey W, Petr EJ, Pfab T, Phelan P, Phillips R, Phillips T, Phipps M, Piccinni G, Pickett T, Pickworth S, Piemontese M, Pinto D, Piper J, Plummer-Morgan J, Poehler D, Polese L, Poma V, Pontremoli R, Postal A, Pötz C, Power A, Pradhan N, Pradhan R, Preiss D, Preiss E, Preston K, Prib N, Price L, Provenzano C, Pugay C, Pulido R, Putz F, Qiao Y, Quartagno R, Quashie-Akponeware M, Rabara R, Rabasa-Lhoret R, Radhakrishnan D, Radley M, Raff R, Raguwaran S, Rahbari-Oskoui F, Rahman M, Rahmat K, Ramadoss S, Ramanaidu S, Ramasamy S, Ramli R, Ramli S, Ramsey T, Rankin A, Rashidi A, Raymond L, Razali WAFA, Read K, Reiner H, Reisler A, Reith C, Renner J, Rettenmaier B, Richmond L, Rijos D, Rivera R, Rivers V, Robinson H, Rocco M, Rodriguez-Bachiller I, Rodriquez R, Roesch C, Roesch J, Rogers J, Rohnstock M, Rolfsmeier S, Roman M, Romo A, Rosati A, Rosenberg S, Ross T, Rossello X, Roura M, Roussel M, Rovner S, Roy S, Rucker S, Rump L, Ruocco M, Ruse S, Russo F, Russo M, Ryder M, Sabarai A, Saccà C, Sachson R, Sadler E, Safiee NS, Sahani M, Saillant A, Saini J, Saito C, Saito S, Sakaguchi K, Sakai M, Salim H, Salviani C, Sammons E, Sampson A, Samson F, Sandercock P, Sanguila S, Santorelli G, Santoro D, Sarabu N, Saram T, Sardell R, Sasajima H, Sasaki T, Satko S, Sato A, Sato D, Sato H, Sato H, Sato J, Sato T, Sato Y, Satoh M, Sawada K, Schanz M, Scheidemantel F, Schemmelmann M, Schettler E, Schettler V, Schlieper GR, Schmidt C, Schmidt G, Schmidt U, Schmidt-Gurtler H, Schmude M, Schneider A, Schneider I, Schneider-Danwitz C, Schomig M, Schramm T, Schreiber A, Schricker S, Schroppel B, Schulte-Kemna L, Schulz E, Schumacher B, Schuster A, Schwab A, Scolari F, Scott A, Seeger W, Seeger W, Segal M, Seifert L, Seifert M, Sekiya M, Sellars R, Seman MR, Shah S, Shah S, Shainberg L, Shanmuganathan M, Shao F, Sharma K, Sharpe C, Sheikh-Ali M, Sheldon J, Shenton C, Shepherd A, Shepperd M, Sheridan R, Sheriff Z, Shibata Y, Shigehara T, Shikata K, Shimamura K, Shimano H, Shimizu Y, Shimoda H, Shin K, Shivashankar G, Shojima N, Silva R, Sim CSB, Simmons K, Sinha S, Sitter T, Sivanandam S, Skipper M, Sloan K, Sloan L, Smith R, Smyth J, Sobande T, Sobata M, Somalanka S, Song X, Sonntag F, Sood B, Sor SY, Soufer J, Sparks H, Spatoliatore G, Spinola T, Squyres S, Srivastava A, Stanfield J, Staplin N, Staylor K, Steele A, Steen O, Steffl D, Stegbauer J, Stellbrink C, Stellbrink E, Stevens W, Stevenson A, Stewart-Ray V, Stickley J, Stoffler D, Stratmann B, Streitenberger S, Strutz F, Stubbs J, Stumpf J, Suazo N, Suchinda P, Suckling R, Sudin A, Sugamori K, Sugawara H, Sugawara K, Sugimoto D, Sugiyama H, Sugiyama H, Sugiyama T, Sullivan M, Sumi M, Suresh N, Sutton D, Suzuki H, Suzuki R, Suzuki Y, Suzuki Y, Suzuki Y, Swanson E, Swift P, Syed S, Szerlip H, Taal M, Taddeo M, Tailor C, Tajima K, Takagi M, Takahashi K, Takahashi K, Takahashi M, Takahashi T, Takahira E, Takai T, Takaoka M, Takeoka J, Takesada A, Takezawa M, Talbot M, Taliercio J, Talsania T, Tamori Y, Tamura R, Tamura Y, Tan CHH, Tan EZZ, Tanabe A, Tanabe K, Tanaka A, Tanaka A, Tanaka N, Tang S, Tang Z, Tanigaki K, Tarlac M, Tatsuzawa A, Tay JF, Tay LL, Taylor J, Taylor K, Taylor K, Te A, Tenbusch L, Teng KS, Terakawa A, Terry J, Tham ZD, Tholl S, Thomas G, Thong KM, Tietjen D, Timadjer A, Tindall H, Tipper S, Tobin K, Toda N, Tokuyama A, Tolibas M, Tomita A, Tomita T, Tomlinson J, Tonks L, Topf J, Topping S, Torp A, Torres A, Totaro F, Toth P, Toyonaga Y, Tripodi F, Trivedi K, Tropman E, Tschope D, Tse J, Tsuji K, Tsunekawa S, Tsunoda R, Tucky B, Tufail S, Tuffaha A, Turan E, Turner H, Turner J, Turner M, Tuttle KR, Tye YL, Tyler A, Tyler J, Uchi H, Uchida H, Uchida T, Uchida T, Udagawa T, Ueda S, Ueda Y, Ueki K, Ugni S, Ugwu E, Umeno R, Unekawa C, Uozumi K, Urquia K, Valleteau A, Valletta C, van Erp R, Vanhoy C, Varad V, Varma R, Varughese A, Vasquez P, Vasseur A, Veelken R, Velagapudi C, Verdel K, Vettoretti S, Vezzoli G, Vielhauer V, Viera R, Vilar E, Villaruel S, Vinall L, Vinathan J, Visnjic M, Voigt E, von-Eynatten M, Vourvou M, Wada J, Wada J, Wada T, Wada Y, Wakayama K, Wakita Y, Wallendszus K, Walters T, Wan Mohamad WH, Wang L, Wang W, Wang X, Wang X, Wang Y, Wanner C, Wanninayake S, Watada H, Watanabe K, Watanabe K, Watanabe M, Waterfall H, Watkins D, Watson S, Weaving L, Weber B, Webley Y, Webster A, Webster M, Weetman M, Wei W, Weihprecht H, Weiland L, Weinmann-Menke J, Weinreich T, Wendt R, Weng Y, Whalen M, Whalley G, Wheatley R, Wheeler A, Wheeler J, Whelton P, White K, Whitmore B, Whittaker S, Wiebel J, Wiley J, Wilkinson L, Willett M, Williams A, Williams E, Williams K, Williams T, Wilson A, Wilson P, Wincott L, Wines E, Winkelmann B, Winkler M, Winter-Goodwin B, Witczak J, Wittes J, Wittmann M, Wolf G, Wolf L, Wolfling R, Wong C, Wong E, Wong HS, Wong LW, Wong YH, Wonnacott A, Wood A, Wood L, Woodhouse H, Wooding N, Woodman A, Wren K, Wu J, Wu P, Xia S, Xiao H, Xiao X, Xie Y, Xu C, Xu Y, Xue H, Yahaya H, Yalamanchili H, Yamada A, Yamada N, Yamagata K, Yamaguchi M, Yamaji Y, Yamamoto A, Yamamoto S, Yamamoto S, Yamamoto T, Yamanaka A, Yamano T, Yamanouchi Y, Yamasaki N, Yamasaki Y, Yamasaki Y, Yamashita C, Yamauchi T, Yan Q, Yanagisawa E, Yang F, Yang L, Yano S, Yao S, Yao Y, Yarlagadda S, Yasuda Y, Yiu V, Yokoyama T, Yoshida S, Yoshidome E, Yoshikawa H, Young A, Young T, Yousif V, Yu H, Yu Y, Yuasa K, Yusof N, Zalunardo N, Zander B, Zani R, Zappulo F, Zayed M, Zemann B, Zettergren P, Zhang H, Zhang L, Zhang L, Zhang N, Zhang X, Zhao J, Zhao L, Zhao S, Zhao Z, Zhong H, Zhou N, Zhou S, Zhu D, Zhu L, Zhu S, Zietz M, Zippo M, Zirino F, Zulkipli FH. Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial. Lancet Diabetes Endocrinol 2024; 12:51-60. [PMID: 38061372 DOI: 10.1016/s2213-8587(23)00322-4] [Show More Authors] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The EMPA-KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. METHODS EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. FINDINGS Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5-2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62-0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16-1·59), representing a 50% (42-58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). INTERPRETATION In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. FUNDING Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council.
