1
|
Cano Á, Powell J, Aiello AS, Andersen HL, Arbour T, Balzer A, Bauer DS, Bugarchich J, Cano F, Contreras MP, Cubey R, Czajkowski I, Diaz-Toribio MH, Freeth T, Freyre N, Gardner MF, Griffith MP, Gustafsson ALS, Havström M, Hockley LR, Hollingsworth PM, Jørgensen T, Kindl K, Kirkwood D, Larpin D, Lofthus Ø, Löhne C, López-Villalobos A, Luscombe D, Molloy D, Morales-Rozo C, Nāburga I, Nebot A, Neinhuis C, Newlander CS, Ossaer J, Payton G, Peter J, Puente Martinez R, Scheen AC, Scherberich D, Senekal AM, Shearman C, Siemon J, Socher SA, Sucher R, Summers A, Tucker Lima JM, Vry A, Wong J, Wrigley D, You F, Brockington SF. Insights from a century of data reveal global trends in ex situ living plant collections. Nat Ecol Evol 2025; 9:214-224. [PMID: 39837973 PMCID: PMC11807835 DOI: 10.1038/s41559-024-02633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Ex situ living plant collections play a crucial role in providing nature-based solutions to twenty-first century global challenges. However, the complex dynamics of these artificial ecosystems are poorly quantified and understood, affecting biodiversity storage, conservation and utilization. To evaluate the management of ex situ plant diversity, we analysed a century of data comprising 2.2 million records, from a meta-collection currently holding ~500,000 accessions and 41% of global ex situ species diversity. Our study provides critical insights into the historical evolution, current state and future trajectory of global living collections. We reveal sigmoidal growth of a meta-collection that has reached capacity in both total accessions and total diversity, and identify intrinsic constraints on biodiversity management, including a median survival probability of 15 years. We explore the impact of external constraints and quantify the influence of the Convention on Biological Diversity, which we link to reduced acquisition of wild-origin and internationally sourced material by 44% and 38%, respectively. We further define the impact of these constraints on ex situ conservation but highlight targeted initiatives that successfully mitigate these challenges. Ultimately, our study underscores the urgent need for strategic prioritization and the re-evaluation of ex situ biodiversity management to achieve both scientific and conservation goals.
Collapse
Affiliation(s)
- Ángela Cano
- Cambridge University Botanic Garden, Cambridge, UK
| | - Jake Powell
- Cambridge University Botanic Garden, Cambridge, UK
| | | | | | | | - Aleisha Balzer
- Botanic Gardens of Sydney, Sydney, New South Wales, Australia
| | | | | | - Fernando Cano
- Jardín Botánico Carlos Thays, Buenos Aires, Argentina
| | | | | | | | | | | | - Nicolas Freyre
- Conservatoire et Jardin Botaniques de la Ville de Genève, Geneva, Switzerland
| | | | | | | | | | | | | | - Tina Jørgensen
- Natural History Museum and Botanic Garden, Copenhagen, Denmark
| | | | - Donovan Kirkwood
- Stellenbosch University Botanical Garden, Stellenbosch, South Africa
| | - Denis Larpin
- Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | - Dermot Molloy
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | | | - Inese Nāburga
- Botanic Garden of University of Latvia, Riga, Latvia
| | - Anna Nebot
- Botanical Garden of the University of Valencia, Valencia, Spain
| | - Christoph Neinhuis
- Faculty for Biology and Botanic Garden, Technische Universität Dresden, Dresden, Germany
| | | | | | | | - Jon Peter
- Royal Botanical Gardens, Hamilton and Burlington, Ontario, Canada
| | | | | | | | | | | | - John Siemon
- Botanic Gardens of Sydney, Sydney, New South Wales, Australia
| | - Stephanie A Socher
- Botanical Garden, Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | | | - Alex Summers
- National Botanic Garden of Wales, Llanarthney, UK
| | | | - Alison Vry
- Westonbirt, The National Arboretum, Tetbury, UK
| | | | - Damian Wrigley
- Botanic Gardens of Sydney, Sydney, New South Wales, Australia
| | - Frédéric You
- Jardin Botanique Alpin La Jaÿsinia, Samoëns, France
| | - Samuel F Brockington
- Cambridge University Botanic Garden, Cambridge, UK.
