1
|
Zhang G, Kang Y, Dong J, Shi D, Xiang Y, Gao H, Lin Z, Wei X, Ding R, Fan B, Zhang H, Zhu T, Wang L, Yan X. Fluffy hybrid nanoadjuvants for reversing the imbalance of osteoclastic and osteogenic niches in osteoporosis. Bioact Mater 2024; 39:354-374. [PMID: 38846529 PMCID: PMC11153935 DOI: 10.1016/j.bioactmat.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Osteoporosis is majorly caused by an imbalance between osteoclastic and osteogenic niches. Despite the development of nationally recognized first-line anti-osteoporosis drugs, including alendronate (AL), their low bioavailability, poor uptake rate, and dose-related side effects present significant challenges in treatment. This calls for an urgent need for more effective bone-affinity drug delivery systems. In this study, we produced hybrid structures with bioactive components and stable fluffy topological morphology by cross-linking calcium and phosphorus precursors based on mesoporous silica to fabricate nanoadjuvants for AL delivery. The subsequent grafting of -PEG-DAsp8 ensured superior biocompatibility and bone targeting capacity. RNA sequencing revealed that these fluffy nanoadjuvants effectively activated adhesion pathways through CARD11 and CD34 molecular mechanisms, hence promoting cellular uptake and intracellular delivery of AL. Experiments showed that small-dose AL nanoadjuvants effectively suppress osteoclast formation and potentially promote osteogenesis. In vivo results restored the balance between osteogenic and osteoclastic niches against osteoporosis as well as the consequent significant recovery of bone mass. Therefore, this study constructed a drug nanoadjuvant with peculiar topological structures and high bone targeting capacities, efficient intracellular drug delivery as well as bone bioactivity. This provides a novel perspective on drug delivery for osteoporosis and treatment strategies for other bone diseases.
Collapse
Affiliation(s)
- Guoyang Zhang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yuhao Kang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Jizhao Dong
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Shanghai, 201620, China
| | - Dingyi Shi
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Yu Xiang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Haihan Gao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Zhiqi Lin
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xiaojuan Wei
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Ren Ding
- Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Department of Orthopedics, No. 181 Youyi Road, Shanghai, 201900, China
| | - Beibei Fan
- Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Department of Pharmacy, No. 181 Youyi Road, Shanghai, 201900, China
| | - Hongmei Zhang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Shanghai, 201620, China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Shanghai, 201620, China
| | - Liren Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xiaoyu Yan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
2
|
Le Tran N, Wang Y, Bilandzic M, Stephens A, Nie G. Podocalyxin promotes the formation of compact and chemoresistant cancer spheroids in high grade serous carcinoma. Sci Rep 2024; 14:7539. [PMID: 38553472 PMCID: PMC10980795 DOI: 10.1038/s41598-024-57053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
High grade serous carcinoma (HGSC) metastasises primarily intraperitoneally via cancer spheroids. Podocalyxin (PODXL), an anti-adhesive transmembrane protein, has been reported to promote cancer survival against chemotherapy, however its role in HGSC chemoresistance is unclear. This study investigated whether PODXL plays a role in promoting chemoresistance of HGSC spheroids. We first showed that PODXL was expressed variably in HGSC patient tissues (n = 17) as well as in ovarian cancer cell lines (n = 28) that are more likely categorised as HGSC. We next demonstrated that PODXL-knockout (KO) cells proliferated more slowly, formed less compact spheroids and were more fragile than control cells. Furthermore, when treated with carboplatin and examined for post-treatment recovery, PODXL-KO spheroids showed significantly poorer cell viability, lower number of live cells, and less Ki-67 staining than controls. A similar trend was also observed in ascites-derived primary HGSC cells (n = 6)-spheroids expressing lower PODXL formed looser spheroids, were more vulnerable to fragmentation and more sensitive to carboplatin than spheroids with higher PODXL. Our studies thus suggests that PODXL plays an important role in promoting the formation of compact/hardy HGSC spheroids which are more resilient to chemotherapy drugs; these characteristics may contribute to the chemoresistant nature of HGSC.
Collapse
Affiliation(s)
- Ngoc Le Tran
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora West Campus, Bundoora, VIC, 3083, Australia
| | - Yao Wang
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora West Campus, Bundoora, VIC, 3083, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Andrew Stephens
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Guiying Nie
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora West Campus, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
3
|
Bhutto IA, McLeod DS, Thomson BR, Lutty GA, Edwards MM. Visualization of choroidal vasculature in pigmented mouse eyes from experimental models of AMD. Exp Eye Res 2024; 238:109741. [PMID: 38056552 PMCID: PMC10872330 DOI: 10.1016/j.exer.2023.109741] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
A variety of techniques exist to investigate retinal and choroidal vascular changes in experimental mouse models of human ocular diseases. While all have specific advantages, a method for evaluating the choroidal vasculature in pigmented mouse eyes has been more challenging especially for whole mount visualization and morphometric analysis. Here we report a simple, reliable technique involving bleaching pigment prior to immunostaining the vasculature in whole mounts of pigmented mouse choroids. Eyes from healthy adult pigmented C57BL/6J mice were used to establish the methodology. The retina and anterior segment were separated from the choroid. The choroid with retinal pigment epithelial cells (RPE) and sclera was soaked in 1% ethylenediaminetetraacetic acid (EDTA) to remove the RPE. Tissues were fixed in 2% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Choroids were subjected to melanin bleaching with 10% hydrogen peroxide (H2O2) at 55 °C for 90 min, washed in PBS and then immunostained with anti-podocalyxin antibody to label vascular endothelium followed by Cy3-AffiniPure donkey anti-goat IgG at 4 °C overnight. Images of immunostained bleached choroids were captured using a Zeiss 710 confocal microscope. In addition to control eyes, this method was used to analyze the choroids from subretinal sodium iodate (NaIO3) RPE atrophy and laser-induced choroidal neovascularization (CNV) mouse models. The H2O2 pretreatment effectively bleached the melanin, resulting in a transparent choroid. Immunolabeling with podocalyxin antibody following bleaching provided excellent visualization of choroidal vasculature in the flat perspective. In control choroids, the choriocapillaris (CC) displayed different anatomical patterns in peripapillary (PP), mid peripheral (MP) and far peripheral (FP) choroid. Morphometric analysis of the vascular area (VA) revealed that the CC was most dense in the PP region (87.4 ± 4.3% VA) and least dense in FP (79.9 ± 6.7% VA). CC diameters also varied depending on location from 11.4 ± 1.97 mm in PP to 15.1 ± 3.15 mm in FP. In the NaIO3-injected eyes, CC density was significantly reduced in the RPE atrophic regions (50.7 ± 5.8% VA in PP and 45.8 ± 6.17% VA in MP) compared to the far peripheral non-atrophic regions (82.8 ± 3.8% VA). CC diameters were significantly reduced in atrophic regions (6.35 ± 1.02 mm in PP and 6.5 ± 1.2 mm in MP) compared to non-atrophic regions (14.16 ± 2.12 mm). In the laser-induced CNV model, CNV area was 0.26 ± 0.09 mm2 and luminal diameters of CNV vessels were 4.7 ± 0.9 mm. Immunostaining on bleached choroids with anti-podocalyxin antibody provides a simple and reliable tool for visualizing normal and pathologic choroidal vasculature in pigmented mouse eyes for quantitative morphometric analysis. This method will be beneficial for examining and evaluating the effects of various treatment modalities on the choroidal vasculature in mouse models of ocular diseases such as age-related macular degeneration, and degenerative genetic diseases.
Collapse
Affiliation(s)
- Imran A Bhutto
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Scott McLeod
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin R Thomson
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg SOM, Chicago, IL, USA
| | - Gerard A Lutty
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malia M Edwards
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Radu P, Zurzu M, Paic V, Bratucu M, Garofil D, Tigora A, Georgescu V, Prunoiu V, Pasnicu C, Popa F, Surlin P, Surlin V, Strambu V. CD34-Structure, Functions and Relationship with Cancer Stem Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:938. [PMID: 37241170 PMCID: PMC10220851 DOI: 10.3390/medicina59050938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The CD34 protein was identified almost four decades ago as a biomarker for hematopoietic stem cell progenitors. CD34 expression of these stem cells has been exploited for therapeutic purposes in various hematological disorders. In the last few decades, studies have revealed the presence of CD34 expression on other types of cells with non-hematopoietic origins, such as interstitial cells, endothelial cells, fibrocytes, and muscle satellite cells. Furthermore, CD34 expression may also be found on a variety of cancer stem cells. Nowadays, the molecular functions of this protein have been involved in a variety of cellular functions, such as enhancing proliferation and blocking cell differentiation, enhanced lymphocyte adhesion, and cell morphogenesis. Although a complete understanding of this transmembrane protein, including its developmental origins, its stem cell connections, and other functions, is yet to be achieved. In this paper, we aimed to carry out a systematic analysis of the structure, functions, and relationship with cancer stem cells of CD34 based on the literature overview.
Collapse
Affiliation(s)
- Petru Radu
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Mihai Zurzu
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Vlad Paic
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Mircea Bratucu
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Dragos Garofil
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Anca Tigora
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
| | - Valentin Georgescu
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
| | - Virgiliu Prunoiu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
- Oncological Institute “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Costin Pasnicu
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Florian Popa
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Petra Surlin
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Valeriu Surlin
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania
| | - Victor Strambu
- General Surgery Department, Carol Davila Nephrology Hospital Bucharest, 020021 Bucharest, Romania
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
5
|
Rix B, Maduro AH, Bridge KS, Grey W. Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front Physiol 2022; 13:1009160. [PMID: 36246104 PMCID: PMC9564379 DOI: 10.3389/fphys.2022.1009160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The haematopoietic system is a classical stem cell hierarchy that maintains all the blood cells in the body. Haematopoietic stem cells (HSCs) are rare, highly potent cells that reside at the apex of this hierarchy and are historically some of the most well studied stem cells in humans and laboratory models, with haematopoiesis being the original system to define functional cell types by cell surface markers. Whilst it is possible to isolate HSCs to near purity, we know very little about the functional activity of markers to purify HSCs. This review will focus on the historical efforts to purify HSCs in humans based on cell surface markers, their putative functions and recent advances in finding functional markers on HSCs.