Collapse
|
31
|
Rheault MN, Alpers CE, Barratt J, Bieler S, Canetta P, Chae DW, Coppock G, Diva U, Gesualdo L, Heerspink HJL, Inrig JK, Kirsztajn GM, Kohan D, Komers R, Kooienga LA, Lieberman K, Mercer A, Noronha IL, Perkovic V, Radhakrishnan J, Rote W, Rovin B, Tesar V, Trimarchi H, Tumlin J, Wong MG, Trachtman H. Sparsentan versus Irbesartan in Focal Segmental Glomerulosclerosis. N Engl J Med 2023; 389:2436-2445. [PMID: 37921461 DOI: 10.1056/nejmoa2308550] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
BACKGROUND An unmet need exists for focal segmental glomerulosclerosis (FSGS) treatment. In an 8-week, phase 2 trial, sparsentan, a dual endothelin-angiotensin receptor antagonist, reduced proteinuria in patients with FSGS. The efficacy and safety of longer-term treatment with sparsentan for FSGS are unknown. METHODS In this phase 3 trial, we enrolled patients with FSGS (without known secondary causes) who were 8 to 75 years of age; patients were randomly assigned to receive sparsentan or irbesartan (active control) for 108 weeks. The surrogate efficacy end point assessed at the prespecified interim analysis at 36 weeks was the FSGS partial remission of proteinuria end point (defined as a urinary protein-to-creatinine ratio of ≤1.5 [with protein and creatinine both measured in grams] and a >40% reduction in the ratio from baseline). The primary efficacy end point was the estimated glomerular filtration rate (eGFR) slope at the time of the final analysis. The change in eGFR from baseline to 4 weeks after the end of treatment (week 112) was a secondary end point. Safety was also evaluated. RESULTS A total of 371 patients underwent randomization: 184 were assigned to receive sparsentan and 187 to receive irbesartan. At 36 weeks, the percentage of patients with partial remission of proteinuria was 42.0% in the sparsentan group and 26.0% in the irbesartan group (P = 0.009), a response that was sustained through 108 weeks. At the time of the final analysis at week 108, there were no significant between-group differences in the eGFR slope; the between-group difference in total slope (day 1 to week 108) was 0.3 ml per minute per 1.73 m2 of body-surface area per year (95% confidence interval [CI], -1.7 to 2.4), and the between-group difference in the slope from week 6 to week 108 (i.e., chronic slope) was 0.9 ml per minute per 1.73 m2 per year (95% CI, -1.3 to 3.0). The mean change in eGFR from baseline to week 112 was -10.4 ml per minute per 1.73 m2 with sparsentan and -12.1 ml per minute per 1.73 m2 with irbesartan (difference, 1.8 ml per minute per 1.73 m2; 95% CI, -1.4 to 4.9). Sparsentan and irbesartan had similar safety profiles, and the frequency of adverse events was similar in the two groups. CONCLUSIONS Among patients with FSGS, there were no significant between-group differences in eGFR slope at 108 weeks, despite a greater reduction in proteinuria with sparsentan than with irbesartan. (Funded by Travere Therapeutics; DUPLEX ClinicalTrials.gov number, NCT03493685.).