- Department of Plant Sciences, Cambridge University, Cambridge, UK.
| |
Collapse
|
2
|
Biasetti P, Mercugliano E, Schrade L, Spiriti MM, Göritz F, Holtze S, Seet S, Galli C, Stejskal J, Colleoni S, Čižmár D, Simone R, Hildebrandt TB, de Mori B. Ethical assessment of genome resource banking (GRB) in wildlife conservation. Cryobiology 2024; 117:104956. [PMID: 39181526 DOI: 10.1016/j.cryobiol.2024.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Genome Resources Banks (GRBs) represent vital repositories for the systematic collection, storage, and management of genetic material across various taxa, with a primary objective of safeguarding genetic diversity for research and practical applications. Alongside the development of assisted reproductive techniques (ART), GRBs have evolved into indispensable tools in conservation, offering opportunities for species preservation, mitigating inbreeding risks, and facilitating genetic management across fragmented populations. By preserving genetic information in a suspended state, GRBs serve as backups against population vulnerabilities, potentially aiding in the restoration of endangered species and extending their genetic lifespan. While evidence demonstrates the efficacy of GRBs, ethical considerations surrounding biobanking procedures for wildlife conservation remain largely unexplored. In this article, we will discuss possible ethical issues related to GRBs and the need to ethically monitor biobanking procedures in wildlife conservation. We will then propose a methodological tool, ETHAS, already in use for the ethical self-assessment of assisted reproduction techniques, to assess also biobanking procedures. ETHAS can make it possible to monitor a GRB from its design phase to its actual operation, helping to build biobanking procedures that meet high ethical standards.
Collapse
Affiliation(s)
- Pierfrancesco Biasetti
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Ethics Laboratory for Veterinary Medicine, Conservation and Animal Welfare, Padua University, Padua, Italy.
| | - Elena Mercugliano
- Ethics Laboratory for Veterinary Medicine, Conservation and Animal Welfare, Padua University, Padua, Italy; Department of Comparative Biomedicine and Food Science, Padua University, Padua, Italy
| | - Lisa Schrade
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Maria Michela Spiriti
- Ethics Laboratory for Veterinary Medicine, Conservation and Animal Welfare, Padua University, Padua, Italy
| | - Frank Göritz
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Steven Seet
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | | | | | - Daniel Čižmár
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Raffaella Simone
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | - Barbara de Mori
- Ethics Laboratory for Veterinary Medicine, Conservation and Animal Welfare, Padua University, Padua, Italy; Department of Comparative Biomedicine and Food Science, Padua University, Padua, Italy.
| |
Collapse
|
3
|
Angeles NAC, Catap ES. Challenges on the Development of Biodiversity Biobanks: The Living Archives of Biodiversity. Biopreserv Biobank 2023; 21:5-13. [PMID: 35133889 DOI: 10.1089/bio.2021.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biodiversity biobanks or ex situ biodiversity biorepositories tend to receive less attention compared with their biomedical counterparts. In this review, we highlight the necessity for these biorepositories by presenting their significant role in health, biodiversity, linking of big data, other translational research, and biodiversity conservation efforts. Moreover, the significant challenges in developing and maintaining biodiversity biobanks based on successful biobanks in some megadiverse developing countries are examined to provide insights into what needs to be done and what can be improved by up-and-coming biodiversity biobanks. These challenges include lack of financial support and political will; availability of experts; development of standard policies; and information management system. In addition, issues regarding access and benefit sharing and Digital Sequence Information must be addressed by biodiversity biobanks.
Collapse
Affiliation(s)
- Nestly Anne C Angeles
- Philippine Genome Center, University of the Philippines Diliman, Quezon City, Philippines.,Department of Science and Technology-Science Education Institute, Taguig, Philippines
| | - Elena S Catap
- Functional Bioactivity Screening Lab, Institute of Biology, College of Science National Science Complex, University of the Philippines-Diliman, Quezon City, Philippines
| |
Collapse
|
4
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
5
|
Loi P, Anzalone DA, Palazzese L, Dinnyés A, Saragusty J, Czernik M. Dry storage of mammalian spermatozoa and cells: state-of-the-art and possible future directions. Reprod Fertil Dev 2021; 33:82-90. [PMID: 38769676 DOI: 10.1071/rd20264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review provides a snapshot of the current state-of-the-art of drying cells and spermatozoa. The major successes and pitfalls of the most relevant literature are described separately for spermatozoa and cells. Overall, the data published so far indicate that we are closer to success in spermatozoa, whereas the situation is far more complex with cells. Critical for success is the presence of xeroprotectants inside the spermatozoa and, even more so, inside cells to protect subcellular compartments, primarily DNA. We highlight workable strategies to endow gametes and cells with the right combination of xeroprotectants, mostly sugars, and late embryogenesis abundant (LEA) or similar 'intrinsically disordered' proteins to help them withstand reversible desiccation. We focus on the biological aspects of water stress, and in particular cellular and DNA damage, but also touch on other still unexplored issues, such as the choice of both dehydration and rehydration methods or approaches, because, in our view, they play a primary role in reducing desiccation damage. We conclude by highlighting the need to exhaustively explore desiccation strategies other than lyophilisation, such as air drying, spin drying or spray drying, ideally with new prototypes, other than the food and pharmaceutical drying strategies currently used, tailored for the unique needs of cells and spermatozoa.