Collapse
Affiliation(s)
| | | | | | - William Grey
- *Correspondence: Katherine S. Bridge, ; William Grey,
| |
Collapse
|
6
|
Baeriswyl T, Schaettin M, Leoni S, Dumoulin A, Stoeckli ET. Endoglycan Regulates Purkinje Cell Migration by Balancing Cell-Cell Adhesion. Front Neurosci 2022; 16:894962. [PMID: 35794952 PMCID: PMC9251411 DOI: 10.3389/fnins.2022.894962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The importance of cell adhesion molecules for the development of the nervous system has been recognized many decades ago. Functional in vitro and in vivo studies demonstrated a role of cell adhesion molecules in cell migration, axon growth and guidance, as well as synaptogenesis. Clearly, cell adhesion molecules have to be more than static glue making cells stick together. During axon guidance, cell adhesion molecules have been shown to act as pathway selectors but also as a means to prevent axons going astray by bundling or fasciculating axons. We identified Endoglycan as a negative regulator of cell-cell adhesion during commissural axon guidance across the midline. The presence of Endoglycan allowed commissural growth cones to smoothly navigate the floor-plate area. In the absence of Endoglycan, axons failed to exit the floor plate and turn rostrally. These observations are in line with the idea of Endoglycan acting as a lubricant, as its presence was important, but it did not matter whether Endoglycan was provided by the growth cone or the floor-plate cells. Here, we expand on these observations by demonstrating a role of Endoglycan during cell migration. In the developing cerebellum, Endoglycan was expressed by Purkinje cells during their migration from the ventricular zone to the periphery. In the absence of Endoglycan, Purkinje cells failed to migrate and, as a consequence, cerebellar morphology was strongly affected. Cerebellar folds failed to form and grow, consistent with earlier observations on a role of Purkinje cells as Shh deliverers to trigger granule cell proliferation.
Collapse
|
7
|
Ballermann BJ, Nyström J, Haraldsson B. The Glomerular Endothelium Restricts Albumin Filtration. Front Med (Lausanne) 2021; 8:766689. [PMID: 34912827 PMCID: PMC8667033 DOI: 10.3389/fmed.2021.766689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Inflammatory activation and/or dysfunction of the glomerular endothelium triggers proteinuria in many systemic and localized vascular disorders. Among them are the thrombotic microangiopathies, many forms of glomerulonephritis, and acute inflammatory episodes like sepsis and COVID-19 illness. Another example is the chronic endothelial dysfunction that develops in cardiovascular disease and in metabolic disorders like diabetes. While the glomerular endothelium is a porous sieve that filters prodigious amounts of water and small solutes, it also bars the bulk of albumin and large plasma proteins from passing into the glomerular filtrate. This endothelial barrier function is ascribed predominantly to the endothelial glycocalyx with its endothelial surface layer, that together form a relatively thick, mucinous coat composed of glycosaminoglycans, proteoglycans, glycolipids, sialomucins and other glycoproteins, as well as secreted and circulating proteins. The glycocalyx/endothelial surface layer not only covers the glomerular endothelium; it extends into the endothelial fenestrae. Some glycocalyx components span or are attached to the apical endothelial cell plasma membrane and form the formal glycocalyx. Other components, including small proteoglycans and circulating proteins like albumin and orosomucoid, form the endothelial surface layer and are bound to the glycocalyx due to weak intermolecular interactions. Indeed, bound plasma albumin is a major constituent of the endothelial surface layer and contributes to its barrier function. A role for glomerular endothelial cells in the barrier of the glomerular capillary wall to protein filtration has been demonstrated by many elegant studies. However, it can only be fully understood in the context of other components, including the glomerular basement membrane, the podocytes and reabsorption of proteins by tubule epithelial cells. Discovery of the precise mechanisms that lead to glycocalyx/endothelial surface layer disruption within glomerular capillaries will hopefully lead to pharmacological interventions that specifically target this important structure.
Collapse
Affiliation(s)
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Börje Haraldsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Hsia HE, Tüshaus J, Feng X, Hofmann LI, Wefers B, Marciano DK, Wurst W, Lichtenthaler SF. Endoglycan (PODXL2) is proteolytically processed by ADAM10 (a disintegrin and metalloprotease 10) and controls neurite branching in primary neurons. FASEB J 2021; 35:e21813. [PMID: 34390512 DOI: 10.1096/fj.202100475r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023]
Abstract
Cell adhesion is tightly controlled in multicellular organisms, for example, through proteolytic ectodomain shedding of the adhesion-mediating cell surface transmembrane proteins. In the brain, shedding of cell adhesion proteins is required for nervous system development and function, but the shedding of only a few adhesion proteins has been studied in detail in the mammalian brain. One such adhesion protein is the transmembrane protein endoglycan (PODXL2), which belongs to the CD34-family of highly glycosylated sialomucins. Here, we demonstrate that endoglycan is broadly expressed in the developing mouse brains and is proteolytically shed in vitro in mouse neurons and in vivo in mouse brains. Endoglycan shedding in primary neurons was mediated by the transmembrane protease a disintegrin and metalloprotease 10 (ADAM10), but not by its homolog ADAM17. Functionally, endoglycan deficiency reduced the branching of neurites extending from primary neurons in vitro, whereas deletion of ADAM10 had the opposite effect and increased neurite branching. Taken together, our study discovers a function for endoglycan in neurite branching, establishes endoglycan as an ADAM10 substrate and suggests that ADAM10 cleavage of endoglycan may contribute to neurite branching.
Collapse
Affiliation(s)
- Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Xiao Feng
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Laura I Hofmann
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg/Munich, Germany
| | - Denise K Marciano
- Departments of Cell Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg/Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Technical University of Munich-Weihenstephan, Neuherberg/Munich, Neuherberg, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
9
|
Soejima Y, Takeuchi M, Miyamoto N, Sawabe M, Fukusato T. ITGB6-Knockout Suppresses Cholangiocarcinoma Cell Migration and Invasion with Declining PODXL2 Expression. Int J Mol Sci 2021; 22:ijms22126303. [PMID: 34208313 PMCID: PMC8231266 DOI: 10.3390/ijms22126303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a heterogeneous bile duct cancer with a poor prognosis. Integrin αvβ6 (β6) has been shown to be upregulated in iCCA and is associated with its subclassification and clinicopathological features. In the present study, two ITGB6-knockout HuCCT1 CCA cell lines (ITGB6-ko cells) were established using the clustered regulatory interspaced short palindromic repeats (CRISPR), an associated nuclease 9 (Cas9) system, and single-cell cloning. RNA sequencing analysis, real-time polymerase chain reaction (PCR), and immunofluorescent methods were applied to explore possible downstream factors. ITGB6-ko cells showed significantly decreased expression of integrin β6 on flow cytometric analysis. Both cell lines exhibited significant inhibition of cell migration and invasion, decreased wound-healing capability, decreased colony formation ability, and cell cycle dysregulation. RNA sequencing and real-time PCR analysis revealed a remarkable decrease in podocalyxin-like protein 2 (PODXL2) expression in ITGB6-ko cells. Colocalization of PODXL2 and integrin β6 was also observed. S100 calcium-binding protein P and mucin 1, which are associated with CCA subclassification, were downregulated in ITGB6-ko cells. These results describe the successful generation of ITGB6-ko CCA cell clones with decreased migration and invasion and downregulation of PODXL2, suggesting the utility of integrin β6 as a possible therapeutic target or diagnostic marker candidate.
Collapse
Affiliation(s)
- Yurie Soejima
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.T.); (N.M.); (M.S.)
- Correspondence: ; Tel.: +81-3-5803-5375
| | - Miho Takeuchi
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.T.); (N.M.); (M.S.)
| | - Nao Miyamoto
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.T.); (N.M.); (M.S.)
| | - Motoji Sawabe
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.T.); (N.M.); (M.S.)
| | - Toshio Fukusato
- General Medical Education and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 178-8605, Japan;
| |
Collapse
|
10
|
Zwicky SN, Stroka D, Zindel J. Sterile Injury Repair and Adhesion Formation at Serosal Surfaces. Front Immunol 2021; 12:684967. [PMID: 34054877 PMCID: PMC8160448 DOI: 10.3389/fimmu.2021.684967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Most multicellular organisms have a major body cavity containing vital organs. This cavity is lined by a mucosa-like serosal surface and filled with serous fluid which suspends many immune cells. Injuries affecting the major body cavity are potentially life-threatening. Here we summarize evidence that unique damage detection and repair mechanisms have evolved to ensure immediate and swift repair of injuries at serosal surfaces. Furthermore, thousands of patients undergo surgery within the abdominal and thoracic cavities each day. While these surgeries are potentially lifesaving, some patients will suffer complications due to inappropriate scar formation when wound healing at serosal surfaces defects. These scars called adhesions cause profound challenges for health care systems and patients. Therefore, reviewing the mechanisms of wound repair at serosal surfaces is of clinical importance. Serosal surfaces will be introduced with a short embryological and microanatomical perspective followed by a discussion of the mechanisms of damage recognition and initiation of sterile inflammation at serosal surfaces. Distinct immune cells populations are free floating within the coelomic (peritoneal) cavity and contribute towards damage recognition and initiation of wound repair. We will highlight the emerging role of resident cavity GATA6+ macrophages in repairing serosal injuries and compare serosal (mesothelial) injuries with injuries to the blood vessel walls. This allows to draw some parallels such as the critical role of the mesothelium in regulating fibrin deposition and how peritoneal macrophages can aggregate in a platelet-like fashion in response to sterile injury. Then, we discuss how serosal wound healing can go wrong, causing adhesions. The current pathogenetic understanding of and potential future therapeutic avenues against adhesions are discussed.
Collapse
Affiliation(s)
- Simone N Zwicky
- Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Joel Zindel
- Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Dabbagh D, He S, Hetrick B, Chilin L, Andalibi A, Wu Y. Identification of the SHREK Family of Proteins as Broad-Spectrum Host Antiviral Factors. Viruses 2021; 13:832. [PMID: 34064525 PMCID: PMC8147968 DOI: 10.3390/v13050832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Mucins and mucin-like molecules are highly glycosylated, high-molecular-weight cell surface proteins that possess a semi-rigid and highly extended extracellular domain. P-selectin glycoprotein ligand-1 (PSGL-1), a mucin-like glycoprotein, has recently been found to restrict HIV-1 infectivity through virion incorporation that sterically hinders virus particle attachment to target cells. Here, we report the identification of a family of antiviral cellular proteins, named the Surface-Hinged, Rigidly-Extended Killer (SHREK) family of virion inactivators (PSGL-1, CD43, TIM-1, CD34, PODXL1, PODXL2, CD164, MUC1, MUC4, and TMEM123) that share similar structural characteristics with PSGL-1. We demonstrate that SHREK proteins block HIV-1 infectivity by inhibiting virus particle attachment to target cells. In addition, we demonstrate that SHREK proteins are broad-spectrum host antiviral factors that block the infection of diverse viruses such as influenza A. Furthermore, we demonstrate that a subset of SHREKs also blocks the infectivity of a hybrid alphavirus-SARS-CoV-2 (Ha-CoV-2) pseudovirus. These results suggest that SHREK proteins may be a part of host innate immunity against enveloped viruses.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.D.); (S.H.); (B.H.); (L.C.); (A.A.)