Collapse
Affiliation(s)
- Michelle N Rheault
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Charles E Alpers
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Jonathan Barratt
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Stewart Bieler
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Pietro Canetta
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Dong-Wan Chae
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Gaia Coppock
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Ulysses Diva
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Loreto Gesualdo
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Hiddo J L Heerspink
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Jula K Inrig
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Gianna M Kirsztajn
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Donald Kohan
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Radko Komers
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Laura A Kooienga
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Kenneth Lieberman
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Alex Mercer
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Irene L Noronha
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Vlado Perkovic
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Jai Radhakrishnan
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - William Rote
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Brad Rovin
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Vladimir Tesar
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Hernán Trimarchi
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - James Tumlin
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Muh Geot Wong
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| | - Howard Trachtman
- From the Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis (M.N.R.); the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (C.E.A.); the Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, United Kingdom (J.B.); Travere Therapeutics, San Diego, CA (S.B., U.D., J.K.I., R.K., W.R.); the Division of Nephrology, Columbia University Irving Medical Center, New York (P.C., J.R.); the Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, South Korea (D.-W.C.); Penn Renal Electrolyte and Hypertension Perelman, University of Pennsylvania, Philadelphia (G.C.); the Nephrology, Dialysis, and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy (L.G.); the Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, the Netherlands (H.J.L.H.); the George Institute for Global Health (H.J.L.H., V.P.) and the Faculty of Medicine and Health (V.P.), University of New South Wales, Sydney, and the Department of Renal Medicine, Concord Repatriation General Hospital, and Concord Clinical School, University of Sydney, Concord, NSW (M.G.W.) - all in Australia; the Department of Medicine (Nephrology), Federal University of São Paulo (G.M.K.), and the Division of Nephrology, University of São Paulo (I.L.N.) - both in São Paulo; the Department of Internal Medicine, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City (D.K.); Colorado Kidney Care, Denver (L.A.K.); Hackensack University Medical Center, Hackensack, NJ (K.L.); JAMCO Pharma Consulting, Stockholm (A.M.); the Division of Nephrology, Ohio State University Wexner Medical Center, Columbus (B.R.); Všeobecná fakultní nemocnice v Praze, Prague, Czech Republic (V.T.); the Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires (H. Trimarchi); the Renal Division, Emory University, Atlanta, and the NephroNet Clinical Trials Consortium, Lawrenceville - both in Georgia (J.T.); and the Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor (H. Trachtman)
| |
Collapse
|
32
|
Speedtsberg ES, Tepel M. Narrative review investigating the nephroprotective mechanisms of sodium glucose cotransporter type 2 inhibitors in diabetic and nondiabetic patients with chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1281107. [PMID: 38174341 PMCID: PMC10761498 DOI: 10.3389/fendo.2023.1281107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Background and aims Outcome trials using sodium glucose cotransporter type 2 inhibitors have consistently shown their potential to preserve kidney function in diabetic and nondiabetic patients. Several mechanisms have been introduced which may explain the nephroprotective effect of sodium glucose cotransporter type 2 inhibitors beyond lowering blood glucose. This current narrative review has the objective to describe main underlying mechanisms causing a nephroprotective effect and to show similarities as well as differences between proposed mechanisms which can be observed in patients with diabetic and nondiabetic chronic kidney disease. Methods We performed a narrative review of the literature on Pubmed and Embase. The research string comprised various combinations of items including "chronic kidney disease", "sodium glucose cotransporter 2 inhibitor" and "mechanisms". We searched for original research and review articles published until march, 2022. The databases were searched independently and the agreements by two authors were jointly obtained. Results Sodium glucose cotransporter type 2 inhibitors show systemic, hemodynamic, and metabolic effects. Systemic effects include reduction of blood pressure without compensatory activation of the sympathetic nervous system. Hemodynamic effects include restoration of tubuloglomerular feedback which may improve pathologic hyperfiltration observed in most cases with chronic kidney disease. Current literature indicates that SGLT2i may not improve cortical oxygenation and may reduce medullar oxygenation. Conclusion Sodium glucose cotransporter type 2 inhibitors cause nephroprotective effects by several mechanisms. However, several mediators which are involved in the underlying pathophysiology may be different between diabetic and nondiabetic patients.
Collapse
Affiliation(s)
- Emma S Speedtsberg
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Institute of Clinical Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Martin Tepel
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Institute of Clinical Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
33
|
Abstract
Chronic kidney disease (CKD) represents a global public health crisis, but awareness by patients and providers is poor. Defined as persistent abnormalities in kidney structure or function for more than three months, manifested as either low glomerular filtration rate or presence of a marker of kidney damage such as albuminuria, CKD can be identified through readily available blood and urine tests. Early recognition of CKD is crucial for harnessing major advances in staging, prognosis, and treatment. This review discusses the evidence behind the general principles of CKD management, such as blood pressure and glucose control, renin-angiotensin-aldosterone system blockade, statin therapy, and dietary management. It additionally describes individualized approaches to treatment based on risk of kidney failure and cause of CKD. Finally, it reviews novel classes of kidney protective agents including sodium-glucose cotransporter-2 inhibitors, glucagon-like peptide-1 receptor agonists, non-steroidal selective mineralocorticoid receptor antagonists, and endothelin receptor antagonists. Appropriate, widespread implementation of these highly effective therapies should improve the lives of people with CKD and decrease the worldwide incidence of kidney failure.
Collapse
Affiliation(s)
- Teresa K Chen
- Kidney Health Research Collaborative and Division of Nephrology, Department of Medicine, University of California San Francisco; and San Francisco VA Health Care System, San Francisco, CA, USA
| | - Melanie P Hoenig
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dorothea Nitsch
- Department of Non-Communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Morgan E Grams
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Ma C, Li X, Li W, Li Y, Shui F, Zhu P. The efficacy and safety of SGLT2 inhibitors in patients with non-diabetic chronic kidney disease: a systematic review and meta-analysis. Int Urol Nephrol 2023; 55:3167-3174. [PMID: 37046125 DOI: 10.1007/s11255-023-03586-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE In recent years, increasing evidence has shown that sodium-glucose cotransporter 2 inhibitors (SGLT2i) drugs have potential renoprotective effects in patients with diabetes mellitus (DM). However, the renal protective effect of SGLT2i in non-diabetic nephropathy patients has not been extensively demonstrated. In this systematic review and meta-analysis, we aimed to evaluate the renal protective effect and safety of SGLT2i in non-diabetic nephropathy patients. METHODS we searched for relevant clinically randomised controlled trials and analyzed the effects of SGLT2i on estimated glomerular filtration rate (eGFR), urinary albumin/creatinine ratio (UACR), and systolic blood pressure (SBP) and the incidence of adverse events in patients with non-diabetic nephropathy. RESULTS We collated and analysed clinical data from six groups of patients with nondiabetic nephropathy. It was found that the SGLT2i significantly delayed the decline in eGFR [MD = 1.35 ml/min/1.73 m2, 95% CI 0.84, 1.86), P < 0.0001]. Furthermore, the SGLT2i significantly reduced UACR [MD = - 24.47% l, 95% CI (- 38.9, -10.04), P = 0.0009], and showed a greater decrease in SBP [MD = - 4.13 mmHg, 95% CI (- 7.49, - 0.77), P = 0.02]. There was no significant difference in the incidence of adverse reactions between dapagliflozin/empagliflozin and the control group [OR = 1.14, 95% CI (0.88, 1.47), P = 0.33]. CONCLUSION This study shows that SGLT2i help to delay the progression of non-diabetic kidney disease. Therefore, SGLT2i may contribute to the general treatment of nondiabetic nephropathy.
