1
|
Haskell A, Pan S, Reese R, Powers A, Lopez MG, Lomeli S, Story C, Benton J, Blazier JC, Kaunas R, Gregory CA. Antisense mediated blockade of Dickkopf 1 attenuates tumor survival, metastases and bone damage in experimental osteosarcoma. Sci Rep 2025; 15:1878. [PMID: 39805917 PMCID: PMC11730318 DOI: 10.1038/s41598-024-84037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy. The canonical Wnt inhibitor Dickkopf-1 (Dkk-1) has been implicated in bone destruction, tumor survival and metastases during OS. We examined the role of Dkk-1 in OS disease progression and explored strategies for targeting its activity. Dkk-1 enhances OS survival by amplifying a non-canonical Wnt pathway that upregulates aldehyde dehydrogenase 1A1. Targeting of Dkk-1 transcription with a vivo morpholino (DkkMo) reduced OS survival and enhanced osteogenic activity of OS in vitro. DkkMo as a single agent slowed tumor expansion, increased tumor necrosis, inhibited metastases and preserved bone in a PDX model of OS. DkkMo also reduced the frequency of dividing tumor cells and reinitiated a regenerative osteogenic phenotype in tumors and stroma while reducing infiltration of inflammatory cells. These findings indicate that DkkMo has the potential to safely target osteosarcoma growth, survival, metastases and bone destruction.
Collapse
Affiliation(s)
- Andrew Haskell
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Simin Pan
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Robert Reese
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX, USA
| | - Anthony Powers
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX, USA
| | - Megan G Lopez
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Sebastian Lomeli
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Christopher Story
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Joshua Benton
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - J Chris Blazier
- Texas A&M Institute for Genome Sciences and Society, College Station, TX, USA
| | - Roland Kaunas
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX, USA
| | - Carl A Gregory
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA.
| |
Collapse
|
2
|
Peng X, Zhang Z, Zhang Y, Zhou H, Li W, Dai M, Shang J, Xu J, Gu Q. Discovery of Novel Neo-Clerodane Derivatives as Potent Dual-Functional Antiosteoporosis Agents through Targeting Peroxisome Proliferator-Activated Receptor-γ. J Med Chem 2024; 67:15738-15755. [PMID: 39185622 DOI: 10.1021/acs.jmedchem.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
A library of 31 natural neo-clerodanes isolated from Ajuga decumbens was assayed for antiosteoporosis. This results in 18 neo-clerodane osteoclastogenesis inhibitors, and compound 3 prevents bone loss in vivo. Further mechanistic studies demonstrated that these compounds inhibit osteoporosis by antagonizing peroxisome proliferator-activated receptor-γ (PPARγ). We designed and synthesized 17 compounds by chemically modifying the natural neo-clerodane 19 (highly potent and the major composition of A. decumbens extract) by means of structure-based drug design techniques. Among these neo-clerodane derivatives, compound 34 is the most potent osteoporosis inhibitor with a 46-fold improvement in inhibiting osteoclastogenesis (IC50 = 0.042 vs 1.92 μM), 11-fold increased activity in PPARγ antagonism (EC50 = 0.75 vs 8.35 μM), 66-fold enhancement in receptor affinity (KD = 0.27 vs 17.7 μM), and enhanced osteogenic promotion compared to 19. This underscores the potential of neo-clerodane diterpenoids as promising leads for osteoporosis treatment by targeting PPARγ.
Collapse
Affiliation(s)
- Xing Peng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhikang Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yuting Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Wenqi Li
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Minxian Dai
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Jinsai Shang
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
3
|
Roldan L, Montoya C, Solanki V, Cai KQ, Yang M, Correa S, Orrego S. A Novel Injectable Piezoelectric Hydrogel for Periodontal Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43441-43454. [PMID: 37672788 DOI: 10.1021/acsami.3c08336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Periodontal disease is a multifactorial, bacterially induced inflammatory condition characterized by the progressive destruction of periodontal tissues. The successful nonsurgical treatment of periodontitis requires multifunctional technologies offering antibacterial therapies and promotion of bone regeneration simultaneously. For the first time, in this study, an injectable piezoelectric hydrogel (PiezoGEL) was developed after combining gelatin methacryloyl (GelMA) with biocompatible piezoelectric fillers of barium titanate (BTO) that produce electrical charges when stimulated by biomechanical vibrations (e.g., mastication, movements). We harnessed the benefits of hydrogels (injectable, light curable, conforms to pocket spaces, biocompatible) with the bioactive effects of piezoelectric charges. A thorough biomaterial characterization confirmed piezoelectric fillers' successful integration with the hydrogel, photopolymerizability, injectability for clinical use, and electrical charge generation to enable bioactive effects (antibacterial and bone tissue regeneration). PiezoGEL showed significant reductions in pathogenic biofilm biomass (∼41%), metabolic activity (∼75%), and the number of viable cells (∼2-3 log) compared to hydrogels without BTO fillers in vitro. Molecular analysis related the antibacterial effects to be associated with reduced cell adhesion (downregulation of porP and fimA) and increased oxidative stress (upregulation of oxyR) genes. Moreover, PiezoGEL significantly enhanced bone marrow stem cell (BMSC) viability and osteogenic differentiation by upregulating RUNX2, COL1A1, and ALP. In vivo, PiezoGEL effectively reduced periodontal inflammation and increased bone tissue regeneration compared to control groups in a mice model. Findings from this study suggest PiezoGEL to be a promising and novel therapeutic candidate for the treatment of periodontal disease nonsurgically.
Collapse
Affiliation(s)
- Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Varun Solanki
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Santiago Correa
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Department, College of Engineering, Temple University. Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
4
|
Kornsuthisopon C, Tompkins KA, Osathanon T. Tideglusib enhances odontogenic differentiation in human dental pulp stem cells in vitro. Int Endod J 2023; 56:369-384. [PMID: 36458950 DOI: 10.1111/iej.13877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
AIM Tideglusib is a small molecule agonist of the canonical Wnt pathway. The present study investigated the influence of Tideglusib on human dental pulp stem cell (hDPSC) proliferation, apoptosis, migration and odonto/osteogenic differentiation. METHODOLOGY hDPSCs were treated with 50, 100 nM or 200 nM Tideglusib. β-catenin accumulation was detected by immunofluorescence staining. Colony-forming unit ability was assessed by staining with Coomassie blue. Cell cycle progression and cell apoptosis were investigated using flow cytometry. Cell migration was examined using an in vitro wound-healing assay. Osteogenic differentiation was examined using alkaline phosphatase (ALP) staining, alizarin red S staining and osteogenic-related gene expression. The gene expression profile was examined using a high-throughput RNA sequencing technique. All experiments were repeated using cells derived from at least four different donors (n = 4). The Mann-Whitney U-test was used to identify significant differences between two independent group comparisons. For three or more group comparisons, statistical differences were assessed using the Kruskal-Wallis test followed by pairwise comparison. The significance level was set at 5% (p < .05). RESULTS Tideglusib activated the Wnt signalling pathway in hDPSCs as demonstrated by an increase in cytoplasmic β-catenin accumulation and nuclear translocation. Tideglusib did not affect hDPSC proliferation, cell cycle progression, cell apoptosis or cell migration. In contrast, 50 and 100 nM Tideglusib significantly enhanced mineralization and osteogenic marker gene expression (RUNX2, ALP, BMP2 and DSPP; p < .05). CONCLUSIONS Tideglusib enhanced the odonto/osteogenic differentiation of hDPSCs. Therefore, incorporating this bioactive molecule in a pulp-capping material could be a promising strategy to promote dentine repair.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Kevin A Tompkins
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
6-Bromoindirubin-3′-Oxime Regulates Colony Formation, Apoptosis, and Odonto/Osteogenic Differentiation in Human Dental Pulp Stem Cells. Int J Mol Sci 2022; 23:ijms23158676. [PMID: 35955809 PMCID: PMC9368902 DOI: 10.3390/ijms23158676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
6-bromoindirubin-3′-oxime (BIO) is a candidate small molecule that effectively modulates Wnt signalling owing to its stable property. The present study investigated the influence of BIO on the odonto/osteogenic differentiation of human dental pulp stem cells (hDPSCs). hDPSCs were treated with 200, 400, or 800 nM BIO, and the effects on hDPSC responses and osteogenic differentiation were assessed. BIO-mediated Wnt activation was confirmed by β-catenin nuclear translocation detected by immunofluorescence staining. BIO attenuated colony formation and cell migration determined by in vitro wound-healing assay. BIO increased early apoptotic cell population evaluated using flow cytometry. For osteogenic induction, BIO promoted alkaline phosphatase (ALP) activity and mineralisation in a dose-dependent manner. ALP, RUNX2, OCN, OSX, ANKH, DMP1, and DSPP mRNA expression were significantly upregulated. The OPG/RANKL expression ratio was also increased. Further, BIO attenuated adipogenic differentiation as demonstrated by decreased lipid accumulation and adipogenic-related gene expression. Bioinformatic analysis of RNA sequencing data from the BIO-treated hDPSCs revealed that BIO modulated pathways related to autophagy and actin cytoskeleton regulation. These findings demonstrated that BIO treatment promoted hDPSC osteogenic differentiation. Therefore, this small molecule is a strong candidate as a bioactive molecule to enhance dentin repair.
Collapse
|
6
|
Rezaei M, Davani F, Alishahi M, Masjedi F. Updates in immunocompatibility of biomaterials: applications for regenerative medicine. Expert Rev Med Devices 2022; 19:353-367. [PMID: 35531761 DOI: 10.1080/17434440.2022.2075730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Biomaterials, either metallic, ceramic, or polymeric, can be used in medicine as a part of the implants, dialysis membranes, bone scaffolds, or components of artificial organs. Polymeric biomaterials cover a vast range of biomedical applications. The biocompatibility and immunocompatibility of polymeric materials are of fundamental importance for their possible therapeutic uses, as the immune system can intervene in the materials' performance. Therefore, based on application, different routes can be utilized for immunoregulation. AREAS COVERED As different biomaterials can be modulated by different strategies, this study aims to summarize and evaluate the available methods for the immunocompatibility enhancement of more common polymeric biomaterials based on their nature. Different strategies such as surface modification, physical characterization, and drug incorporation are investigated for the immunomodulation of nanoparticles, hydrogels, sponges, and nanofibers. EXPERT OPINION Recently, strategies for triggering appropriate immune responses by functional biomaterials have been highlighted. As most strategies correspond to the physical and surface properties of biomaterials, specific modulation can be conducted for each biomaterial system. Besides, different applications require different modulations of the immune system. In the future, the selection of novel materials and immune regulators can play a role in tuning the immune system for regenerative medicine.
Collapse
Affiliation(s)
- Mahdi Rezaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farideh Davani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Alishahi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Widholz B, Westhauser F. Biomaterials for angiogenesis applications in an orthopedic context. BIOMATERIALS FOR VASCULOGENESIS AND ANGIOGENESIS 2022:415-438. [DOI: 10.1016/b978-0-12-821867-9.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Liu Y, Cheng W, Zhao Y, Gao L, Chang Y, Tong Z, Li H, Jing J. Cyclic Mechanical Strain Regulates Osteoblastic Differentiation of Mesenchymal Stem Cells on TiO 2 Nanotubes Through GCN5 and Wnt/β-Catenin. Front Bioeng Biotechnol 2021; 9:735949. [PMID: 34869255 PMCID: PMC8634263 DOI: 10.3389/fbioe.2021.735949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/30/2021] [Indexed: 02/03/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) play a critical role in bone formation and are extremely sensitive to external mechanical stimuli. Mechanical signals can regulate the biological behavior of cells on the surface of titanium-related prostheses and inducing osteogenic differentiation of BMSCs, which provides the integration of host bone and prosthesis benefits. But the mechanism is still unclear. In this study, BMSCs planted on the surface of TiO2 nanotubes were subjected to cyclic mechanical stress, and the related mechanisms were explored. The results of alkaline phosphatase staining, real-time PCR, and Western blot showed that cyclic mechanical stress can regulate the expression level of osteogenic differentiation markers in BMSCs on the surface of TiO2 nanotubes through Wnt/β-catenin. As an important member of the histone acetyltransferase family, GCN5 exerted regulatory effects on receiving mechanical signals. The results of the ChIP assay indicated that GCN5 could activate the Wnt promoter region. Hence, we concluded that the osteogenic differentiation ability of BMSCs on the surface of TiO2 nanotubes was enhanced under the stimulation of cyclic mechanical stress, and GCN5 mediated this process through Wnt/β-catenin.