| |
Collapse
|
12
|
Nagai Y, Nakao H, Kojima A, Komatsubara Y, Ohta Y, Kawasaki N, Kawasaki N, Toyoda H, Kawasaki T. Glycan Epitopes on 201B7 Human-Induced Pluripotent Stem Cells Using R-10G and R-17F Marker Antibodies. Biomolecules 2021; 11:508. [PMID: 33805466 PMCID: PMC8065539 DOI: 10.3390/biom11040508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
We developed two human-induced pluripotent stem cell (hiPSC)/human embryonic stem cell (hESC)-specific glycan-recognizing mouse antibodies, R-10G and R-17F, using the Tic (JCRB1331) hiPSC line as an antigen. R-10G recognizes a low-sulfate keratan sulfate, and R-17F recognizes lacto-N-fucopentaose-1. To evaluate the general characteristics of stem cell glycans, we investigated the hiPSC line 201B7 (HPS0063), a prototype iPSC line. Using an R-10G affinity column, an R-10G-binding protein was isolated from 201B7 cells. The protein yielded a single but very broad band from 480 to 1236 kDa by blue native gel electrophoresis. After trypsin digestion, the protein was identified as podocalyxin by liquid chromatography/mass spectrometry. According to Western blotting, the protein reacted with R-10G and R-17F. The R-10G-positive band was resistant to digestion with glycan-degrading enzymes, including peptide N-glycanase, but the intensity of the band was decreased significantly by digestion with keratanase, keratanase II, and endo-β-galactosidase, suggesting the R-10G epitope to be a keratan sulfate. These results suggest that keratan sulfate-type epitopes are shared by hiPSCs. However, the keratan sulfate from 201B7 cells contained a polylactosamine disaccharide unit (Galβ1-4GlcNAc) at a significant frequency, whereas that from Tic cells consisted mostly of keratan sulfate disaccharide units (Galβ1-4GlcNAc(6S)). In addition, the abundance of the R-10G epitope was significantly lower in 201B7 cells than in Tic cells.
Collapse
Affiliation(s)
- Yuko Nagai
- Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan; (Y.N.); (A.K.); (Y.K.); (H.T.)
| | - Hiromi Nakao
- Glycobiotechnology Laboratory, Ritsumeikan University, Shiga 525-8577, Japan; (H.N.); (N.K.)
| | - Aya Kojima
- Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan; (Y.N.); (A.K.); (Y.K.); (H.T.)
| | - Yuka Komatsubara
- Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan; (Y.N.); (A.K.); (Y.K.); (H.T.)
| | - Yuki Ohta
- Department of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan; (Y.O.); (N.K.)
| | - Nana Kawasaki
- Department of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan; (Y.O.); (N.K.)
| | - Nobuko Kawasaki
- Glycobiotechnology Laboratory, Ritsumeikan University, Shiga 525-8577, Japan; (H.N.); (N.K.)
| | - Hidenao Toyoda
- Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan; (Y.N.); (A.K.); (Y.K.); (H.T.)
| | - Toshisuke Kawasaki
- Glycobiotechnology Laboratory, Ritsumeikan University, Shiga 525-8577, Japan; (H.N.); (N.K.)
| |
Collapse
|
13
|
Baeriswyl T, Dumoulin A, Schaettin M, Tsapara G, Niederkofler V, Helbling D, Avilés E, Frei JA, Wilson NH, Gesemann M, Kunz B, Stoeckli ET. Endoglycan plays a role in axon guidance by modulating cell adhesion. eLife 2021; 10:64767. [PMID: 33650489 PMCID: PMC7946425 DOI: 10.7554/elife.64767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/25/2021] [Indexed: 01/27/2023] Open
Abstract
Axon navigation depends on the interactions between guidance molecules along the trajectory and specific receptors on the growth cone. However, our in vitro and in vivo studies on the role of Endoglycan demonstrate that in addition to specific guidance cue – receptor interactions, axon guidance depends on fine-tuning of cell-cell adhesion. Endoglycan, a sialomucin, plays a role in axon guidance in the central nervous system of chicken embryos, but it is neither an axon guidance cue nor a receptor. Rather, Endoglycan acts as a negative regulator of molecular interactions based on evidence from in vitro experiments demonstrating reduced adhesion of growth cones. In the absence of Endoglycan, commissural axons fail to properly navigate the midline of the spinal cord. Taken together, our in vivo and in vitro results support the hypothesis that Endoglycan acts as a negative regulator of cell-cell adhesion in commissural axon guidance.
Collapse
Affiliation(s)
- Thomas Baeriswyl
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Alexandre Dumoulin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Martina Schaettin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Georgia Tsapara
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Vera Niederkofler
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Denise Helbling
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Evelyn Avilés
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Jeannine A Frei
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Nicole H Wilson
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Gesemann
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Beat Kunz
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Esther T Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Dabbagh D, He S, Hetrick B, Chilin L, Andalibi A, Wu Y. Identification of the SHREK family of proteins as broad-spectrum host antiviral factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33564770 DOI: 10.1101/2021.02.02.429469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mucins and mucin-like molecules are highly glycosylated, high-molecular-weight cell surface proteins that possess a semi-rigid and highly extended extracellular domain. P-selectin glycoprotein ligand-1 (PSGL-1), a mucin-like glycoprotein, has recently been found to restrict HIV-1 infectivity through virion incorporation that sterically hinders virus particle attachment to target cells. Here, we report the identification of a family of antiviral cellular proteins, named the Surface-Hinged, Rigidly-Extended Killer (SHREK) family of virion inactivators (PSGL-1, CD43, TIM-1, CD34, PODXL1, PODXL2, CD164, MUC1, MUC4, and TMEM123), that share similar structural characteristics with PSGL-1. We demonstrate that SHREK proteins block HIV-1 infectivity by inhibiting virus particle attachment to target cells. In addition, we demonstrate that SHREK proteins are broad-spectrum host antiviral factors that block the infection of diverse viruses such as influenza A. Furthermore, we demonstrate that a subset of SHREKs also blocks the infectivity of a hybrid alphavirus-SARS-CoV-2 virus-like particle. These results suggest that SHREK proteins may be a part of host innate immunity against enveloped viruses.
Collapse
|
15
|
Canals Hernaez D, Hughes MR, Dean P, Bergqvist P, Samudio I, Blixt O, Wiedemeyer K, Li Y, Bond C, Cruz E, Köbel M, Gilks B, Roskelley CD, McNagny KM. PODO447: a novel antibody to a tumor-restricted epitope on the cancer antigen podocalyxin. J Immunother Cancer 2020; 8:jitc-2020-001128. [PMID: 33243933 PMCID: PMC7692987 DOI: 10.1136/jitc-2020-001128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background The success of new targeted cancer therapies has been dependent on the identification of tumor-specific antigens. Podocalyxin (Podxl) is upregulated on tumors with high metastatic index and its presence is associated with poor outcome, thus emerging as an important prognostic and theragnostic marker in several human cancers. Moreover, in human tumor xenograft models, Podxl expression promotes tumor growth and metastasis. Although a promising target for immunotherapy, the expression of Podxl on normal vascular endothelia and kidney podocytes could hamper efforts to therapeutically target this molecule. Since pathways regulating post-translational modifications are frequently perturbed in cancer cells, we sought to produce novel anti-Podxl antibodies (Abs) that selectively recognize tumor-restricted glycoepitopes on the extracellular mucin domain of Podxl. Methods Splenic B cells were isolated from rabbits immunized with a Podxl-expressing human tumor cell line. Abs from these B cells were screened for potent reactivity to Podxl+ neoplastic cell lines but not Podxl+ primary endothelial cells. Transcripts encoding heavy and light chain variable regions from promising B cells were cloned and expressed as recombinant proteins. Tumor specificity was assessed using primary normal tissue and an ovarian cancer tissue microarray (TMA). Mapping of the tumor-restricted epitope was performed using enzyme-treated human tumor cell lines and a glycan array. Results One mAb (PODO447) showed strong reactivity with a variety of Podxl+ tumor cell lines but not with normal primary human tissue including Podxl+ kidney podocytes and most vascular endothelia. Screening of an ovarian carcinoma TMA (219 cases) revealed PODO447 reactivity with the majority of tumors, including 65% of the high-grade serous histotype. Subsequent biochemical analyses determined that PODO447 reacts with a highly unusual terminal N-acetylgalactosamine beta-1 (GalNAcβ1) motif predominantly found on the Podxl protein core. Finally, Ab–drug conjugates showed specific efficacy in killing tumor cells in vitro. Conclusions We have generated a novel and exquisitely tumor-restricted mAb, PODO447, that recognizes a glycoepitope on Podxl expressed at high levels by a variety of tumors including the majority of life-threatening high-grade serous ovarian tumors. Thus, tumor-restricted PODO447 exhibits the appropriate specificity for further development as a targeted immunotherapy.
Collapse
Affiliation(s)
- Diana Canals Hernaez
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Hughes
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Pamela Dean
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Bergqvist
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Ismael Samudio
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Ola Blixt
- Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine (ICMM), University of Copenhagen, Kobenhavn, Denmark
| | - Katharina Wiedemeyer
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yicong Li
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Bond
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Eric Cruz
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Blake Gilks
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre and School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Hughes MR, Canals Hernaez D, Cait J, Refaeli I, Lo BC, Roskelley CD, McNagny KM. A sticky wicket: Defining molecular functions for CD34 in hematopoietic cells. Exp Hematol 2020; 86:1-14. [PMID: 32422232 DOI: 10.1016/j.exphem.2020.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
The CD34 cell surface antigen is widely expressed in tissues on cells with progenitor-like properties and on mature vascular endothelia. In adult human bone marrow, CD34 marks hematopoietic stem and progenitor cells (HSPCs) starting from the bulk of hematopoietic stem cells with long-term repopulating potential (LT-HSCs) throughout expansion and differentiation of oligopotent and unipotent progenitors. CD34 protein surface expression is typically lost as cells mature into terminal effectors. Because of this expression pattern of HSPCs, CD34 has had a central role in the evaluation or selection of donor graft tissue in HSC transplant (HSCT). Given its clinical importance, it is surprising that the biological functions of CD34 are still poorly understood. This enigma is due, in part, to CD34's context-specific role as both a pro-adhesive and anti-adhesive molecule and its potential functional redundancy with other sialomucins. Moreover, there are also critical differences in the regulation of CD34 expression on HSPCs in humans and experimental mice. In this review, we highlight some of the more well-defined functions of CD34 in HSPCs with a focus on proposed functions most relevant to HSCT biology.