Collapse
Affiliation(s)
- Congyuan Ma
- Institution of Nephrology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443003, China
| | - Xuanwei Li
- Institution of Nephrology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443003, China
| | - Wenlai Li
- Institution of Nephrology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443003, China
| | - Yue Li
- Department of endocrinology, The Renhe Hospital of Three Gorges University, Yichang, Hubei, 443003, China
| | - Fangfang Shui
- Department of endocrinology, The Renhe Hospital of Three Gorges University, Yichang, Hubei, 443003, China
| | - Ping Zhu
- Institution of Nephrology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443003, China.
| |
Collapse
|
35
|
Beal B, Schutte AE, Neuen BL. Blood Pressure Effects of SGLT2 Inhibitors: Mechanisms and Clinical Evidence in Different Populations. Curr Hypertens Rep 2023; 25:429-435. [PMID: 37948021 DOI: 10.1007/s11906-023-01281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE OF REVIEW Sodium glucose transporter 2 inhibitors (SGLT2 inhibitors) are increasingly prescribed due to their considerable benefits on clinical outcomes in people with diabetes, heart failure, and chronic kidney disease (CKD). Hypertension is a common comorbidity in each of these disease states, increasing risk of cardiovascular morbidity and mortality. We herein review the effects of SGLT2 inhibitors on blood pressure in different populations, proposed mechanisms of action, and the contribution of blood pressure lowering to end-organ protection. RECENT FINDINGS A recognised effect of SGLT2 inhibitors in recent clinical trials is blood pressure lowering, with multiple postulated mechanisms. This advantageous effect was first identified in populations with type 2 diabetes mellitus, prior to expansion of these trials to broader cohorts. On our review, we identified that the blood pressure lowering effect of SGLT2 inhibitors appears to be a dose-independent class-effect, with a magnitude of effect comparable to that seen with a low dose hydrochlorothiazide. There is considerable evidence demonstrating that this effect is observed across populations including those with type 2 diabetes mellitus, chronic kidney disease, and resistant hypertension.
Collapse
Affiliation(s)
- Bryony Beal
- Department of Renal Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Aletta E Schutte
- The George Institute for Global Health, Faculty of Medicine and Health, University of New South Wales, Level 5, 1 King St Newtown 2042, Sydney, Australia
- School of Population Health, University of New South Wales, Sydney, Australia
| | - Brendon L Neuen
- Department of Renal Medicine, Royal North Shore Hospital, Sydney, Australia.
- The George Institute for Global Health, Faculty of Medicine and Health, University of New South Wales, Level 5, 1 King St Newtown 2042, Sydney, Australia.
| |
Collapse
|
36
|
Anders HJ, Fernandez-Juarez GM, Vaglio A, Romagnani P, Floege J. CKD therapy to improve outcomes of immune-mediated glomerular diseases. Nephrol Dial Transplant 2023; 38:ii50-ii57. [PMID: 37218706 DOI: 10.1093/ndt/gfad069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 05/24/2023] Open
Abstract
The management of immunoglobulin A nephropathy, membranous nephropathy, lupus nephritis, anti-neutrophil cytoplasmic antibody-associated vasculitis, C3 glomerulonephritis, autoimmune podocytopathies and other immune-mediated glomerular disorders is focused on two major treatment goals, preventing overall mortality and the loss of kidney function. Since minimizing irreversible kidney damage best serves both goals, the management of immune-mediated kidney disorders must focus on the two central pathomechanisms of kidney function decline, i.e., controlling the underlying immune disease process (e.g. with immunotherapies) and controlling the non-immune mechanisms of chronic kidney disease (CKD) progression. Here we review the pathophysiology of these non-immune mechanisms of CKD progression and discuss non-drug and drug interventions to attenuate CKD progression in immune-mediated kidney disorders. Non-pharmacological interventions include reducing salt intake, normalizing body weight, avoiding superimposed kidney injuries, smoking cessation and regular physical activity. Approved drug interventions include inhibitors of the renin-angiotensin-aldosterone system and sodium-glucose cotransporter-2. Numerous additional drugs to improve CKD care are currently being tested in clinical trials. Here we discuss how and when to use these drugs in the different clinical scenarios of immune-mediated kidney diseases.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | | | - Augusto Vaglio
- Nephrology Unit, Anna Meyer Children's Hospital, Florence, Italy
| | - Paola Romagnani
- Nephrology Unit, Anna Meyer Children's Hospital, Florence, Italy
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
37
|
Mark PB, Sarafidis P, Ekart R, Ferro CJ, Balafa O, Fernandez-Fernandez B, Herrington WG, Rossignol P, Del Vecchio L, Valdivielso JM, Mallamaci F, Ortiz A, Nistor I, Cozzolino M. SGLT2i for evidence-based cardiorenal protection in diabetic and non-diabetic chronic kidney disease: a comprehensive review by EURECA-m and ERBP working groups of ERA. Nephrol Dial Transplant 2023; 38:2444-2455. [PMID: 37230946 PMCID: PMC10615631 DOI: 10.1093/ndt/gfad112] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 05/27/2023] Open
Abstract
Chronic kidney disease (CKD) is a major public health issue affecting an estimated 850 million people globally. The leading causes of CKD is diabetes and hypertension, which together account for >50% of patients with end-stage kidney disease. Progressive CKD leads to the requirement for kidney replacement therapy with transplantation or dialysis. In addition, CKD, is a risk factor for premature cardiovascular disease, particularly from structural heart disease and heart failure (HF). Until 2015, the mainstay of treatment to slow progression of both diabetic and many non-diabetic kidney diseases was blood pressure control and renin-angiotensin system inhibition; however, neither angiotensin-converting enzyme inhibitors (ACEIs) nor angiotensin receptor blockers (ARBs) reduced cardiovascular events and mortality in major trials in CKD. The emergence of cardiovascular and renal benefits observed with sodium-glucose cotransporter-2 inhibitors (SGLT2i) from clinical trials of their use as anti-hyperglycaemic agents has led to a revolution in cardiorenal protection for patients with diabetes. Subsequent clinical trials, notably DAPA-HF, EMPEROR, CREDENCE, DAPA-CKD and EMPA-KIDNEY have demonstrated their benefits in reducing risk of HF and progression to kidney failure in patients with HF and/or CKD. The cardiorenal benefits-on a relative scale-appear similar in patients with or without diabetes. Specialty societies' guidelines are continually adapting as trial data emerges to support increasingly wide use of SGLT2i. This consensus paper from EURECA-m and ERBP highlights the latest evidence and summarizes the guidelines for use of SGLT2i for cardiorenal protection focusing on benefits observed relevant to people with CKD.