Collapse
Affiliation(s)
- Yanchang Liu
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wendan Cheng
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yao Zhao
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Liang Gao
- Sino Euro Orthopaedics Network, Berlin, Germany
| | - Yongyun Chang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhicheng Tong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiwu Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juehua Jing
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Zhou Q, Ren X, Oberoi MK, Bedar M, Caprini RM, Dewey MJ, Kolliopoulos V, Yamaguchi DT, Harley BA, Lee JC. β-Catenin Limits Osteogenesis on Regenerative Materials in a Stiffness-Dependent Manner. Adv Healthc Mater 2021; 10:e2101467. [PMID: 34585526 PMCID: PMC8665088 DOI: 10.1002/adhm.202101467] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Indexed: 12/30/2022]
Abstract
Targeted refinement of regenerative materials requires mechanistic understanding of cell-material interactions. The nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) scaffold is shown to promote skull regeneration in vivo without additive exogenous growth factors or progenitor cells, suggesting potential for clinical translation. This work evaluates modulation of MC-GAG stiffness on canonical Wnt (cWnt) signaling. Primary human bone marrow-derived mesenchymal stem cells (hMSCs) are differentiated on two MC-GAG scaffolds (noncrosslinked, NX-MC, 0.3 kPa vs conventionally crosslinked, MC, 3.9 kPa). hMSCs increase expression of activated β-catenin, the major cWnt intracellular mediator, and the mechanosensitive YAP protein with near complete subcellular colocalization on stiffer MC scaffolds. Overall Wnt pathway inhibition reduces activated β-catenin and osteogenic differentiation, while elevating BMP4 and phosphorylated Smad1/5 (p-Smad1/5) expression on MC, but not NX-MC. Unlike Wnt pathway downregulation, isolated canonical Wnt inhibition with β-catenin knockdown increases osteogenic differentiation and mineralization specifically on the stiffer MC. β-catenin knockdown also increases p-Smad1/5, Runx2, and BMP4 expression only on the stiffer MC material. Thus, while stiffness-induced activation of the Wnt and mechanotransduction pathways promotes osteogenesis on MC-GAG, activated β-catenin is a limiting agent and may serve as a useful target or readout for optimal modulation of stiffness in skeletal regenerative materials.
Collapse
Affiliation(s)
- Qi Zhou
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Xiaoyan Ren
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Michelle K. Oberoi
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Meiwand Bedar
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Rachel M. Caprini
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Marley J. Dewey
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Justine C. Lee
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| |
Collapse
|
10
|
Song D, Wu ZS, Xu Q, Wang K, Xu MT, Ha CZ, Zhang C, Wang DW. LRRC17 regulates the bone metabolism of human bone marrow mesenchymal stem cells from patients with idiopathic necrosis of femoral head through Wnt signaling pathways: A preliminary report. Exp Ther Med 2021; 22:666. [PMID: 33986831 PMCID: PMC8112125 DOI: 10.3892/etm.2021.10098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 11/06/2022] Open
Abstract
Idiopathic necrosis of the femoral head (INFH) is a common disease with unknown cause. Its successful treatment relies on the repair of the necrotic bone. The application of autologous mesenchymal stem cells (MSCs) has shown great promise in saving the patients from undergoing total hip arthroplasty. Leucine-rich repeat-containing 17 (LRRC17) is less expressed in patients with femoral head necrosis and LRRC17 can inhibit bone degradation. However, it remains unknown whether LRRC17 plays a role in the pathogenesis of INFH. The present study aimed to investigate the potential role and mechanism of LRRC17 in the pathogenesis and treatment of INFH. It was found that despite the similar cell morphology and MSC surface marker expressions of human bone marrow MSCs (BMSCs) isolated from patients with INFH (INFH-hBMSC) and femoral neck fracture (FNF) (FNF-hBMSC), INFH-hBMSC had higher percentage of apoptosis (P<0.05), as well as lower osteogenic potential and higher adipogenic potential (both P<0.05). However, there was no difference in cell proliferation between FNF-hBMSC and INFH-hBMSC (P>0.05). It was also confirmed that the expression of LRRC17 was lower in the bone tissue and hBMSCs from patients with INFH compared with patients with FNF (P<0.05). Overexpression of LRRC17 promoted osteogenesis and inhibited the adipogenesis in hBMSCs, accompanied with the increase of Wnt3a and β-catenin expressions, and the decrease of Wnt5a and receptor activator of nuclear factor κ-B ligand (Rankl) expressions (all, P<0.05). Furthermore, knockout of LRRC17 in hBMSCs inhibited the expression levels of osteogenic and promoted adipogenic markers, while decreasing Wnt3a and β-catenin expressions, and increasing Wnt5a and Rankl expressions (all, P<0.05). The present preliminary study suggested that imbalanced bone metabolism may be involved in the pathogenesis of INFH. The modulation of the LRRC17 gene may delay or even restore the balance of osteogenic and adipogenic differentiation in autologous BMSCs derived from patients with INFH, providing a new target for the treatment of INFH.
Collapse
Affiliation(s)
- Da Song
- Department of Orthopedics, Liaocheng People's Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng, Shandong 252000, P.R. China.,Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Zhen-Song Wu
- Department of Joint Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| | - Qi Xu
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Kai Wang
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Ming-Tao Xu
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Cheng-Zhi Ha
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Chao Zhang
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Da-Wei Wang
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
11
|
He HP, Gu S. The PPAR-γ/SFRP5/Wnt/β-catenin signal axis regulates the dexamethasone-induced osteoporosis. Cytokine 2021; 143:155488. [PMID: 33814272 DOI: 10.1016/j.cyto.2021.155488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The inhibition of glucocorticoid (GC) on osteoblastic differentiation of bone marrow stromal stem cells (BMSC) is an important pathway for GC to reduce bone formation. Recent studies implicated an important role of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in GC-mediated cell proliferation and differentiation. Thus, our purpose is to investigate the role of PPAR-γ in regulating rat BMSC (rBMSC) osteoblastic differentiation. METHODS The rBMSC treated with dexamethasone (Dex) was used to construct an in vitro cell model of GC-induced osteoporosis. The expressions of PPAR-γ, RUNX2, ALP, OPN and SFRP5 in cells were detected by RT-qPCR and western blot assays. Osteogenic differentiation of rBMSC was measured by Alizarin Red S (ARS) staining analysis. Lentivirus-delivered shRNA was used to knock down PPAR-γ or SFRP5, and lentivirus-delivered constructs were used to overexpress SFRP5 in rBMSC to verify the effect of PPAR-γ or SFRP5 on cell osteogenic differentiation. RESULTS Dex significantly reduced rBMSC osteoblastic differentiation. The expression of PPAR-γ was enhanced in Dex treated rBMSC. PPAR-γ down-regulation improved Dex inhibition of rBMSC osteogenic differentiation. Moreover, PPAR-γ knockdown promoted protein levels of RUNX2, ALP, OPN and Dex-decreased rBMSC osteogenic differentiation. The expression of SFRP5 was reduced while Wnt and β-catenin were increased in PPAR-γ knockdown and Dex treated rBMSC. Moreover, the up-regulation of SFRP5 reversed the osteogenic differentiation of rBMSC induced by PPAR-γ knockdown. CONCLUSION These data indicated that in GC-induced osteoporosis, PPAR-γ/SFRP5 affects osteogenic differentiation by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hai-Peng He
- Shenzhen Institute of ENT & Longgang ENT Hospital, Shenzhen 518172, China
| | - Shan Gu
- Shenzhen Institute of ENT & Longgang ENT Hospital, Shenzhen 518172, China.
| |
Collapse
|
12
|
Okuchi Y, Reeves J, Ng SS, Doro DH, Junyent S, Liu KJ, El Haj AJ, Habib SJ. Wnt-modified materials mediate asymmetric stem cell division to direct human osteogenic tissue formation for bone repair. NATURE MATERIALS 2021; 20:108-118. [PMID: 32958876 DOI: 10.1038/s41563-020-0786-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The maintenance of human skeletal stem cells (hSSCs) and their progeny in bone defects is a major challenge. Here, we report on a transplantable bandage containing a three-dimensional Wnt-induced osteogenic tissue model (WIOTM). This bandage facilitates the long-term viability of hSSCs (8 weeks) and their progeny, and enables bone repair in an in vivo mouse model of critical-sized calvarial defects. The newly forming bone is structurally comparable to mature cortical bone and consists of human and murine cells. Furthermore, we show that the mechanism of WIOTM formation is governed by Wnt-mediated asymmetric cell division of hSSCs. Covalently immobilizing Wnts onto synthetic materials can polarize single dividing hSSCs, orient the spindle and simultaneously generate a Wnt-proximal hSSC and a differentiation-prone Wnt-distal cell. Our results provide insight into the regulation of human osteogenesis and represent a promising approach to deliver human osteogenic constructs that can survive in vivo and contribute to bone repair.
Collapse
Affiliation(s)
- Yoshihisa Okuchi
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Joshua Reeves
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Soon Seng Ng
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Daniel H Doro
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Alicia J El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.
| |
Collapse
|
13
|
Shen S, Zhang Y, Zhang S, Wang B, Shang L, Shao J, Lin M, Cui Y, Sun S, Ge S. 6-Bromoindirubin-3'-oxime Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells and Facilitates Bone Regeneration in a Mouse Periodontitis Model. ACS Biomater Sci Eng 2020; 7:232-241. [PMID: 33320531 DOI: 10.1021/acsbiomaterials.0c01078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effective bone tissue engineering is important to overcome the unmet clinical challenges of periodontal tissue regeneration. Successful bone tissue engineering comprises three key factors: stem cells, growth factors, and scaffolds. 6-Bromoindirubin-3'-oxime (BIO) is an inhibitor of glycogen synthase kinase-3 (GSK-3) that can activate the Wnt signaling pathway by enhancing β-catenin activity. In this study, the effects of BIO on the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs) were investigated. Poly(lactic-co-glycolic acid) (PLGA) and hyaluronic acid (HA) emerged as promising biomaterials; thus, we developed a novel HA hydrogel embedded with BIO-encapsulated PLGA microspheres and injected the formulation into the gingival sulcus of mice with experimental periodontitis. The release speed of this system was fast in the first week and followed a sustained release phase until week 4. In vivo experiments showed that this PLGA-BIO-HA hydrogel system can inhibit periodontal inflammation, promote bone regeneration, and induce the expression of bone-forming markers alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN) in a mouse periodontitis model. Therefore, this PLGA-BIO-HA hydrogel system provides a promising therapeutic strategy for periodontal bone regeneration.
Collapse
Affiliation(s)
- Song Shen
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Yilin Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, China
| | - Songmei Zhang
- Eastman Institute for Oral Health, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, 14642 New York, United States
| | - Bing Wang
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Lingling Shang
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Jinlong Shao
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Meng Lin
- School of Chemistry and Chemical Engineering, Shandong University, 250012 Jinan, Shandong, China
| | - Yating Cui
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Shengjun Sun
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| | - Shaohua Ge
- Department of Periodontology & Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, 250012 Jinan, Shandong, China
| |
Collapse
|
14
|
Almoshari Y, Ren R, Zhang H, Jia Z, Wei X, Chen N, Li G, Ryu S, Lele SM, Reinhardt RA, Wang D. GSK3 inhibitor-loaded osteotropic Pluronic hydrogel effectively mitigates periodontal tissue damage associated with experimental periodontitis. Biomaterials 2020; 261:120293. [PMID: 32877763 DOI: 10.1016/j.biomaterials.2020.120293] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/16/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Periodontitis is a chronic inflammatory disease caused by complex interactions between the host immune system and pathogens that affect the integrity of periodontium. To prevent disease progression and thus preserve alveolar bone structure, simultaneous anti-inflammatory and osteogenic intervention are essential. Hence, a glycogen synthase kinase 3 beta inhibitor (BIO) was selected as a potent inflammation modulator and osteogenic agent to achieve this treatment objective. BIO's lack of osteotropicity, poor water solubility, and potential long-term systemic side effects, however, have hampered its clinical applications. To address these limitations, pyrophosphorylated Pluronic F127 (F127-PPi) was synthesized and mixed with regular F127 to prepare an injectable and thermoresponsive hydrogel formulation (PF127) of BIO, which could adhere to hard tissue and gradually release BIO to exert its therapeutic effects locally. Comparing to F127 hydrogel, PF127 hydrogels exhibited stronger binding to hydroxyapatite (HA). Additionally, BIO's solubility in PF127 solution was dramatically improved over F127 solution and the improvement was proportional to the polymer concentration. When evaluated on a rat model of periodontitis, PF127-BIO hydrogel treatment was found to be very effective in preserving alveolar bone and ligament, and preventing periodontal inflammation, as shown by the micro-CT and histological data, respectively. Altogether, these findings suggested that the thermoresponsive PF127 hydrogel is an effective local drug delivery system for better clinical management of periodontitis and associated pathologies.