Collapse
Affiliation(s)
- Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Diana Canals Hernaez
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jessica Cait
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Ido Refaeli
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Bernard C Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Calvin D Roskelley
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Al-Katib AM, Ebrahim AS, Kandouz M, Zaiem F, Raufi A, Ebrahim S, Mohamed A, Emara N, Gabali AM. Isolation and characterization of a CD34 + sub-clone in B-cell lymphoma. Oncotarget 2020; 11:148-160. [PMID: 32010428 PMCID: PMC6968783 DOI: 10.18632/oncotarget.27415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Non-Hodgkin's lymphoma (NHL) is the most common hematological malignancy in the US. Many types remain incurable despite response to initial therapy and achievement of complete remission (CR). Advanced laboratory techniques like multicolor flow cytometry (FCM) and polymerase chain reaction (PCR) have demonstrated persistence of rare malignant cell population post therapy. However, the functional and biological characteristics of this population have not been elucidated. Established B-lymphoma cell lines (B-NHL) and patient-derived samples (PDS) were analyzed using 8-color FCM. CD34+ sub-population was enriched using in vitro exposure to 2-chlorodeoxyadenosine (2-CdA) and by CD34 magnetic beads. Genetic analysis of cell fractions was done by karyotyping and array comparative genomic hybridization (aCGH). Sensitivity to chemotherapy was assayed by short-term in vitro exposure to chemotherapy. Clonogenicity was determined by soft agar colony formation assay, and proliferation was determined using DNA staining with propidium iodide and FCM. FCM demonstrated the presence of a minute sub-clone of monotypic B-cells that express CD34 in B-NHL cell lines (3 of 3) and in PDS (8 of 8). This sub-population enriched up to 50 fold in vitro by exposure to 2-CdA and up to 80% purity by CD34 magnetic bead column isolation. Except for CD34 expression, this population expressed identical phenotype and genotype to parent cells, but was more proliferative, Hoechst 33342-positive, clonogenic, and resistant to chemotherapy compared with the CD34- population. The isolated CD34+ monotypic B-cells may contribute to resistance of certain NHL to treatment and should be targeted by potential new drugs for NHL.
Collapse
Affiliation(s)
- Ayad M. Al-Katib
- Lymphoma Research Laboratory, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Abdul Shukkur Ebrahim
- Lymphoma Research Laboratory, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Feras Zaiem
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ali Raufi
- Lymphoma Research Laboratory, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Salah Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anwar Mohamed
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nada Emara
- Lymphoma Research Laboratory, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ali M. Gabali
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
18
|
Mehta AY, Heimburg-Molinaro J, Cummings RD, Goth CK. Emerging patterns of tyrosine sulfation and O-glycosylation cross-talk and co-localization. Curr Opin Struct Biol 2020; 62:102-111. [PMID: 31927217 DOI: 10.1016/j.sbi.2019.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
19
|
Lin YY, Wang CY, Phan NN, Chiao CC, Li CY, Sun Z, Hung JH, Chen YL, Yen MC, Weng TY, Hsu HP, Lai MD. PODXL2 maintains cellular stemness and promotes breast cancer development through the Rac1/Akt pathway. Int J Med Sci 2020; 17:1639-1651. [PMID: 32669966 PMCID: PMC7359396 DOI: 10.7150/ijms.46125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
The cluster of differentiation 34 (CD34) family, which includes CD34, podocalyxin-like protein 1 (PODXL), and PODXL2, are type-I transmembrane sialomucins and markers of hematopoietic stem cells (HSCs) and vascular-associated tissues. CD34 family proteins are expressed by endothelial cells and hematopoietic precursors. PODXL is well known to be associated with invadopodia formation and to promote the epithelial-mesenchymal transition, tumor migration and invasion. PODXL expression was correlated with poor survival of cancer patients. However, the role of PODXL2 in cancer has been less fully explored. To reveal the novel role of PODXL2 in breast cancer, the present study evaluated PODXL2 levels in relation to clinical outcomes of cancer patients by performing a bioinformatics analysis using the Oncomine database, Kaplan-Meier plots, and the CCLE database. Empirical validation of bioinformatics predictions was conducted utilizing the short hairpin (sh)-RNA silencing method for PODXL2 in the BT474 invasive ductal breast carcinoma cell line. The bioinformatics analysis revealed that PODXL2 overexpression was correlated with poor survival of breast cancer patients, suggesting an oncogenic role of PODXL2 in breast carcinoma. In a validation experiment, knockdown of PODXL2 in BT474 cells slightly influenced cell proliferation, suppressed migration, and inhibited expressions of downstream molecules, including Ras-related C3 botulinum toxin substrate 1 (Rac1), phosphorylated (p)-Akt (S473), and p-paxillin (Y31) proteins. In addition, knockdown of PODXL2 reduced expression levels of cancer stem cell (CSC) markers, including Oct-4 and Nanog, and the breast CSC marker aldehyde dehydrogenase 1 (ALDH1). Collectively, our present study demonstrated that PODXL2 plays a crucial role in cancer development and could serve as a potential prognostic biomarker in breast cancer patients.
Collapse
Affiliation(s)
- Yi-Yi Lin
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chung-Yen Li
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zhengda Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
20
|
Trimarchi H, Canzonieri R, Costales-Collaguazo C, Politei J, Stern A, Paulero M, González-Hoyos I, Schiel A, Rengel T, Forrester M, Lombi F, Pomeranz V, Iriarte R, Muryan A, Zotta E. Early decrease in the podocalyxin to synaptopodin ratio in urinary Fabry podocytes. Clin Kidney J 2018; 12:53-60. [PMID: 30747154 PMCID: PMC6366138 DOI: 10.1093/ckj/sfy053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background In Fabry nephropathy, podocyturia is an early event that may lead to glomerulosclerosis and chronic kidney disease. The glycocalyx is a potential podocyte damaged compartment in glomerulopathies. We investigated glycocalyx podocalyxin in urinary detached podocytes compared with cytoplasmic synaptopodin. Methods This was a cross-sectional study including 68 individuals: Controls (n = 20) and Fabry patients (n = 48), 15 untreated and 33 treated. Variables included age, gender, urinary protein/creatinine ratio (UPCR), estimated glomerular filtration rate (eGFR), lyso-triasocylsphingosine (lyso-Gb3) levels and enzyme replacement therapy (ERT). Podocyturia was assessed by immunofluorescence and podocyte subpopulations were analyzed. Results Fabry patients displayed higher podocyturia than controls. Fabry treated subjects (n = 33) presented significantly higher UPCR compared with untreated ones (n = 15); podocyturia, eGFR and lyso-Gb3 levels were not different. All control podocytes colocalized synaptopodin and podocalyxin; 13 Fabry patients (27%) colocalized these proteins, while 35 (73%) were only synaptopodin positive. No podocalyxin-positive/synaptopodin-negative cells were encountered. In Fabry patients, podocyturia was significantly higher and proteinuria lower in those that colocalized. Conclusion Fabry patients present higher podocyturia and a presumably more damaged glycocalyx assessed by podocalyxin. Treated patients had significant higher proteinuria suggesting ERT is initiated late, at advanced stages. The degree of podocalyxin-negative podocytes was similar in both groups, but colocalization was associated with lower proteinuria. Podocyturia assessed by podocalyxin alone may be underestimated. The implications of podocyte glycocalyx damage deserve further investigations.
Collapse
Affiliation(s)
- Hernán Trimarchi
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Romina Canzonieri
- Central Laboratory, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Cristian Costales-Collaguazo
- IFIBIO Houssay, CONICET, Physiopathology, Pharmacy and Biochemistry Faculty, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Politei
- Neurology Department, Laboratorio Neuroquímica Dr Néstor Chamoles Buenos Aires, Buenos Aires, Argentina
| | - Anibal Stern
- Central Laboratory, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Matias Paulero
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Ivan González-Hoyos
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Amalia Schiel
- Central Laboratory, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Tatiana Rengel
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Forrester
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Lombi
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Vanesa Pomeranz
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Romina Iriarte
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Alexis Muryan
- Central Laboratory, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Elsa Zotta
- IFIBIO Houssay, CONICET, Physiopathology, Pharmacy and Biochemistry Faculty, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Caterson B, Melrose J. Keratan sulfate, a complex glycosaminoglycan with unique functional capability. Glycobiology 2018; 28:182-206. [PMID: 29340594 PMCID: PMC5993099 DOI: 10.1093/glycob/cwy003] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/19/2022] Open
Abstract
From an evolutionary perspective keratan sulfate (KS) is the newest glycosaminoglycan (GAG) but the least understood. KS is a sophisticated molecule with a diverse structure, and unique functional roles continue to be uncovered for this GAG. The cornea is the richest tissue source of KS in the human body but the central and peripheral nervous systems also contain significant levels of KS and a diverse range of KS-proteoglycans with essential functional roles. KS also displays important cell regulatory properties in epithelial and mesenchymal tissues and in bone and in tumor development of diagnostic and prognostic utility. Corneal KS-I displays variable degrees of sulfation along the KS chain ranging from non-sulfated polylactosamine, mono-sulfated and disulfated disaccharide regions. Skeletal KS-II is almost completely sulfated consisting of disulfated disaccharides interrupted by occasional mono-sulfated N-acetyllactosamine residues. KS-III also contains highly sulfated KS disaccharides but differs from KS-I and KS-II through 2-O-mannose linkage to serine or threonine core protein residues on proteoglycans such as phosphacan and abakan in brain tissue. Historically, the major emphasis on the biology of KS has focused on its sulfated regions for good reason. The sulfation motifs on KS convey important molecular recognition information and direct cell behavior through a number of interactive proteins. Emerging evidence also suggest functional roles for the poly-N-acetyllactosamine regions of KS requiring further investigation. Thus further research is warranted to better understand the complexities of KS.
Collapse
Affiliation(s)
- Bruce Caterson
- Connective Tissue Biology Laboratories, School of Biosciences, College of Biological & Life Sciences, Cardiff University, Cardiff, Wales, UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Biodiversity of CS–proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem J 2018; 475:587-620. [DOI: 10.1042/bcj20170820] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/19/2022]
Abstract
Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.
Collapse
|
23
|
Batra H, Antony VB. Pleural mesothelial cells in pleural and lung diseases. J Thorac Dis 2015; 7:964-80. [PMID: 26150910 DOI: 10.3978/j.issn.2072-1439.2015.02.19] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
During development, the mesoderm maintains a complex relationship with the developing endoderm giving rise to the mature lung. Pleural mesothelial cells (PMCs) derived from the mesoderm play a key role during the development of the lung. The pleural mesothelium differentiates to give rise to the endothelium and smooth muscle cells via epithelial-to-mesenchymal transition (EMT). An aberrant recapitulation of such developmental pathways can play an important role in the pathogenesis of disease processes such as idiopathic pulmonary fibrosis (IPF). The PMC is the central component of the immune responses of the pleura. When exposed to noxious stimuli, it demonstrates innate immune responses such as Toll-like receptor (TLR) recognition of pathogen associated molecular patterns as well as causes the release of several cytokines to activate adaptive immune responses. Development of pleural effusions occurs due to an imbalance in the dynamic interaction between junctional proteins, n-cadherin and β-catenin, and phosphorylation of adherens junctions between PMCs, which is caused in part by vascular endothelial growth factor (VEGF) released by PMCs. PMCs play an important role in defense mechanisms against bacterial and mycobacterial pleural infections, and in pathogenesis of malignant pleural effusion, asbestos related pleural disease and malignant pleural mesothelioma. PMCs also play a key role in the resolution of inflammation, which can occur with or without fibrosis. Fibrosis occurs as a result of disordered fibrin turnover and due to the effects of cytokines such as transforming growth factor-β, platelet-derived growth factor (PDGF), and basic fibroblast growth factor; which are released by PMCs. Recent studies have demonstrated a role for PMCs in the pathogenesis of IPF suggesting their potential as a cellular biomarker of disease activity and as a possible therapeutic target. Pleural-based therapies targeting PMCs for treatment of IPF and other lung diseases need further exploration.