Collapse
Affiliation(s)
- Patrick B Mark
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Robert Ekart
- Faculty of Medicine, University of Maribor, Taborska 8, Maribor, Slovenia
| | - Charles J Ferro
- Renal Unit, University Hospitals Birmingham and Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Olga Balafa
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | - Beatriz Fernandez-Fernandez
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid. Spain, Spain
| | - William G Herrington
- Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Patrick Rossignol
- Université de Lorraine, INSERM CIC-P 1433, CHRU de Nancy, INSERM U1116, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Service de Spécialités Médicales et de Néphrologie-Hémodialyse Centre Hospitalier Princesse Grace de Monaco, Monaco, Monaco
| | | | - Jose M Valdivielso
- Vascular and Renal Translational Research Group and UDETMA, IRBLleida, Lleida, Spain
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Alberto Ortiz
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid. Spain, Spain
| | - Ionut Nistor
- Faculty of Medicine, University of Medicine and Pharmacy ‘Grigore T. Popa’, Iași, Romania
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
38
|
Esposito P, Picciotto D, Cappadona F, Costigliolo F, Russo E, Macciò L, Viazzi F. Multifaceted relationship between diabetes and kidney diseases: Beyond diabetes. World J Diabetes 2023; 14:1450-1462. [PMID: 37970131 PMCID: PMC10642421 DOI: 10.4239/wjd.v14.i10.1450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 10/09/2023] Open
Abstract
Diabetes mellitus is one of the most common causes of chronic kidney disease. Kidney involvement in patients with diabetes has a wide spectrum of clinical presentations ranging from asymptomatic to overt proteinuria and kidney failure. The development of kidney disease in diabetes is associated with structural changes in multiple kidney compartments, such as the vascular system and glomeruli. Glomerular alterations include thickening of the glomerular basement membrane, loss of podocytes, and segmental mesangiolysis, which may lead to microaneurysms and the development of pathognomonic Kimmelstiel-Wilson nodules. Beyond lesions directly related to diabetes, awareness of the possible coexistence of nondiabetic kidney disease in patients with diabetes is increasing. These nondiabetic lesions include focal segmental glomerulosclerosis, IgA nephropathy, and other primary or secondary renal disorders. Differential diagnosis of these conditions is crucial in guiding clinical management and therapeutic approaches. However, the relationship between diabetes and the kidney is bidirectional; thus, new-onset diabetes may also occur as a complication of the treatment in patients with renal diseases. Here, we review the complex and multifaceted correlation between diabetes and kidney diseases and discuss clinical presentation and course, differential diagnosis, and therapeutic oppor-tunities offered by novel drugs.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa 16132, Italy
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Daniela Picciotto
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Francesca Cappadona
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Francesca Costigliolo
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Elisa Russo
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa 16132, Italy
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Lucia Macciò
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa 16132, Italy
| | - Francesca Viazzi
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa 16132, Italy
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| |
Collapse
|
39
|
Lv J, Guo L, Wang R, Chen J. Efficacy and Safety of Sodium-Glucose Cotransporter-2 Inhibitors in Nondiabetic Patients with Chronic Kidney Disease: A Review of Recent Evidence. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:326-341. [PMID: 37901712 PMCID: PMC10601939 DOI: 10.1159/000530395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/20/2023] [Indexed: 10/31/2023]
Abstract
Background Sodium-glucose cotransporter-2 inhibitors (SGLT2i) were initially developed as glucose-lowering agents in patients with type-2 diabetes. However, available data from clinical trials and meta-analyses suggest that SGLT2i have pleiotropic benefits in reducing mortality and delaying the progression of chronic kidney disease (CKD) in both diabetic and nondiabetic patients. Thus, we herein review the current evidence regarding the efficacy and safety of SGLT2i in patients with nondiabetic CKD and appraise the recently reported clinical trials that might facilitate the management of CKD in routine clinical practice. Summary The benefits of SGLT2i on nondiabetic CKD are multifactorial and are mediated by a combination of mechanisms. The landmark DAPA-CKD trial revealed that dapagliflozin administered with renin-angiotensin system blockade drugs reduced the risk of a sustained decline (at least 50%) in the estimated glomerular filtration rate, end-stage kidney disease, or death from cardiorenal causes. The recent EMPA-KIDNEY trial showed that empagliflozin therapy led to a lower risk of progression of kidney disease or death from cardiovascular causes. These benefits were consistent in patients with and without diabetes. Moreover, a meta-analysis of DAPA-HF and EMPEROR-Reduced trials confirmed reductions in the combined risk of cardiovascular death or worsening heart failure including composite renal endpoint. Key Messages Considering the robust data available from DAPA-CKD, EMPA-KIDNEY, and other trials such as EMPEROR-Preserved, DIAMOND that included nondiabetic patients, it may be necessary to update current guidelines to include SGLT2i as a first-line therapy for CKD and reevaluate current CKD therapeutic approaches.
Collapse
Affiliation(s)
- Junhao Lv
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Luying Guo
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Rending Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|
40
|
Song J, Li X, Ni J. A Role for Sodium-Glucose Cotransporter 2 Inhibitors in the Treatment of Chronic Kidney Disease: A Mini Review. Kidney Blood Press Res 2023; 48:599-610. [PMID: 37717569 PMCID: PMC10614480 DOI: 10.1159/000534174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Sodium-glucose cotransport protein 2 (SGLT2) inhibitors, a new type of glucose-lowering drug, have been well proved in several clinical studies for their glucose-lowering and nephroprotective effects, and the nephroprotective effects include both indirect effects of metabolic improvement and direct effects, independent of glucose-lowering effects. SUMMARY In patients with diabetic kidney disease (DKD), several studies have demonstrated the potential nephroprotective mechanisms of SGLT2 inhibitors, and evidence of nephroprotective mechanisms in the non-DKD population is accumulating. Although the nephroprotective mechanism of SGLT2 inhibitors has not been fully elucidated, several laboratory studies have illustrated the mechanism underlying the effects of SGLT2 inhibitors at various aspects. KEY MESSAGES The purpose of this article is to review the mechanism of nephroprotective effect of SGLT2 inhibitors and to look forward to promising research in the future.
Collapse
Affiliation(s)
- Jinfang Song
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xia Li
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, Wuxi, China
| | - Jiang Ni
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, Wuxi, China
| |
Collapse
|
41
|
Stompór T, Adamczak M, Kurnatowska I, Naumnik B, Nowicki M, Tylicki L, Winiarska A, Krajewska M. Pharmacological Nephroprotection in Non-Diabetic Chronic Kidney Disease-Clinical Practice Position Statement of the Polish Society of Nephrology. J Clin Med 2023; 12:5184. [PMID: 37629226 PMCID: PMC10455736 DOI: 10.3390/jcm12165184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic kidney disease (CKD) is a modern epidemic worldwide. Introducing renin-angiotensin system (RAS) inhibitors (i.e., ACEi or ARB) not only as blood-pressure-lowering agents, but also as nephroprotective drugs with antiproteinuric potential was a milestone in the therapy of CKD. For decades, this treatment remained the only proven strategy to slow down CKD progression. This situation changed some years ago primarily due to the introduction of drugs designed to treat diabetes that turned into nephroprotective strategies not only in diabetic kidney disease, but also in CKD unrelated to diabetes. In addition, several drugs emerged that precisely target the pathogenetic mechanisms of particular kidney diseases. Finally, the role of metabolic acidosis in CKD progression (and not only the sequelae of CKD) came to light. In this review, we aim to comprehensively discuss all relevant therapies that slow down the progression of non-diabetic kidney disease, including the lowering of blood pressure, through the nephroprotective effects of ACEi/ARB and spironolactone independent from BP lowering, as well as the role of sodium-glucose co-transporter type 2 inhibitors, acidosis correction and disease-specific treatment strategies. We also briefly address the therapies that attempt to slow down the progression of CKD, which did not confirm this effect. We are convinced that our in-depth review with practical statements on multiple aspects of treatment offered to non-diabetic CKD fills the existing gap in the available literature. We believe that it may help clinicians who take care of CKD patients in their practice. Finally, we propose the strategy that should be implemented in most non-diabetic CKD patients to prevent disease progression.