Collapse
Affiliation(s)
- P Loi
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy; and Corresponding author
| | - D A Anzalone
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy
| | - L Palazzese
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy
| | - A Dinnyés
- BioTalentum Ltd, Gödöllo, 2100 Gödöllo, Hungary; and HCEMM-USZ, StemCell Research Group, University of Szeged, Szeged, Hungary; and Sichuan University, College of Life Sciences, Chengdu, China
| | - J Saragusty
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy
| | - M Czernik
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy; and Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| |
Collapse
|
6
|
Comizzoli P, Holt WV. Breakthroughs and new horizons in reproductive biology of rare and endangered animal species. Biol Reprod 2020; 101:514-525. [PMID: 30772911 DOI: 10.1093/biolre/ioz031] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
Because of higher extinction rates due to human and natural factors, more basic and applied research in reproductive biology is required to preserve wild species and design proper strategies leading to sustainable populations. The objective of the review is to highlight recent, inspiring breakthroughs in wildlife reproduction science that will set directions for future research and lead to more successes in conservation biology. Despite new tools and approaches allowing a better and faster understanding of key mechanisms, we still know little about reproduction in endangered species. Recently, the most striking advances have been obtained in nonmammalian species (fish, birds, amphibians, or corals) with the development of alternative solutions to preserve fertility or new information about parental nutritional influence on embryo development. A novel way has also been explored to consider the impact of environmental changes on reproduction-the allostatic load-in a vast array of species (from primates to fish). On the horizon, genomic tools are expected to considerably change the way we study wildlife reproduction and develop a concept of "precision conservation breeding." When basic studies in organismal physiology are conducted in parallel, new approaches using stem cells to create artificial gametes and gonads, innovations in germplasm storage, and more research on reproductive microbiomes will help to make a difference. Lastly, multiple challenges (for instance, poor integration of new tools in conservation programs, limited access to study animals, or few publication options) will have to be addressed if we want reproductive biology to positively impact conservation of biodiversity.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, USA
| | - William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Biobanking in amphibian and reptilian conservation and management: opportunities and challenges. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01142-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Brink M, van Hintum T. Genebank Operation in the Arena of Access and Benefit-Sharing Policies. FRONTIERS IN PLANT SCIENCE 2020; 10:1712. [PMID: 32038684 PMCID: PMC6987393 DOI: 10.3389/fpls.2019.01712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/05/2019] [Indexed: 05/27/2023]
Abstract
Since the 1990s, the exchange of genetic resources has been increasingly regulated. The Convention on Biological Diversity (CBD), the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) and the Nagoya Protocol recognize that countries have sovereign rights over their genetic resources and provide a framework for domestic legislations on Access and Benefit-Sharing (ABS). However, within the rules of these international agreements, countries can follow their own interpretations and establish their own rules and regulations, resulting in restricted access to genetic resources and limited benefit-sharing, effects that are contrary to the objectives of these agreements. Although the ITPGRFA's Multilateral System of Access and Benefit-Sharing provides opportunities for easier access to plant genetic resources for food and agriculture (PGRFA), plant genebanks face increasing complexity in their operation. Adding material to genebank collections has become more difficult, not only because collecting missions need to be negotiated with national and local authorities, but also because acquiring material from other collections is only possible if the origin of the material is properly documented and is done in compliance with regulations. Genebanks may only provide access to their own collections if the material that is to be released is distributed in compliance with a) the conditions under which the material was received and b) the national laws of the country where the genebank is located. The only way genebanks can deal with this new complexity, apart from ceasing to add or distribute material, is by setting up proper procedures to document the origin of every accession and the conditions for their use and further distribution. To prevent a further decrease in access to PGRFA, complexity must be fought. Applying the ITPGRFA's Standard Material Transfer Agreement (SMTA) only, even for material that does not fall under the ITPGRFA, would simplify matters. The scope of the ITPGRFA could be expanded to include all crops. Furthermore, certain ambiguities (e.g. regarding in situ material and wild species) could be resolved. Finally, compliance with the ITPGRFA should be improved and better monitored.