Collapse
Affiliation(s)
- Hitesh Batra
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
24
|
Lin CW, Sun MS, Liao MY, Chung CH, Chi YH, Chiou LT, Yu J, Lou KL, Wu HC. Podocalyxin-like 1 promotes invadopodia formation and metastasis through activation of Rac1/Cdc42/cortactin signaling in breast cancer cells. Carcinogenesis 2014; 35:2425-35. [PMID: 24970760 DOI: 10.1093/carcin/bgu139] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metastatic disease is the leading cause of cancer mortality. Identifying biomarkers and regulatory mechanisms is important toward developing diagnostic and therapeutic tools against metastatic cancer. In this study, we demonstrated that podocalyxin-like 1 (PODXL) is overexpressed in breast tumor cells and increased in lymph node metastatic cancer. Mechanistically, we found that the expression of PODXL was associated with cell motility and invasiveness. Suppression of PODXL in MDA-MB-231 cells reduced lamellipodia formation and focal adhesion kinase (FAK) and paxillin phosphorylation. PODXL knockdown reduced the formation of invadopodia, such as inhibiting the colocalization of F-actin with cortactin and suppressing phosphorylation of cortactin and neural Wiskott-Aldrich syndrome protein. Conversely, overexpression of PODXL in MCF7 cells induced F-actin/cortactin colocalization and enhanced invadopodia formation and activation. Invadopodia activity and tumor invasion in PODXL-knockdown cells are similar to that in cortactin-knockdown cells. We further found that the DTHL motif in PODXL is crucial for regulating cortactin phosphorylation and Rac1/Cdc42 activation. Inhibition of Rac1/Cdc42 impeded PODXL-mediated cortactin activation and FAK and paxillin phosphorylation. Moreover, inhibition of PODXL in MDA-MB-231 cells significantly suppressed tumor colonization in the lungs and distant metastases, similar to those in cortactin-knockdown cells. These findings show that overexpression of PODXL enhanced invadopodia formation and tumor metastasis by inducing Rac1/Cdc42/cortactin signaling network.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei 110, Taiwan, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan,
| | - Min-Siou Sun
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei 106, Taiwan and
| | - Mei-Ying Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chu-Hung Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Hsuan Chi
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Li-Tin Chiou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - John Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Lung Lou
- Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei 106, Taiwan and
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei 106, Taiwan and Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
25
|
Scherberich A, Di Maggio ND, McNagny KM. A familiar stranger: CD34 expression and putative functions in SVF cells of adipose tissue. World J Stem Cells 2013; 5:1-8. [PMID: 23362435 PMCID: PMC3557347 DOI: 10.4252/wjsc.v5.i1.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/19/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023] Open
Abstract
Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiated adipocytes, the so-called stromal vascular fraction (SVF) of adipose, a mix of various cell types, is obtained. SVF contains mesenchymal fibroblastic cells, able to adhere to culture plastic and to generate large colonies in vitro, that closely resemble bone marrow-derived colony forming units-fibroblastic, and whose expanded progeny, adipose mesenchymal stem/stromal cells (ASC), show strong similarities with bone marrow mesenchymal stem cells. The sialomucin CD34, which is well known as a hematopoietic stem cell marker, is also expressed by ASC in native adipose tissue but its expression is gradually lost upon standard ASC expansion in vitro. Surprisingly little is known about the functional role of CD34 in the biology and tissue forming capacity of SVF cells and ASC. The present editorial provides a short introduction to the CD34 family of sialomucins and reviews the data from the literature concerning expression and function of these proteins in SVF cells and their in vitro expanded progeny.
Collapse
Affiliation(s)
- Arnaud Scherberich
- Arnaud Scherberich, Nunzia Di Maggio, Department of Biomedicine, University and University Hospital of Basel, CH-4031 Basel, Switzerland
| | | | | |
Collapse
|
26
|
Elevated expression of podocalyxin is associated with lymphatic invasion, basal-like phenotype, and clinical outcome in axillary lymph node-negative breast cancer. Breast Cancer Res Treat 2013; 137:709-19. [PMID: 23288345 DOI: 10.1007/s10549-012-2392-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 12/17/2012] [Indexed: 12/18/2022]
Abstract
Lymphatic invasion (LVI) is associated with disease recurrence in axillary node-negative (ANN) breast cancer. Using gene expression profiling of 105 ANN tumors, we found that podocalyxin (PODXL) was more highly expressed in tumors with LVI (LVI+) than in those without LVI (LVI-). Differences in PODXL expression were validated using real-time polymerase chain reaction as well as by immunohistochemistry in an independent set of 652 tumors on tissue microarrays. Disease-free survival (DFS) analyses were conducted for association of high PODXL protein expression with risk of distant recurrence overall and within breast cancer subtypes using both Cox and cure-rate models. High PODXL expression was associated with poor prognosis features including large tumor size, high histological grade, estrogen and progesterone receptor negativity, and with clinical alterations characteristic of the basal-like breast cancer phenotype. Surprisingly, despite having other poor prognosis characteristics, women with high PODXL expressing tumors had better long-term DFS in multivariate analysis with traditional clinicopathologic factors including LVI and HER2 status (P = 0.001). PODXL has the potential to be a useful biomarker for identifying good prognosis patients in characteristically poor prognosis breast cancer groups and may impact treatment of women with this disease.
Collapse
|
27
|
Kawabe K, Tateyama D, Toyoda H, Kawasaki N, Hashii N, Nakao H, Matsumoto S, Nonaka M, Matsumura H, Hirose Y, Morita A, Katayama M, Sakuma M, Kawasaki N, Furue MK, Kawasaki T. A novel antibody for human induced pluripotent stem cells and embryonic stem cells recognizes a type of keratan sulfate lacking oversulfated structures. Glycobiology 2012; 23:322-36. [PMID: 23154990 DOI: 10.1093/glycob/cws159] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have generated a monoclonal antibody (R-10G) specific to human induced pluripotent stem (hiPS)/embryonic stem (hES) cells by using hiPS cells (Tic) as an antigen, followed by differential screening of mouse hybridomas with hiPS and human embryonal carcinoma (hEC) cells. Upon western blotting with R-10G, hiPS/ES cell lysates gave a single but an unusually diffuse band at a position corresponding to >250 kDa. The antigen protein was isolated from the induced pluripotent stem (iPS) cell lysates with an affinity column of R-10G. The R-10G positive band was resistant to digestion with peptide N-glycanase F (PNGase F), neuraminidase, fucosidase, chondrotinase ABC and heparinase mix, but it disappeared almost completely on digestion with keratanase, keratanase II and endo-β-galactosidase, indicating that the R-10G epitope is a keratan sulfate. The carrier protein of the R-10G epitope was identified as podocalyxin by liquid chromatography/mass spectrometry (LC/MS/MS) analysis of the R-10G positive-protein band material obtained on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The R-10G epitope is a type of keratan sulfate with some unique properties. (1) The epitope is expressed only on hiPS/ES cells, i.e. not on hEC cells, unlike those recognized by the conventional hiPS/ES marker antibodies. (2) The epitope is a type of keratan sulfate lacking oversulfated structures and is not immunologically cross-reactive with high-sulfated keratan sulfate. (3) The R-10G epitope is distributed heterogeneously on hiPS cells, suggesting that a single colony of undifferentiated hiPS cells consists of different cell subtypes. Thus, R-10G is a novel antibody recognizing hiPS/ES cells, and should be a new molecular probe for disclosing the roles of glycans on these cells.
Collapse
Affiliation(s)
- Keiko Kawabe
- Research Center for Glycobiotechnology, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hematopoietic stem cell development, niches, and signaling pathways. BONE MARROW RESEARCH 2012; 2012:270425. [PMID: 22900188 PMCID: PMC3413998 DOI: 10.1155/2012/270425] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/30/2012] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem cells (HSCs) play a key role in hematopoietic system that functions mainly in homeostasis and immune response. HSCs transplantation has been applied for the treatment of several diseases. However, HSCs persist in the small quantity within the body, mostly in the quiescent state. Understanding the basic knowledge of HSCs is useful for stem cell biology research and therapeutic medicine development. Thus, this paper emphasizes on HSC origin, source, development, the niche, and signaling pathways which support HSC maintenance and balance between self-renewal and proliferation which will be useful for the advancement of HSC expansion and transplantation in the future.
Collapse
|
29
|
Alfaro LAS, Dick SA, Siegel AL, Anonuevo AS, McNagny KM, Megeney LA, Cornelison DDW, Rossi FMV. CD34 promotes satellite cell motility and entry into proliferation to facilitate efficient skeletal muscle regeneration. Stem Cells 2012; 29:2030-41. [PMID: 21997891 DOI: 10.1002/stem.759] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expression of the cell surface sialomucin CD34 is common to many adult stem cell types, including muscle satellite cells. However, no clear stem cell or regeneration-related phenotype has ever been reported in mice lacking CD34, and its function on these cells remains poorly understood. Here, we assess the functional role of CD34 on satellite cell-mediated muscle regeneration. We show that Cd34(-/-) mice, which have no obvious developmental phenotype, display a defect in muscle regeneration when challenged with either acute or chronic muscle injury. This regenerative defect is caused by impaired entry into proliferation and delayed myogenic progression. Consistent with the reported antiadhesive function of CD34, knockout satellite cells also show decreased motility along their host myofiber. Altogether, our results identify a role for CD34 in the poorly understood early steps of satellite cell activation and provide the first evidence that beyond being a stem cell marker, CD34 may play an important function in modulating stem cell activity.