Collapse
Affiliation(s)
- Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland
| | - Marcin Adamczak
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027 Katowice, Poland
| | - Ilona Kurnatowska
- Department of Internal Diseases and Transplant Nephrology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Beata Naumnik
- Ist Department of Nephrology and Transplantation with Dialysis Unit, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| | - Michał Nowicki
- Department of Nephrology, Hypertension and Kidney Transplantation, Central University Hospital, Medical University of Lodz, 92-213 Lodz, Poland
| | - Leszek Tylicki
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, 80-952 Gdansk, Poland
| | - Agata Winiarska
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
42
|
Gauckler P, Zitt E, Regele H, Eller K, Säemann MD, Lhotta K, Neumann I, Rudnicki M, Odler B, Kronbichler A, Zschocke J, Windpessl M. [Diagnosis and treatment of focal-segmental glomerulosclerosis-2023]. Wien Klin Wochenschr 2023; 135:638-647. [PMID: 37728649 PMCID: PMC10511576 DOI: 10.1007/s00508-023-02260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/21/2023]
Abstract
The histopathological term focal-segmental glomerulosclerosis comprises different pathogenic processes with the unifying features of a high proteinuria and the name-giving glomerular lesion pattern seen on light microscopy. A differentiation according to the underlying cause into primary, secondary and genetic forms is therefore of utmost importance. The pathogenesis of primary focal-segmental glomerulosclerosis remains unknown but, like minimal-change disease, an autoimmune-mediated process leading to podocyte damage is assumed. Consequently, the unifying term "podocytopathy" is increasingly being used for both entities. Supportive treatment measures to preserve kidney function are important in all subtypes. In contrast, immunosuppressive treatment is only indicated in primary focal-segmental glomerulosclerosis. Steroid-dependence, steroid-resistance and frequently relapsing disease often complicate disease management and necessitate alternative treatment strategies. Here, the Austrian Society of Nephrology (ÖGN) provides consensus recommendations on how to best diagnose and manage patients with focal-segmental glomerulosclerosis.
Collapse
Affiliation(s)
- Philipp Gauckler
- Department Innere Medizin IV (Nephrologie und Hypertensiologie), Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Emanuel Zitt
- Abteilung für Innere Medizin III (Nephrologie, Dialyse und Hypertensiologie), Akademisches Lehrkrankenhaus Feldkirch, Feldkirch, Österreich
| | - Heinz Regele
- Klinisches Institut für Pathologie, Medizinische Universität Wien, Wien, Österreich
| | - Kathrin Eller
- Klinische Abteilung für Nephrologie, Abteilung für Innere Medizin III (Nephrologie, Dialyse und Hypertensiologie), Medizinische Universität Graz, Graz, Österreich
| | - Marcus D. Säemann
- 6.Medizinische Abteilung mit Nephrologie & Dialyse, Klinik Ottakring, Wien, Österreich
- Medizinische Fakultät, SFU, Wien, Österreich
| | - Karl Lhotta
- Abteilung für Innere Medizin III (Nephrologie, Dialyse und Hypertensiologie), Akademisches Lehrkrankenhaus Feldkirch, Feldkirch, Österreich
| | - Irmgard Neumann
- Vasculitis.at, Wien, Österreich
- Immunologiezentrum Zürich (IZZ), Zürich, Schweiz
| | - Michael Rudnicki
- Department Innere Medizin IV (Nephrologie und Hypertensiologie), Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Balazs Odler
- Klinische Abteilung für Nephrologie, Abteilung für Innere Medizin III (Nephrologie, Dialyse und Hypertensiologie), Medizinische Universität Graz, Graz, Österreich
| | - Andreas Kronbichler
- Department Innere Medizin 4 (Nephrologie und Hypertensiologie), Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Johannes Zschocke
- Institut für Humangenetik, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Martin Windpessl
- Abteilung für Innere Medizin IV, Klinikum Wels-Grieskirchen, Wels, Österreich
| |
Collapse
|
43
|
Theofilis P, Vordoni A, Kalaitzidis RG. Novel therapeutic approaches in the management of chronic kidney disease: a narrative review. Postgrad Med 2023; 135:543-550. [PMID: 37401536 DOI: 10.1080/00325481.2023.2233492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Chronic kidney disease (CKD) remains a pathologic entity with constantly rising incidence and high rates of morbidity and mortality, which are associated with serious cardiovascular complications. Moreover, the incidence of end-stage renal disease tends to increase. The epidemiological trends of CKD warrant the development of novel therapeutic approaches aiming to prevent its development or retard its progression through the control of major risk factors: type 2 diabetes mellitus, arterial hypertension, and dyslipidemia. Contemporary therapeutics such as sodium-glucose cotransporter-2 inhibitors and second-generation mineralocorticoid receptor antagonists are utilized in this direction. Additionally, experimental and clinical studies present novel drug categories that could be employed in managing CKD, such as aldosterone synthesis inhibitors or activators guanylate cyclase, while the role of melatonin should be further tested in the clinical setting. Finally, in this patient population, the use of hypolipidemic agents may provide incremental benefits.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- Center for Nephrology, "G. Papadakis" General Hospital of Nikaia-Piraeus "Ag. Panteleimon", Athens, Greece
| | - Aikaterini Vordoni
- Center for Nephrology, "G. Papadakis" General Hospital of Nikaia-Piraeus "Ag. Panteleimon", Athens, Greece
| | - Rigas G Kalaitzidis
- Center for Nephrology, "G. Papadakis" General Hospital of Nikaia-Piraeus "Ag. Panteleimon", Athens, Greece
| |
Collapse
|
44
|
Koh ES, Kim GH, Chung S. Intrarenal Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors on Tubuloglomerular Feedback and Natriuresis. Endocrinol Metab (Seoul) 2023; 38:359-372. [PMID: 37482684 PMCID: PMC10475968 DOI: 10.3803/enm.2023.1764] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
When sodium-glucose cotransporter-2 (SGLT2) inhibitors were first introduced a decade ago, no one expected them to have substantial effects beyond their known glucose-lowering effects, until the emergence of evidence of their robust renal and cardiovascular benefits showing that they could attenuate progression of kidney disease, irrespective of diabetes, as well as prevent the development of acute kidney injury. Still, the precise and elaborate mechanisms underlying the major organ protection of SGLT2 inhibitors remain unclear. SGLT2 inhibitors inhibit the reabsorption of sodium and glucose in the proximal tubule of the kidney and then recovers tubuloglomerular feedback, whereby SGLT2 inhibitors reduce glomerular hyperfiltration. This simple demonstration of their beneficial effects has perplexed experts in seeking more plausible and as yet undisclosed explanations for the whole effects of SGLT2 inhibitors, including metabolism reprogramming and the modulation of hypoxia, inflammation, and oxidative stress. Given that the renal benefits of SGLT2 inhibitors in patients with kidney disease but without diabetes were comparable to those seen in patients with diabetes, it may be reasonable to keep the emphasis on their hemodynamic actions. In this context, the aim of the present review is to provide a comprehensive overview of renal hemodynamics in individuals with diabetes who are treated with SGLT2 inhibitors, with a focus on natriuresis associated with the regulation of tubuloglomerular feedback and potential aquaresis. Throughout the discussion of alterations in renal sodium and water transports, particular attention will be given to the potential enhancement of adenosine and its receptors following SGLT2 inhibition.