Collapse
|
9
|
Factors That Explain the Utilization of the Nagoya Protocol Framework for Access and Benefit Sharing. SUSTAINABILITY 2019. [DOI: 10.3390/su11205550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the primary concerns of countries with high levels of biodiversity is the conservation of species and natural environments. This prioritization is based in part on a recognition of the importance of ecosystem services, understood as the various benefits that humans derive from ecosystems, which may be developed into goods and services that are transacted in markets. The Nagoya Protocol is an international agreement whose purpose is to provide a framework under which countries can support biodiversity conservation by regulating access to native genetic materials. Such materials may be of interest to companies, organizations, and institutions for commercial, non-commercial, or both purposes. Furthermore, genetic resources constitute important inputs in numerous industries, including those in the pharmaceutical, biotechnology, botany and horticultural, agricultural, personal hygiene and cosmetics, and food and beverage sectors. The present study explores whether there is a relationship between biodiversity, the implementation of systems to protect natural areas and the quality of institutions, and the utilization of the Nagoya Protocol framework in individual countries. A Probit model was estimated to test these relationships, and a Canonical Correspondence Analysis (CCA) was conducted to identify whether the aforementioned factors explain the execution of access and benefit sharing (ABS) agreements, as measured through the lodging of Internationally Recognized Certificates of Compliance (IRCC) in the Access and Benefit-Sharing Clearing-House (ABSCH) of the Convention on Biological Diversity. The findings indicated that biodiversity conservation policies, specifically the designation of protected natural areas, are important factors that might motivate actors in Nagoya Protocol member countries to utilize the protocol system. The CCA also revealed that the quality of institution factors such as the protection of property rights, the efficiency of legal frameworks for dispute resolution, investor protection, and a low government regulation burden. also help to explain the utilization of ABS agreements.
Collapse
|
10
|
|
11
|
Ko YJ, Kim JS, Kim S. misMM: An Integrated Pipeline for Misassembly Detection Using Genotyping-by-Sequencing and Its Validation with BAC End Library Sequences and Gene Synteny. Genomics Inform 2017; 15:128-135. [PMID: 29307138 PMCID: PMC5769862 DOI: 10.5808/gi.2017.15.4.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 11/25/2022] Open
Abstract
As next-generation sequencing technologies have advanced, enormous amounts of whole-genome sequence information in various species have been released. However, it is still difficult to assemble the whole genome precisely, due to inherent limitations of short-read sequencing technologies. In particular, the complexities of plants are incomparable to those of microorganisms or animals because of whole-genome duplications, repeat insertions, and Numt insertions, etc. In this study, we describe a new method for detecting misassembly sequence regions of Brassica rapa with genotyping-by-sequencing, followed by MadMapper clustering. The misassembly candidate regions were cross-checked with BAC clone paired-ends library sequences that have been mapped to the reference genome. The results were further verified with gene synteny relations between Brassica rapa and Arabidopsis thaliana. We conclude that this method will help detect misassembly regions and be applicable to incompletely assembled reference genomes from a variety of species.
Collapse
Affiliation(s)
- Young-Joon Ko
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Sangsoo Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
- Corresponding author: Tel: +82-2-820-0457, Fax: +82-2-824-4383, E-mail:
| |
Collapse
|
12
|
Machado LC, Roballo KCS, Cury FS, Ambrósio CE. Female reproductive system morphology of crab-eating fox (Cerdocyon thous) and cryopreservation of genetic material for animal germplasm bank enrichment. Anat Histol Embryol 2017; 46:539-546. [PMID: 28913836 DOI: 10.1111/ahe.12306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/11/2017] [Indexed: 11/30/2022]
Abstract
The sprawl of the urbanization and road network process without building ecological corridors contributes to the high mortality rates and a threat to the population decline of wild species such as the crab-eating fox. A strategy for the ex situ conservation is the study of the reproductive biology of the species and cryopreservation of their genetic heritage through the formation of an animal germplasm bank. This research is in accordance with the principles adopted by Brazilian College of Animal Experimentation. Reproductive systems of Cerdocyon thous females (n = 7) were examined macroscopically and microscopically by histological techniques and scanning electron microscopy. Gross features showed the shape of the ovaries was similar to a bean, and the elongated oviducts lengths were between 5 and 8 cm, with body of the uterus (3 cm) with long and narrow uterine horns (9-11 cm). The cervix was as a single annular conformation carrying out communication between the uterus and the vagina. The vagina has lengthened and circular muscle and the vulva with dense anatomical conformation with a quite pronounced clitoris. In addition, with regard to the establishment of a cell line (fibroblasts) for the gene bank enrichment, cells showed a low clonogenic capacity, especially when compared to domestic dogs, which can be explained by "in vitro" environment, age and diet of the animal. However, it was possible to create a bank of limited cell number. This study had morphological and preservationist character and aimed to help at long term in the conservation of wild animal's genetic resources.
Collapse
Affiliation(s)
- L C Machado
- Faculty of Animal Science and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, Brazil
| | - K C S Roballo
- Faculty of Animal Science and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, Brazil
| | - F S Cury
- Faculty of Veterinary Medicine and Animal Science, Department of Surgery, University of São Paulo, Pirassununga, Brazil
| | - C E Ambrósio
- Faculty of Animal Science and Food Engineering, Department of Veterinary Medicine, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
13
|
Herrick JR, Mastromonaco G, Songsasen N, Comizzoli P. Biomaterials repositories: the science and business of biobanking. Reprod Fertil Dev 2016. [DOI: 10.1071/rdv28n8_fo] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|