Collapse
Affiliation(s)
- Yosif Almoshari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Rongguo Ren
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Haipeng Zhang
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ningrong Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Guojuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sangjin Ryu
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, NE, 68588, USA
| | - Subodh M Lele
- Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Richard A Reinhardt
- Department of Surgical Specialties, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
15
|
Mondragón E, Cowdin M, Taraballi F, Minardi S, Tasciotti E, Gregory CA, Kaunas R. Mimicking the Organic and Inorganic Composition of Anabolic Bone Enhances Human Mesenchymal Stem Cell Osteoinduction and Scaffold Mechanical Properties. Front Bioeng Biotechnol 2020; 8:753. [PMID: 32719790 PMCID: PMC7347795 DOI: 10.3389/fbioe.2020.00753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Engineered bone graft designs have been largely inspired by adult bone despite functionally significant differences from the composition of anabolic bone in both the mineralized and non-mineralized fractions. Specifically, anabolic bone contains hydroxyapatite with ionic substitutions that facilitate bone turnover and relatively rare collagens type VI and XII that are important for normal bone development. In this work, human mesenchymal stem cells (hMSCs) were cultured in lyophilized collagen type I scaffolds mineralized with hydroxyapatite containing Mg2+ substitutions, then induced to deposit an extracellular matrix (ECM) containing collagens VI and XII by exposure to GW9662, a PPARγ inhibitor. Delivery of GW9662 was accomplished through either Supplemented Media or via composite microspheres embedded in the scaffolds for localized delivery. Furthermore, hMSCs and scaffolds were cultured in both static and perfuse conditions to investigate the interaction between GW9662 treatment and perfusion and their effects on ECM deposition trends. Perfusion culture enhanced cell infiltration into the scaffold, deposition of collagen VI and XII, as well as osteogenic differentiation, as determined by gene expression of osteopontin, BMP2, and ALP. Furthermore, scaffold mineral density and compressive modulus were increased in response to both GW9662 treatment and perfusion after 3 weeks of culture. Local delivery of GW9662 with drug-eluting microspheres had comparable effects to systemic delivery in the perfusate. Together, these results demonstrate a strategy to create a scaffold mimicking both organic and inorganic characteristics of anabolic bone and its potential as a bone graft.
Collapse
Affiliation(s)
- Eli Mondragón
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Mitzy Cowdin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist, Houston, TX, United States
| | - Silvia Minardi
- Center for Musculoskeletal Regeneration, Houston Methodist, Houston, TX, United States
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist, Houston, TX, United States
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
16
|
McNeill EP, Zeitouni S, Pan S, Haskell A, Cesarek M, Tahan D, Clough BH, Krause U, Dobson LK, Garcia M, Kung C, Zhao Q, Saunders WB, Liu F, Kaunas R, Gregory CA. Characterization of a pluripotent stem cell-derived matrix with powerful osteoregenerative capabilities. Nat Commun 2020; 11:3025. [PMID: 32541821 PMCID: PMC7295745 DOI: 10.1038/s41467-020-16646-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately 10% of fractures will not heal without intervention. Current treatments can be marginally effective, costly, and some have adverse effects. A safe and manufacturable mimic of anabolic bone is the primary goal of bone engineering, but achieving this is challenging. Mesenchymal stem cells (MSCs), are excellent candidates for engineering bone, but lack reproducibility due to donor source and culture methodology. The need for a bioactive attachment substrate also hinders progress. Herein, we describe a highly osteogenic MSC line generated from induced pluripotent stem cells that generates high yields of an osteogenic cell-matrix (ihOCM) in vitro. In mice, the intrinsic osteogenic activity of ihOCM surpasses bone morphogenic protein 2 (BMP2) driving healing of calvarial defects in 4 weeks by a mechanism mediated in part by collagen VI and XII. We propose that ihOCM may represent an effective replacement for autograft and BMP products used commonly in bone tissue engineering. Production of a safe and manufacturable material to mimic anabolic bone for tissue engineering has been hard to achieve to date. Here the authors use a mesenchymal stem cell line generated from induced pluripotent stem cells to produce osteogenic cell-matrix, displaying significant healing properties in mice.
Collapse
Affiliation(s)
- Eoin P McNeill
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Suzanne Zeitouni
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Simin Pan
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Andrew Haskell
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Michael Cesarek
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Daniel Tahan
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Bret H Clough
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Ulf Krause
- Institute for Transfusion Medicine and Cellular Medicine, University Hospital Muenster, Muenster, Germany
| | - Lauren K Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Mayra Garcia
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Christopher Kung
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Qingguo Zhao
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - W Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Fei Liu
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
17
|
Xin S, Gregory CA, Alge DL. Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels. Acta Biomater 2020; 101:227-236. [PMID: 31711899 PMCID: PMC6960331 DOI: 10.1016/j.actbio.2019.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
Microporous annealed particle (MAP) hydrogels are promising materials for delivering therapeutic cells. It has previously been shown that spreading and mechanosensing activation of human mesenchymal stem cells (hMSCs) incorporated in these materials can be modulated by tuning the modulus of the microgel particle building blocks. However, the effects of degradability and functionalization with different integrin-binding peptides on cellular responses has not been explored. In this work, RGDS functionalized and enzymatically degradable poly(ethylene glycol) (PEG) microgels were annealed into MAP hydrogels via thiol-ene click chemistry and photopolymerization. During cell-mediated degradation, the microgel surfaces were remodeled to wrinkles or ridges, but the scaffold integrity was maintained. Moreover, cell spreading, proliferation, and secretion of extracellular matrix proteins were significantly enhanced in faster matrix metalloproteinase degrading (KCGPQGIWGQCK) MAP hydrogels compared to non-degradable controls after 8 days of culture. We subsequently evaluated paracrine activity by hMSCs seeded in the MAP hydrogels functionalized with either RGDS or c(RRETAWA), which is specific for α5β1 integrins, and evaluated the interplay between degradability and integrin-mediated signaling. Importantly, c(RRETAWA) functionalization upregulated secretion of bone morphogenetic protein-2 overall and on a per cell basis, but this effect was critically dependent on microgel degradability. In contrast, RGDS functionalization led to higher overall vascular endothelial growth factor secretion in degradable scaffolds due to the high cell number. These results demonstrate that integrin-binding peptides can modulate hMSC behavior in PEG-based MAP hydrogels, but the results strongly depend on the susceptibility of the microgel building blocks to cell-mediated matrix remodeling. This relationship should be considered in future studies aiming to further develop these materials for stem cell delivery and tissue engineering applications. STATEMENT OF SIGNIFICANCE: Microporous annealed particle (MAP) hydrogels are attracting increasing interest for tissue repair and regeneration and have shown superior results compared to conventional hydrogels in multiple applications. Here, we studied the impact of MAP hydrogel degradability and functionalization with different integrin-binding peptides on human mesenchymal stem cells (hMSCs) that were incorporated during particle annealing. Degradability was found to improve cell growth, spreading, and extracellular matrix production regardless of the integrin-binding peptide. Moreover, in degradable MAP hydrogels the integrin-binding peptide c(RRETAWA) was found to increase osteogenic protein expression by hMSCs compared to RGDS-functionalized MAP hydrogels. These results have important implications for the development of a MAP hydrogel-based hMSC delivery system for bone tissue engineering.
Collapse
Affiliation(s)
- Shangjing Xin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843 USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine Texas A&M Health Science Center, College Station, TX, 77807 USA
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843 USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843 USA.
| |
Collapse
|
18
|
Abstract
Bone is a composite material consisting primarily of cells, extracellular matrices, accessory proteins and the complex calcium phosphate salt hydroxyapatite. Collectively, the extracellular network of proteins and accessory molecules that provide the organic component of bone tissue is referred to as the osteogenic extracellular matrix (OECM). OECM provides tensile strength and increases the durability of bone, but the OECM also serves as an attachment site and regulatory substrate for cells and a repository for growth factors and cytokines. Increasingly, purified OECM generated by osteogenic cells in culture has attracted interest because it has the capacity to improve the growth and viability of attached cells, enhances the osteogenic program in vitro and in vivo, and shows great promise as a therapeutic tool for orthopedic tissue engineering. This chapter will describe fundamental protocols for the selection and culture of osteogenic cells and conditions for their osteogenic differentiation, and the synthesis, purification and characterization of OECM. Some examples of immobilization to surfaces for the purpose of two- and three-dimensional culture will also be described.
Collapse
Affiliation(s)
- Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, United States.
| | - Eoin P McNeill
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Simin Pan
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, United States
| |
Collapse
|
19
|
García‐García P, Ruiz M, Reyes R, Delgado A, Évora C, Riancho JA, Rodríguez‐Rey JC, Pérez‐Campo FM. Smurf1 Silencing Using a LNA-ASOs/Lipid Nanoparticle System to Promote Bone Regeneration. Stem Cells Transl Med 2019; 8:1306-1317. [PMID: 31631568 PMCID: PMC6877774 DOI: 10.1002/sctm.19-0145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
Despite the great advance of bone tissue engineering in the last few years, repair of bone defects remains a major problem. Low cell engraftment and dose-dependent side effects linked to the concomitant administration of bone morphogenetic proteins (BMPs) are the main problems currently hindering the clinical use of mesenchymal stem cell (MSC)-based therapies in this field. We have managed to bypass these drawbacks by combining the silencing the Smurf1 ubiquitin ligase in MSCs with the use of a scaffold that sustainably releases low doses of BMP-2. In this system, Smurf1 silencing is achieved by using GapmeRs, a clinically safe method that avoids the use of viral vectors, facilitating its translation to the clinic. Here, we show that a single transient transfection with a small quantity of a Smurf1-specific GapmeR is able to induce a significant level of silencing of the target gene, enough to prime MSCs for osteogenic differentiation. Smurf1 silencing highly increases MSCs responsiveness to BMP-2, allowing a dramatic reduction of the dose needed to achieve the desired therapeutic effect. The combination of these primed cells with alginate scaffolds designed to sustainably and locally release low doses of BMP-2 to the defect microenvironment is able to induce the formation of a mature bone matrix both in an osteoporotic rat calvaria system and in a mouse ectopic model. Importantly, this approach also enhances osteogenic differentiation in MSCs from osteoporotic patients, characterized by a reduced bone-forming potential, even at low BMP doses, underscoring the regenerative potential of this system. Stem Cells Translational Medicine 2019;8:1306&1317.