Collapse
Affiliation(s)
- Eun Sil Koh
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gheun-Ho Kim
- Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
45
|
Hu QD, Tan RZ, Zou YX, Li JC, Fan JM, Kantawong F, Wang L. Synergism of calycosin and bone marrow-derived mesenchymal stem cells to combat podocyte apoptosis to alleviate adriamycin-induced focal segmental glomerulosclerosis. World J Stem Cells 2023; 15:617-631. [PMID: 37424951 PMCID: PMC10324505 DOI: 10.4252/wjsc.v15.i6.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (MSCs) show podocyte-protective effects in chronic kidney disease. Calycosin (CA), a phytoestrogen, is isolated from Astragalus membranaceus with a kidney-tonifying effect. CA preconditioning enhances the protective effect of MSCs against renal fibrosis in mice with unilateral ureteral occlusion. However, the protective effect and underlying mechanism of CA-pretreated MSCs (MSCsCA) on podocytes in adriamycin (ADR)-induced focal segmental glomerulosclerosis (FSGS) mice remain unclear. AIM To investigate whether CA enhances the role of MSCs in protecting against podocyte injury induced by ADR and the possible mechanism involved. METHODS ADR was used to induce FSGS in mice, and MSCs, CA, or MSCsCA were administered to mice. Their protective effect and possible mechanism of action on podocytes were observed by Western blot, immunohistochemistry, immunofluorescence, and real-time polymerase chain reaction. In vitro, ADR was used to stimulate mouse podocytes (MPC5) to induce injury, and the supernatants from MSC-, CA-, or MSCsCA-treated cells were collected to observe their protective effects on podocytes. Subsequently, the apoptosis of podocytes was detected in vivo and in vitro by Western blot, TUNEL assay, and immunofluorescence. Overexpression of Smad3, which is involved in apoptosis, was then induced to evaluate whether the MSCsCA-mediated podocyte protective effect is associated with Smad3 inhibition in MPC5 cells. RESULTS CA-pretreated MSCs enhanced the protective effect of MSCs against podocyte injury and the ability to inhibit podocyte apoptosis in ADR-induced FSGS mice and MPC5 cells. Expression of p-Smad3 was upregulated in mice with ADR-induced FSGS and MPC5 cells, which was reversed by MSCCA treatment more significantly than by MSCs or CA alone. When Smad3 was overexpressed in MPC5 cells, MSCsCA could not fulfill their potential to inhibit podocyte apoptosis. CONCLUSION MSCsCA enhance the protection of MSCs against ADR-induced podocyte apoptosis. The underlying mechanism may be related to MSCsCA-targeted inhibition of p-Smad3 in podocytes.
Collapse
Affiliation(s)
- Qiong-Dan Hu
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Rui-Zhi Tan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yuan-Xia Zou
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jian-Chun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jun-Ming Fan
- Department of Nephrology, The Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China.
| |
Collapse
|
46
|
Elkeraie A, Zyada R, Elrggal ME, Elrggal M. Safety of SGLT2 inhibitors in patients with different glomerular diseases treated with immunosuppressive therapies. Eur J Clin Pharmacol 2023:10.1007/s00228-023-03508-1. [PMID: 37199747 DOI: 10.1007/s00228-023-03508-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Despite the known effects of sodium-glucose-cotransporter 2 (SGLT2) inhibitors in halting chronic kidney disease (CKD) progression and decreasing mortality from renal and cardiovascular causes, their use in patients with primary and secondary glomerular diseases maintained on immunosuppressive therapies (IST) has not yet been established. METHODS In this open-label, uncontrolled study, SGLT2 inhibitors were prescribed to patients with glomerular diseases maintained on IST to assess the safety of their use. RESULTS Nine out of 17 patients had no diabetes. During a mean of 7.3 months follow-up duration, the incidence rate of urinary tract infection (UTI) was 1.6 per 100 person-months. The UTI episodes were successfully treated with antibiotic therapy without the need to discontinue SGLT2 inhibitors. There were no cases of acute kidney injury (AKI), ketoacidosis, amputation, or Fournier gangrene. Moreover, markers of kidney damage such as mean serum creatinine (decreased from 1.7 to 1.37 mg/dl) and mean proteinuria (urinary albumin-to-creatinine ratio decreased from 2669 to 858 mg/g) improved throughout the follow-up period. CONCLUSION SGLT2i are safe to use in patients with glomerular diseases on IST.
Collapse
Affiliation(s)
- Ahmed Elkeraie
- Nephrology Department, Kidney and Urology Center, Alexandria, Egypt
- Nephrology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rowan Zyada
- Nephrology Department, Kidney and Urology Center, Alexandria, Egypt
- Nephrology Department, Qabbary Hospital, Alexandria, Egypt
| | | | - Mohamed Elrggal
- Nephrology Department, Kidney and Urology Center, Alexandria, Egypt.
- Nephrology Department, Qabbary Hospital, Alexandria, Egypt.
| |
Collapse
|
47
|
Abstract
Hypertension is the leading modifiable cause of premature death and hence one of the global targets of World Health Organization for prevention. Hypertension also affects the great majority of patients with chronic kidney disease (CKD). Both hypertension and CKD are intrinsically related, as hypertension is a strong determinant of worse renal and cardiovascular outcomes and renal function decline aggravates hypertension. This bidirectional relationship is well documented by the high prevalence of hypertension across CKD stages and the dual benefits of effective antihypertensive treatments on renal and cardiovascular risk reduction. Achieving an optimal blood pressure (BP) target is mandatory and requires several pharmacological and lifestyle measures. However, it also requires a correct diagnosis based on reliable BP measurements (eg, 24-hour ambulatory BP monitoring, home BP), especially for populations like patients with CKD where reduced or reverse dipping patterns or masked and resistant hypertension are frequent and associated with a poor cardiovascular and renal prognosis. Even after achieving BP targets, which remain debated in CKD, the residual cardiovascular risk remains high. Current antihypertensive options have been enriched with novel agents that enable to lower the existing renal and cardiovascular risks, such as SGLT2 (sodium-glucose cotransporter-2) inhibitors and novel nonsteroidal mineralocorticoid receptor antagonists. Although their beneficial effects may be driven mostly from actions beyond BP control, recent evidence underline potential improvements on abnormal 24-hour BP phenotypes such as nondipping. Other promising novelties are still to come for the management of hypertension in CKD. In the present review, we shall discuss the existing evidence of hypertension as a cardiovascular risk factor in CKD, the importance of identifying hypertension phenotypes among patients with CKD, and the traditional and novel aspects of the management of hypertensives with CKD.