Collapse
Affiliation(s)
- Leslie Ann So Alfaro
- Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fukasawa H, Obayashi H, Schmieder S, Lee J, Ghosh P, Farquhar MG. Phosphorylation of podocalyxin (Ser415) Prevents RhoA and ezrin activation and disrupts its interaction with the actin cytoskeleton. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2254-65. [PMID: 21945805 DOI: 10.1016/j.ajpath.2011.07.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/12/2011] [Indexed: 01/01/2023]
Abstract
Podocalyxin (PC) is a polysialylated, anti-adhesin that is essential for maintaining foot process architecture and the integrity of the glomerular filtration barrier. We showed previously that PC is firmly attached to the actin cytoskeleton through ezrin, that in puromycin aminonucleoside (PAN)-mediated nephrosis the PC-ezrin-actin complex is disrupted, and that PC is uncoupled from actin. However, the precise mechanisms involved remained unknown. Here we show that detachment of PC from actin is regulated by phosphorylation of PC. PC is hyperphosphorylated at serines in PAN- and protamine sulfate (PS)-treated rat glomeruli. We determined that PC is a substrate of PKC and that the site of phosphorylation is Ser415, located within the juxtamembrane, ezrin-binding domain of the cytoplasmic tail of PC. Mutation of Ser415 to the phosphomimetic residues Glu (S415E) or Asp (S415D) interfered with direct binding of the PC cytoplasmic tail to ezrin in vitro. Moreover, stable expression of a phosphomimetic (S415E) PC mutant but not the WT or the phosphorylation-deficient (S415A) PC mutant, disrupted PC-ezrin-actin interaction, failed to activate RhoA, and the cytoskeletal linker, ezrin, remained inactive. Our data indicate that phosphorylation of PC at Ser415 prevents attachment of PC and ezrin to actin and highlights the strategic position of Ser415 and direct binding of PC to ezrin in regulating podocyte foot process architecture.
Collapse
Affiliation(s)
- Hirotaka Fukasawa
- Department of Medicine, Hamamatsu University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Sarangapani KK, Marshall BT, McEver RP, Zhu C. Molecular stiffness of selectins. J Biol Chem 2011; 286:9567-76. [PMID: 21216951 DOI: 10.1074/jbc.m110.196485] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During inflammation, selectin-ligand interactions provide forces for circulating leukocytes to adhere to vascular surfaces, which stretch the interacting molecules, suggesting that mechanical properties may be pertinent to their biological function. From mechanical measurements with atomic force microscopy, we analyzed the molecular characteristics of selectins complexed with ligands and antibodies. Respective stiffness of L-, E-, and P-selectins (4.2, 1.4, and 0.85 piconewton/nm) correlated inversely with the number (2, 6, and 9) of consensus repeats in the selectin structures that acted as springs in series to dominate their compliance. After reconstitution into a lipid bilayer, purified membrane P-selectin remained a dimer, capable of forming dimeric bonds with P-selectin glycoprotein ligand (PSGL)-1, endoglycan-Ig, and a dimeric form of a glycosulfopeptide modeled after the N terminus of PSGL-1. By comparison, purified membrane L- and E-selectin formed only monomeric bonds under identical conditions. Ligands and antibodies were much less stretchable than selectins. The length of endoglycan-Ig was found to be 51 ± 12 nm. These results provide a comprehensive characterization of the molecular stiffness of selectins and illustrate how mechanical measurements can be utilized for molecular analysis, e.g. evaluating the multimericity of selectins and determining the molecular length of endoglycan.
Collapse
Affiliation(s)
- Krishna K Sarangapani
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
32
|
The human cancer and stem cell marker podocalyxin interacts with the glucose-3-transporter in malignant pluripotent stem cells. Biochem Biophys Res Commun 2010; 398:372-6. [PMID: 20599725 DOI: 10.1016/j.bbrc.2010.06.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 02/04/2023]
Abstract
Podocalyxin, an integral plasma membrane cell-adhesion glycoprotein, is a marker of human pluripotent and multipotent stem cells. Podocalyxin is also a marker of many types of cancers and its expression correlates with an aggressive and poor-prognosis tumor phenotype. The function of podocalyxin in stem cells and malignant cells is unknown. Protein sequence data obtained from purified podocalyxin protein isolated from embryonal carcinoma cancer stem cells reveals peptide sequence data for the glucose-3-transporter. Protein-precipitation experiments of embryonal carcinoma protein extracts identify a podocalyxin/glucose-3-transporter protein complex. Cell imaging studies demonstrate co-localization of podocalyxin and glucose-3-transporter and confirm the interaction in vivo. Finally, siRNA podocalyxin-knockdown experiments show decreased expression levels of the glucose-3-transporter. These findings suggest a novel interaction of the glucose-3-transporter and the cell-adhesion protein podocalyxin. In pluripotent stem cells and in human cancer disease, podocalyxin may function in part to regulate and maintain the cell surface expression of the glucose-3-transporter.
Collapse
|
33
|
Leppänen A, Parviainen V, Ahola-Iivarinen E, Kalkkinen N, Cummings RD. Human L-selectin preferentially binds synthetic glycosulfopeptides modeled after endoglycan and containing tyrosine sulfate residues and sialyl Lewis x in core 2 O-glycans. Glycobiology 2010; 20:1170-85. [PMID: 20507883 DOI: 10.1093/glycob/cwq083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Endoglycan is a mucin-like glycoprotein expressed by endothelial cells and some leukocytes and is recognized by L-selectin, a C-type lectin important in leukocyte trafficking and extravasation during inflammation. Here, we show that recombinant L-selectin and human T lymphocytes expressing L-selectin bind to synthetic glycosulfopeptides (GSPs). These synthetic glycosulfopeptides contain 37 amino acid residues modeled after the N-terminus of human endoglycan and contain one or two tyrosine sulfates (TyrSO(3)) along with a nearby core-2-based Thr-linked O-glycan with sialyl Lewis x (C2-SLe(x)). TyrSO(3) at position Y118 was more critical for binding than at Y97. C2-SLe(x) at T124 was required for L-selectin recognition. Interestingly, under similar conditions, neither L-selectin nor T lymphocytes showed appreciable binding to the sulfated carbohydrate epitope 6-sulfo-SLe(x). P-selectin also bound to endoglycan-based GSPs but with lower affinity than toward GSPs modeled after PSGL-1, the physiological ligand for P- and L-selectin that is expressed on leukocytes. These results demonstrate that TyrSO(3) residues in association with a C2-SLe(x) moiety within endoglycan and PSGL-1 are preferentially recognized by L-selectin.
Collapse
Affiliation(s)
- Anne Leppänen
- Department of Biological Sciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
34
|
Zhang L. Glycosaminoglycan (GAG) biosynthesis and GAG-binding proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:1-17. [PMID: 20807638 DOI: 10.1016/s1877-1173(10)93001-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two major types of glycosaminoglycan (GAG) polysaccharides, heparan sulfate and chondroitin sulfate, are polymerized and modified by enzymes that are encoded by more than 40 genes in animal cells. Because of the expression repertoire of the GAG assembly and modification enzymes, each heparan sulfate and chondroitin sulfate chain has a sulfation pattern, chain length, and fine structure that is potentially unique to each animal cell. GAGs interact with hundreds of proteins. Such interactions protect growth factors, chemokines, and cytokines against proteolysis. GAGs catalyze protease (such as thrombin) inhibition by serpins. GAGs regulate multiple signaling pathways including, but not limited to, fibroblast growth factor (FGF)/FGFR, hepatocyte growth factor (HGF)/c-Met, glial cell line-derived neurotrophic factor (GDNF)/c-Ret/GFRalpha1, vascular endothelial growth factor (VEGF)/VEGFR, platelet derived growth factor (PDGF)/PDGFR, BAFF/TACI, Indian hedgehog, Wnt, and BMP signaling pathways,where genetic studies have revealed an absolute requirement for GAGs in these pathways. Most importantly, protein/GAG aggregates induce thrombin generation and immune system upregulation by activating the contact system. Abnormal protein/GAG aggregates are associated with a variety of devastating human diseases including, but not limited to, Alzheimer's, diabetes, prion or transmissible spongiform encephalopathies, Lupus, heparin-induced thrombocytopenia/thrombosis, and different kinds of cancers. Therefore, GAGs are essential components of modern molecular biology and human physiology. Understanding GAG structure and function at molecular level with regard to development and health represents a unique opportunity in combating different kinds of human diseases.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO, USA
| |
Collapse
|
35
|
Abstract
Podocalyxin, a sialomucin most closely related to CD34 and endoglycan, is expressed by kidney podocytes, hematopoietic progenitors, vascular endothelia, and a subset of neurons; aberrant expression has recently been implicated in a range of cancers. Through interactions with several intracellular proteins and at least one extracellular ligand, podocalyxin regulates both adhesion and cell morphology. In the developing kidney, podocalyxin plays an essential role in the formation and maintenance of podocyte foot processes, and its absence results in perinatal lethality. Podocalyxin expression in the hematopoietic system correlates with cell migration and the seeding of new hematopoietic tissues. In addition, it is abnormally expressed in subsets of breast, prostate, liver, pancreatic, and kidney cancer as well as leukemia. Strikingly, it is often associated with the most aggressive cases, and it is likely involved in metastasis. Thus, a thorough investigation of the normal activities of podocalyxin may facilitate the development of new cancer treatment strategies.
Collapse
Affiliation(s)
- Julie S Nielsen
- The Biomedical Research Centre, Vancouver, British Columbia, Canada
| | | |
Collapse
|
36
|
Abstract
For almost 30 years, the cell-surface protein CD34 has been widely used as a marker to assist in the identification and Summary isolation of hematopoietic stem cells (HSCs) and progenitors in preparation for bone-marrow transplantation. In addition, it has increasingly been used as a marker to help identify other tissue-specific stem cells, including muscle satellite cells and epidermal precursors. Despite its utility as a stem-cell marker, however, the function of CD34 has remained remarkably elusive. This is probably because: (1) it is subject to a range of tissue-specific post-transcriptional and post-translational modifications that are expected to alter its function dramatically; (2) the simple interpretation of CD34 gain- and loss-of-function experiments has been confounded by the overlapping expression of the two recently discovered CD34-related proteins podocalyxin and endoglycan; and (3) there has been a glaring lack of robust in vitro and in vivo functional assays that permit the structural and functional analysis of CD34 and its relatives. Here, we provide a brief review of the domain structure, genomic organization, and tissue distribution of the CD34 family. We also describe recent insights from gain- and loss-of-function experiments and improved assays, which are elucidating a fascinating role for these molecules in cell morphogenesis and migration.