Collapse
Affiliation(s)
- Patricia García‐García
- Department of Chemical Engineering and Pharmaceutical TechnologyInstitute of Biomedical Technologies (ITB), University of La LagunaLa LagunaSpain
| | - Mario Ruiz
- Department of Molecular Biology, Faculty of MedicineUniversity of Cantabria, IDIVALSantanderSpain
| | - Ricardo Reyes
- Department of Biochemistry, Microbiology, Cellular Biology and GeneticsInstitute of Biomedical Technologies (ITB), University of La LagunaLa LagunaSpain
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical TechnologyInstitute of Biomedical Technologies (ITB), University of La LagunaLa LagunaSpain
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical TechnologyInstitute of Biomedical Technologies (ITB), University of La LagunaLa LagunaSpain
| | - José Antonio Riancho
- Department of Internal Medicine, Hospital U M ValdecillaUniversity of Cantabria, IDIVALSantanderSpain
| | | | - Flor María Pérez‐Campo
- Department of Molecular Biology, Faculty of MedicineUniversity of Cantabria, IDIVALSantanderSpain
| |
Collapse
|
20
|
Sumida R, Maeda T, Kawahara I, Yusa J, Kato Y. Platelet-rich fibrin increases the osteoprotegerin/receptor activator of nuclear factor-κB ligand ratio in osteoblasts. Exp Ther Med 2019; 18:358-365. [PMID: 31258673 PMCID: PMC6566034 DOI: 10.3892/etm.2019.7560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Platelet-rich fibrin (PRF) is a platelet concentrate derived from complete autologous blood rich in growth factors in the fibrin matrix. Although PRF has been used during oral surgery to optimize wound healing in soft and hard tissue, the precise role of PRF in bone healing remains unclear. The present study assessed the role of PRF in bone remodeling. PRF was prepared from whole blood by low speed centrifugation without any anti-coagulants. Culture of MC3T3-E1 cells with PRF induced the expression of osteoprotegerin (OPG), but had no effect on the expression of receptor activator of nuclear factor-κB ligand (RANKL), increasing the OPG/RANKL ratio. Expression of other osteoblastic differentiation makers, including BMP-2 and −4 and RUNX2, was not affected. PRF filling of a hole defect in the mental foramen bone of rats increased OPG positivity and decreased tartrate-resistant acid phosphatase positivity compared with unfilled control. In conclusion, PRF increased the OPG/RANKL ratio by inducing OPG expression, suggesting that PRF enhances early stage osteogenesis by optimizing osteoblastic differentiation. The present study provides a scientific basis for clinical findings showing that PRF can enhance bone regeneration such as sinus lift.
Collapse
Affiliation(s)
- Ryuta Sumida
- Department of Oral and Maxillofacial Surgery, Ohu University School of Dentistry, Koriyama, Fukushima 963-8611, Japan
| | - Toyonobu Maeda
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama, Fukushima 963-8611, Japan
| | - Ichiro Kawahara
- Department of Oral and Maxillofacial Surgery, Ohu University School of Dentistry, Koriyama, Fukushima 963-8611, Japan
| | - Junko Yusa
- Department of Oral Medical Sciences, Ohu University School of Dentistry, Koriyama, Fukushima 963-8611, Japan
| | - Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|
21
|
Bae HK, Jung BD, Lee S, Park CK, Yang BK, Cheong HT. Correlation of spontaneous adipocyte generation with osteogenic differentiation of porcine skin-derived stem cells. J Vet Sci 2019; 20:16-26. [PMID: 30481989 PMCID: PMC6351758 DOI: 10.4142/jvs.2019.20.1.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/18/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to examine effects of spontaneous adipocyte generation on osteogenic differentiation of porcine skin-derived stem cells (pSSCs). Correlation between osteogenic differentiation and adipocyte differentiation induced by osteocyte induction culture was determined using different cell lines. Osteogenic differentiation efficiency of pSSCs was then analyzed by controlling the expression of adipocyte-specific transcription factors during osteogenic induction culture. Among four cell lines, pSSCs-II had the lowest lipid droplet level but the highest calcium content (p < 0.05). It also expressed significantly low levels of peroxisome proliferator-activated receptor gamma 2 (PPARγ2) and adipocyte protein 2 (aP2) mRNAs but very high levels of runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) mRNAs as osteogenic makers (p < 0.05). Oil red O extraction was increased by 0.1 µM troglitazone (TGZ) treatment but decreased by 50 µM bisphenol A diglycidyl ether (BADGE) (p < 0.05). Calcium content was drastically increased after BADGE treatment compared to that in osteogenic induction control and TGZ-treated pSSCs (p < 0.05). Relative expression levels of PPARγ2 and aP2 mRNAs were increased by TGZ but decreased by BADGE. Expression levels of Rucx2 and ALP mRNAs, osteoblast-specific marker genes, were significantly increased by BADGE treatment (p < 0.05). The expression level of BCL2 like 1 was significantly higher in BADGE-treated pSSCs than that in TGZ-treated ones (p < 0.05). The results demonstrate that spontaneous adipocyte generation does not adversely affect osteogenic differentiation. However, reducing spontaneous adipocyte generation by inhibiting PPARγ2 mRNA expression can enhance in vitro osteogenic differentiation of pSSCs.
Collapse
Affiliation(s)
- Hyo-Kyung Bae
- College of Veterinaryy Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Bae-Dong Jung
- College of Veterinaryy Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Choon-Keun Park
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Boo-Keun Yang
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Tae Cheong
- College of Veterinaryy Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
22
|
McNeill EP, Reese RW, Tondon A, Clough BH, Pan S, Froese J, Palmer D, Krause U, Loeb DM, Kaunas R, Gregory CA. Three-dimensional in vitro modeling of malignant bone disease recapitulates experimentally accessible mechanisms of osteoinhibition. Cell Death Dis 2018; 9:1161. [PMID: 30478297 PMCID: PMC6255770 DOI: 10.1038/s41419-018-1203-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
Malignant bone disease (MBD) occurs when tumors establish in bone, causing catastrophic tissue damage as a result of accelerated bone destruction and inhibition of repair. The resultant so-called osteolytic lesions (OL) take the form of tumor-filled cavities in bone that cause pain, fractures, and associated morbidity. Furthermore, the OL microenvironment can support survival of tumor cells and resistance to chemotherapy. Therefore, a deeper understanding of OL formation and MBD progression is imperative for the development of future therapeutic strategies. Herein, we describe a novel in vitro platform to study bone-tumor interactions based on three-dimensional co-culture of osteogenically enhanced human mesenchymal stem cells (OEhMSCs) in a rotating wall vessel bioreactor (RWV) while attached to micro-carrier beads coated with extracellular matrix (ECM) composed of factors found in anabolic bone tissue. Osteoinhibition was recapitulated in this model by co-culturing the OEhMSCs with a bone-tumor cell line (MOSJ-Dkk1) that secretes the canonical Wnt (cWnt) inhibitor Dkk-1, a tumor-borne osteoinhibitory factor widely associated with several forms of MBD, or intact tumor fragments from Dkk-1 positive patient-derived xenografts (PDX). Using the model, we observed that depending on the conditions of growth, tumor cells can biochemically inhibit osteogenesis by disrupting cWnt activity in OEhMSCs, while simultaneously co-engrafting with OEhMSCs, displacing them from the niche, perturbing their activity, and promoting cell death. In the absence of detectable co-engraftment with OEhMSCs, Dkk-1 positive PDX fragments had the capacity to enhance OEhMSC proliferation while inhibiting their osteogenic differentiation. The model described has the capacity to provide new and quantifiable insights into the multiple pathological mechanisms of MBD that are not readily measured using monolayer culture or animal models.
Collapse
Affiliation(s)
- Eoin P McNeill
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77845, USA
| | - Robert W Reese
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Abishek Tondon
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Bret H Clough
- Department of Medical Physiology, Texas A&M Health Science Center, Temple, TX, 76501, USA
| | - Simin Pan
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77845, USA
| | - Jeremiah Froese
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77845, USA
| | - Daniel Palmer
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77845, USA
| | - Ulf Krause
- Institute for Transfusion Medicine and Transplant Immunology, University Hospital Muenster, Muenster, Germany
| | - David M Loeb
- Departments of Pediatrics and Developmental and Molecular Biology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, 3411 Wayne Avenue, Bronx, NY, 10467, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77845, USA.
| |
Collapse
|
23
|
Knight C, James S, Kuntin D, Fox J, Newling K, Hollings S, Pennock R, Genever P. Epidermal growth factor can signal via β-catenin to control proliferation of mesenchymal stem cells independently of canonical Wnt signalling. Cell Signal 2018; 53:256-268. [PMID: 30287279 PMCID: PMC6293317 DOI: 10.1016/j.cellsig.2018.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022]
Abstract
Bone marrow mesenchymal stem/stromal cells (MSCs) maintain bone homeostasis and repair through the ability to expand in response to mitotic stimuli and differentiate into skeletal lineages. Signalling mechanisms that enable precise control of MSC function remain unclear. Here we report that by initially examining differences in signalling pathway expression profiles of individual MSC clones, we identified a previously unrecognised signalling mechanism regulated by epidermal growth factor (EGF) in primary human MSCs. We demonstrate that EGF is able to activate β-catenin, a key component of the canonical Wnt signalling pathway. EGF is able to induce nuclear translocation of β-catenin in human MSCs but does not drive expression of Wnt target genes or T cell factor (TCF) activity in MSC reporter cell lines. Using an efficient Design of Experiments (DoE) statistical analysis, with different combinations and concentrations of EGF and Wnt ligands, we were able to confirm that EGF does not influence the Wnt/β-catenin pathway in MSCs. We show that the effects of EGF on MSCs are temporally regulated to initiate early “classical” EGF signalling mechanisms (e.g via mitogen activated protein kinase) with delayed activation of β-catenin. By RNA-sequencing, we identified gene sets that were exclusively regulated by the EGF/β-catenin pathway, which were distinct from classical EGF-regulated genes. However, subsets of classical EGF gene targets were significantly influenced by EGF/β-catenin activation. These signalling pathways cooperate to enable EGF-mediated proliferation of MSCs by alleviating the suppression of cell cycle pathways induced by classical EGF signalling.
Epidermal growth factor (EGF) controls mesenchymal stem cell (MSC) proliferation. EGF signals through β-catenin in MSCs but not in related fibroblastic cells. Classical EGF and EGF/β-catenin cooperatively regulate distinct gene sets in MSCs. EGF/β-catenin enables MSC proliferation by alleviating cell cycle suppression.
Collapse
Affiliation(s)
- Charlotte Knight
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Sally James
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - David Kuntin
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - James Fox
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Katherine Newling
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Sam Hollings
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Rebecca Pennock
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Paul Genever
- Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
24
|
Li X, Yang J, Bao M, Zeng K, Fu S, Wang C, Ye L. Wnt signaling in bone metastasis: mechanisms and therapeutic opportunities. Life Sci 2018; 208:33-45. [PMID: 29969609 DOI: 10.1016/j.lfs.2018.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 02/05/2023]
Abstract
Bone metastasis frequently occurs in advanced cancer patients, who will develop osteogenic/osteolytic bone lesions in the late stage of the disease. Wnt signaling pathway, which is mainly grouped into the β-catenin dependent pathway and β-catenin independent pathway, is a well-organized cascade that has been reported to play important roles in a variety of physiological and pathological conditions, including bone metastasis. Regulation of Wnt signaling in bone metastasis involves multiple stages, including dissemination of primary tumor cells to bone, dormancy and outgrowth of metastatic tumor cells, and tumor-induced osteogenic and osteolytic bone destruction, suggesting the importance of Wnt signaling in bone metastasis pathology. In this review, we will introduce the involvement of Wnt signaling components in specific bone metastasis stages and summarize the promising Wnt modulators that have shown potential as bone metastasis therapeutics, in the hope to maximize the therapeutic opportunities of Wnt signaling for bone metastasis.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minyue Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kan Zeng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shijin Fu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Scarpa E, Janeczek AA, Hailes A, de Andrés MC, De Grazia A, Oreffo RO, Newman TA, Evans ND. Polymersome nanoparticles for delivery of Wnt-activating small molecules. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1267-1277. [PMID: 29555223 DOI: 10.1016/j.nano.2018.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/05/2018] [Accepted: 02/24/2018] [Indexed: 01/02/2023]
Abstract
Spatiotemporal control of drug delivery is important for a number of medical applications and may be achieved using polymersome nanoparticles (PMs). Wnt signalling is a molecular pathway activated in various physiological processes, including bone repair, that requires precise control of activation. Here, we hypothesise that PMs can be stably loaded with a small molecule Wnt agonist, 6-bromoindirubin-3'-oxime (BIO), and activate Wnt signalling promoting the osteogenic differentiation in human primary bone marrow stromal cells (BMSCs). We showed that BIO-PMs induced a 40% increase in Wnt signaling activation in reporter cell lines without cytotoxicity induced by free BIO. BMSCs incubated with BIO-PMs showed a significant up-regulation of the Wnt target gene AXIN2 (14 ± 4 fold increase, P < 0.001) and a prolonged activation of the osteogenic gene RUNX2. We conclude that BIO-PMs could represent an innovative approach for the controlled activation of Wnt signaling for promoting bone regeneration after fracture.
Collapse
Affiliation(s)
- Edoardo Scarpa
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom
| | - Agnieszka A Janeczek
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alethia Hailes
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom
| | - Maria C de Andrés
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Antonio De Grazia
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Richard Oc Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom
| | - Tracey A Newman
- Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Medicine, University of Southampton, Southampton, United Kingdom.