Collapse
Affiliation(s)
- Michel Burnier
- Hypertension Research Foundation (M.B.), University of Lausanne, Switzerland
- Faculty of Biology and Medicine (M.B.), University of Lausanne, Switzerland
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, Lausanne Switzerland (M.B., A.D.)
| | - Aikaterini Damianaki
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, Lausanne Switzerland (M.B., A.D.)
| |
Collapse
|
48
|
Weinmann-Menke J. [Lupus nephritis: from diagnosis to treatment]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2023; 64:225-233. [PMID: 36763102 DOI: 10.1007/s00108-023-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Renal involvement in systemic lupus erythematosus (SLE), so-called lupus nephritis (LN), is one of the most frequent organ manifestations with an incidence of approximately 40-60%. It is not uncommon for renal involvement to be the initial manifestation of SLE or to occur in the first 5-10 years after diagnosis of SLE. Urinalysis is useful in screening for the presence of LN, demonstrating proteinuria or active sediment with acanthocytes. Histologic confirmation of LN, and thus the LN class present, is currently the gold standard for confirming the diagnosis. In addition, knowledge of the LN class is a relevant component of adequate treatment planning in SLE patients with LN. In particular, early diagnosis and rapid response to therapy are of prognostic importance for the preservation of renal function as well as morbidity and mortality of the mostly young patients at the time of initial diagnosis. Thus, the focus of therapy is to achieve complete remission, as well as to avoid active disease phases. Due to a complex pathogenesis and at the same time a very heterogeneous clinical presentation, with six different histological classes of LN, there are different therapeutic targets. This in turn results in a significant expansion of the study landscape in the field of LN with an increasing understanding of the signaling pathways and influencing factors, and fortunately in a growing armamentarium of available targeted therapy options. Simultaneously, new insights into drug therapy to inhibit progression of chronic renal disease are opening up supportive therapy options that can further improve preservation of renal function.
Collapse
Affiliation(s)
- Julia Weinmann-Menke
- I. Medizinische Klinik und Poliklinik, Schwerpunkt Nephrologie und Nierentransplantation, Universitätsmedizin Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland.
| |
Collapse
|
49
|
Chen SC, Cai D, Winnett C, Nguyen M, Verma N, Liu K, Preciado P. Effect of Multiple Doses of Sparsentan on the Single-Dose Pharmacokinetics of Dapagliflozin: An Open-Label Drug-Drug Interaction Study in Healthy Adults. Clin Pharmacol Drug Dev 2023; 12:535-541. [PMID: 36852566 DOI: 10.1002/cpdd.1231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/23/2023] [Indexed: 03/01/2023]
Abstract
Sparsentan is a single-molecule dual antagonist of the endothelin type A receptor and angiotensin II type 1 receptor under investigation for the treatment of focal segmental glomerulosclerosis and immunoglobulin A nephropathy. Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, has recently been indicated in chronic kidney disease. Sparsentan may be considered for concomitant use with dapagliflozin. The purpose of this open-label, 1-sequence crossover study was to determine whether drug-drug interactions between sparsentan and dapagliflozin affect dapagliflozin pharmacokinetics (PK). In addition, exposure to the inactive metabolite of dapagliflozin, dapagliflozin-3-O-glucuronide, was used to evaluate the effect of sparsentan on the primary metabolizing enzyme of dapagliflozin, uridine 5'-diphospho-glucuronosyltransferase 1A9. The study included 22 healthy adults treated with 10 mg of dapagliflozin on day 1, and 800 mg/day of sparsentan on days 5-14, with a 10-mg dose of dapagliflozin coadministered on day 11. PK samples were taken for dapagliflozin, dapagliflozin-3-O-glucuronide, and sparsentan before and after treatment throughout the study. Steady-state concentrations of sparsentan following daily dosing did not affect the PK of single-dose dapagliflozin in healthy adults. Dapagliflozin-3-O-glucuronide PK suggests a minimal effect of sparsentan on metabolism of dapagliflozin by uridine 5'-diphospho-glucuronosyltransferase 1A9. No deaths, serious adverse events, or unusual safety signals occurred. Results suggest dapagliflozin PK is not affected by sparsentan daily dosing.
Collapse
Affiliation(s)
| | - Danlin Cai
- Travere Therapeutics, Inc., San Diego, CA, USA
| | | | - Mai Nguyen
- Travere Therapeutics, Inc., San Diego, CA, USA
| | | | - Kai Liu
- Travere Therapeutics, Inc., San Diego, CA, USA
| | | |
Collapse
|
50
|
Solomon J, Festa MC, Chatzizisis YS, Samanta R, Suri RS, Mavrakanas TA. Sodium-glucose co-transporter 2 inhibitors in patients with chronic kidney disease. Pharmacol Ther 2023; 242:108330. [PMID: 36513134 DOI: 10.1016/j.pharmthera.2022.108330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Diabetes drives an increasing burden of cardiovascular and renal disease worldwide, motivating the search for new hypoglycemic agents that confer cardiac and renal protective effects. Although initially developed as hypoglycemic agents, sodium-glucose co-transporter 2 (SGLT-2) inhibitors have since been studied in patients with and without diabetes for the management of heart failure and chronic kidney disease. A growing body of evidence supports the efficacy and safety of SGLT-2 inhibitors in patients with chronic kidney disease (CKD), based on complex mechanisms of action that extend far beyond glucosuria and that confer beneficial effects on cardiovascular and renal hemodynamics, fibrosis, inflammation, and end-organ protection. This review focuses on the pharmacology and pathophysiology of SGLT-2 inhibitors in patients with CKD, as well as their cardiovascular and renal effects in this population. We are focusing on the five agents that have been tested in cardiovascular outcome trials and that have been approved either in Europe or in North America: empagliflozin, dapagliflozin, canagliflozin, ertugliglozin, and sotagliflozin.
Collapse
Affiliation(s)
- Joshua Solomon
- Division of Internal Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Maria Carolina Festa
- Division of Internal Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Yiannis S Chatzizisis
- Division of Cardiovascular Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Ratna Samanta
- Division of Nephrology, Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Rita S Suri
- Division of Nephrology, Department of Medicine, McGill University Health Center, Montreal, QC, Canada; Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Thomas A Mavrakanas
- Division of Nephrology, Department of Medicine, McGill University Health Center, Montreal, QC, Canada; Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|