Collapse
Affiliation(s)
- Julie S Nielsen
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, BC, Canada V8R 6V5
| | | |
Collapse
|
37
|
Glycoforms of human endothelial CD34 that bind L-selectin carry sulfated sialyl Lewis x capped O- and N-glycans. Blood 2009; 114:733-41. [PMID: 19359410 DOI: 10.1182/blood-2009-03-210237] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endothelial sialomucin CD34 functions as an L-selectin ligand mediating lymphocyte extravasation only when properly glycosylated to express a sulfated carbohydrate epitope, 6-sulfo sialyl Lewis x (6-sulfo SLe(x)). It is thought that multivalent 6-sulfo SLe(x) expression promotes high-affinity binding to L-selectin by enhancing avidity. However, the reported low amount of 6-sulfo SLe(x) in total human CD34 is inconsistent with this model and prompted us to re-evaluate CD34 glycosylation. We separated CD34 into 2 glycoforms, the L-selectin-binding and nonbinding glycoforms, L-B-CD34 and L-NB-CD34, respectively, and analyzed released O- and N-glycans from both forms. L-B-CD34 is relatively minor compared with L-NB-CD34 and represented less than 10% of total tonsillar CD34. MECA-79, a mAb to sulfated core-1 O-glycans, bound exclusively to L-B-CD34 and this form contained all sulfated and fucosylated O-glycans. 6-Sulfo SLe(x) epitopes occur on core-2 and extended core-1 O-glycans with approximately 20% of total L-B-CD34 O-glycans expressing 6-sulfo SLe(x). N-glycans containing potential 6-sulfo SLe(x) epitopes were also present in L-B-CD34, but their removal did not abolish binding to L-selectin. Thus, a minor glycoform of CD34 carries relatively abundant 6-sulfo SLe(x) epitopes on O-glycans that are important for its recognition by L-selectin.
Collapse
|
38
|
Miller R, Cirulli V, Diaferia GR, Ninniri S, Hardiman G, Torbett BE, Benezra R, Crisa L. Switching-on survival and repair response programs in islet transplants by bone marrow-derived vasculogenic cells. Diabetes 2008; 57:2402-12. [PMID: 18519801 PMCID: PMC2518491 DOI: 10.2337/db08-0244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 05/27/2008] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Vascular progenitors of bone marrow origin participate to neovascularization at sites of wound healing and transplantation. We hypothesized that the biological purpose of this bone marrow-derived vascular component is to contribute angiogenic and survival functions distinct from those provided by the local tissue-derived vasculature. RESEARCH DESIGN AND METHODS AND RESULTS To address this hypothesis, we investigated the functional impact of bone marrow-derived vascular cells on pancreatic islets engraftment using bone marrow-reconstituted Id1(+/-)Id3(-/-) mice, a model of bone marrow-derived vasculogenesis. We show that, in this model, bone marrow-derived vasculogenic cells primarily contribute to the formation of new blood vessels within islet transplants. In contrast, graft revascularization in a wild-type background occurs by tissue-derived blood vessels only. Using these distinct transplant models in which bone marrow-and tissue-derived vasculature are virtually mutually exclusive, we demonstrate that bone marrow-derived vasculogenic cells exhibit enhanced angiogenic functions and support prompt activation of islets survival pathways, which significantly impact on islets engraftment and function. Moreover, gene profiling of vascular and inflammatory cells of the grafts demonstrate that neovascularization by bone marrow-derived cells is accompanied by the activation of a genetic program uniquely tuned to downregulate harmful inflammatory responses and to promote tissue repair. CONCLUSIONS These studies uncover the biological significance of bone marrow-derived vasculogenic cells in the response to injury during transplantation. Enhancing the contribution of bone marrow-derived vasculogenic cells to transplantation sites may help to overcome both limited angiogenic responses of the adult tissue-derived vasculature and untoward effects of inflammation on transplant engraftment.
Collapse
Affiliation(s)
- Robyn Miller
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
| | - Vincenzo Cirulli
- Department of Pediatrics, Biomedical Genomics Microarray Facility, University of California, San Diego, La Jolla, California
| | - Giuseppe R. Diaferia
- Department of Pediatrics, Biomedical Genomics Microarray Facility, University of California, San Diego, La Jolla, California
| | - Stefania Ninniri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
| | - Gary Hardiman
- Department of Medicine, Biomedical Genomics Microarray Facility, University of California, San Diego, La Jolla, California
| | - Bruce E. Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
| | | | - Laura Crisa
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
39
|
Kerr SC, Fieger CB, Snapp KR, Rosen SD. Endoglycan, a member of the CD34 family of sialomucins, is a ligand for the vascular selectins. THE JOURNAL OF IMMUNOLOGY 2008; 181:1480-90. [PMID: 18606703 DOI: 10.4049/jimmunol.181.2.1480] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interactions of the selectin family of adhesion molecules with their ligands are essential for the initial rolling stage of leukocyte trafficking. Under inflammatory conditions, the vascular selectins, E- and P-selectin, are expressed on activated vessels and interact with carbohydrate-based ligands on the leukocyte surface. While several ligands have been characterized on human T cells, monocytes and neutrophils, there is limited information concerning ligands on B cells. Endoglycan (EG) together with CD34 and podocalyxin comprise the CD34 family of sialomucins. We found that EG, previously implicated as an L-selectin ligand on endothelial cells, was present on human B cells, T cells and peripheral blood monocytes. Upon activation of B cells, EG increased with a concurrent decrease in PSGL-1. Expression of EG on T cells remained constant under the same conditions. We further found that native EG from several sources (a B cell line, a monocyte line and human tonsils) was reactive with HECA-452, a mAb that recognizes sialyl Lewis X and related structures. Moreover, immunopurified EG from these sources was able to bind to P-selectin and where tested E-selectin. This interaction was divalent cation-dependent and required sialylation of EG. Finally, an EG construct supported slow rolling of E- and P-selectin bearing cells in a sialic acid and fucose dependent manner, and the introduction of intact EG into a B cell line facilitated rolling interactions on a P-selectin substratum. These in vitro findings indicate that EG can function as a ligand for the vascular selectins.
Collapse
Affiliation(s)
- Sheena C Kerr
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
40
|
Larrucea S, Butta N, Arias-Salgado EG, Alonso-Martin S, Ayuso MS, Parrilla R. Expression of podocalyxin enhances the adherence, migration, and intercellular communication of cells. Exp Cell Res 2008; 314:2004-15. [PMID: 18456258 DOI: 10.1016/j.yexcr.2008.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 11/25/2022]
Abstract
Podocalyxin (PODXL) is an anti-adhesive glycoprotein expressed abundantly in the epithelial cells of kidney glomeruli. In contrast, we report herein that expression of podocalyxin(GFP) (PODXL(GFP)) in CHO cells increased the adherence to immobilized fibronectin, spreading, and migration. The transient knockdown of PODXL or the expression of PODXL lacking the cytosolic carboxyterminal domain (PODXL-Delta(451)) inhibited cell adherence. Moreover, the effect of PODXL was prevented by the ectodomain of podocalyxin (PODXL-Delta(429)), by RGD peptides, or by inhibitors of the vitronectin receptor (alphavbeta3). CHO-PODXL(GFP) also showed adherence to human vascular endothelial cells (HUVEC), exhibiting polarization of granular PODXL and emission of long and thin, spike-like, protrusions with PODXL granules progressing along. We found PODXL colocalized with beta1 integrins at membrane ruffle regions on the leading edge of the cell and a blocking beta1 mAb prevented the spreading of cells. PODXL was also associated with submembrane actin in lamellipodia ruffles, or with vinculin at cell protrusions. The proadhesive effects of PODXL were absent in sialic acid deficient O-glycomutant CHO cells. To conclude, we present evidence indicating that human PODXL enhances the adherence of cells to immobilized ligands and to vascular endothelial cells through a mechanism(s) dependent on the activity of integrins.
Collapse
Affiliation(s)
- Susana Larrucea
- Department of Physiopathology, Centro de Investigaciones Biológicas (CSIC), Spain
| | | | | | | | | | | |
Collapse
|
41
|
Choo AB, Tan HL, Ang SN, Fong WJ, Chin A, Lo J, Zheng L, Hentze H, Philp RJ, Oh SKW, Yap M. Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 2008; 26:1454-63. [PMID: 18356574 DOI: 10.1634/stemcells.2007-0576] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Future therapeutic applications of differentiated human embryonic stem cells (hESC) carry a risk of teratoma formation by contaminating undifferentiated hESC. We generated 10 monoclonal antibodies (mAbs) against surface antigens of undifferentiated hESC, showing strong reactivity against undifferentiated, but not differentiated hESC. The mAbs did not cross react with mouse fibroblasts and showed weak to no reactivity against human embryonal carcinoma cells. Notably, one antibody (mAb 84) is cytotoxic to undifferentiated hESC and NCCIT cells in a concentration-dependent, complement-independent manner. mAb 84 induced cell death of undifferentiated, but not differentiated hESC within 30 minutes of incubation, and immunoprecipitation of the mAb-antigen complex revealed that the antigen is podocalyxin-like protein-1. Importantly, we observed absence of tumor formation when hESC and NCCIT cells were treated with mAb 84 prior to transplantation into severe combined immunodeficiency mice. Our data indicate that mAb 84 may be useful in eliminating residual hESC from differentiated cells populations for clinical applications. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Andre B Choo
- Stem Cell Group, Bioprocessing Technology Institute, 20 Biopolis Way #06-01, Singapore.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The pleural mesothelial cell is an essential cell in maintaining the normal homeostasis of the pleural space and it is also a central component of the pathophysiologic processes affecting the pleural space. In this review, we will review the defense mechanisms of the pleural mesothelium and changes in pleural physiology as a result of inflammatory, infectious, and malignant conditions with a focus on cytokine and chemokine networks. We will also review the processes involved in the pathogenesis of pleural fibrosis.
Collapse
Affiliation(s)
- Michael A Jantz
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Fla, USA
| | | |
Collapse
|
43
|
Ostalska-Nowicka D, Zachwieja J, Nowicki M, Kaczmarek E, Siwińska A, Witt M. Immunohistochemical detection of galectin-1 in renal biopsy specimens of children and its possible role in proteinuric glomerulopathies. Histopathology 2007; 51:468-76. [PMID: 17880528 DOI: 10.1111/j.1365-2559.2007.02818.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Galectin-1 is an endogenous lectin that specifically binds to beta-galactoside structures. It has been associated with developmental mechanisms ranging from differentiation to apoptosis and exerts immunoregulatory functions in autoimmune diseases. The aim was to determine the immunohistochemical expression of galectin-1 in renal biopsy specimens of children with primary idiopathic proteinuric glomerulopathies. METHODS AND RESULTS We examined 18 children with minimal change disease (MCD), 30 with diffuse mesangial proliferation (DMP) and 11 with focal segmental glomerulosclerosis (FSGS). An indirect immunohistochemical protocol using a polyclonal antibody directed against galectin-1 was applied. Galectin-1 was detected in renal podocytes in DMP and FSGS cases, while control glomeruli and MCD were negative. Galectin-1 immunoreactivity was found within parietal epithelial cells in patients with FSGS. CONCLUSIONS These results suggest a possible role for galectin-1 in the pathogenesis of primary glomerulopathies in children as a kind of podocyte-related self-protective activity and probably involvement of epithelial cells of Bowman's capsule in inflammatory processes. Immunohistochemistry using galectin-1 antibodies may further be helpful in histological distinction between MCD and DMP.