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom; Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, United Kingdom.
| |
Collapse
|
26
|
Ni W, Zeng S, Li W, Chen Y, Zhang S, Tang M, Sun S, Chai R, Li H. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea. Oncotarget 2018; 7:66754-66768. [PMID: 27564256 PMCID: PMC5341835 DOI: 10.18632/oncotarget.11479] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/29/2016] [Indexed: 12/27/2022] Open
Abstract
Hair cell (HC) loss is the main cause of permanent hearing loss in mammals. Previous studies have reported that in neonatal mice cochleae, Wnt activation promotes supporting cell (SC) proliferation and Notch inhibition promotes the trans-differentiation of SCs into HCs. However, Wnt activation alone fails to regenerate significant amounts of new HCs, Notch inhibition alone regenerates the HCs at the cost of exhausting the SC population, which leads to the death of the newly regenerated HCs. Mitotic HC regeneration might preserve the SC number while regenerating the HCs, which could be a better approach for long-term HC regeneration. We present a two-step gene manipulation, Wnt activation followed by Notch inhibition, to accomplish mitotic regeneration of HCs while partially preserving the SC number. We show that Wnt activation followed by Notch inhibition strongly promotes the mitotic regeneration of new HCs in both normal and neomycin-damaged cochleae while partially preserving the SC number. Lineage tracing shows that the majority of the mitotically regenerated HCs are derived specifically from the Lgr5+ progenitors with or without HC damage. Our findings suggest that the co-regulation of Wnt and Notch signaling might provide a better approach to mitotically regenerate HCs from Lgr5+ progenitor cells.
Collapse
Affiliation(s)
- Wenli Ni
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Shan Zeng
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Wenyan Li
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Yan Chen
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of The National Health and Family Planning Commission, Shanghai, PR China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shan Sun
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China.,Key Laboratory of Hearing Medicine of The National Health and Family Planning Commission, Shanghai, PR China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- Otorhinolaryngology Department of The Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China.,Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, PR China
| |
Collapse
|
27
|
Clough BH, Zeitouni S, Krause U, Chaput CD, Cross LM, Gaharwar AK, Gregory CA. Rapid Osteogenic Enhancement of Stem Cells in Human Bone Marrow Using a Glycogen-Synthease-Kinase-3-Beta Inhibitor Improves Osteogenic Efficacy In Vitro and In Vivo. Stem Cells Transl Med 2018; 7:342-353. [PMID: 29405665 PMCID: PMC5866944 DOI: 10.1002/sctm.17-0229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/06/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Non‐union defects of bone are a major problem in orthopedics, especially for patients with a low healing capacity. Fixation devices and osteoconductive materials are used to provide a stable environment for osteogenesis and an osteogenic component such as autologous human bone marrow (hBM) is then used, but robust bone formation is contingent on the healing capacity of the patients. A safe and rapid procedure for improvement of the osteoanabolic properties of hBM is, therefore, sought after in the field of orthopedics, especially if it can be performed within the temporal limitations of the surgical procedure, with minimal manipulation, and at point‐of‐care. One way to achieve this goal is to stimulate canonical Wingless (cWnt) signaling in bone marrow‐resident human mesenchymal stem cells (hMSCs), the presumptive precursors of osteoblasts in bone marrow. Herein, we report that the effects of cWnt stimulation can be achieved by transient (1–2 hours) exposure of osteoprogenitors to the GSK3β‐inhibitor (2′Z,3′E)‐6‐bromoindirubin‐3′‐oxime (BIO) at a concentration of 800 nM. Very‐rapid‐exposure‐to‐BIO (VRE‐BIO) on either hMSCs or whole hBM resulted in the long‐term establishment of an osteogenic phenotype associated with accelerated alkaline phosphatase activity and enhanced transcription of the master regulator of osteogenesis, Runx2. When VRE‐BIO treated hBM was tested in a rat spinal fusion model, VRE‐BIO caused the formation of a denser, stiffer, fusion mass as compared with vehicle treated hBM. Collectively, these data indicate that the VRE‐BIO procedure may represent a rapid, safe, and point‐of‐care strategy for the osteogenic enhancement of autologous hBM for use in clinical orthopedic procedures. stemcellstranslationalmedicine2018;7:342–353
Collapse
Affiliation(s)
- Bret H Clough
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Suzanne Zeitouni
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Ulf Krause
- Institute for Transfusion Medicine and Transplant Immunology, University Hospital Muenster, Muenster, Germany
| | - Christopher D Chaput
- Department of Orthopedic Surgery, Baylor Scott and White Hospital, Temple, Texas, USA
| | - Lauren M Cross
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Material Sciences, College Station, Texas, USA.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
28
|
Tew LS, Ching JY, Ngalim SH, Khung YL. Driving mesenchymal stem cell differentiation from self-assembled monolayers. RSC Adv 2018; 8:6551-6564. [PMID: 35540392 PMCID: PMC9078311 DOI: 10.1039/c7ra12234a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/27/2018] [Indexed: 12/26/2022] Open
Abstract
The utilization of self-assembled monolayer (SAM) systems to direct Mesenchymal Stem Cell (MSC) differentiation has been covered in the literature for years, but finding a general consensus pertaining to its exact role over the differentiation of stem cells had been rather challenging. Although there are numerous reports on surface functional moieties activating and inducing differentiation, the results are often different between reports due to the varying surface conditions, such as topography or surface tension. Herein, in view of the complexity of the subject matter, we have sought to catalogue the recent developments around some of the more common functional groups on predominantly hard surfaces and how these chemical groups may influence the overall outcome of the mesenchymal stem cells (MSC) differentiation so as to better establish a clearer underlying relationship between stem cells and their base substratum interactions. Graphical illustration showing the functional groups that drive MSC differentiation without soluble bioactive cues within the first 14 days.![]()
Collapse
Affiliation(s)
- L. S. Tew
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - J. Y. Ching
- Institute of Biological Science and Technology
- China Medical University
- Taichung
- Republic of China
| | - S. H. Ngalim
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - Y. L. Khung
- Institute of New Drug Development
- China Medical University
- Taichung
- Republic of China
| |
Collapse
|
29
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
30
|
Tension force-induced bone formation in orthodontic tooth movement via modulation of the GSK-3β/β-catenin signaling pathway. J Mol Histol 2017; 49:75-84. [PMID: 29224185 PMCID: PMC5750339 DOI: 10.1007/s10735-017-9748-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022]
Abstract
Orthodontic force-induced osteogenic differentiation and bone formation at tension sites play a critical role in orthodontic tooth movement. However, the molecular mechanism underlying this phenomenon is poorly understood. In the current study, we investigated the involvement of the GSK-3β/β-catenin signaling pathway, which is critical for bone formation during tooth movement. We established a rat tooth movement model to test the hypothesis that orthodontic force may stimulate bone formation at the tension site of the moved tooth and promote the rate of tooth movement via regulation of the GSK-3β/β-catenin signaling pathway. Our results showed that continued mechanical loading increased the distance between the first and second molar in rats. In addition, the loading force increased bone formation at the tension site, and also increased phospho-Ser9-GSK-3β expression and β-catenin signaling pathway activity. Downregulation of GSK-3β activity further increased bone parameters, including bone mineral density, bone volume to tissue volume and trabecular thickness, as well as ALP- and osterix-positive cells at tension sites during tooth movement. However, ICG-001, the β-catenin selective inhibitor, reversed the positive effects of GSK-3β inhibition. In addition, pharmaceutical inhibition of GSK-3β or local treatment with β-catenin inhibitor did not influence the rate of tooth movement. Based on these results, we concluded that GSK-3β/β-catenin signaling contributes to the bone remodeling induced by orthodontic forces, and can be used as a potential therapeutic target in clinical dentistry.
Collapse
|
31
|
Bearden RN, Huggins SS, Cummings KJ, Smith R, Gregory CA, Saunders WB. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study. Stem Cell Res Ther 2017; 8:218. [PMID: 28974260 PMCID: PMC5627404 DOI: 10.1186/s13287-017-0639-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Background The dog represents an excellent large animal model for translational cell-based studies. Importantly, the properties of canine multipotent stromal cells (cMSCs) and the ideal tissue source for specific translational studies have yet to be established. The aim of this study was to characterize cMSCs derived from synovium, bone marrow, and adipose tissue using a donor-matched study design and a comprehensive series of in-vitro characterization, differentiation, and immunomodulation assays. Methods Canine MSCs were isolated from five dogs with cranial cruciate ligament rupture. All 15 cMSC preparations were evaluated using colony forming unit (CFU) assays, flow cytometry analysis, RT-PCR for pluripotency-associated genes, proliferation assays, trilineage differentiation assays, and immunomodulation assays. Data were reported as mean ± standard deviation and compared using repeated-measures analysis of variance and Tukey post-hoc test. Significance was established at p < 0.05. Results All tissue samples produced plastic adherent, spindle-shaped preparations of cMSCs. Cells were negative for CD34, CD45, and STRO-1 and positive for CD9, CD44, and CD90, whereas the degree to which cells were positive for CD105 was variable depending on tissue of origin. Cells were positive for the pluripotency-associated genes NANOG, OCT4, and SOX2. Accounting for donor and tissue sources, there were significant differences in CFU potential, rate of proliferation, trilineage differentiation, and immunomodulatory response. Synovium and marrow cMSCs exhibited superior early osteogenic activity, but when assessing late-stage osteogenesis no significant differences were detected. Interestingly, bone morphogenic protein-2 (BMP-2) supplementation was necessary for early-stage and late-stage osteogenic differentiation, a finding consistent with other canine studies. Additionally, synovium and adipose cMSCs proliferated more rapidly, displayed higher CFU potential, and formed larger aggregates in chondrogenic assays, although proteoglycan and collagen type II staining were subjectively decreased in adipose pellets as compared to synovial and marrow pellets. Lastly, cMSCs derived from all three tissue sources modulated murine macrophage TNF-α and IL-6 levels in a lipopolysaccharide-stimulated coculture assay. Conclusions While cMSCs from synovium, marrow, and adipose tissue share a number of similarities, important differences in proliferation and trilineage differentiation exist and should be considered when selecting cMSCs for translational studies. These results and associated methods will prove useful for future translational studies involving the canine model. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0639-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert N Bearden
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shannon S Huggins
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kevin J Cummings
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Roger Smith
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, College of Medicine, Texas A&M University, College Station, TX, USA
| | - William B Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
32
|
3D biomimetic artificial bone scaffolds with dual-cytokines spatiotemporal delivery for large weight-bearing bone defect repair. Sci Rep 2017; 7:7814. [PMID: 28798376 PMCID: PMC5552682 DOI: 10.1038/s41598-017-08412-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
It is a great challenge to prepare “functional artificial bone” for the repair of large segmental defect, especially in weight-bearing bones. In this study, bioactive HA/PCL composite scaffolds that possess anatomical structure as autogenous bone were fabricated by CT-guided fused deposition modeling technique. The scaffolds can provide mechanical support and possess osteoconduction property. Then the VEGF-165/BMP-2 loaded hydrogel was filled into biomimetic artificial bone spatially to introduce osteoinduction and angioinduction ability via sustained release of these cytokines. It has been revealed that the cytokine-loaded hydrogel possessed good biodegradability and could release the VEGF-165/BMP-2 sustainedly and steadily. The synergistic effect of these two cytokines showed significant stimulation on the osteogenic gene expresssion of osteoblast in vitro and ectopic ossification in vivo. The scaffolds were then implanted into the rabbit tibial defect sites (1.2 cm) for bone regeneration for 12 weeks, indicating the best repair of defect in vivo, which was superior to the pure hydrogel/scaffolds or one-cytokine loaded hydrogel/scaffolds and close to autogenous bone graft. The strategy to construct an “anatomy-structure-function” trinity system as functional artificial bone shows great potential in replacing autogenous bone graft and applying in large bone defect repair clinically in future.
Collapse
|
33
|
Clough BH, Ylostalo J, Browder E, McNeill EP, Bartosh TJ, Rawls HR, Nakamoto T, Gregory CA. Theobromine Upregulates Osteogenesis by Human Mesenchymal Stem Cells In Vitro and Accelerates Bone Development in Rats. Calcif Tissue Int 2017; 100:298-310. [PMID: 27913821 PMCID: PMC5315589 DOI: 10.1007/s00223-016-0215-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Theobromine (THB) is one of the major xanthine-like alkaloids found in cacao plant and a variety of other foodstuffs such as tea leaves, guarana and cola nuts. Historically, THB and its derivatives have been utilized to treat cardiac and circulatory disorders, drug-induced nephrotoxicity, proteinuria and as an immune-modulator. Our previous work demonstrated that THB has the capacity to improve the formation of hydroxyl-apatite during tooth development, suggesting that it may also enhance skeletal development. With its excellent safety profile and resistance to pharmacokinetic elimination, we reasoned that it might be an excellent natural osteoanabolic supplement during pregnancy, lactation and early postnatal growth. To determine whether THB had an effect on human osteoprogenitors, we subjected primary human bone marrow mesenchymal stem cells (hMSCs) to osteogenic assays after exposure to THB in vitro and observed that THB exposure increased the rate of osteogenesis and mineralization by hMSCs. Moreover, THB exposure resulted in a list of upregulated mRNA transcripts that best matched an osteogenic tissue expression signature as compared to other tissue expression signatures archived in several databases. To determine whether oral administration of THB resulted in improved skeletal growth, we provided pregnant rats with chow supplemented with THB during pregnancy and lactation. After weaning, offspring received THB continuously until postnatal day 50 (approximately 10 mg kg-1 day-1). Administration of THB resulted in neonates with larger bones, and 50-day-old offspring accumulated greater body mass, longer and thicker femora and superior tibial trabecular parameters. The accelerated growth did not adversely affect the strength and resilience of the bones. These results indicate that THB increases the osteogenic potential of bone marrow osteoprogenitors, and dietary supplementation of a safe dose of THB to expectant mothers and during the postnatal period could accelerate skeletal development in their offspring.
Collapse
Affiliation(s)
- Bret H Clough
- Institute for Regenerative Medicine, Texas A&M Health Science Center, Module C 5701 Airport Road, Temple, TX, 76502, USA
| | - Joni Ylostalo
- Department of Biology, University of Mary Hardin Baylor, 900 College Street, Belton, TX, 76513, USA
| | - Elizabeth Browder
- Texas A&M Department of Comparative Medicine, College Station, TX, 77843, USA
| | - Eoin P McNeill
- Institute for Regenerative Medicine, Texas A&M Health Science Center, Module C 5701 Airport Road, Temple, TX, 76502, USA
| | - Thomas J Bartosh
- Institute for Regenerative Medicine, Texas A&M Health Science Center, Module C 5701 Airport Road, Temple, TX, 76502, USA
| | - H Ralph Rawls
- Department of Comprehensive Dentistry, UT Health Science Center, San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Tetsuo Nakamoto
- Department of Physiology, 7th Floor Medical Education Building, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Carl A Gregory
- Institute for Regenerative Medicine, Texas A&M Health Science Center, Module C 5701 Airport Road, Temple, TX, 76502, USA.
| |
Collapse
|
34
|
Clough BH, McNeill EP, Palmer D, Krause U, Bartosh TJ, Chaput CD, Gregory CA. An allograft generated from adult stem cells and their secreted products efficiently fuses vertebrae in immunocompromised athymic rats and inhibits local immune responses. Spine J 2017; 17:418-430. [PMID: 27765715 PMCID: PMC5309156 DOI: 10.1016/j.spinee.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 09/21/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND CONTEXT Spine pain and the disability associated with it are epidemic in the United States. According to the National Center for Health Statistics, more than 650,000 spinal fusion surgeries are performed annually in the United States, and yet there is a failure rate of 15%-40% when standard methods employing current commercial bone substitutes are used. Autologous bone graft is the gold standard in terms of fusion success, but the morbidity associated with the procedure and the limitations in the availability of sufficient material have limited its use in the majority of cases. A freely available and immunologically compatible bone mimetic with the properties of live tissue is likely to substantially improve the outcome of spine fusion procedures without the disadvantages of autologous bone graft. PURPOSE This study aimed to compare a live human bone tissue analog with autologous bone grafting in an immunocompromised rat model of posterolateral fusion. DESIGN/SETTING This is an in vitro and in vivo preclinical study of a novel human stem cell-derived construct for efficacy in posterolateral lumbar spine fusion. METHODS Osteogenically enhanced human mesenchymal stem cells (OEhMSCs) were generated by exposure to conditions that activate the early stages of osteogenesis. Immunologic characteristics of OEhMSCs were evaluated in vitro. The secreted extracellular matrix from OEhMSCs was deposited on a clinical-grade gelatin sponge, resulting in bioconditioned gelatin sponge (BGS). Bioconditioned gelatin sponge was used alone, with live OEhMSCs (BGS+OEhMSCs), or with whole human bone marrow (BGS+hBM). Efficacy for spine fusion was determined by an institutionally approved animal model using 53 nude rats. RESULTS Bioconditioned gelatin sponge with live OEhMSCs did not cause cytotoxicity when incubated with immunologically mismatched lymphocytes, and OEhMSCs inhibited lymphocyte expansion in mixed lymphocyte assays. Bioconditioned gelatin sponge with live OEhMSC and BGS+hBM constructs induced profound bone growth at fusion sites in vivo, with a comparable rate of fusion with syngeneic bone graft (negative [0 of 10], BGS alone [0 of 10], bone graft [7 of 10], BGS+OEhMSC [10 of 15], and BGS+hBM [8 of 8]). CONCLUSIONS Collectively, these studies demonstrate that BGS+OEhMSC constructs possess low immunogenicity and drive vertebral fusion with efficiency matching syngeneic bone graft in rodents. We also demonstrate that BGS serves as a promising scaffold for spine fusion when combined with hBM.
Collapse
Affiliation(s)
- Bret H. Clough
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA
| | - Eoin P. McNeill
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA
| | - Daniel Palmer
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA
| | - Ulf Krause
- Department of Orthopedic Surgery, Baylor Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st St, Temple, TX 76508, USA,Institute for Transfusion Medicine and Transplant Immunology, University Hospital Muenster, 11 Domagkstr, Muenster 48149, Germany
| | - Thomas J. Bartosh
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA
| | - Christopher D. Chaput
- Department of Orthopedic Surgery, Baylor Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st St, Temple, TX 76508, USA
| | - Carl A. Gregory
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA,Corresponding author. Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA. Tel.: (979) 436-9643; fax: (979) 436-9679. (C.A. Gregory)
| |
Collapse
|
35
|
Tian H, Du J, Wen J, Liu Y, Montgomery SR, Scott TP, Aghdasi B, Xiong C, Suzuki A, Hayashi T, Ruangchainikom M, Phan K, Weintraub G, Raed A, Murray SS, Daubs MD, Yang X, Yuan XB, Wang JC, Lu Y. Growth-Factor Nanocapsules That Enable Tunable Controlled Release for Bone Regeneration. ACS NANO 2016; 10:7362-7369. [PMID: 27227573 DOI: 10.1021/acsnano.5b07950] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Growth factors are of great potential in regenerative medicine. However, their clinical applications are largely limited by the short in vivo half-lives and the narrow therapeutic window. Thus, a robust controlled release system remains an unmet medical need for growth-factor-based therapies. In this research, a nanoscale controlled release system (degradable protein nanocapsule) is established via in situ polymerization on growth factor. The release rate can be finely tuned by engineering the surface polymer composition. Improved therapeutic outcomes can be achieved with growth factor nanocapsules, as illustrated in spinal cord fusion mediated by bone morphogenetic protein-2 nanocapsules.
Collapse
Affiliation(s)
- Haijun Tian
- Department of Surgery, Bethune School of Medics , Shijiazhuang 050000, China
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University , Shanghai 200003, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Samuel S Murray
- Research Service, VA Greater Los Angeles Healthcare System , North Hills, California 91343, United States
| | - Michael D Daubs
- Division of Orthopaedic Surgery, Department of Surgery, University of Nevada School of Medicine , Las Vegas, Nevada 89102, United States
| | - Xianjin Yang
- Department of Material Science, Tianjin University , Tianjin 300072, China
| | - Xu-Bo Yuan
- Department of Material Science, Tianjin University , Tianjin 300072, China
| | - Jeffrey C Wang
- Department of Orthopaedic Surgery, University of Southern California , Los Angeles, California 90033, United States
| | | |
Collapse
|
36
|
Pioglitazone affects the OPG/RANKL/RANK system and increase osteoclastogenesis. Mol Med Rep 2016; 14:2289-96. [DOI: 10.3892/mmr.2016.5515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 04/07/2016] [Indexed: 11/05/2022] Open
|
37
|
Ma C, Shuai B, Shen L, Yang YP, Xu XJ, Li CG. Serum carcinoembryonic antigen-related cell adhesion molecule 1 level in postmenopausal women: correlation with β-catenin and bone mineral density. Osteoporos Int 2016; 27:1529-1535. [PMID: 26572758 DOI: 10.1007/s00198-015-3408-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/05/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED Many epidemiological studies have shown that in some tumors carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and β-catenin appear to be related. However, it remains to be established whether CEACAM1 is related to β-catenin in osteoporosis. Here, we reveal that CEACAM1 might influence the canonical Wnt/β-catenin pathway to modulate bone metabolism in postmenopausal osteoporosis. INTRODUCTION The aim of this study is to assess the serum level of CEACAM1 in postmenopausal women and its correlation with β-catenin and bone mineral density (BMD). METHODS The BMD was measured at the lumbar spine (L1-L4) or the femoral neck using dual-energy X-ray absorptiometry (DXA). Serum CEACAM1, β-catenin, receptor activator of nuclear factor kappa-B (RANKL), osteoprotegerin (OPG), β-isomerized C-terminal crosslinking of type I collagen (β-CTX), intact N-terminal propeptide of type I collagen (PINP), estradiol, and insulin were measured in 350 postmenopausal women. Patients were divided according to lumbar spine or femur neck T-scores into osteoporosis (group I), osteopenia (group II), and normal bone mineral density, the latter serving as control. RESULTS Serum CEACAM1 levels were significantly lower in group I and II compared to those in control subjects (P < 0.001). Serum CEACAM1 levels correlated positively with β-catenin and BMD, but correlated negatively to the ratio between RANKL and OPG. CONCLUSION This study provides evidence that decreased serum CEACAM1 levels are related to low BMD in postmenopausal women, and that serum CEACAM1 levels correlated positively to β-catenin. It suggests that CEACAM1 might influence the canonical Wnt/β-catenin pathway to modulate bone metabolism.