Collapse
Affiliation(s)
- D Ostalska-Nowicka
- Department of Paediatric Cardiology and Nephrology, Poznań University of Medical Sciences, Poznań, Poland
| | | | | | | | | | | |
Collapse
|
44
|
Medina A, Kilani RT, Carr N, Brown E, Ghahary A. Transdifferentiation of peripheral blood mononuclear cells into epithelial-like cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1140-52. [PMID: 17717137 PMCID: PMC1988865 DOI: 10.2353/ajpath.2007.070051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone marrow-derived stem cells have the potential to transdifferentiate into unexpected peripheral cells. We hypothesize that circulating bone marrow-derived stem cells might have the capacity to transdifferentiate into epithelial-like cells and release matrix metalloproteinase-1-modulating factors such as 14-3-3varsigma for dermal fibroblasts. We have characterized a subset of peripheral blood mononuclear cells (PBMCs) that develops an epithelial-like profile. Our findings show that these cells develop epithelial-like morphology and express 14-3-3varsigma and keratin-5, -8 as early as day 7 and day 21, respectively. When compared with control, conditioned media collected from PBMCs in advanced epithelial-like differentiation (cultures on days 28, 35, and 42) increased the matrix metalloproteinase-1 expression in dermal fibroblasts (P </= 0.01). The depletion of 14-3-3varsigma from these conditioned media by immunoprecipitation reduced the effect by 39.5% (P value, 0.05). Therefore, the releasable 14-3-3varsigma from PBMC-derived epithelial-like cells is involved in this process. Our findings provide new insights into the PBMC transdifferentiation to generate epithelial-like cells and subsequently release of 14-3-3varsigma that will disclose new therapeutic alternatives for different dermal clinical settings.
Collapse
Affiliation(s)
- Abelardo Medina
- British Columbia Professional Fire Fighters' Burn/Wound Healing Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
45
|
Trempus CS, Morris RJ, Ehinger M, Elmore A, Bortner CD, Ito M, Cotsarelis G, Nijhof JGW, Peckham J, Flagler N, Kissling G, Humble MM, King LC, Adams LD, Desai D, Amin S, Tennant RW. CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res 2007; 67:4173-81. [PMID: 17483328 PMCID: PMC2121659 DOI: 10.1158/0008-5472.can-06-3128] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell surface marker CD34 marks mouse hair follicle bulge cells, which have attributes of stem cells, including quiescence and multipotency. Using a CD34 knockout (KO) mouse, we tested the hypothesis that CD34 may participate in tumor development in mice because hair follicle stem cells are thought to be a major target of carcinogens in the two-stage model of mouse skin carcinogenesis. Following initiation with 200 nmol 7,12-dimethylbenz(a)anthracene (DMBA), mice were promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 weeks. Under these conditions, CD34KO mice failed to develop papillomas. Increasing the initiating dose of DMBA to 400 nmol resulted in tumor development in the CD34KO mice, albeit with an increased latency and lower tumor yield compared with the wild-type (WT) strain. DNA adduct analysis of keratinocytes from DMBA-initiated CD34KO mice revealed that DMBA was metabolically activated into carcinogenic diol epoxides at both 200 and 400 nmol. Chronic exposure to TPA revealed that CD34KO skin developed and sustained epidermal hyperplasia. However, CD34KO hair follicles typically remained in telogen rather than transitioning into anagen growth, confirmed by retention of bromodeoxyuridine-labeled bulge stem cells within the hair follicle. Unique localization of the hair follicle progenitor cell marker MTS24 was found in interfollicular basal cells in TPA-treated WT mice, whereas staining remained restricted to the hair follicles of CD34KO mice, suggesting that progenitor cells migrate into epidermis differently between strains. These data show that CD34 is required for TPA-induced hair follicle stem cell activation and tumor formation in mice.
Collapse
Affiliation(s)
- Carol S Trempus
- Cancer Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lin WL, Pang VF, Liu CH, Chen JY, Shen KF, Lin YY, Yu CY, Hsu YH, Jou TS. Pleomorphic extra-renal manifestation of the glomerular podocyte marker podocalyxin in tissues of normal beagle dogs. Histochem Cell Biol 2006; 127:399-414. [PMID: 17180683 DOI: 10.1007/s00418-006-0252-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2006] [Indexed: 11/26/2022]
Abstract
Podocalyxin (PC) was initially identified as a major sialoprotein on the apical surface of glomerular podocytes to perform the filtration barrier function. Later, it was reported to be expressed in endothelial cells, megakaryotes/platelets, and hemangioblasts, the common progenitor cells of the hematopoietic and endothelial cells. Recently, increasing numbers of reports have indicated that PC is not merely a molecule restricted at renal glomerulus, angiogenic or hematopoietic system. To further elucidate the expression pattern and address the possible physiological role of PC in adult mammals, we conducted an extensive study by immunohistochemistry and immunofluorescence staining on various tissues of healthy adult beagle dogs. By combinatory usage of two different anti-podocalyxin antibodies recognizing distinct epitopes in PC, we have demonstrated that (1) PC is expressed in renal tubules, mesothelium, myocardium, striated muscles in tongue, esophagus and extraocular region, myoepithelial cells in esophagus and salivary glands, neurons, and ependyma, etc.; (2) there are at least three forms of PC proteins, depending upon the accessibility of two different PC antibodies, expressed in different organs/systems; and (3) a particular form of PC is distributed in a vesicle-like compartment in certain organs/systems, such as the central nervous system.
Collapse
Affiliation(s)
- Wei-Ling Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S. Road, Taipei, 100, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Schopperle WM, DeWolf WC. The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells 2006; 25:723-30. [PMID: 17124010 DOI: 10.1634/stemcells.2005-0597] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously identified the cell adhesion protein podocalyxin expressed in a human pluripotent stem cell, embryonal carcinoma (EC), which is a malignant germ cell. Podocalyxin is a heavily glycosylated membrane protein with amino acid sequence homology to the hematopoietic stem cell marker CD34. Since the initial discovery of podocalyxin in a cancerous stem cell, numerous new studies have identified podocalyxin in many different human cancers and in embryonic stem cells lines (ES) derived from human embryos. Embryonal carcinoma, as do all human pluripotent stem cells, expresses TRA-1-60 and TRA-1-81 antigens, and although their molecular identities are unknown, they are commonly used as markers of undifferentiated pluripotent human stem cells. We report here that purified podocalyxin from embryonal carcinoma has binding activity with the TRA-1-60 and TRA-1-81 antibodies. Embryonal carcinoma cells treated with retinoic acid undergo differentiation and lose the TRA-1-60/TRA-1-81 markers from their plasma membrane surface. We show that podocalyxin is modified in the retinoic acid-treated cells and has an apparent molecular mass of 170 kDa on protein blots as compared with the apparent 200-kDa molecular weight form of podocalyxin expressed in untreated cells. Furthermore, the modified form of podocalyxin no longer reacts with the TRA-1-60/TRA-1-81 antibodies. Thus, embryonal carcinoma expresses two distinct forms of podocalyxin, and the larger version is a molecular carrier of the human stem cell-defining antigens TRA-1-60 and TRA-1-81.
Collapse
Affiliation(s)
- William M Schopperle
- Department of Surgery, Beth Israel Deaconess Medical Center, RW-875, 330 Brookline Ave., Boston, MA 02215, USA.
| | | |
Collapse
|
48
|
Riccioni R, Calzolari A, Biffoni M, Senese M, Riti V, Petrucci E, Pasquini L, Cedrone M, Lo-Coco F, Diverio D, Foà R, Peschle C, Testa U. Podocalyxin is expressed in normal and leukemic monocytes. Blood Cells Mol Dis 2006; 37:218-25. [PMID: 17059890 DOI: 10.1016/j.bcmd.2006.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/18/2006] [Accepted: 09/14/2006] [Indexed: 11/23/2022]
Abstract
We have investigated the expression of podocalyxin in primary cultures of leukemic blast cells from 73 patients with acute myeloid leukemia. Podocalyxin was expressed at moderate levels in 15 patients and at high levels in 13 patients. The analysis of membrane markers showed that Podocalyxin expression in leukemic blasts was associated with a monocytic immunophenotype. Cases of podocalyxin-positive acute myelogenous leukemia had high blast cell counts at diagnosis and elevated CD123, CD135, VLA-4 and CXCR4 expression, features associated with poor prognosis. Podocalyxin expression in leukemic blasts was coupled with the concomitant expression of VEGF-R1, -R2, -R3 and Tie-2, the capacity to release VEGF-A and angiopoietin1 and the ability to differentiate into endothelial cells under appropriate culture conditions. These findings show that podocalyxin is a marker of acute myeloid leukemia with a monocytic phenotype and suggest that podocalyxin-positive cases of acute myeloid leukemia originate from the malignant transformation of progenitors common to the myeloid and endothelial lineages. These observations suggest a possible relationship between the monocytic lineage and podocytes.
Collapse
Affiliation(s)
- Roberta Riccioni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Furness SGB, McNagny K. Beyond mere markers: functions for CD34 family of sialomucins in hematopoiesis. Immunol Res 2006. [PMID: 16720896 DOI: 10.1385/ir: 34: 1: 13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CD34, podocalyxin, and endoglycan are members of a family of single-pass transmembrane proteins that show distinct expression on early hematopoietic precursors and vascular-associated tissue. In spite of the fact that the expression of CD34 on these early progenitors has been known for over 20 yr and used clinically in hematopoietic stem cell transplantation for more than 15 yr, little is known about its exact role or function. More recently, CD34 expression has been shown to distinguish activated early progenitors from quiescent cells. With the subsequent identification of podocalyxin and endoglycan as related family members also expressed on early progenitor cells, attention is slowly shifting toward understanding how these molecules might contribute to progenitor function and behavior. In this review we examine the existing evidence and propose testable models to reveal the importance of these molecules for stem and progenitor cell function.
Collapse
|
50
|
Furness SGB, McNagny K. Beyond mere markers: functions for CD34 family of sialomucins in hematopoiesis. Immunol Res 2006; 34:13-32. [PMID: 16720896 DOI: 10.1385/ir:34:1:13] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/28/2022]
Abstract
CD34, podocalyxin, and endoglycan are members of a family of single-pass transmembrane proteins that show distinct expression on early hematopoietic precursors and vascular-associated tissue. In spite of the fact that the expression of CD34 on these early progenitors has been known for over 20 yr and used clinically in hematopoietic stem cell transplantation for more than 15 yr, little is known about its exact role or function. More recently, CD34 expression has been shown to distinguish activated early progenitors from quiescent cells. With the subsequent identification of podocalyxin and endoglycan as related family members also expressed on early progenitor cells, attention is slowly shifting toward understanding how these molecules might contribute to progenitor function and behavior. In this review we examine the existing evidence and propose testable models to reveal the importance of these molecules for stem and progenitor cell function.
Collapse
|