Collapse
Affiliation(s)
- C Ma
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - B Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - L Shen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Y P Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - X J Xu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - C G Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
38
|
Fourel L, Valat A, Faurobert E, Guillot R, Bourrin-Reynard I, Ren K, Lafanechère L, Planus E, Picart C, Albiges-Rizo C. β3 integrin-mediated spreading induced by matrix-bound BMP-2 controls Smad signaling in a stiffness-independent manner. J Cell Biol 2016; 212:693-706. [PMID: 26953352 PMCID: PMC4792076 DOI: 10.1083/jcb.201508018] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/09/2016] [Indexed: 12/31/2022] Open
Abstract
Matrix-bound BMP-2 is sufficient to induce β3 integrin–dependent, Cdc42/Src/FAK/ILK-mediated cell spreading by overriding the stiffness response through actin and adhesion site dynamics, showing BMP receptors and integrins work together to control signaling and tensional homeostasis, thereby coupling cell adhesion and fate commitment. Understanding how cells integrate multiple signaling pathways to achieve specific cell differentiation is a challenging question in cell biology. We have explored the physiological presentation of BMP-2 by using a biomaterial that harbors tunable mechanical properties to promote localized BMP-2 signaling. We show that matrix-bound BMP-2 is sufficient to induce β3 integrin–dependent C2C12 cell spreading by overriding the soft signal of the biomaterial and impacting actin organization and adhesion site dynamics. In turn, αvβ3 integrin is required to mediate BMP-2–induced Smad signaling through a Cdc42–Src–FAK–ILK pathway. β3 integrin regulates a multistep process to control first BMP-2 receptor activity and second the inhibitory role of GSK3 on Smad signaling. Overall, our results show that BMP receptors and β3 integrin work together to control Smad signaling and tensional homeostasis, thereby coupling cell adhesion and fate commitment, two fundamental aspects of developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Laure Fourel
- Institut National de la Santé et de la Recherche Médicale U823, Institut Albert Bonniot, 38042 Grenoble, France Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée 5284, 38042 Grenoble, France Université Grenoble Alpes, 38041 Grenoble, France Centre National de la Recherche Scientifique UMR 5628, Laboratoire des Matériaux et du Génie Physique, Institute of Technology, 38016 Grenoble, France
| | - Anne Valat
- Institut National de la Santé et de la Recherche Médicale U823, Institut Albert Bonniot, 38042 Grenoble, France Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée 5284, 38042 Grenoble, France Université Grenoble Alpes, 38041 Grenoble, France Centre National de la Recherche Scientifique UMR 5628, Laboratoire des Matériaux et du Génie Physique, Institute of Technology, 38016 Grenoble, France
| | - Eva Faurobert
- Institut National de la Santé et de la Recherche Médicale U823, Institut Albert Bonniot, 38042 Grenoble, France Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée 5284, 38042 Grenoble, France Université Grenoble Alpes, 38041 Grenoble, France
| | - Raphael Guillot
- Centre National de la Recherche Scientifique UMR 5628, Laboratoire des Matériaux et du Génie Physique, Institute of Technology, 38016 Grenoble, France
| | - Ingrid Bourrin-Reynard
- Institut National de la Santé et de la Recherche Médicale U823, Institut Albert Bonniot, 38042 Grenoble, France Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée 5284, 38042 Grenoble, France Université Grenoble Alpes, 38041 Grenoble, France
| | - Kefeng Ren
- Centre National de la Recherche Scientifique UMR 5628, Laboratoire des Matériaux et du Génie Physique, Institute of Technology, 38016 Grenoble, France
| | - Laurence Lafanechère
- Institut National de la Santé et de la Recherche Médicale U823, Institut Albert Bonniot, 38042 Grenoble, France Université Grenoble Alpes, 38041 Grenoble, France
| | - Emmanuelle Planus
- Institut National de la Santé et de la Recherche Médicale U823, Institut Albert Bonniot, 38042 Grenoble, France Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée 5284, 38042 Grenoble, France Université Grenoble Alpes, 38041 Grenoble, France
| | - Catherine Picart
- Centre National de la Recherche Scientifique UMR 5628, Laboratoire des Matériaux et du Génie Physique, Institute of Technology, 38016 Grenoble, France
| | - Corinne Albiges-Rizo
- Institut National de la Santé et de la Recherche Médicale U823, Institut Albert Bonniot, 38042 Grenoble, France Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée 5284, 38042 Grenoble, France Université Grenoble Alpes, 38041 Grenoble, France
| |
Collapse
|
39
|
Shen J, James AW, Zhang X, Pang S, Zara JN, Asatrian G, Chiang M, Lee M, Khadarian K, Nguyen A, Lee KS, Siu RK, Tetradis S, Ting K, Soo C. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:419-34. [PMID: 26772960 DOI: 10.1016/j.ajpath.2015.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/23/2015] [Accepted: 10/16/2015] [Indexed: 01/28/2023]
Abstract
The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis.
Collapse
Affiliation(s)
- Jia Shen
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Aaron W James
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Shen Pang
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Janette N Zara
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Greg Asatrian
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Michael Chiang
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Min Lee
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Kevork Khadarian
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California
| | - Alan Nguyen
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Kevin S Lee
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Ronald K Siu
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California
| | - Sotirios Tetradis
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, California
| | - Kang Ting
- Division of Growth and Development and Section of Orthodontics, UCLA School of Dentistry, Los Angeles, California.
| | - Chia Soo
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery and Orthopaedic Hospital Research Center at UCLA, Los Angeles, California.
| |
Collapse
|
40
|
Abstract
New evidence has recently emerged defining a close relationship between fat and bone metabolism. Adipose tissue is one of the largest organs in the body but its functions vary by location and origin. Adipocytes can act in an autocrine manner to regulate energy balance by sequestering triglycerides and then, depending on demand, releasing fatty acids through lipolysis for energy utilization, and in some cases through uncoupling protein 1 for generating heat. Adipose tissue can also act in an endocrine or paracrine manner by releasing adipokines that modulate the function of other organs. Bone is one of those target tissues, although recent evidence has emerged that the skeleton reciprocates by releasing its own factors that modulate adipose tissue and beta cells in the pancreas. Therefore, it is not surprising that these energy-modulating tissues are controlled by a central regulatory mechanism, primarily the sympathetic nervous system. Disruption in this complex regulatory circuit and its downstream tissues is manifested in a wide range of metabolic disorders, for which the most prevalent is type 2 diabetes mellitus. The aim of this review is to summarize our knowledge of common determinants in the bone and adipose function and the translational implications of recent work in this emerging field.
Collapse
Affiliation(s)
- Beata Lecka-Czernik
- Dept. of Orthopaedic Surgery, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH 43614, United States; Dept. of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH 43614, United States
| | - Clifford J Rosen
- Tufts University School of Medicine, and Maine Medical Center Research Institute, Scarborough, ME 04074, United States.
| |
Collapse
|
41
|
Aquino-Martínez R, Rodríguez-Carballo E, Gámez B, Artigas N, Carvalho-Lobato P, Manzanares-Céspedes MC, Rosa JL, Ventura F. Mesenchymal Stem Cells Within Gelatin/CaSO4 Scaffolds Treated Ex Vivo with Low Doses of BMP-2 and Wnt3a Increase Bone Regeneration. Tissue Eng Part A 2016; 22:41-52. [DOI: 10.1089/ten.tea.2015.0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rubén Aquino-Martínez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Natalia Artigas
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Patricia Carvalho-Lobato
- Unitat d'Anatomia i Embriologia Humana, Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Maria Cristina Manzanares-Céspedes
- Unitat d'Anatomia i Embriologia Humana, Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
42
|
Janeczek AA, Tare RS, Scarpa E, Moreno-Jimenez I, Rowland CA, Jenner D, Newman TA, Oreffo ROC, Evans ND. Transient Canonical Wnt Stimulation Enriches Human Bone Marrow Mononuclear Cell Isolates for Osteoprogenitors. Stem Cells 2015; 34:418-30. [PMID: 26573091 PMCID: PMC4981914 DOI: 10.1002/stem.2241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
Activation of the canonical Wnt signaling pathway is an attractive anabolic therapeutic strategy for bone. Emerging data suggest that activation of the Wnt signaling pathway promotes bone mineral accrual in osteoporotic patients. The effect of Wnt stimulation in fracture healing is less clear as Wnt signaling has both stimulatory and inhibitory effects on osteogenesis. Here, we tested the hypothesis that transient Wnt stimulation promotes the expansion and osteogenesis of a Wnt‐responsive stem cell population present in human bone marrow. Bone marrow mononuclear cells (BMMNCs) were isolated from patients undergoing hip arthroplasty and exposed to Wnt3A protein. The effect of Wnt pathway stimulation was determined by measuring the frequency of stem cells within the BMMNC populations by fluorescence‐activated cell sorting and colony forming unit fibroblast (CFU‐F) assays, before determining their osteogenic capacity in in vitro differentiation experiments. We found that putative skeletal stem cells in BMMNC isolates exhibited elevated Wnt pathway activity compared with the population as whole. Wnt stimulation resulted in an increase in the frequency of skeletal stem cells marked by the STRO‐1bright/Glycophorin A− phenotype. Osteogenesis was elevated in stromal cell populations arising from BMMNCs transiently stimulated by Wnt3A protein, but sustained stimulation inhibited osteogenesis in a concentration‐dependent manner. These results demonstrate that Wnt stimulation could be used as a therapeutic approach by transient targeting of stem cell populations during early fracture healing, but that inappropriate stimulation may prevent osteogenesis. Stem Cells2016;34:418–430
Collapse
Affiliation(s)
- Agnieszka A Janeczek
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Edoardo Scarpa
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ines Moreno-Jimenez
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Caroline A Rowland
- Microbiology group, Chemical, Biological and Radiological Division, Salisbury, United Kingdom
| | - Dominic Jenner
- Microbiology group, Chemical, Biological and Radiological Division, Salisbury, United Kingdom
| | - Tracey A Newman
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
43
|
Low SA, Galliford CV, Yang J, Low PS, Kopeček J. Biodistribution of Fracture-Targeted GSK3β Inhibitor-Loaded Micelles for Improved Fracture Healing. Biomacromolecules 2015; 16:3145-53. [PMID: 26331790 PMCID: PMC4800810 DOI: 10.1021/acs.biomac.5b00777] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bone fractures constitute a major cause of morbidity and mortality especially in the elderly. Complications associated with osteoporosis drugs and the age of the patient slow bone turnover and render such fractures difficult to heal. Increasing the speed of fracture repair by administration of a fracture-targeted bone anabolic agent could find considerable application. Aspartic acid oligopeptides are negatively charged molecules at physiological pH that adsorb to hydroxyapatite, the mineral portion of bone. This general adsorption is the strongest where bone turnover is highest or where hydroxyapatite is freshly exposed. Importantly, both of these conditions are prominent at fracture sites. GSK3β inhibitors are potent anabolic agents that can promote tissue repair when concentrated in a damaged tissue. Unfortunately, they can also cause significant toxicity when administered systemically and are furthermore difficult to deliver due to their strong hydrophobicity. In this paper, we solve both problems by conjugating the hydrophobic GSK3β inhibitor to a hydrophilic aspartic acid octapeptide using a hydrolyzable bond, thereby generating a bone fracture-targeted water-soluble form of the drug. The resulting amphiphile is shown to assemble into micelles, extending its circulation time while maintaining its fracture-targeting abilities. For measurement of pharmacokinetics, an 125I was introduced at the location of the bromine in the GSK3β inhibitor to minimize any structural differences. Biodistribution studies demonstrate a greater than 4-fold increase in fracture accumulation over healthy bone.
Collapse
Affiliation(s)
- Stewart A. Low
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Chris V. Galliford
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jindřich Kopeček
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
44
|
Su X, Liao L, Shuai Y, Jing H, Liu S, Zhou H, Liu Y, Jin Y. MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis 2015; 6:e1851. [PMID: 26247736 PMCID: PMC4558512 DOI: 10.1038/cddis.2015.221] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) emerge as important regulators of stem cell lineage commitment and bone development. MiRNA-26a (miR-26a) is one of the important miRNAs regulating osteogenic differentiation of both bone marrow-derived mesenchymal stem cells (BMSCs) and adipose tissue-derived mesenchymal stem cells (ADSCs). However, miR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs, suggesting distinct post-transcriptional regulation of tissue-specific MSC differentiation. However, the molecular basis is largely unknown. Here, we report that the function of miR-26a is largely depended on the intrinsic signaling regulation network of MSCs. Using bioinformatics and functional assay, we confirmed that miR-26a potentially targeted on GSK3β and Smad1 to regulate Wnt and BMP signaling pathway. Overall comparative analysis revealed that Wnt signaling was enhanced more potently and played a more important role than BMP signaling in osteogenic differentiation of BMSCs, whereas BMP pathway was more essential for promoting osteogenic differentiation of ADSCs. The distinct activation pattern and role of signaling pathways determined that miR-26a majorly targeted on GSK3β to activate Wnt signaling for promoting osteogenic differentiation of BMSCs, whereas it inhibited Smad1 to suppress BMP signaling for interfering with the osteogenic differentiation of ADSCs. Taken together, our study demonstrated that BMSCs and ADSCs applied different signaling pathway to facilitate their osteogenic differentiation, which determined the inverse function of miR-26a. The distinct transcriptional regulation and post-transcriptional regulation network suggested the intrinsic molecular differences between tissue-specific MSCs and the complexity in MSC research and MSC-based cell therapy.
Collapse
Affiliation(s)
- X Su
- 1] Department of Orthodontics, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, China [2] State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China [3] Institute of Neurobiology, Environment and Genes Related to Diseases, Key Laboratory of Education Ministry, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, China
| | - L Liao
- 1] State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China [2] Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Xi'an, Shaanxi 710032, China [3] State Key Laboratory of Military Stomatology, Department of Oral Histology and pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Y Shuai
- 1] State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China [2] Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Xi'an, Shaanxi 710032, China [3] State Key Laboratory of Military Stomatology, Department of Oral Histology and pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - H Jing
- 1] State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China [2] Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Xi'an, Shaanxi 710032, China [3] State Key Laboratory of Military Stomatology, Department of Oral Histology and pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - S Liu
- 1] State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China [2] Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Xi'an, Shaanxi 710032, China [3] State Key Laboratory of Military Stomatology, Department of Oral Histology and pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - H Zhou
- Department of Orthodontics, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, China
| | - Y Liu
- Institute of Neurobiology, Environment and Genes Related to Diseases, Key Laboratory of Education Ministry, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, China
| | - Y Jin
- 1] State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China [2] Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Xi'an, Shaanxi 710032, China
| |
Collapse
|
45
|
Geng D, Wu J, Shao H, Zhu S, Wang Y, Zhang W, Ping Z, Hu X, Zhu X, Xu Y, Yang H. Pharmaceutical inhibition of glycogen synthetase kinase 3 beta suppresses wear debris-induced osteolysis. Biomaterials 2015; 69:12-21. [PMID: 26275858 DOI: 10.1016/j.biomaterials.2015.07.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022]
Abstract
Aseptic loosening is associated with the development of wear debris-induced peri-implant osteolytic bone disease caused by an increased osteoclastic bone resorption and decreased osteoblastic bone formation. However, no effective measures for the prevention and treatment of peri-implant osteolysis currently exist. The aim of this study was to determine whether lithium chloride (LiCl), a selective inhibitor of glycogen synthetase kinase 3 beta (GSK-3β), mitigates wear debris-induced osteolysis in a murine calvarial model of osteolysis. GSK-3β is activated by titanium (Ti) particles, and implantation of Ti particles on the calvarial surface in C57BL/6 mice resulted in osteolysis caused by an increase in the number of osteoclasts and a decrease in the number of osteoblasts. Mice implanted with Ti particles were gavage-fed LiCl (50 or 200 mg kg(-1)d(-1)), 6 days per week for 2 weeks. The LiCl treatment significantly inhibited GSK-3β activity and increased β-catenin and axin-2 expression in a dose-dependent manner, dramatically mitigating the Ti particle-induced suppression of osteoblast numbers and the expression of bone formation markers. Finally, we demonstrated that inhibition of GSK-3β suppresses osteoclast differentiation and reduces the severity of Ti particle-induced osteolysis. The results of this study indicate that Ti particle-induced osteolysis is partly dependent on GSK-3β and, therefore, the canonical Wnt signaling pathway. This suggests that selective inhibitors of GSK-3β such as LiCl may help prevent and treat wear debris-induced osteolysis.
Collapse
Affiliation(s)
- Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, People's Republic of China.
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, People's Republic of China
| | - Hongguo Shao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, People's Republic of China
| | - Shijun Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, People's Republic of China
| | - Yijun Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, People's Republic of China
| | - Wen Zhang
- Orthopedic Institute, Soochow University, People's Republic of China
| | - Zichuan Ping
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, People's Republic of China
| | - Xuanyang Hu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, People's Republic of China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, People's Republic of China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, People's Republic of China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, People's Republic of China.
| |
Collapse
|
46
|
Palermo A, D'Onofrio L, Eastell R, Schwartz AV, Pozzilli P, Napoli N. Oral anti-diabetic drugs and fracture risk, cut to the bone: safe or dangerous? A narrative review. Osteoporos Int 2015; 26:2073-89. [PMID: 25910746 DOI: 10.1007/s00198-015-3123-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/24/2015] [Indexed: 12/16/2022]
Abstract
Fracture risk is higher in older adults with type 2 diabetes and may be influenced by treatments for diabetes. Oral anti-diabetic drugs have different effects on bone metabolism. The purpose of this review is to describe the effects of these drugs on bone metabolism and fracture risk. Osteoporosis is a progressive skeletal disorder that is characterized by compromised bone strength and increased risk of fracture. This condition has become an important global health problem, affecting approximately 200 million people worldwide. Another chronic and highly prevalent condition is diabetes mellitus, which affects more than 380 million people; both type 1 and type 2 diabetes are risk factors for fracture. Type 2 diabetes, in particular, is associated with impaired bone strength, although it is characterized by normal or elevated bone mineral density. Several therapeutic strategies are available to achieve the best outcomes in the management of diabetes mellitus but these have different effects on bone metabolism. The purpose of this narrative review is to describe the effects of oral hypoglycemic agents (metformin, sulfonylureas, thiazolidinediones, meglitinides, dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists and sodium-dependent glucose transporter 2 inhibitors) on bone metabolism and on the risk of developing fragility fractures in patients with type 2 diabetes. Both diabetes and osteoporosis represent a significant burden in terms of healthcare costs and quality of life. It is very important to choose therapies for diabetes that ensure good metabolic control whilst preserving skeletal health.
Collapse
Affiliation(s)
- A Palermo
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21-00128, Rome, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Marciano DP, Kuruvilla DS, Boregowda SV, Asteian A, Hughes TS, Garcia-Ordonez R, Corzo CA, Khan TM, Novick SJ, Park H, Kojetin DJ, Phinney DG, Bruning JB, Kamenecka TM, Griffin PR. Pharmacological repression of PPARγ promotes osteogenesis. Nat Commun 2015; 6:7443. [PMID: 26068133 PMCID: PMC4471882 DOI: 10.1038/ncomms8443] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 05/06/2015] [Indexed: 11/25/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is the master regulator of adipogenesis and the pharmacological target of the thiazolidinedione (TZD) class of insulin sensitizers. Activation of PPARγ by TZDs promotes adipogenesis at the expense of osteoblast formation, contributing to their associated adverse effects on bone. Recently we reported the development of PPARγ antagonist SR1664, designed to block the obesity induced phosphorylation of serine 273 (S273) in the absence of classical agonism, to derive insulin sensitizing efficacy with improved therapeutic index. Here we identify the structural mechanism by which SR1664 actively antagonizes PPARγ, and extend these findings to develop the inverse agonist SR2595. Treatment of isolated bone marrow derived mesenchymal stem cells (MSCs) with SR2595 promotes induction of osteogenic differentiation. Together these results identify the structural determinants of ligand mediated PPARγ repression, and suggest a therapeutic approach to promote bone formation.
Collapse
Affiliation(s)
- David P Marciano
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - Dana S Kuruvilla
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - Siddaraju V Boregowda
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - Alice Asteian
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - Travis S Hughes
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - Ruben Garcia-Ordonez
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - Cesar A Corzo
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - Tanya M Khan
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - Scott J Novick
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - HaJeung Park
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - Douglas J Kojetin
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - Donald G Phinney
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - John B Bruning
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Theodore M Kamenecka
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| | - Patrick R Griffin
- Departments of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter FL33458, USA
| |
Collapse
|
48
|
Yu Y, Al-Mansoori L, Opas M. Optimized osteogenic differentiation protocol from R1 mouse embryonic stem cells in vitro. Differentiation 2015; 89:1-10. [PMID: 25613029 DOI: 10.1016/j.diff.2014.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/11/2014] [Accepted: 12/17/2014] [Indexed: 11/26/2022]
Abstract
Embryonic stem cells (ESCs) are a unique model that allows the study of molecular pathways underlying commitment and differentiation. One such lineage is osteoblasts, which are responsible for forming bone tissue in the body. There are many osteogenic differentiation protocols in the literature utilizing different soluble factors. The goal of the present study was to increase the efficacy of our osteogenic differentiation protocol from R1 cells. We have studied the effects of the addition of the following factors: dexamethasone, retinoic acid, and peroxisome-proliferator-activated receptor-gamma inhibitor, which have been reported to enhance osteogenesis. We found that among the 6 different protocols that were tested, the addition of retinoic acid with later addition of dexamethasone gives the most enrichment of osteogenic lineage cells. Thus, our findings provide valuable guidelines for culture condition to differentiate mouse R1 ESCs to osteoblastic cells in vitro.
Collapse
Affiliation(s)
- Yanhong Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8 Canada
| | - Layla Al-Mansoori
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8 Canada; Department of Chemistry & Earth Sciences, College of Arts and Science, University of Qatar, P.O. Box 2713, Doha, Qatar
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8 Canada.
| |
Collapse
|
49
|
Clough BH, McCarley MR, Krause U, Zeitouni S, Froese JJ, McNeill EP, Chaput CD, Sampson HW, Gregory CA. Bone regeneration with osteogenically enhanced mesenchymal stem cells and their extracellular matrix proteins. J Bone Miner Res 2015; 30:83-94. [PMID: 25130615 PMCID: PMC4280327 DOI: 10.1002/jbmr.2320] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/02/2014] [Accepted: 07/16/2014] [Indexed: 11/09/2022]
Abstract
Although bone has remarkable regenerative capacity, about 10% of long bone fractures and 25% to 40% of vertebral fusion procedures fail to heal. In such instances, a scaffold is employed to bridge the lesion and accommodate osteoprogenitors. Although synthetic bone scaffolds mimic some of the characteristics of bone matrix, their effectiveness can vary because of biological incompatibility. Herein, we demonstrate that a composite prepared with osteogenically enhanced mesenchymal stem cells (OEhMSCs) and their extracellular matrix (ECM) has an unprecedented capacity for the repair of critical-sized defects of murine femora. Furthermore, OEhMSCs do not cause lymphocyte activation, and ECM/OEhMSC composites retain their in vivo efficacy after cryopreservation. Finally, we show that attachment to the ECM by OEhMSCs stimulates the production of osteogenic and angiogenic factors. These data demonstrate that composites of OEhMSCs and their ECM could be utilized in the place of autologous bone graft for complex orthopedic reconstructions.
Collapse
Affiliation(s)
- Bret H. Clough
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
| | - Matthew R. McCarley
- Department of Orthopedic Surgery, Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st Street, Temple, TX 76508
- University of Texas Medical Branch, Department of Orthopedic Surgery, 301 University Blvd. Galveston, TX 77555
| | - Ulf Krause
- Department of Orthopedic Surgery, Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st Street, Temple, TX 76508
| | - Suzanne Zeitouni
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
- University of Texas Medical Branch, Department of Orthopedic Surgery, 301 University Blvd. Galveston, TX 77555
| | - Jeremiah J. Froese
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
| | - Eoin P. McNeill
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
| | - Christopher D. Chaput
- Department of Orthopedic Surgery, Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st Street, Temple, TX 76508
| | - H. Wayne Sampson
- Department of Medical Physiology, Texas A&M Health Science Center, 702 Southwest H.K. Dodgen Loop, Temple, TX 76504
| | - Carl A. Gregory
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
| |
Collapse
|
50
|
Chen S, Ryan DA, Dwyer MA, Cashman JR. Synergistic effect of Wnt modulatory small molecules and an osteoinductive ceramic on C2C12 cell osteogenic differentiation. Bone 2014; 67:109-21. [PMID: 24998670 DOI: 10.1016/j.bone.2014.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 06/15/2014] [Accepted: 06/25/2014] [Indexed: 01/25/2023]
Abstract
Although osteoinductive ceramics can induce osteoblast differentiation in vitro and bone regeneration in vivo, their effects rely solely on the limited number of endogenous stem cells. More recently, ceramic carriers seeded with culture-expanded stem cells have been reported as implants capable of in vivo bone formation. However, effective and safe signaling agents that promote cell differentiation to the osteogenic lineage are still needed. In the present report, two osteogenic small-molecules THQ-1a and PP-9 were identified by testing a series of compounds for Runx2 and BMP2 expression in C2C12 cells. Compounds THQ-1a and PP-9 modulated Wnt signaling and enhanced the expression of molecular markers of osteoblast differentiation. To probe the utility of these compounds for use with ceramic cell implants, the effect of THQ-1a and PP-9 on C2C12 cell osteogenic differentiation was investigated in the presence of a tricalcium phosphate (TCP) ceramic. The effect of THQ-1a and PP-9 on markers such as Osteocalcin and Collagen I was significantly increased in the presence of TCP ceramic. Additionally, THQ-1a or PP-9 in the presence of TCP ceramic gave a synergistic increase in alkaline phosphatase activity in the differentiation of C2C12 cells. Taken together, the results suggest an approach to directing cell lineage commitment for bone regeneration by the application of small-molecule osteogenic agents to cells in the presence of osteoinductive ceramics.
Collapse
Affiliation(s)
- Sigeng Chen
- The Human BioMolecular Research Institute, San Diego, CA 92121, USA
| | - Daniel A Ryan
- The Human BioMolecular Research Institute, San Diego, CA 92121, USA.
| | - Mary A Dwyer
- The Human BioMolecular Research Institute, San Diego, CA 92121, USA
| | - John R Cashman
- The Human BioMolecular Research Institute, San Diego, CA 92121, USA
| |
Collapse
|